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5G and 5G IoT technologies have been widely deployed in both consumer and industrial us-

age scenarios for their ubiquitous coverage, mobility support, and carrier-grade services. The

resiliency of such systems is critical to sustaining billions of smartphones and IoT devices. We

have identified three roadblocks hindering 5G resiliency: wireless outages, 5G software stack

failures, and malicious attacks. To ensure high resiliency and build a highly available and

secure 5G service, we have challenged three commonly held perceptions: 1) current failure

handling at the infrastructure, modem, OS, and applications is sufficient for high resiliency;

2) providing 100% wireless coverage ensures the best availability; 3) existing 5G security

schemes, protected by SIM keys, can shield devices from attacks. Our study thus invalidates

all three. The fundamental root cause stems from the complex, software-hardware inter-

actions between devices, infrastructure, and protocol stacks. This complexity affects data

transmission, exacerbates failure diagnosis and handling, and exposes new vulnerabilities to

attackers.

This dissertation introduces a novel SIM/eSIM-based solution to enhance resiliency in 5G

ii



and 5G IoT systems. By utilizing the SIM card and eSIM chip as an independent miniature

system, we provide plug-and-play, highly resilient 5G services without modifications to device

firmware, operating systems, or base stations. We prototype and evaluate our proposals

using commodity 5G devices with three major US carriers. Our solution addresses all three

roadblocks of high resiliency: 1) we develop a novel SIM-based 5G failure diagnosis and

handling system, resulting in 0.6x-792x disruption reduction under 5G software failures.

2) we enable rapid inter-carrier switching, reducing unavailability under outages by 28x,

while only increasing power consumption by 4.7%. 3) we identify new 5G/4G attacks,

such as traffic eavesdropping, man-in-the-middle attacks, and impersonation. To mitigate

these threats, we offer both authentication and fine-grained access control for SIM/eSIM,

ensuring security with minimal authentication latency (5.5%) and energy overhead (3.2%).

By enabling intelligence on the device side with SIM/eSIM, we enhance system resiliency

and address the aforementioned roadblocks.

Rethinking the “smart core, dumb terminal” design philosophy in 5G systems allows us

to tap into the potential of end-user devices for improved resiliency. This traditional design

principle emphasizes the importance of intelligent infrastructures while relegating end-user

devices to relatively passive roles, thus neglecting their capacity to respond autonomously

during service disruptions. This dissertation demonstrates that, augmenting device-side in-

telligence with SIMs offers a novel perspective on enhancing resiliency. SIMs enable simple,

yet effective device-side handling for improved resilience by incorporating lightweight oper-

ations such as multi-tier resets and rapid multi-carrier switching. These operations allow

SIMs to accelerate recovery from protocol failures, enhance connectivity outage handling,

and strengthen security against vulnerabilities. By harnessing the potential of device-side

intelligence, SIMs actively contribute to the resilience of both 5G and 5G IoT systems, paving

the way for more robust and reliable communication networks.
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CHAPTER 1

Introduction

5G and 5G IoT technologies have been widely deployed in both consumer and industrial

domains because of their expansive coverage, mobility support, and carrier-grade services.

This has enabled new opportunities in customer markets, such as faster download and up-

load speeds, reduced latency [LPZ21], real-time high-quality video streaming [DLH20], and

seamless online gaming experiences [TZL21]. Beyond smartphones, 5G Internet-of-Things

(IoT) technology has seen widespread adoption, facilitating the interconnection of everyday

objects through the Internet. In recent years, IoT systems have been implemented in vari-

ous scenarios, including smart cities [KRM17], environmental monitoring [AY19], and asset

tracking [RVS20]. As the demand for connectivity and the number of connected devices

continues to grow, 5G and 5G IoT hold the potential to enable more intimate interactions

between users and the physical world in cyberspace.

As 5G and 5G IoT systems expand into mission-critical and enterprise settings, such as

AR/VR/MR [TLL18], industrial applications [SHH20], and digital twins [MLC20], ensuring

high resiliency becomes both crucial and pressing. Recent studies indicate that back-end

cloud services offer three to four nines of availability [Mic23a, AWS23a], while front-end

devices demonstrate durability and reliability [EFE23]. Various schemes are implemented

on both hardware [TZD23] and software [TDZ21b] levels to ensure security within the in-

frastructure and devices. Current 5G designs include several schemes to enhance resiliency,

leading to three prevailing perceptions: (1) existing failure handling at the infrastructure,

modem, OS, and application levels is sufficient for high 5G resiliency; (2) providing 100%
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wireless coverage ensures optimal availability; (3) existing 5G security schemes, safeguarded

by SIM keys, can effectively protect devices from attacks.

This thesis challenges these common perceptions regarding 5G resiliency through empir-

ical results. First, failures in 5G networks have become the norm rather than exceptions,

with an average of one failure event occurring every ten procedures of 5G/4G signaling.

Second, even under ideal wireless conditions, power-saving schemes on 5G devices introduce

interruptions, reducing availability to 89.9%—failing to achieve even one nine (90%). Third,

we identify new vulnerabilities and attacks in 5G that compromise security through traf-

fic eavesdropping, man-in-the-middle attacks, and impersonation. Ensuring high resiliency

becomes urgent for 5G services.

The low resiliency in the current 5G network stems from its architectural design. A critical

impediment to achieving highly resilient 5G systems lies in the widespread adherence to a

“smart core, dumb terminal” philosophy, which emphasizes intelligent infrastructure while

relegating end-user devices to passive roles. This approach has led to a predominant focus

on network-side mechanisms for ensuring resiliency, thereby limiting the ability of devices to

respond autonomously during service interruptions. By enhancing the intelligence of end-

user devices, we can unlock their potential to actively contribute to network resilience and

improve overall system performance.

To address these challenges, this dissertation proposes a SIM-centric design that enhances

device intelligence and harnesses the untapped potential of end-user devices for system re-

silience. The SIM occupies a unique position within the 5G ecosystem, being both produced

and managed by the network while residing on cellular devices. This dual role enables the

SIM to act as an intermediary, facilitating device-side intelligence with network knowledge

by simple, yet effective operations, and thereby ensuring high resiliency in 5G and 5G IoT

systems. We designate the SIM as a mini-system that can be integrated into 5G and 5G IoT

devices in a plug-and-play manner without altering the device operating system or firmware.

The SIM mini-system effectively offloads the tasks in achieving high resiliency, such as failure
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diagnosis and recovery, power-saving management, and security protection. Specifically, we

present three major sources hindering the 5G resiliency in §1.1 and subsequently introduce

innovative SIM/eSIM-based solutions in §1.2.

1.1 Challenges for High Resiliency Today

Prevalent 5G software protocol failures As system scales increase and small cells are

deployed, users and their smartphone applications regularly experience failures. We investi-

gate the diagnosis and treatment of network failures in both control and data planes within

the 5G protocol stack. Our analysis of public 5G traces reveals 2,832 failure cases identi-

fied from 24k control/data-plane management procedures. Other prior studies [LLL21] also

confirmed the prevalence of failures in 5G. If unaddressed, these failures can cause lengthy

disruptions for 5G-based Internet access and hinder the proper functioning of 5G applica-

tions. Existing solutions to 5G failures adopt either modem-based schemes [3GP21b] or

OS-centric approaches [And22e] at the device level. They rely on timeout-based detection

with multiple timers and employ a sequential retry approach for failure recovery. However,

these detection and reaction schemes are ill-suited for complex 5G failure cases, resulting in

prolonged service disruptions ranging from tens of seconds to tens of minutes. The funda-

mental issue is that 5G failures are highly diversified, stemming from a wide spectrum of

control and data-plane management and data packet delivery. Without cooperation from

the infrastructure and the device for fine-grained diagnosis, neither approach can determine

error causes, resorting to a blind, sequential retry scheme for failure management.

Connectivity outages from both wireless and power-saving FCC datasets reveal

that a single carrier’s coverage can be as low as 40% in rural areas [FCC21], with frequent

wireless outages impacting 5G resiliency. Our study further demonstrates that even under

ideal wireless conditions, availability can only reach a maximum of 89.9%, failing to attain

even one nine (§5.2.3). The root causes are diverse, ranging from wireless outages to mobility
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and power-saving induced out-of-service or control session terminations. The fundamental

issue lies in the inadequacy of a single-carrier approach and the state inconsistency that

arises between IoT devices and 5G infrastructure during device mobility or power-saving

modes.

Vulnerability in current security design The interoperability between various enti-

ties, such as the SIM/eSIM, modem, and protocol stacks, exposes vulnerabilities that jeop-

ardize 5G network security. We identify three vulnerabilities in current SIM/eSIM practices.

Firstly, while the current SIM offers simple PIN-based access control, it fails to provide suf-

ficient protection, allowing adversaries to easily access sensitive in-SIM information through

hardware or software. Secondly, the interaction between the SIM/eSIM and the 5G/4G

protocol stack maintains a security context that can be leaked and reused. Lastly, the

communication channel between the modem and the SIM/eSIM remains unencrypted, en-

abling eavesdropping through malicious hardware. The fundamental issue is that PIN-based,

coarse-grained access control is inadequate for protecting SIM/eSIM information from hard-

ware or malware. Additionally, the current SIM/eSIM fails to provide proper authentication

for various in-card applets and off-card units legitimately seeking access to in-SIM informa-

tion, as well as for adversaries.

1.2 Our Contribution

Our study reveals the diverse factors that impede high resiliency in 5G networks. The fun-

damental cause originates from the intricate software-hardware interactions between devices,

infrastructure, and protocol stacks. This complexity not only affects data transmission but

also complicates failure diagnosis and handling, while exposing new vulnerabilities to attack-

ers. To address these challenges, we propose novel SIM/eSIM-centric designs that ensure

high resiliency for 5G services.
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1.2.1 SEED: SIM-Based 5G Failure Diagnosis and Handling

To handle prevalent 5G protocol stack failures, we present SEED, a novel SIM/eSIM-based,

pure software solution for failure diagnosing and handling. By leveraging information from

the device and the 5G network, SEED offers fine-grained runtime failure detection and

recovery using a domain-specific decision tree and online learning algorithms. It utilizes

simple multi-tier resets for control-plane, data-plane, and data delivery failure recovery.

Designed for fast deployment and compatibility with the ongoing 5G global rollout, SEED

can be readily installed during subscriber activation and offers two modes with and without

root privilege. SEED poses no new security threats as it works within the 5G framework

without requiring changes to the current device firmware or infrastructure hardware. Our

evaluations show that, the disruption time under protocol failures is reduced by a factor of

0.6×∼792×, from 12.4∼476.0s by the current modem/OS-based schemes to a mere 0.4∼8.0s.

1.2.2 SHIELD: Enhancing High 5G Availability with SIM

From the availability perspective, 5G connectivity becomes the system resiliency bottleneck.

We introduce SHIELD, a SIM/eSIM-based solution for achieving high availability in 5G

IoT systems. SHIELD leverages the SIM card or eSIM chip and exploits a plugged-in,

miniature, software-defined receiver hardware at the IoT device. SHIELD employs two

innovative strategies: rapid inter-carrier-network switching at the device, which enables fast

handling upon outages, and a data-first approach that initiates secure IoT data transfer

without establishing the data plane. By piggybacking data into control signals, it enables

concurrent data/control transfer using standardized 5G mechanisms. SHIELD is compatible

with commodity IoT devices and existing 5G infrastructure, requiring no changes in device

firmware, operating systems, applications, or 5G infrastructure. Our implementation and

evaluation of SHIELD on commercial IoT devices over operational 5G networks demonstrate

a reduction in data access downtime by up to 28× with 4.7% extra energy overhead at the
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device, achieving 99.3% availability in two showcase IoT applications and outperforming

existing solutions while preserving energy efficiency.

1.2.3 SecureSIM: SIM/eSIM Authentication and Access Control

We investigate SIM/eSIM security in 5G/4G cellular networks, identifying three vulner-

abilities in current practices: inadequate PIN-based control, leaked security context, and

unencrypted communication between the modem and SIM. Exploiting these vulnerabilities,

we devise several practical attacks, including traffic eavesdropping, man-in-the-middle at-

tacks, and impersonation. To counter these threats, we propose a novel SIM/eSIM solution,

SecureSIM, for authentication and fine-grained access control, replacing PIN and key-based

authentication with a certificate-based scheme that scales to hundreds of entities. Our ap-

proach organizes in-SIM files into a multi-rooted tree hierarchy for access policy specification

and automated checking. Empirical evaluation demonstrates that the certificate verification

and encryption components ensure security with marginal latency and energy overhead,

offering a more secure and resilient solution for SIM/eSIM in 5G networks.

1.3 Organization of the Dissertation

This dissertation is organized into the following chapters. Chapter 2 provides an introduction

to the architecture of 5G networks. It further introduces the current practices of 5G resiliency

designs and their limitations.

Chapter 3 provides an overview of our proposed SIM-centric solutions. We detail the

challenges and introduce our designs and insights.

Chapter 4 to 7 introduce our SIM/eSIM-based highly resilient 5G system design. Chap-

ter 4 details a SIM-based approach for addressing 5G protocol stack failures; Chapter 5

presents a SIM-centric software solution with minimal hardware support for enhancing 5G

availability; Chapter 6 investigates the vulnerabilities in current 5G/4G designs, proposing
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authentication and fine-grained access control measures for SIM/eSIM. Chapter 7 introduces

our open-source platform for demonstrating the highly resilient 5G system designs.

Finally, in Chapter 8, we summarize the results and lessons learned, and propose direc-

tions for future research.
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CHAPTER 2

Resilient 5G Designs: State of the Arts and

Limitations

Over the past decades, the mobile network has undergone significant evolution, resulting in

substantial performance improvements with advances in wireless access technologies. Nowa-

days, enterprise and mission-critical applications impose new resiliency requirements for 5G

services. However, the current “dumb terminal, smart core” nature of the 5G ecosystem

makes it difficult to pinpoint resiliency issues. Our study shows that the current designs

could not achieve a high resiliency, leading to widespread protocol failures, frequent connec-

tivity outages, and security vulnerabilities.

In this chapter, we discuss the current 5G system architecture and schemes in §2.1. We

examine existing solutions in §2.2 aimed at achieving high service resiliency in 5G systems.

Finally, we summarize the limitations of these solutions and conclude the chapter in §2.3.

2.1 5G System: An Overview

5G provides enhanced mobile network performance by increasing throughput, reducing la-

tency, and accommodating a wider variety of device types. In this section, we provide an

overview of the current 5G system.
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Figure 2.1: 5G system architecture.

2.1.1 5G System Architecture

As shown in Figure 2.1, the 5G device communicates with the 5G base station (gNB), which

uses licensed frequency channels to transfer data and control signaling messages with the

device. 5G Core (5GC) is in charge of providing user centralized management, including

session/mobility management, user authentication, roaming, etc. The control plane and

the data plane together facilitate seamless connectivity, high-speed data transmission, and

enhanced network performance. The control plane primarily focuses on managing and or-

chestrating network functions such as session management, mobility, security, and quality

of service, ensuring the efficient allocation of resources and optimal routing of data. On

the other hand, the data plane is responsible for the actual transmission of user data and

application traffic across the network, leveraging advanced technologies like network slicing

and edge computing to provide ultra-low latency and high throughput. These two planes,

working in tandem, enable 5G networks to support a diverse range of applications.

Inside 5G devices, there exists a crucial component known as a network adapter or mo-

dem, which is specifically designed to handle the complexities of 5G protocols and facilitate

efficient cellular data transfer. This modem operates in conjunction with the device’s mobile
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operating system (OS), ensuring seamless communication between the hardware and soft-

ware components. The mobile OS plays a critical role in managing the modem’s functions,

while also providing APIs to various applications running on the device. These APIs allow

developers to leverage the power of 5G without needing to delve into the intricate details of

the underlying network stacks. As a result, the complexities of the network stacks remain

concealed from mobile application developers.

The 5G Internet-of-Things (IoT) shares the same 5G architecture with broadband devices

(e.g., smartphones). Current IoT services are usually cloud-based. Its main function is to

collect data from sensors through 5G network connectivity and perform data analytics in the

cloud. The system has three components: front-end devices, back-end cloud, and network

connectivity. The front-end devices use sensors to interact with the environment, collect

data, and send them to the cloud. The back-end cloud stores and processes data. Network

connectivity communicates front-end devices and the back-end cloud.

2.1.2 Protocol Stack

Figure 2.1 illustrates the 5G protocol stack. The control-plane signaling is managed by Non-

access Stratum (NAS) and Radio Resource Control (RRC). NAS protocol allows message

exchange between the 5G device (UE) and 5GC, while RRC establishes a channel between the

UE and the gNB, responsible for data-plane parameters, such as set-up, power management,

and handover behavior.

The data plane facilitates IP packet delivery, involving four protocols: Packet Data Con-

vergence (PDCP), Radio Link Control (RLC), Medium Access Control (MAC), and Physical

Layer (PHY). PDCP handles control-plane and data-plane packet encryption and integrity

protection. RLC ensures reliable, in-order data transfer by performing data concatenation

and reorganization. MAC manages radio access control, and PHY executes wireless signal

processing.
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2.1.3 SIM and eSIM

The Universal Integrated Circuit Card (UICC), commonly known as the SIM card, enables

mobile users to access 5G/4G cellular networks by storing a SIM file package containing

crucial parameters, such as the identity and configurations. The Embedded SIM (eSIM)

is a recent innovation that enhances usability and programmability by integrating a pro-

grammable chip directly onto the device’s circuit board. eSIM supports remote SIM provi-

sioning, allowing users to download SIM file packages and switch between operators without

physically changing SIM cards.

Operators or IoT service providers can offer additional services, such as geofencing, Qual-

ity of Service reporting, and SIM status checking [M2M], by installing applets on the SIM.

An applet is a small application within the SIM that can communicate with the modem using

Application Protocol Data Units (APDUs) to obtain device information, establish calls, and

send Short Message Service (SMS) messages.

Current 5G security protection is built based on hierarchical keys. The root key K is

stored in the SIM/eSIM. Both SIM and eSIM use various types of files as the basic units for

storing the SIM package. A typical SIM includes around 200 files. Each file has a unique ID

[3GP20a]. The operators control SIM files and are responsible for managing file access. The

current SIM offers four access modes for files: (1) Always (ALW), with no restrictions. (2)

PIN, where the cardholder needs to verify the PIN unless PIN verification is disabled. (3)

ADM, where the administrative key (owned by the card issuer, e.g., operators) needs to be

verified. (4) Never (NEV), with no access. For example, the international mobile subscriber

identity (IMSI) is stored with ID 6F07 with ADM access mode so that the modem can only

read it but cannot update it. Some other files that need updates from the modem during

connection use PIN mode, such as the security context.
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Figure 2.2: 5G session setup procedures.

2.1.4 Session Setup Procedures

In 5G networks, mobile devices utilize two essential modules for network access: the SIM/eSIM

and the modem. The SIM/eSIM stores vital subscriber information such as user identities,

configurations, and security keys. The modem retrieves this information from the SIM,

registering the device on the network by running various applets on the SIM to manage

profile transmissions and authentication. The modem and SIM communicate through the

application protocol data unit (APDU), which can be considered a byte-stream interface.

The modem utilizes it to load files and access the network with loaded files. The mobile

operating system or applications can also send APDUs to the SIM through the modem. For

example, operator applications could send APDUs to update network configurations in the

SIM [UIC].

Data transfer in mobile devices occurs in three stages, as illustrated in Figure 2.2. Firstly,

the modem establishes the control plane through 5G signaling messages, which involve iden-

tity exchange, mutual authentication between the SIM and the network, and location up-

dates. Secondly, the modem and infrastructure exchange signaling messages to set up the

data-plane1, configuring elements such as the device IP address and the DNS server. The

infrastructure comprises both the base stations (gNB) and the 5G core network. Finally, the

1Referred to as bearer setup in 5G standards [3GP20d].
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device initiates data packet delivery for its applications.

2.1.5 Power Saving

5G IoT devices necessitate the implementation of aggressive power-saving strategies to op-

timize energy conservation and prolong battery life. Two schemes, Discontinuous Reception

(DRX) and Power Saving Mode (PSM), have been introduced in 5G standards [3GP21b] to

meet these demands.

DRX is a technique that allows a device to enter a low-power sleep state during periods

of inactivity. Instead of maintaining continuous connectivity, the device periodically “wakes

up” for data transfer, significantly reducing power consumption. This intermittent reception

of data enables the device to extend its battery life while still remaining responsive to network

communications.

PSM is another power-saving approach that allows a device to enter a deep sleep mode,

effectively disconnecting from the network. Unlike DRX, the device in PSM reconnects to the

network only when necessary for data transfer, further conserving energy. This mode is par-

ticularly useful for IoT devices that require infrequent communication with the network. By

employing these power-saving mechanisms, 5G IoT devices can achieve high energy efficiency

and extend battery life, making them ideal for various IoT applications where long-lasting

connectivity is crucial.

2.1.6 5G Security Mechanisms

Key Derivation In the 5G network, the mobile device, also known as user equipment

(UE), gains data service through direct access to base stations (gNB). Figure 2.3 shows the

key structures of underlying protocol stacks. The control plane provides control functions

such as authentication in the access and mobility management function (AMF). The user

plane provides data services with routing packets to the user plane function (UPF). Both
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control and user plane traffic are protected with syAMFtric keys. The SIM and the network

share the root key K. Operators install the K when initializing the SIM, and users cannot

acquire the K. All encryption and integrity keys, listed in Figure 2.3, are derived from K.

Keys between the UE and AMF protect the Non-access Stratum (NAS) signaling messages.

Other keys are used between UE and gNB at Packet Data Convergence Protocol (PDCP)

to provide security for Radio Resource Control (RRC) signaling messages and user data.

As a crucial step for key derivation, the Authentication and Key Agreement (AKA)

procedure provides mutual authentication as shown in Figure 2.4(a). First, the UE’s modem

initializes a NAS Attach Request message, including IMSI as the identity. Upon receiving

the request, AMF sends a NAS Auth Request to the UE, including a random byte array

(RAND) and authentication token (AUTN) generated based on the K and RAND. The UE’s

modem forwards the RAND and AUTH to the SIM. The SIM verifies the AMF based on

the K and derives Cipher Key (CK), Integrity Key (IK), and the response value (RES). The

modem gets keys and RES through APDU. The modem derives the KAMF with CK/IK and

sends the RES to the AMF. If it is as expected, the AMF authenticates the UE and agrees

on the shared KAMF. Both sides derive NAS encryption and integrity key KNASenc/KNASint

from the KAMF with the algorithm identifier in the NAS Security Mode Command (SMC).

Finally, both sides derive keys for protecting RRC signaling and user data.

Fast Reattach Procedure To speed up the reattach procedure, the standard allows
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the UE to reattach with the cached context2 [3GP20b]. When the UE detaches (e.g., loses

signal, enables airplane mode, or turns off), the UE shall store the context into the SIM

if the SIM supports the fast reattach service. The context includes the identifier called

Globally Unique Temporary Identifier (GUTI) in file EPSLOCI, and NAS security context

in file EPSNSC. When the UE detects a cached context, it will use the cached GUTI as the

identity in the NAS Attach Request, as shown in Figure 2.4(b). The NAS Attach Request

will be integration-protected with the UE’s cached context. If the AMF finds a record

corresponding to the context, the operators can bypass the AKA procedure [3GP20b]. In

this case, the AMF directly sends the NAS SMC to the UE. They authenticate mutually by

checking the message’s integrity with the cached KNASint. Then they derive all the following

keys and set up the network connection.

2In 3GPP, it is called EPS Mobility Management Information.
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2.2 Practices for High Resiliency: State of the Arts

System resiliency in the context of 5G and 5G IoT systems refers to their ability to with-

stand, recover, and adapt to various types of failures, disruptions, and security threats while

maintaining their essential functionality, performance, and security. This encompasses the

prevention, detection, mitigation, and recovery from protocol failures, connectivity outages,

and security vulnerabilities.

To enhance system resiliency, solutions can be divided into two domains: device-side and

infrastructure-side. Device-side solutions focus on failure handling and security schemes in

modems, mobile operating systems, and applications, such as incorporating cross-layer failure

detection and reaction schemes, and using secure communication protocols. Infrastructure-

side solutions, on the other hand, emphasize deploying heterogeneous mechanisms within

the 5G network and edge/cloud servers, including dynamic routing protocols, self-organizing

networks, firewalls, intrusion detection/prevention systems, and redundant resources with

load balancing techniques for high availability and fault tolerance.

In this section, we discuss current strategies for enhancing 5G network resilience, exam-

ining solutions across both device-side and infrastructure-side domains. We analyze how

these approaches tackle challenges in achieving highly resilient systems, addressing protocol

failures, connectivity outages, and security vulnerabilities.

2.2.1 Device: Multi-layer Mechanisms for Resiliency

The device-side resiliency schemes span across multiple layers, encompassing modems, oper-

ating systems, and applications. We present an overview of the current device-side resiliency

mechanisms and their limitations.

Modem The modem’s firmware implements the 5G protocol stack for control and data-

plane management [3GP21b], using a timeout-based approach to identify and address failed

procedures. Standardized protocol messages and finite state machines determine whether to
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abort connections or trigger retransmissions. For instance, a modem that fails to receive a

Registration Request response waits for T3511 (10s by default) before retrying, ultimately

waiting for the longer timer T3502 (12mins by default) after five attempts. Timeout dura-

tions vary across different procedures.

Dual-modem solutions are employed to manage connectivity outages, with each modem

connected to a distinct carrier network. The backup modem takes over data transfer when

the primary modem experiences an outage. However, hardware replicas result in increased

power consumption, limiting their use to powerful gateways rather than smartphones or

5G IoT devices [Pep23]. Furthermore, modems rely on timeout-based outage detection,

identifying outages after a 15-second timeout [Tel23, DIG23], which may cause the backup

modem’s data session to be released due to inactivity [TKS16, Cis23]. This necessitates

another data session setup before resuming data transfer.

Regarding security, 5G modems employ cryptographic algorithms and procedures spec-

ified by 3GPP standards [3GP20c]. Leveraging an in-SIM root key pre-shared between the

SIM and the 5G core network, these mechanisms ensure confidentiality, integrity, and authen-

tication of device-network communications. For example, the modem establishes a secure

channel with the network through mutual authentication using subscriber credentials and a

network-generated challenge. Additionally, modems utilize encryption algorithms for data

confidentiality and integrity protection mechanisms to prevent tampering or manipulation

of signaling messages.

In conclusion, the current modem-based approach has limitations in achieving high re-

siliency for 5G networks. The simplistic timeout-based strategy results in slow failure and

outage handling, leading to recurring protocol failures and extended connectivity outages.

Moreover, modem interactions with the SIM and protocol stacks expose vulnerabilities, such

as the unencrypted channel between the modem and the SIM, which allows attackers to

eavesdrop on and spoof SIM-modem communication.
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Operating Systems Current operating systems are designed to handle failures and pro-

vide security protections to ensure resiliency. For failure and outage handling, they employ

detection and reaction mechanisms to enhance resiliency. For example, Android adopts a

“probe and retry” approach for data delivery failure detection and recovery [And22e], mon-

itoring network statistics and periodically sending DNS and HTTPS requests. To address

these failures, Android utilizes a “sequential retry” strategy, sequentially cleaning up and

restarting TCP connections, re-registering the network, and restarting the modem. If un-

successful, Android retries after a three-minute interval.

To maintain cellular security in 5G networks, mobile OSs deploy multiple defense mecha-

nisms. These include a secure boot mechanism to authenticate firmware and software compo-

nents, sandboxing techniques to isolate applications and restrict access to sensitive resources,

end-to-end encryption to safeguard data integrity and confidentiality during transmission,

and anomaly detection algorithms to identify and mitigate malicious network activity.

However, these mechanisms exhibit limitations in addressing challenges specific to 5G

systems. Although operators recommend retry strategies [T M22, AT22], Android’s sequen-

tial retry actions can prolong recovery attempts. The absence of fine-grained failure diagnosis

exacerbates disruptions and may impede recovery. For example, refreshing TCP connections

may be futile when 5G failures underpin TCP issues. Furthermore, when devices transition

between carriers’ coverage areas, current operating systems struggle to manage connectiv-

ity outages, resulting in prolonged service disruptions. Finally, modem vulnerabilities can

compromise the 5G security setup as the OS fully trusts the modem.

Resiliency Design in Applications In addition to modem-based and OS-based solu-

tions, there are application-based proposals for addressing network connectivity issues. Mo-

bileInsight [LPY16] offers in-device failure detection through continuous monitoring of diag

port messages, while commercial tools such as NetMotion [Net22a] use mobile applications

to report high-level metrics for failure analysis. However, these application-based solutions

have limited recovery capabilities, particularly for cellular stack failures or those resulting
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from outdated configurations. In cases requiring user intervention, such as expired data

plans or authentication failures, devices lack sufficient information to prompt appropriate

actions.

Multi-carrier technologies have been utilized by applications to mitigate connectivity

outages, which store profiles from multiple carriers on a single SIM card. This allows devices

to switch carriers when connectivity is lost. Solutions like Google Fi coordinate carrier

switches through applications, and they rely on infrastructure-side support, such as crowd-

sourcing servers, for carrier selection. However, during failures, the data service is disrupted,

and devices are unable to collaborate with the network side. Furthermore, the current

multi-carrier solutions cannot scan alternative carriers without interrupting ongoing data

transfers [LPD18]. This results in prolonged disruptions due to exhaustive searches without

network-side knowledge.

To this end, modem, OS, and application-based solutions face significant challenges due

to their reliance on limited device-side information. The absence of network-side information

hampers the ability to perform fine-grained failure diagnosis and effectively manage connec-

tivity outages, ultimately leading to prolonged data service disruptions. As we transition to

5G networks, the existing security measures prove insufficient in addressing the novel attack

vectors introduced by technological advancements. Consequently, this leaves the 5G service

vulnerable to a wide array of cyber threats, jeopardizing security and impeding resiliency.

2.2.2 Infrastructure: Enhancing Control and Management for Resiliency

To support advanced functionalities and stringent performance requirements of 5G and 5G

IoT applications, a resilient cloud and network infrastructure is indispensable. This section

examines the resiliency designs in cloud infrastructure and 5G networks, emphasizing the

hardware and software techniques employed to achieve high availability and reliability. How-

ever, the limitations in infrastructure resiliency still pose challenges to the overall resiliency
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of 5G services.

Resiliency Designs in Cloud Cloud infrastructure serves as the backbone for numer-

ous 5G application services, necessitating both hardware and software aspects of system

resiliency to be addressed. Hardware redundancy can be achieved through solutions such

as backup power supplies [AAB21], RAID storage [KMA22], and hot-swappable compo-

nents [SHC18]. Conversely, software techniques include failover mechanisms [KJR21], data

replication [KMA22], load balancing [BTY20], and auto-scaling [KLH18], among others. By

leveraging these hardware and software techniques, back-end cloud systems attain high re-

siliency, ensuring the seamless operation of 5G and 5G IoT applications while meeting the

increasing demands of users and IoT devices.

Resiliency Designs in 5G Networks To achieve high resiliency in 5G services, the

current 5G infrastructure employs various schemes. These schemes focus on enhancing net-

work component robustness and redundancy, implementing self-healing mechanisms, and

utilizing software-defined networking (SDN) and network function virtualization (NFV) tech-

nologies [BAM20, GZL19] for rapid adaptation and recovery from failures. Moreover, ad-

vanced algorithms for real-time monitoring, anomaly detection, and machine learning tech-

niques are incorporated to predict and preemptively address potential network disruptions

[AHB21, MAQ21, ZZY19].

Despite existing measures, attaining high resiliency in 5G services is constrained by in-

frastructure limitations. These include insufficient access to higher-layer information (e.g.,

transport and app layers), complicating the accurate diagnosis of high-layer failures. The lack

of direct device control further restricts responsiveness to connectivity outages. Moreover,

the infrastructure’s reliance on the in-SIM key for mutual authentication leaves device-side

vulnerabilities unaddressed through infrastructure upgrades. Consequently, the limited ca-

pability to control device behavior results in marginal improvements to 5G service resiliency.

Thus, infrastructure-side solutions face challenges in effectively managing failures, outages,

or attacks to ensure high resiliency for 5G and 5G IoT devices.
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2.3 Insufficient Resiliency in Current 5G Architectures

In summary, the current schemes deployed across multiple entities in the 5G ecosystem are in-

sufficient to ensure highly resilient 5G services. The device-side solutions, including modem,

operating system, and application-based resiliency designs, face considerable challenges due

to their reliance on limited device-side information. These approaches exhibit shortcomings

in performing fine-grained failure diagnosis, effectively managing connectivity outages, and

addressing novel attack vectors. For instance, timeout-based strategies result in slow failure

handling, existing multi-carrier and dual-modem are insufficient for connectivity outages,

and the vulnerabilities at the SIM jeopardize the 5G security. As a result, these limitations

lead to prolonged data service disruptions and leave 5G services vulnerable to a wide array

of cyber threats, resulting in low resiliency.

Furthermore, limited capabilities to control device behavior and the absence of device-

side knowledge impede infrastructure-based improvements to resiliency. In addition to the

limitations of individual entities, our study reveals that interactions between devices, in-

frastructure, and protocol stacks introduce new security vulnerabilities, further undermining

the 5G system’s resiliency. These issues stem from the “dumb terminal, smart core” nature

of the current 5G architectural design. A lack of effective device-side disruption handling

schemes compromises resiliency.
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CHAPTER 3

Overview

This dissertation investigates the potential of SIM-centric designs to enhance the resiliency

of 5G and 5G IoT systems. We first summarize the challenges in achieving high resiliency,

which includes protocol failures, connectivity outages, and security vulnerabilities (§3.1). We

then explore the potential of SIM/eSIM capabilities (§3.2). We present innovative SIM-based

designs that address the resiliency issues (§3.3), and conclude this chapter with a roadmap

of how to build resilient 5G systems (§3.4).

3.1 Challenges for High Resiliency

Current designs face difficulties in achieving high resiliency due to various challenges. Here,

we briefly present the issues and root causes.

Challenges in fine-grained failure diagnosis The first challenge comes from the fail-

ure diagnosis [Com21]. Despite 5G advancements, users still experience data service-related

failures with strong radio signals on their smartphones. Our evaluation of existing device

failure handling mechanisms reveals their inability to provide fine-grained diagnoses, lead-

ing to insufficient management of diverse failures. Limited device-side information is the

root cause, preventing proper identification and handling of failures originating from the

cellular network. The lacking fine-grained failure diagnosis results in prolonged application

disruptions or completely fail to recover.

Limitations in connectivity outage handling The second challenge is connectivity
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outage handling. Single-carrier solutions are constrained by coverage limitations [FCC21].

However, existing multi-carrier switching schemes, such as Google Fi [Goo23] and OneS-

IMCard [One23], also suffer from the current disconnect-scan-switch approach in managing

connectivity outages. This method disrupts ongoing data transfers, leading to prolonged

disruptions. Moreover, power-saving schemes on 5G and 5G IoT devices further compli-

cate matters, as devices in sleep mode cannot detect mobility or session updates, causing

inconsistent states between the device and the 5G infrastructure upon waking.

Issues in current security mechanisms Our study challenges the perception that

5G technology ensures security with existing in-SIM keys. We uncover new vulnerabilities,

leading to traffic eavesdropping, man-in-the-middle attacks, and impersonation. The root

cause lies in the limitations of the PIN-based security protection implemented on SIM and

eSIM, which fails to provide fine-grained access control. Managing access control policies for

approximately 200 files on modern SIM cards presents significant challenges. Moreover, fine-

grained access control alone is insufficient; robust authentication mechanisms are necessary to

protect against threats. However, the current PIN-based schemes cannot distinguish diverse

in-SIM applets and off-SIM units. New security designs are urgently needed to ensure the

5G service resiliency.

3.2 Design Space of SIM/eSIM

The SIM card or eSIM chip naturally exists on 5G IoT devices. We investigate the current

capabilities of SIM/eSIM. The results show that we could harness the readily available

features of SIM/eSIM to enable highly resilient 5G system designs.

Independent Miniature System The SIM/eSIM functions as an independent minia-

ture system, featuring a processor, storage, and security fences. This architecture allows

the SIM/eSIM to securely store user profiles, process data, and authenticate device access.

Commercial SIMs typically have 320KB of storage and a 10MHz processor [Emn23], which
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are sufficient to run lightweight applications on the SIM/eSIM. Industrial IoT SIMs exhibit

exceptional reliability with lifespans exceeding ten years and the ability to withstand extreme

conditions, such as vibrations, chemical exposure, and corrosion [Emn23].

Effective Device Control The SIM/eSIM provides mature interfaces that facilitate de-

vice control, enabling efficient network management. Utilizing proactive commands [ETS19b],

the SIM/eSIM is capable of controlling modem behaviors. This functionality allows the SIM

to actively monitor signal conditions, track modem status, execute multi-tier reset/redo

actions, and switch between different carriers when necessary. As a result, the SIM can per-

form simple yet effective actions for handling failures and outages, ensuring its adaptability

to changing network conditions and maintaining high resiliency.

Bridging Device and Infrastructure The SIM over-the-air (OTA) channel allows the

SIM to send and receive data packets, providing a secure and dependable connection for

the device. Our design enhances this capability. The SIM can actively track available data

channels to proactively detect disruptions. We further leverage it for the rapid deployment

of security features. Moreover, we venture beyond traditional OTA channels by empowering

the SIM to interact with 5G infrastructure through signaling messages. This allows for

fine-grained diagnostics and secure updates, even in the absence of data services.

Current practices primarily utilize the SIM for device identification purposes [SBA21].

Our proposal exploits the full potential of the SIM/eSIM to provide failure diagnosis, con-

nectivity outage handling, and security protection. We demonstrate that the SIM-centric

software design enables plug-and-play functionality. By harnessing the SIM’s capabilities, we

can implement simple yet effective actions at the device, and enable new device intelligence

for highly resilient 5G and 5G IoT systems.
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3.3 Overview of SIM-centric Designs

To address the resiliency issues identified in 5G and 5G IoT systems, we propose innovative,

plug-and-play SIM-based solutions.

SIM-based 5G failure diagnosis & handling We aim to facilitate fine-grained fail-

ure diagnosis and handling using SIM. The key idea is to utilize error codes present in

standardized 5G signaling messages to infer the root cause of failures. By incorporating

a domain-specific machine-learning algorithm, we enhance the diagnostic process. Once

the failure cause is identified, the SIM is enabled to execute multi-tier reset/redo actions,

such as resetting protocol operations, refreshing outdated configurations, and reloading pro-

files. Consequently, this approach allows for swift and effective handling of protocol failures

with the SIM/eSIM. Furthermore, we innovatively leverage the standardized 5G signaling

to transfer the failure causes between the SIM and 5G infrastructure. This design enables

fine-grained diagnosis under failures, even if the data plane is broken or has not been estab-

lished.

SIM-based high availability design for 5G connectivity outages We address con-

nectivity outages caused by wireless outages, mobility, and power-saving schemes, which

negatively impact 5G service availability. Our novel SIM/eSIM-based solution mitigates

these availability gaps by employing a device-based, SIM-centric software approach and plug-

and-play software-defined receiver hardware. This enables rapid switching between multiple

carrier networks. Our design adopts a data-first approach, utilizing concurrent data/control

transfer and fast reconnect to minimize data access downtime induced by power saving. Eval-

uations using commodity IoT devices and commercial 5G networks confirm the solution’s

viability. It readily achieves two to three nines of availability (with the potential to reach

four to five nines), while preserving energy efficiency in the evaluated application scenarios.

Secure Authentication and Access Control with SIM/eSIM The current 5G net-

work is vulnerable to traffic eavesdropping, man-in-the-middle, and impersonation attacks,
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primarily due to insufficient authentication and inadequate access control for the numerous

in-SIM files associated with in-card applets and off-card units. To tackle this issue, we de-

velop a novel access graph to systematically organize SIM files and analyze common scenarios

requiring SIM access, encompassing all off-card units and in-card applets. Our multi-rooted

tree structure within the access graph provides fine-grained access control to various enti-

ties, detects conflicts, and generates the access graph effectively. To ensure authentication,

flexibility, and scalability, we devise a certificate-based solution, constructing a certificate

chain to differentiate between multiple entities, while certificate ID binding and selective

encryption offer protection against a range of attacks. Our solution effectively safeguards

5G devices while incurring only marginal overhead.

3.4 Roadmap

The following chapters detail the components of the SIM-based solution and demonstrate

how they enhance resiliency in 5G and 5G IoT systems. Chapter 4 presents the fine-grained

5G failure diagnosis and handling enabled by the SIM. Chapter 5 introduces a SIM-centric,

highly available 5G design that rapidly addresses connectivity outages. Chapter 6 showcases

a certificate-based SIM design that provides fine-grained access control and effectively mit-

igates heterogeneous attacks. Lastly, Chapter 7 introduces our open-sourced platform for

demonstrating the SIM-based highly resilient 5G system designs.
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CHAPTER 4

SEED: SIM-Based 5G Failure Diagnosis and Handling

This chapter introduces our SIM-based solution, SEED, aiming to provide fine-grained di-

agnosis and handling to 5G protocol failures. We overview the failures in cellular networks

in §4.1 and introduce the limitations of current solutions in §4.2. §4.3-§4.4 elaborates on the

details of SEED designs. We introduce the implementation in §4.5 and evaluate it in §4.6.

§4.7 further discuss how to gradually deploy SEED in current 5G networks. We present the

related work in §4.8 and conclude this chapter in §4.9.

4.1 Cellular Network Failures

Failures have become the norm rather than an exception in real-world 5G usage. Re-

cent studies show that, 30% of 5G devices experience failures during an 8-month measure-

ment [LLL21]. Various failures are also reported by users each day [Dow22b, Dow22a]. From

the technology perspective, 5G is using small cells in the mmWave bands with smaller single-

cell coverage, thus triggering more frequent handovers [XZZ20]. Therefore, 5G may incur

more failure events with the increased frequency to sync up the control-plane state, security

update, and data sessions.

Failures in 5G are consequently becoming diversified. In general, three types of failures

arise at different stages of data transfer. Control-plane management failures arise during the

control signaling operations, including setup, tracking area update, or teardown procedures.

Data-plane management failures affect the data session setup, modification, or release proce-
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dures. Data delivery failures incur packet delivery stall with established data-plane sessions

due to various causes (e.g., DNS errors, port blocking, etc).

These failures happen at both device and network sides. The device may use outdated

configurations, resulting in connectivity failure [the20]. The network could suffer from con-

gestion, thus unable to respond to requests in time [ZZL14]. Every component (hardware,

cellular stack, OS, etc.) could be the source of failure [LLL21], given the diversity and

complexity of devices and infrastructure in both hardware and software.

4.2 Limitations of Current Solutions

Despite the current solutions at the device, 5G users still regularly perceive data service

related failures, even with a strong radio signal bar at the smartphone [Com21]. We thus

seek to first understand how failures exhibit in practice given the deployed failure mechanisms

through a trace analysis. We then assess the existing modem and Android failure handling.

Our results show that both solutions only perform coarse-grained diagnoses and cannot

handle diversified failures well. Existing modem schemes incur repeated failures and long

disruptions, and Android suffers from prolonged failure detection and false positives.

4.2.1 Failures in the Real World

In this work, we focus on failures related to the 5G protocol stack. The network failures

induced by other components, such as internet outages, erroneous application implementa-

tions, or OS firewall settings (e.g., user-determined network restrictions for apps), are out of

scope. We first analyze control/data-plane management failures in 5G. The 5G standard pro-

vides failure causes to indicate failure reasons for control/data-plane management [3GP21b],

which inherit from LTE with 5G context. We perform our trace analysis on the publicly

available, 6.7TB 5G/4G datasets collected from 2015-Q3 to 2021-Q4. These public datasets

include 4.7 million signaling messages collected by 30+ device models using open-source tools
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of MobileInsight [LPY16] and MI-LAB [MIL22]. The traces contain 8 mobile carriers from

the US and China. We found 2832 failure cases from 24k control/data-plane management

procedures; this gives a nontrivial, over 10% failure ratio per control/data-plane management

lifespan. Table 4.1 shows the top 5 failure causes in the control and data plane management.

We elaborate on them next.

For control plane management, 3 out of 5 most frequent failures are due to infrastructure-

device status synchronization. The infrastructure fails to derive the updated device identity

(15.2%), releases previous data bearer context (7.5%), or sends mismatched signaling (2.8%).

One common reason for the unsynchronized status is that, when the device moves to a new

tracking area after handover, the infrastructure fails to sync up states with the previous

tracking area. With state mismatch, the device suffers from long disruptions during reat-

taching with outdated identities and contexts.

For data plane management, the top 2 failures are due to configurations (requested ser-

vice option not subscribed, and invalid mandatory information). Although the configurations

could be proactively checked from the network side, the operational failures cannot be com-

pletely eliminated in practice. The configurations could be outdated on the device and result

in data plane failure. When such failures happen, the infrastructure only provides failure

causes without the correct, up-to-date configurations. The device thus fails to recover, and

repeated failures arise. In addition to those failures from outdated configurations, diverse

failures are exhibited, including security check (user authentication failed), insufficient re-

sources, etc. Failures caused by expired subscriptions can only be recovered with user actions

such as reactivating the data plan. Reject messages may also include unspecified causes that

are seen at the infrastructure or devices.

During data delivery, the three most common failures incur data stall in 5G cellular

networks: TCP, UDP, and DNS [XZZ20, PA20, LLL21]. The TCP anomaly is observed in

operational 5G networks [PA20]. The UDP port blocking is also widely reported by users

under 5G deployment [T M21b]. For DNS failures, public DNS services such as Google DNS
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Class Failure Causes

Control
Plane
(56.2%)

UE identity cannot be derived by the network (15.2%)
No Suitable Cells In tracking area (12.6%)
PLMN not allowed (10.3%)
No EPS bearer context activated (7.5%)
Message type not compatible with the protocol state (2.8%)

Data
Plane
(43.8%)

Requested service option not subscribed (7.9%)
Invalid mandatory information (5.9%)
User authentication failed (4.7%)
Request rejected, unspecified (2.6%)
Insufficient resources (1.9%)

Table 4.1: Top 5 failure causes in control/data plane.

typically do not apply to cellular networks. Carriers usually configure users’ DNS with their

local DNS resolvers (LDNS), which is less stable due to user mobility and congestion [RB14].

Although operators’ DNS servers may work correctly during the device registration, they may

experience outages thereafter. Neither Android nor iOS provides default DNS configuration

for backup, which makes devices difficult to recover from carrier DNS failures [AFP17]. Users

have reported DNS failure instances among operators [AT20, T M21a].

4.2.2 Limitations of Modem Scheme

The current modem-based solution handles both control- and data-plane management fail-

ures. However, it does not perform fine-grained diagnosis or take precise actions for different

failures. Note that it could have obtained the standardized failure causes from the signaling

messages, but did not leverage them for fine-grained diagnosis. The modem either aborts

the connection and retracts to idle, or triggers retransmission upon timeout. Our analysis

shows that, the modem might keep on resending the signaling message with outdated status,

which causes repeated control-plane management failures until the modem reboots. When

outdated configurations further trigger data plane management failures, the modem cannot

update them. Repeated failures are observed thereafter.

Empirical Validation Wemeasure the disruption time with the existing modem handling
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Figure 4.1: Disruption time with existing modem handling.

scheme using traces in §4.2.1. As shown in Figure 4.1, 50% of control-plane setup failures

cause more than 12.4s of disruptions. Only 19% of failures could be recovered within 2s. The

modem tries to reattach when various timers are triggered after 10s. However, the timeout

prolongs the disruption, and only 27% of failures are recovered within 10s. Repeated failures

happen when the modem retries with previous data-plane configurations. For example, when

the access point name (APN) is outdated, 5G data plane setup fails. The modem activates

reattachment, but still uses the previous APN during the data-plane setup, making the device

fail for the same reason repeatedly. The frequent, repeated failures prolong the disruption.

Only 9% of data plane management failures could be recovered within 10s. Half of the

failures need about 8 minutes to be recovered.

With limited information from the network side, current modems cannot ensure fine-

grained failure diagnosis and recovery. Furthermore, modem-based solutions may suffer

from three problems when collaborating with the network: First, multiple parties (operators,

modem vendors, etc.) need to follow the same protocol for collaborations, requiring a long

time to be standardized and deployed; Second, operators may not want to leak their network-

side information to third parties (e.g., modem vendors); Third, the security for modem-
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network collaboration requires extra infrastructure support (e.g., public key infrastructure)

and increases deployment cost.

Solutions
Failure Detection Failure Recovery (No-user-action Required) Failure Recovery

& Diagnosis? Config-related Non-config-related (User-action Required)
Modem-based Only device-side Not support Timer-based retry Not support
OS-based Only device-side Not support Layer-by-layer retry Not support
App-based Only device-side Not support Transport reconnection Not support
Infra-based Only infra-side Infra-side config updates Waiting for device retry User Notification

SEED Both infra & device-side Both-side config updates Multi-tier reset User Notification

Table 4.2: Solution comparison for 5G failure diagnosis & handling.

4.2.3 Android: Insufficient Diag & Handling

Android further monitors failures of the data delivery stage. However, it suffers from limited

detection schemes and long detection latency. First, Android does not check for those fail-

ures related to UDP, which is widely used in WebRTC, QUIC, etc., for 5G IoT and real-time

applications. Second, Android provides a timer-based failure detection without distinguish-

ing application requirements, thus resulting in prolonged disruption for all applications. For

example, while video streaming apps could tolerate seconds of disruptions with a large buffer,

5G AR/VR apps fail to function properly with 100ms disruption [LVY20].

Android takes the sequential retry approach upon detecting failures via timeout. Retry is

an effective solution that is also suggested by operators [T M22, AT22]. However, This level-

by-level retry actions by Android yield long time intervals between two actions. While the

OS-based solution could effectively check the device-side firewall, user-determined app data

restrictions, etc., the limited device-side information cannot make it elude those failures

from the cellular network. Without fine-grained failure diagnosis, sequential retry incurs

prolonged application disruption or even no recovery. For example, if the TCP failure is

caused by underlying control/data plane failures, refreshing TCP connections cannot help.

Empirical Validation We assess Android detection for TCP, UDP, and DNS failures

on the latest Android 12. We connect the device with Magma cellular testbed [Mag22a].
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Figure 4.2: Android failure detection latency.

After the device successfully acquires the data service, we block TCP, UDP, and DNS queries,

respectively, at the core network. During experiments, we play the same background Youtube

video and visit websites from the browser every 5 seconds to simulate daily usage scenarios.

We measure the failure detection latency from the time when failure happens to the instant

Android reports data stall.

Figure 4.2 plots the latency distribution for different failure detections. For TCP failures,

Android takes 1.8 minutes on average to report data stall. We note DNS and UDP failures

are not well dealt with in Android. Results show that 50% of DNS failures cannot be detected

within 8.7 minutes. For UDP failures, Android could only detect it if the failure leads to

consecutive DNS timeouts; it takes 8 minutes on average. Otherwise, UDP failures could not

be detected. Furthermore, we test Android when connections to the preset URL are blocked;

this simulates failures due to server issues. Android still reports data stall alerts, which causes

false positives. It further triggers recovery actions and disrupts existing connections. The

interval between level-by-level reset actions is 3.5 minutes on average, which results in long

disruptions.

In summary, both schemes take the device-based approach and suffer from several down-

sides. First, the restricted device-side information limits the fine-grained failure diagnosis

and recovery schemes. Both modem and OS based solutions incur prolonged disruptions

upon failures with their timeout-based detection. Second, neither exploits available error
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causes carried by 5G messages. Specifically, the modem could leverage the embedded failure

causes carried by the reject signaling messages for diagnosis. However, it did not. Android

maps part of standardized failure causes with DataFailCause [And22f], but did not use them

in failure diagnosis and recovery. Third, failure handling is simplistic. The sequential retry

(i.e., level-by-level recovery) leads to long disruptions. The näıve retry by modem does not

infer the causes, thus unable to fix failures due to outdated configurations. Simple retry

further aggravates congestion upon failures of cell/core overload.

4.2.4 Solution Space

In addition to the modem-based and OS-based solutions, there exist some application-based

proposals. MobileInsight [LPY16] provides an in-device failure detection through continuous

monitoring of the diag port messages. Commercial tools such as NetMotion [Net22a] leverage

a mobile application to report high-level metrics (e.g., device types, network performance,

etc.) to pre-deployed servers for failure analysis. Although the application could detect

failures, the recovery is limited. Applications without root can only take the transport-

layer reconnection action, which cannot recover cellular stack failures. Even if the app owns

root access, similar to modem/OS-based solutions, simple retries can only recover failures

from temporary infrastructure-device status unsynchronization, but not failures caused by

outdated configurations. Moreover, for failures that require user actions to recover (e.g.,

expired data plan subscription, identity authentication failures, etc.), the device cannot

obtain enough hints about failures to take proper actions. Furthermore, existing SIM add-on

services (e.g., [SIM19]) could only monitor the SIM hardware health (say, read/write cycles),

cell signal strengths, etc., but cannot diagnose complex protocol failures. In conclusion, the

device-side solutions cannot acquire the network-side information for fine-grained failure

diagnosis and handling.

While the device-side approach has limitations, the second solution option is an infrastructure-

based scheme. This choice also has several limitations in both failure detection and reaction.
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First, the infrastructure may not have access to higher-layer information (e.g., transport and

app layers), thus unable to infer high-layer failures accurately. Second, monitoring data traf-

fic over high-speed 5G may incur significant processing overhead. Third, the infrastructure

cannot differentiate which case happens in the absence of data traffic: whether misconfigu-

ration blocks the device’s traffic, or the device is idle without data to transfer. While the

infra-based solution could send failure notifications through other channels (e.g., email), it

lacks device control for failure reactions. Although the infrastructure could acquire stan-

dardized causes for control/data-plane management failures, or even pinpoint the root cause

(outdated configurations, customized policies, etc.), it can only update infra-side configu-

rations for failure recovery but cannot notify devices at runtime with corresponding action

commands (e.g., update SIM configurations). We summarize the existing solutions to 5G

failure diagnosis and handling in Table 4.2.

The third option is to let the device and the infrastructure collaborate in failure diagnosis

and reactions. The device can detect high-layer failures reliably and take direct low-level

reset actions via modem. The infrastructure can directly correct misconfigurations and use

crowdsourcing among devices to infer failure causes. However, a naive approach in this option

also suffers from three limitations. First, the device and infrastructure might not commu-

nicate failure-related messages upon failures. Second, exposing failures may compromise

system security. Third, the solution may not work within the 5G framework.

4.3 SEED: SIM-Based Failure Diagnosis

4.3.1 Case for SIM-based Solution

We make a case for a SIM-based solution that addresses all the above limitations. First,

the SIM and the network can communicate via signaling messages over signaling channels,

rather than data packets. The channel subsists even when the data session is not established

or broken. Second, SIM is produced by operators and trusted by the in-network devices. In-
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Figure 4.3: SEED diagram.

SIM keys could further protect the SIM-network communication without extra certificates.

Therefore, SIM bridges the network and devices as a trusted agent. Adversaries cannot

access the SIM info without the in-SIM keys. Third, SIM is applicable to nearly all cellular-

connected devices. New functions could be deployed in the form of a SIM applet. They

can be upgraded with the over-the-air (OTA) mechanisms on existing SIM/eSIM. Last, the

SIM-based scheme offers a purely software-based solution without changing 5G standards,

device firmware, or infrastructure hardware.

4.3.2 SEED Overview

We thus design SEED, a SIM-based solution to 5G failure diagnosis and handling. SEED

offers a software-based scheme deployable by 5G mobile carriers. It offers lightweight, fine-

grained failure detection and recovery at runtime with SIM’s constrained hardware capability.

SEED leverages 5G standardized messages to infer failure causes inside the SIM. It further

uses multi-tiered resets/redos for differentiated failure handling. In contrast to complex

failure recovery (e.g., rollover, logging and checkpointing, recovery from crashes), SEED

uses simple, yet effective resets to handle all three types of control-plane, data-plane, and
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data delivery failures.

Figure 4.3 shows the overall system diagram of SEED. First, SIM receives failure re-

ports from applications (1a) and the network (1b). Failure reports include failure clues such

as network-side diagnosis, instructions with updated configurations, and device-side failure

details (no connection, DNS/UDP failure, etc.). With such clues, SIM performs local di-

agnosis, makes handling decisions, and triggers recovery actions at the device (2a) or the

network (2b). SEED addresses three issues in its SIM-based design:

• How does SIM pinpoint failures at low overhead? We ensure the solution is

viable on resource-constrained SIM hardware. To this end, SEED combines standardized

failure causes with the up-to-date configurations from the infrastructure, as well as OS/App

failure reports from the device. SEED further performs fine-grained failure diagnosis with

limited SIM processing and storage.

• How does SIM handle diverse failures that arise at different stages? We

develop simple and fast failure recovery via multi-tier reset. SIM could perform profile

reloads, configuration updates and failure notifications on commercial off-the-shelf devices

without root access. It further supports faster control/data plane resets with root privilege.

• How does SIM collaborate with the infrastructure when the data plane is

broken? The SIM obtains information from the infrastructure for fine-grained diagnosis

and handling. We leverage existing signaling messages to transmit diagnosis information,

thus ensuring runtime SIM-network information exchange upon failures of control/data-plane

management or data delivery.

4.3.3 Lightweight SIM Diagnosis

We now introduce how the SIM performs fine-grained failure diagnosis with both-side infor-

mation. For control-plane and data-plane management failures, the SIM receives the stan-

dardized 5G failure causes from the infrastructure, and leverages them for diagnosis. The
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SIM further enables apps to report data delivery failures for fast detection and diagnosis.

4.3.3.1 Failures in Control/Data-plane Management

The 5G standardized failure causes provide a good source for SIM diagnosis. 5G defines 80+

failure codes, which are embedded in signaling messages. Most of the messages containing

failure codes are the “reject” messages from the network or the device, such as Authentication

Reject, PDU Session Modification Reject, etc. The messages that embed standardized causes

have been widely deployed in practice [Cis22].

SEED achieves lightweight and fine-grained SIM diagnosis with such standardized causes.

When the infrastructure composes the reject or receives device reject messages, it extracts the

embedded standardized cause and sends the cause code to the SIM (more details in §4.3.5).

The SIM applet stores all standardized cause codes and looks up the received cause to

quickly detect and pinpoint the failure. Although the SIM’s storage is limited (32∼128KB),

it is sufficient to hold all cause codes for in-SIM analysis. The causes could be categorized

into control-plane management and data-plane management. Control-plane management

causes include failures related to UE identification, subscription options, network congestion,

authentication, invalid messages, etc. Data-plane management causes include configuration

failures and protocol errors. Standardized causes are already supported at the infrastructure

and do not need extra modules or algorithms, thus resulting in marginal overhead.

SEED further exploits SIM capability to prevent repeated failures. If the failure cause

is related to outdated configurations, simple retries cannot succeed but result in repeated

failures. Therefore, when the infrastructure initializes the reject due to outdated device

configurations, it sends the up-to-date configuration together with the cause code to the

SIM. We list the failure causes related to outdated configurations in Appendix A.1. Upon

receiving these cause codes, the SIM parses the configurations based on the cause code and

stores them for next-step handling (§4.3.4).
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4.3.3.2 Failures in Data Delivery

For packet delivery failures, current user applications cannot diagnose them with limited

low-layer information from the mobile OS. Emerging 5G applications are disruption-sensitive

and require quick recovery. SEED thus enables these applications to report failures for fast

diagnosis. Applications could call the failure report API if they need fast failure handling.

The API carries three parameters (failure type, traffic direction, address). The failure types

support the three most common failures discussed in §4.2.1: DNS, TCP, and UDP. The

application indicates the failed traffic direction, including uplink, downlink, or both. The

address contains the IP and port for TCP/UDP failures. These fields are used by the 5G

Traffic Flow Template (TFT) to regulate the traffic and activate IP/port blocking with

incorrect configurations. The domain names are embedded in the address field for DNS

failures. The report enables disruption-sensitive apps to bypass long Android detection and

speed up the diagnosis. SIM further leverages existing APIs to acquire the Android data

stall notification. Whenever receiving the App/OS failure reports, SIM leverages the reported

information for fast failure handling in §4.3.4. Note that SEED does not explicitly diagnose

and handle instantaneous, underlying radio link failures. However, such physical-layer issues

may affect control/data-plane management and data delivery, which will be observed at

higher layers and handled by SEED.

4.3.4 SIM-Based Failure Handling

With the diagnosis result, we address the next issue of reacting to diverse failures that

arise at different stages. Different from the blind retry by the modem and Android, SEED

handles diverse failures via the multi-tier reset mechanism directly, facilitated by both-side

information to pinpoint the failure, thus leading to fast failure recovery. We first list the

multi-tier reset actions taken by the SIM. We then elaborate on how the SIM decides which

action to take accordingly.
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Figure 4.4: Multi-tier reset w/ and w/o root privilege.

4.3.4.1 Handling with Multi-tier Reset

SEED leverages the SIM to initiate multi-tier reset actions. This is nontrivial, since the SIM

does not directly control those cellular connections. SEED explores the limited interfaces

supported by current 5G devices, and designates two modes with different device privileges.

Without root privilege, SEED-U uses the multi-tier reset to reload the failed module directly.

When root privilege is available, SEED-R further improves the recovery speed.

Multi-tier Reset without Root Access SEED-U takes multi-tier reset actions for

failure handling at three levels as shown in Figure 4.4(A). At the hardware level, reset

enforces the modem to clear its cached contexts, preventing it from being stuck in prolonged

attempts with invalid caches. The SIM triggers profile reloading at the modem to sync

its SIM profiles (A1). Different from the naive retry scheme in the current modem/OS,

the SIM also retrieves the latest configurations from the infrastructure to handle outdated

configurations. The SIM updates the control-plane configurations (A2) (e.g., PLMN list)

to reduce excessive search time. The mismatched control-plane states/identities (shown in

Table 4.1) are also refreshed in the reset. SEED-U leverages the proactive commands between

the SIM and the modem to realize these two actions [ETS19b]. The proactive command is

usually used to provide carrier services such as OTA updates, which has been supported
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Figure 4.5: Reset data plane without reattachment.

by current smartphones without root privilege. To our knowledge, SEED-U is the first

to leverage it for failure handling. SEED-U could further update the acquired data-plane

configurations from the SIM (A3), such as DNNs or APNs, leveraging the Android carrier

app [And22g]. All such actions do not require root privilege at smartphones.

Boost Multi-tier Reset with Root Privilege With root privilege, SEED-R further im-

proves granularity and speed for diagnosis. 5G/4G devices provide AT commands [3GP21c]

as another interface for fine-grained modem control but require root privilege. When the

carrier app detects that root access is permitted, it will notify the SIM through APDU

to enable the SEED-R mode. Figure 4.4(B) shows the multi-tier reset with root privilege.

Upon hardware failures, SIM restarts the modem (B1). It recovers the modem from being

stuck in internal errors. For control-plane failures, SEED-R directly controls the modem for

control-plane reattach (B2), which improves the recovery speed without prolonged search

procedures.

SIM further collaborates with the infrastructure for data-plane resets (B3). Resetting

only the data session speeds up the handling. However, 5G gNB releases the last radio

bearer once the last data session is released, thus causing the control-plane reattach. SEED

designs the fast data plane reset in Figure 4.5 without resetting the control plane. Upon

receiving failure reports about the initial data session, the SIM triggers the modem to set up
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another data session with DNN “DIAG”. The reattach will not happen when “DATA” session

is released as “DIAG” session and corresponding 5G gNB radio bearer still exist. Finally, the

device reconnects “DATA” session and releases the “DIAG” session. The network could also

modify the existing “DATA” bearer rather than reset it, if only configurations (e.g., TFT)

need to be updated. All the session setup/release/modification signalings are standardized

in 5G [3GP21b]. SEED leverages them to handle data delivery failures without disrupting

the existing, established data plane.

4.3.4.2 Deciding on Reset Actions

Diagnosis Class Failure Handling w/o Root Failure Handling w/ Root
Control-plane Causes SIM Profile Reload (A1) Reset Modem (B1)
Control-plane Causes w/ Config Parameter Update & Reload (A2 & A1) Control-Plane Reattach w/ Update (B2)
Data-plane Causes SIM Profile Reload (A1) Data-plane Reset (B3)
Data-plane Causes w/ Config Configuration Update (A3) Data-plane Modification (B3)
Data Delivery Failures from App/OS Configuration Update (A3) Data-plane Reset / Modification (B3)

Table 4.3: Failure dandling decisions with diagnosis results.

Resetting different modules require different latencies. To speed up failure handling, the

SIM uses the diagnosis results and the current mode to perform targeted reset action without

layer-by-layer retry.

Table 4.3 shows the SIM handling decisions without root (SEED-U) and with root priv-

ilege (SEED-R). For control-plane management failures not caused by outdated configu-

rations, SEED-U reloads the SIM profile to reattach (A1). With root privilege, SEED-R

performs modem reset using AT commands (B2). When outdated configurations incur fail-

ures, SEED-U updates the control-plane parameters and reloads SIM profiles for registration

(A2 & A1). With root privilege, SEED-R updates the configurations and triggers reattach

on modem for fast handling (B2). As 20% of control-plane management failures could be

recovered within 2s (§4.2.2), SEED sets a 2s timer before triggering hardware and control

plane reset. The short timeout enables speedy recovery upon such failures.

When data-plane management failures arise, with SEED-U, the SIM triggers the SIM
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profile reloading. The data plane will be reset after the control-plane reattach. With root

access, SEED-R triggers data-plane reset for faster failure handling (B3). When the SIM

acquires data-plane configurations (DNN, PDN type, etc.) from the infrastructure, the SIM

further triggers configuration updates (A3) with SEED-U or data-plane modification (B3)

with SEED-R.

SIM may receive applications/OS reports for data delivery failures. If it received causes

on control/data-plane management failures within the last 5s, there could be an ongoing han-

dling. The SIM does not trigger handling to avoid conflict. Otherwise, the SIM triggers the

configuration updates in the carrier app (A3) to reset data connection without root. SEED’s

rate-limit design does not perform the same reset action consecutively and frequently; the

signaling messages are thus not overwhelming. With root access, the SIM sends the failure

report collected from App/OS (§4.3.3.2) to the infrastructure with real-time SIM-Infra col-

laboration (details in §4.3.5). The infrastructure checks if the failure type, direction, and

address conflict with user policies, or if DNS failure happens. It then modifies the data

session with updated user polocies when conflict arises for TCP/UDP, or configures a new

DNS server in the followup reset (B3).

4.3.5 Real-Time SIM-Network Collaboration

We next address the issue of enabling SIM-infra interaction when the data plane is broken,

without changing modem/gNB firmware or modifying standardized messages. Note that

SIM needs to acquire the information of failure causes and updated configurations from the

infrastructure. SIM also notifies the infrastructure for data-plane resets. Although SIM OTA

provides a channel for SIM-Infrastructure communication [SIM19, SIM22], it relies on data

service (e.g., TCP/UDP) and cannot work during connection setup. Moreover, upon data

delivery failures, packets may not be delivered and SIM OTA is unavailable.

SEED leverages standard-compliant control-plane signaling messages. The infrastructure

embeds the failure-related info in Authentication Request signaling messages. SIM embeds

43



Modem gNB AMF

NAS	Auth	Req	(DFlag,	DiagInfo)

NAS	Auth	Failure	(Synch	Fail)
(a)

(b)

SIM

DFlag,	DiagInfo

SynchFail(ACK)
Parse	DiagInfo

Receive	SIM	ACK
NAS	Auth	Req	(RAND,	AUTH)

Recv	Data	Failure	Report

FailureInfo(ATCmd) PDU	Session	Estb	Req	(DiagInfo)
Parse	DiagInfo

PDU	Session	ModificaKon	Cmd
PDU	Session	Estb	Reject	(ACK)

Figure 4.6: Collaboration with standard-complied signaling messages (a) Net-
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failure diagnosis results in PDU Session Establishment Request to trigger data-plane resets.

SEED design is compatible with 5G commodity devices without modem or gNB firmware

modifications. These messages are available in the presence of failures. Hence, the infras-

tructure and the SIM could perform real-time interactions for failure diagnosis and handling,

even when the data bearer is not up or broken.

How Does Infrastructure Deliver Info to SIM? In SEED, the network leverages

the 5G Authentication Request message used for mutual authentication to send diagnosis

info. In this message, the network generates a 16-byte RAND and a 16-byte AUTH, which

the modem will forward to the SIM for authentication [ISO13]. SEED reserves a RAND

value (FF. . . FF) as the Diagnosis Flag (DFlag). As shown in Figure 4.6(a), the 5G net-

work embeds the diagnosis info in the AUTH field and sets the RAND as DFlag. When

the SIM sees the reserved DFlag, it does not verify the key but parses the AUTH, which

is encrypted and integrity protected with a counter using the pre-shared in-SIM key. SIM

returns synchronization failure as the ACK upon successfully receiving the diagnosis. If the

44



sync failure is not responded, the modem may label the network as untrusted. The network

then resends a normal Authentication Request. The 16B AUTH suffices to hold the cause

code and most updated configurations. The network could embed more information with

multiple transmission rounds. Note that, the network can send Auth Request at any time

with a NAS signaling connection [3GP21b]. Although the control plane is not fully estab-

lished (with successful completion of both authentication and configurations), the network

could still transmit Auth Request to the SIM, thus enabling collaboration in the presence of

control/data-plane failures.

How Does SIM Transfer Info to Infrastructure? Data delivery failures may block

packet transfer with data plane set up. SEED embeds the failure report collected by SIM

in the PDU Session Establishment Request to report data delivery failures, as shown in

Figure 4.6(b). After control-plane setup, the device requests the data bearer with a corre-

sponding Data Network Name (DNN) in 5G [3GP21b]. Standards support sending DNNs

for multiple data sessions, which enables SEED to report failures anytime after control plane

setup with a new request. SEED leverages the undefined field to embed the diagnosis infor-

mation in the DNN field [3GP21a], which is also encrypted and integrity protected using the

in-SIM key. The 100B DNN size is sufficient for the current report; our experiments further

validate that, a longer report triggering multiple consecutive requests can be fragmented

into several DNNs. SEED triggers the modem to send the request with a special diagnosis

DNN starting with “DIAG”. After the network gets the DNN and parses the report, it vali-

dates the failure with current user settings, responds with a reject as ACK, and modifies the

current data session configs or follows Figure 4.5 for the reset.

The real-time SIM-Infrastructure collaboration is compatible with 5G devices. The

gNB/modem firmware remains unchanged. Carriers could update the SIM via OTA for

new applet logic. The network-side functions could be extended with a new core module

handling diagnosis messages, which current cloud-based core network implementations could

quickly deploy [Azu22, Mag22a]. SEED only requires a small amount of extra signaling mes-
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sages for collaboration with marginal overhead at the device and the network. Note that, the

real-time collaboration cannot work if the radio access is broken. The radio link issues and

recoveries are well studied [PKA10, ARA18, PLK20]. The real-time collaboration in SEED is

designed to supply communication channels, in the presence of failures on control/data-plane

management and data delivery.

4.4 Enhanced Failure Management

4.4.1 Insufficient Standardized Causes

Standardized causes provide a good source for failure diagnosis. However, they are insuffi-

cient for devices in three aspects. First, they cannot cover all control/data plane failures.

Failures from operators’ customized policies, such as the supported device list [Ver22b], do

not fit into any standardized causes. Second, the data delivery failure could happen due to

gNB/core congestion. Without knowing it, the reset may further increase the loads. Third,

the failure’s root cause could be unspecified without a recovery action. The coarse-grained

information is insufficient for failure recovery.

Therefore, the SIM needs more information for failure diagnosis. Thus, we leverage the

infrastructure assistance for SIM diagnosis to cover diverse failures (§4.4.2). We further show

how SEED automatically handles failures with an unknown root cause (§4.4.3).

4.4.2 Infra-Assisted SIM Diagnosis

We first introduce infrastructure assistance for the diagnosis. This component leverages the

deployed metrics in the infrastructure, which avoids redundant processing and is scalable for

massive devices. We then elaborate on how SIM diagnoses failures with information from

the infrastructure.

Infrastructure Assistance The infrastructure classifies failures with a decision tree as
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Figure 4.7: Low-overhead infrastructure assistance.

shown in Figure 4.7. It then sends the corresponding assistance information to the SIM

with real-time collaboration (§4.3.5). The assistance information includes four types: failure

causes, suggested configurations, suggested reset actions, and congestion warnings. SEED

acquires them from the existing monitoring and management functions in current 5G infras-

tructure [Mag22b, KSK21] to assist failure diagnosis without complex processing.

The infrastructure classifies the failures into two types: passive and active. The passive

type includes failures not initialized by the infrastructure, such as device response timeout,

device reject, or SIM-reported data delivery failure. Standardized causes are sent to the SIM

as §4.3. For customized failures, it sends suggested reset actions for SIM handling. It further

notifies the SIM with cell/core congestion. The active type includes network-initialized re-

jects. In addition to standardized failures, the infrastructure provides customized causes with

suggested actions to cover failures from customized policies. For causes without suggested

actions, we propose an online learning algorithm to handle them (§4.4.3).

SIM Diagnosis SIM receives the four types of assistance info and performs the following

actions accordingly. The SIM applet stores all supported failure causes and assistance info

parsing functions. They follow a similar decision tree scheme at the network side and could

be deployed with limited SIM processing and storage. SIM handles standardized failures

and refreshes configurations as in §4.3.4. The SIM performs the suggested reset action for
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customized failures, enabling operators to deploy handling for new failures. When the SIM

receives the congestion warning, it does not trigger the reset but waits for a timer embedded

in the message. SIM parses the assistance information from the infrastructure, and handle

diverse standardized and customized failures accordingly with the multi-tier reset. It further

notifies users of failures requiring user actions to recover (e.g., reactivating the data plan).

However, there are still failures causes without corresponding handling. The infrastruc-

ture may map unstandardized causes to policies or modules but do not have any clues for the

device handling. We further design an online learning algorithm to handle failures without

a known handling action. We elaborate on it next.

4.4.3 SIM Handling with Online Learning

While the root cause is unclear, previous devices’ successful handling probably works for new

devices facing the same failure. Although failures may appear from different functions in one

module, the multi-tier action directly resets the whole module and has similar effectiveness

for various devices. SEED proposes an online learning algorithm to crowdsource the handling

history from SIMs, and picks out suggested actions when the same failure happens in the

future. The infrastructure and SIMs keep evolving and automatically train the model for

failures with unknown handling.

The online learning algorithm (Algorithm 1) includes the SIM side (line 1-7) and in-

frastructure side (line 8-17). When the infrastructure does not know the handling action

for a failure, it generates a customized code to identify the failure, such as the conflicting

policies or modules. The cause code is sent to the SIM through SIM-Network collaboration

(§4.3.5). SIM tries all the supported retries and resets sequentially from the data plane to

the hardware (line 2). It records the successful handling that resolves the issue and notifies

the infrastructure with OTA (line 3-7). The infrastructure crowdsources SIM records and

updates the network-side record (line 8-10). It then sends out suggested action for part of

later devices controlled by a learning rate lr. Otherwise, the infrastructure does not suggest
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Algorithm 1: Collaborative Online Learning

1 def SIM-RecvUnknownFailure(cause):
2 for action← [B3, A3, B2, A2, B1, A1] do
3 if DoRecovery(action) == success then
4 SIMRecord[cause][action]← +1
5 break

6 if SendToInfra(SIMRecord) == success then
7 SIMRecord = dict[][]

8 def Infra-Crowdsource(SIMRecord):
9 for cause, action← SIMRecord do

10 NetRecord[cause][action]← +SIMRecord[cause][action]

11 def Infra-SendUnknownFailure(cause):
12 if cause ∈ NetRecord then
13 sgstAction = argmax(NetRecord[cause])
14 if rand() < 1

(1+e−lr∗size(NetRecord[cause]))
then

15 SendtoSIM(cause, sgstAction)
16 return

17 SendtoSIM(cause, null)

any actions, ensuring that the model is trained and evolving (line 14). If the suggested

handling failed, the SIM takes the same action as receiving unknown failure and tries all the

supported actions sequentially. In our online learning procedure, the SIM only stores cus-

tomized error codes and corresponding actions. The data volume is small enough to be held

within the limited SIM storage. With the collaboration between SIMs and the infrastructure,

online learning provides automatic failure handling for unknown causes. The decision model

also evolves gradually without heavy training, which is lightweight and scalable for massive

devices.

4.5 Implementations

Figure 4.8 shows the implementation of SEED. The operator owns controls for all SEED

components in practice, including the infrastructure module, SIM applet, and the carrier

app.
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Solution prototype We develop a SIM applet on Javacard-based eSIM [ZDG21], which

is compatible with most mobile OS (e.g., Android, iOS, etc.). The applet contains 1244

lines of Java with two modules. The diagnostic module receives the infrastructure assistance

information through the modem with APDU interface [ETS19b], and app/OS failure report

through the carrier app with TelephonyManager API [And22c]. The decision module uses

SEED-U mode by default for the multi-tier reset. For SEED-U mode, the decision module

sends proactive commands through APDU to the modem for profile reloading and control-

plane configuration updates, and updates data-plane configurations with the carrier app.

SIM is notified by the carrier app when root privilege is available. It then enables SEED-R

mode and sends AT commands listed in Appendix A.2 to the carrier app for faster failure

handling.

We extend the Magma 5G NSA core [Mag22a] with a plugin to assist SIM diagnosis with

1035 lines of C++. The diagnosis assistance module hooks the reject generation functions to

acquire the standardized failures. It acquires the latest configurations from the orchestrator

API [Mag22c] and extra information such as RAN/core load from Magma NMS [Mag22b].

We extend the orchestrator API to receive SIM recovery records and forward them to the

assistance module for online learning (§4.4.3). The real-time collaboration module reuses

the Auth Request functions and hooks the PDU establishment handling function. The

information is encrypted with 128-EEA2 and integrity protected with 128-EIA2 using the

pre-shared in-SIM key to prevent information leakage and malicious requests.

We develop a carrier app with Android UICC Privilege API [And22g] to update carrier

configurations, and receive data stall notifications, etc. It contains two modules with 842

lines of Java. The failure report service receives app reports with Android Service [And22b]

and OS reports with Connectivity Diagnostics API [And22d]. For unrooted devices, the

recovery action module updates configurations with UICC Privilege API. If it detects root

privilege with Runtime API [And22a], it notifies the SIM to enable SEED-R mode for it to

trigger AT commands.
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Figure 4.8: SEED implementation components.

Deploying SEED in practice The operators have access to all components that SEED

involves, including the core, SIM, and the carrier app. Therefore, SEED is a viable solution

that can be deployed by operators alone, without any help from modem or phone vendors.

Besides, SEED extends the current standard without changing any existing protocols. De-

ploying SEED thus does not affect any operating 5G functions.

Incremental deployment Operators can gradually deploy SEED, as a partial implemen-

tation already diagnoses some failures. They can first deploy infra and SIM Applet modules

to support diagnosis and handling of control/data-plane failures. These modules can cover

63% of failure cases in the traces. The first stage is easy to deploy: all necessary info for

the network module can be extracted from core signaling, while the SIM applet could be

updated through a readily-available OTA channel. The operators can then update the car-

rier app to include a failure report service and action module. The carrier app has been

widely deployed by operators [Ver22a, Ver22c]. With the enhanced failure handling added,

all considered failures in this dissertation can be diagnosed and handled.

4.6 Evaluation

We evaluate how SEED diagnoses and handles failures. We first evaluate the overall per-

formance on the testbed with failures in our datasets. We also compare the application
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performance between SEED and existing failure handling schemes. We then assess SEED

overhead, diagnosis time, and recovery speed for multi-tier reset with and without root

privilege.

Experimental Setup We implement the diagnosis assistant module with 5G-compliant

Magma Core [Mag22a] on an Ubuntu 18.04 server with i7-9700K 8-core CPU and use USRP

B210 as the RF frontend (Figure 4.9). Our testbed utilizes the 5G-NSA. The long timers are

shared between SA and NSA and dominate the disruption time during failures. Moreover,

most of SA failure cause codes have inherited NSA error codes. Although SA splits its

core functions into different components, the signaling processing and transmission times

between SA and NSA incur negligible difference for SEED. The results thus also reflect

SEED performance for SA deployment. We deploy the SEED applet on a Javacard-based

eSIM [ZDG21] with 180KB EEPROM and 8KB RAM. We assess the performance on Google

Pixel 5 with Qualcomm Snapdragon 765G running Android 12.
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4.6.1 Overall Performance

4.6.1.1 Comparison of failure diagnosis and handling

We first examine SEED overall performance. To compare it with the current modem-based

solution, we utilize the dataset in §4.2.1 to evaluate how many control/data plane manage-

ment failures SEED could handle. We extract failure traces from the dataset and reproduce

failures on the testbed to assess SEED handling. For data delivery failures, we compare the

current Android scheme and SEED handling.

Failures Handling Median 90th

Control
Plane

Legacy 12.4 1024.0
SEED-U 8.0 76.7
SEED-R 4.4 48.6

Data
Plane

Legacy 476.0 2659.4
SEED-U 0.9 1.0
SEED-R 0.6 0.7

Data
Delivery

Legacy 31.2 45.7
SEED-U 1.1 1.3
SEED-R 0.4 0.7

Table 4.4: Disruption (s) percentile with legacy handling and SEED.

For control-plane management failures, 89.4% of failures in the dataset could be handled

by SEED. The remaining cases are due to identity authentication failures from unauthorized

subscribers. Table 4.4 compares the disruption time with existing device failure handling

and SEED. Without root privilege, SEED-U could reduce the median disruption time by a

factor of 0.6× (12.4→8.0s). SEED-R further speeds up the recovery and reduces the 90th

percentile disruption by 20× (1024.0→48.6s). The waiting timer (2s in testing) in SEED

before triggering control-plane failure handling ensures that the transient failure will not be

delayed by reset. With the timer, SEED control-plane handling only causes longer disruption

for 5% (SEED-U) and 2% (SEED-R) failures.

For data-plane management failures, SEED handles 95.5% of the cases in the dataset with

its configuration update and fast data-plane reset. Other cases are from expired subscribers
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and require reactivation of their data plans. The failure handling without root privilege

could recover 90% of cases with <1s disruption. With the root privilege, half of the failure

cases could be recovered within 0.6s, which reduces the disruption time by 792×. SEED

prevents the long disruptions incurred by repeated, blind retries at devices.

We further evaluate how well SEED handles data delivery failures. Our experiments

show that, if data delivery failures are induced by widely reported incorrect network-side

configurations (e.g., TCP/UDP blocking, etc.), Android or modems’ naive retry schemes

cannot recover from them. Current application-level tools (e.g., NetMotion [Net22a]) also

rely on the ongoing data connection and cannot report the failure under traffic blocking.

In contrast, we validate that SEED successfully transmits failure reports, which can trigger

network-side policy checking and updating for failure recovery. For failures that could be

recovered from reconnections (outdated gateway status in mobility, etc.), we compare the

choices of Android sequential retries and SEED multi-tier reset. The Android timers between

recovery actions are set to the recommended configuration values (21s/6s/16s) in [LLL21].

Despite with shorter timers, Android still incurs more than 31.2s disruptions for 50% of cases.

In contrast, SEED fast data-plane reset and modification handle all cases in the experiments,

and recover the data connection within 0.4s for 50% of cases and 0.7s for 90% of cases.

4.6.1.2 Reducing Application Disruption

We further examine the failure impact on various applications with current device handling

schemes and SEED. In the experiment, we assess both the SEED-U and SEED-R modes.

We measure the average app disruption time on five types of latency-sensitive applications,

including video (with YouTube [You22]), live streaming (with Twitch [Twi22]), Web browsing

(with Chrome [Chr22]), navigation app (with Google Maps [Goo22]), and an edge AR

application developed by us. The video app has its long buffering time (∼30s) while the live

streaming possesses a shorter buffer (∼3s). The Web browser visits the social network site,

and the navigation app periodically uploads its location for the latest traffic information.
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The AR app keeps sending the camera view to the edge and retrieves real-time recognition

results without a video buffer. We collect traffic traces of five applications and develop

a background daemon to emulate the corresponding app’s traffic pattern and send failure

reports for the application.

Apps
C-plane (s) D-plane (s) D-Delivery (s)

Leg. S.U S.R Leg. S.U S.R Leg. S.U S.R
Video 68.3 1.1 1.0 184.5 0.0 0.0 75.0 0.0 0.0

Live Stream 79.2 4.3 3.5 199.2 1.5 1.1 105.4 0.5 0.0
Web 80.3 6.8 5.4 200.8 1.8 1.6 110.5 0.8 0.3

Navigation 78.3 5.0 4.1 199.9 1.3 1.2 106.7 0.2 0.0
Edge AR 81.9 6.7 5.7 201.9 2.6 2.1 108.2 1.3 0.4

Table 4.5: Average app disruption (s) with legacy (Leg.) failure handling, SEED-
U (S.U) and SEED-R (S.R).

SEED reduces failure recovery time for all five applications, as shown in Table 4.5. The

fast failure report scheme and multi-tier reset allow the video app to tolerate all data-

plane management and data-delivery failures in experiments. SEED reduces disruptions by

up to 67× (68.3→1.0s) for control-plane failures. For live streaming with a short buffer,

SEED reduces the average control-plane failure time to 4.3s (SEED-U) and 3.5s (SEED-R).

For data delivery failure, SEED-R could still handle such cases and mask user-perceived

disruptions. For Web browsing, SEED reduces disruptions from 80.3∼200.8s to 0.3∼6.8s

for various failures. SEED also reduces the navigation app disruptions from 78.3∼199.9s to

0.2∼5.0s (SEED-U) or 0∼4.1s (SEED-R). The AR app is the most disruption-sensitive app.

Although Android is reconfigured with a shorter action timer, its limited detection scheme

takes more than 1 minute to detect the data stall failure and recovers after 108.2s disruptions

on average. In contrast, SEED takes the fast data-plane reset approach, and recovers the

AR service within 1.3s (SEED-U) and 0.4s (SEED-R) on average.
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4.6.2 Micro-Benchmarks

4.6.2.1 Lightweight Failure Diagnosis

We next examine the SEED scalability at the network and the overhead at the device. Our

experiments confirm that, SEED is scalable to large device population, and lightweight with

low overhead at devices. For the network, we use the magma RAN/UE emulator to emulate

loads in the core. We emulate 200 devices performing attach/detach procedures randomly

and trigger failure events with different frequencies. Figure 4.10a shows the average CPU

utilization with the default magma core with and without SEED. SEED incurs only 4.7%

extra CPU processing, in the stress test of artificially injecting 100 failures per second. SEED

scales with decision-tree-based failure diagnosis without heavy processing. The number

of extra signaling messages (Auth Request/Failure or PDU Session Estb Request/Reject)

from the real-time collaboration is marginal compared with the normal control/data plane

procedures.

We further gauge the overhead at the device side. The SEED diagnosis is based on SIM’s

built-in processor and RAM, which is more energy efficient compared with the phone’s CPU.

By default, we measure the device battery consumption without background application

traffic. We then run a stress test that triggers the SIM diagnosis once per second to quantify

its energy overhead. As shown in Figure 4.10b, SEED consumes an extra 1.2% (5.4%→6.6%)

of the total battery in 30 minutes. Given that the failure frequency in our test is much higher

than in reality, the SIM diagnosis incurs negligible overhead. We further compare SEED

with the device-side cellular diagnosis application MobileInsight [LPY16]. MobileInsight

relies on the message decoded from the diag port for analytics and consumes an extra 8.5%

(5.4%→13.9%) of the total battery in 30 minutes. SEED thus performs lightweight diagnosis

at the device.
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Figure 4.10: Diagnosis overhead on network/device side.

4.6.2.2 Real-time SIM-Network Collaboration

SEED enables the real-time collaboration with standard-compliant signaling messages. Fig-

ure 4.11 shows the total latency of network-to-device (downlink) and device-to-network (up-

link) directions. For the downlink, when the network detects the failure, it first prepares

the message with extra information and encodes it into the Authentication Request, which

takes 12.8ms on average. The transmission takes 41.2ms on average from the message sent

out to the ACK received. On the device side, SEED provides APIs for App/OS failure re-

port to speed up the failure detection. The preparation includes information reporting, SIM

encoding, and message generation, which takes 35.9ms on average. Then the transmission

takes 46.3ms on average to notify the network side for further actions. Compared with the

Android failure detection, which needs 1.8 minutes to detect the failure, SEED speeds up

the failure detection stage with fast SIM-Infra collaboration.

4.6.2.3 Multi-tier Reset

With diagnosis information from both sides, SEED performs the multi-tier reset for fast

recovery. Compared with the legacy level-by-level sequential retry, SEED directly resets

the corresponding module, eliminating long waiting interval between actions. For baseline,
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Figure 4.12: Recovery time for multi-
tier reset.

we use Android sequential retry with the recommended intervals (21s/6s/16s) between four

actions in [LLL21]. Although these intervals are much shorter than the Android default

3-min interval, it still causes a long time to trigger handling actions.

As shown in Figure 4.12, the legacy scheme takes 42.5s on average to reset the hardware.

Without root access, SEED takes 5.9s on average for hardware reset. SEED further speeds

up the hardware reset with root privilege leveraging AT commands, which takes 3.3s and

reduces 92% waiting time. For control-plane reset, the legacy scheme takes 27.8s. The SIM

parameter updates (A2) need to be combined with reloading to trigger the control-plane reset

and take 6.1s. With root privilege, the control-plane reattachment takes 2.6s for control-

plane reset. The legacy scheme does not reset the data plane but all TCP connections, which

still needs 21.4s to trigger the failure handling. SEED triggers the carrier app to update

configurations for the data-plane reset (A3) and designs fast data plane reset/modification

with root privilege (B3), which takes 0.88s and 0.42s, respectively. SEED multi-tier reset

shows a fast failure handling without long level-by-level retries.

4.6.2.4 Online Learning

The current public datasets do not provide the infrastructure-side failure traces. We validate

the effectiveness of the online learning algorithm by triggering failures at our testbed. In our
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experiments, 6 phones of different models (Google, Xiaomi, etc.) are connected to the testbed

network. On the network side, we choose 4 control-plane and 4 data-plane functions and

manually trigger failures for each function 50 times to generate unstandardized failures. The

network customizes failure codes based on the failed function and performs online learning for

future recovery suggestions. Our results show that the crowd-sourced SIM records correctly

classify all failures into control or data plane failures and recommend corresponding reset

actions, which shows the effectiveness of the online learning algorithm.

4.6.3 Security Analysis

Our analysis shows that SEED does not degrade the legacy SIM security. The applet could

only be installed with the carrier’s key; adversaries cannot modify or replace it. Only the

operators could update the SIM configurations, or perform reset from the SIM. The SIM-infra

communication is encrypted and integrity protected with the pre-shared in-SIM key with the

message counter, which uses the same crypto algorithms as the 5G signaling. The new applet

interface within the assistance information is protected with cellular-grade security. The in-

SIM key is hard to be compromised by attackers, thus the information is hard to be faked

and skip the SIM checking. The applet leverages existing channels provided by the mobile

OS to communicate with the modem/carrier app, which does not induce new loopholes. At

the device, only the application matching SIM-embedded signatures could acquire the carrier

privilege. The carrier app ensures SIM security by isolating direct communication between

user apps and SIM. The carrier app further checks and filters the failure report inputs to

ensure security.

4.7 Discussion

SEED focuses on failure diagnosis and treatment for the 5G protocol stack, but does not

explicitly diagnose and handle underlying radio link issues or application-level failures. Such
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physical-layer or app-level issues may affect control/data-plane management and data deliv-

ery. The resulting failures will be implicitly detected and handled by SEED. SEED can be

further extended to support radio condition diagnosis with runtime modem measurements

and gNB information on dynamic radio signals.

SEED leverages the undefined fields of the 5G signaling messages within the 3GPP stan-

dards, thus being compatible with current mobile OSes and radio access networks. SEED

still requires changing the SIM applet and the core network. For SIM/eSIM, operators could

update the applet through OTA. The eSIM uses a programmable chip to store SIM profiles

from different operators. eSIM supports the SIM’s applet format, and SEED applet could

be directly applied. For the network side, operators with the cloud-based core network im-

plementations could deploy SEED with software updates at the core. A new module can be

added to handle diagnosis messages and perform online learning. SEED only introduces a

small amount of extra signaling, thus unlikely to trigger anomaly detection deployed by oper-

ators. If false alarm is triggered, operators may readjust the related filter rules for diagnosis

messages.

The SEED-R mode requires root access to send the AT commands. The current standard

has supported the SIM to trigger AT commands directly at the modem with proactive

commands [ETS19b]. It has been deployed on some IoT modems [U b22], but not on current

5G smartphone modems yet. If the modem enables the interface, SEED becomes a rootless

solution. With the current modems, if the OS provides APIs for the carrier app to initialize

AT commands without root, SEED could also become rootless.

SEED can be adapted to diagnose new 5G functionalities. One upcoming feature is

network slicing [Fie21, FPE17], where failure could arise to a given slice. Although this

increases the complexity of detection and handling, SEED enables fine-grained diagnosis

and handling. Therefore, it could reset or modify the failed network slice without affecting

other functioning slices.

60



4.8 Related Work

Mobile failure diagnosis has been an active topic for years. It is an important area, as a

correct diagnosis result helps optimize device performance [YLL18, LDP16, LYP17, LDL16,

DLH20] or fixes RAN/core [PEC18, AJI20]. Unfortunately, such diagnosis typically relies

on the one-side information, either at the device [LPY16, YZH20, XZZ20] or inside the

network [FR21, NET22b]. The lack of panoramic view makes diagnosis slow and error-prone.

On the other hand, our failure diagnosis combines the information from both sides with a

novel SIM-based solution that enables collaboration between the device and the network.

To the best of our knowledge, SHIELD is the first work that proposes SIM-based failure

diagnosis. Current commercial diagnosis tools such as NetMotion [Net22a] collect both-side

information, but only monitor the high-level metrics (e.g., network performance, connection

drop rate, etc.) without failure diagnosis in the cellular stack. The collaboration between the

network and the device also halts once the data connection is broken upon failures [SIM22].

In contrast, SHIELD diagnoses cellular failures and performs runtime handling even if the

data connection is broken or not fully established.

Prior efforts focus on other issues and cannot achieve failure handling with decent speed

and accuracy. [LLL21] measures cellular reliability and optimizes the existing Android error

handling scheme; it lacks fine-grained failure diagnosis and handling. Meanwhile, network-

side diagnosis [PEC18] can barely help the devices recover from failures. Our work bridges

the network and the device, and achieves runtime, fine-grained failure handling. Unlike con-

ventional data center network failure diagnosis [FLM20, ZKC15] that utilizes active probing

[GYX15] or trace monitoring [KSK15], our design leverages the 5G standardized failure

causes with readily accessible metrics for diagnosis and handling, thus keeping the solution

light-weight and scalable.
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4.9 Conclusion

The global rollout of 5G mobile systems is underway. Similar to every large-scale networked

system, failures become the norm, rather than exceptions, in 5G. This has been confirmed by

recent empirical studies [XZZ20, LLL21]. As 5G is going to higher radio spectrum and the cell

size is getting smaller, frequent handovers further aggravate the chances for failures. If left

unattended, such failures will affect the normal operations of 5G applications, particularly

those emerging ones (e.g., AR/VR/MR), due to prolonged network disruptions. The current

solutions do not diagnose the error causes and use the blind, sequential retry approach to

failure handling.

In this chapter, we describe the design, implementation, and evaluation of SEED, a novel

SIM-based solution to 5G failure diagnosis and handling. SEED leverages the available error

codes carried by standardized 5G signaling messages for root cause inference. It further

enhances the diagnosis with a simple, domain-specific machine-learning algorithm. SEED

takes adaptive, multi-tier reset/redo actions (reset protocol operations, refresh outdated

configurations, reload profiles, etc.) once the failure cause is inferred. Our evaluation has

confirmed the viability of SEED.

For fast adoption and deployment, we take the operator’s view in the design of SEED.

As the global 5G rollout is ongoing, we believe the operator is in the best position for 5G

failure management solutions. The components of SEED can be readily installed to 5G

subscribers when they activate their devices with the carrier. The software updates can

be easily completed with the current operators’ practice. We are working with a prime

US operator for assessment and early trials. In the broader context, we believe 5G failure

management needs more activities from the research community; this work describes our

initial effort along this direction.
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CHAPTER 5

SHIELD: Enhancing High 5G Availability with SIM

In this chapter, we present our SIM-based solution to address 5G connectivity outages,

ensuring the high resiliency requirements for industrial and mission-critical 5G IoT systems.

We introduce SHIELD, a novel SIM/eSIM-based approach to highly available 5G systems.

SHIELD provides a device-based, SIM-centric software solution, leveraging the in-device SIM

card and a plug-and-play, miniature, software-defined receiver hardware. Our evaluation

demonstrates that our SIM-based method achieves two to three nines of availability (with

potential for four to five nines), while maintaining energy efficiency.

The organization of this chapter is as follows: §5.1 outlines the current cloud-based 5G

IoT systems and existing practices for handling connectivity outages. We propose wireless-

conditioned availability as a metric to evaluate 5G availability and analyze the sources of

unavailability in §5.1.1. §5.3 introduces the SIM-centric software-hardware co-design, which

aims to achieve high 5G availability. We discuss the implementation in §5.4 and evaluate

the approach in §5.5. In §5.6, we explore how our solution could be extended to attain four

to five nines of availability. We present the related work in §5.7 and conclude this chapter

in §5.8.

5.1 Cloud-based 5G IoT System

The cloud-based 5G Internet-of-Things (IoT) system is shown in Figure 5.1. Its main func-

tion is to collect data from sensors through 5G network connectivity and perform data an-
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Figure 5.1: 5G IoT system architecture.

alytics in the cloud. The system has three components: front-end devices, back-end cloud,

and network connectivity. The front-end devices use sensors to interact with the environ-

ment, collect data, and send them to the cloud. The back-end cloud stores and processes

data. Network connectivity communicates front-end devices and the back-end cloud.

The 5G IoT1 has been the most widely deployed technology among various IoT choices [IoT22],

e.g., LoRa [LoR23], Wi-Fi [Wi 23], and Zigbee [Zig23], for its universal coverage, mobility

support, and carrier-grade service assurance. The front-end IoT device communicates with

the 5G base station through its network adapter, called modem. The 5G base station uses

licensed frequency channels to transfer data and control signaling messages with the de-

vice. A SIM/eSIM is attached to the modem, which holds user subscription information,

configurations, keys, etc., for wireless connectivity management. Note that, each 5G IoT

device must use aggressive power-saving strategies, such as Discontinuous Reception (DRX)

and Power Saving Mode (PSM) [3GP21b], to conserve device energy. These modes enable

a device to enter a low-power sleep state during inactivity, thereby extending battery life.

Specifically, DRX allows a device to periodically “wake up” for data transfer without retain-

ing continuous connectivity. Similarly, PSM enables a device to enter deep sleep mode and

reconnect to the network only when needed. These power-saving mechanisms allow 5G IoT

15G standards have merged Cat-M/NB-IoT as WB-N1/NB-N1 modes [3GP21b].
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devices to achieve high energy efficiency.

The cloud-based 5G IoT systems have been used in various settings such as smart me-

ters [WM 23], fleet trackers [tal23], etc. More recent focus has been on enterprise and

mission-critical IoT applications, such as remote pipeline monitoring, autonomous vehicles,

logistics, etc. Consequently, ensuring high system availability is essential to 5G IoT services.

The back-end cloud system already ensures high availability. Major service providers

have claimed three to five nines (99.9% to 99.999%) of cloud availability over IoT, e.g.,

Azure IoT Hub [Mic23b] and AWS IoT Core [AWS23b]. The front-end IoT devices also

retain high availability to meet the stringent requirements of automated, human-free oper-

ations. Measurements show that, only 4% of IoT failure cases result from hardware-related

issues [AD22]. IoT applications also implement simpler logic than cloud systems [KK20],

thus incurring fewer software-related problems. Moreover, over-the-air updates further help

to resolve software issues [EB22].

Compared with the back-end cloud and front-end devices, 5G IoT connectivity becomes

the bottleneck for high availability. The connectivity issues incur more failures than hardware

or software issues at IoT devices [LLL21]. FCC datasets indicate that, a single carrier’s

coverage could be as low as 40% in rural areas [FCC21]. Therefore, the single-carrier solution

seems to be inadequate for 5G IoT.

5.1.1 Current Practice on 5G IoT Availability

As mentioned in §1, mission-critical and enterprise applications present new challenges for

5G networks. Although 5G deployments have primarily focused on broadband devices,

offering high bandwidth and low latency, 5G IoT systems demand even higher standards.

These IoT devices are often deployed in more stringent environments, such as underground

facilities or remote areas, where connectivity requirements are more rigorous. To ensure

high availability for 5G IoT, current practices can be categorized into software replicas and
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hardware replicas. Software replicas employ multi-carrier technology to switch the attached

carrier network. When the connectivity with the current carrier is lost, the device switches

to another carrier network for connectivity. To this end, device profiles from multiple carriers

will be stored in a single SIM. This approach is already supported by current SIMs [One23,

SIM23]. In summary, this scheme takes a reactive approach to network outages, and searches

for an alternative network after an outage. The device cannot scan other alternative carriers

without disrupting ongoing data transfer [LPD18]. Consequently, this practice results in

lengthy data disruption.

The hardware replicas employ dual modems, each connected to a separate SIM card and

a separate carrier network. When the primary modem experiences an outage, the backup

modem takes over the data transfer. However, hardware replicas lead to increased power

consumption at the device. They are only used on powerful gateways, rather than at front-

end IoT devices [Pep23]. Moreover, modems rely on timeout-based outage detection, which

identifies outages upon 15-second timeout [Tel23, DIG23]. This timeout incurs prolonged

disruptions. The backup modem’s data session may have already been released due to

inactivity [TKS16, Cis23]; this leads to another data session setup before resuming data

transfer.

The fundamental issue is that, current solutions focus on fixing wireless outages only.

Multiple carrier access may extend coverage to four (three) nines coverage in urban (rural)

areas [FCC21]. However, we will show that, even 100% wireless coverage cannot ensure high

availability for 5G IoT service.

5.2 5G IoT Availability

At first glance, it seems that 100% wireless coverage ensures high 5G IoT availability. How-

ever, this perception is not always true. We thus use wireless-conditioned availability as

the metric to gauge 5G IoT service availability. This metric accounts for data connectivity
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outages resulting from both wireless outages and power-saving mechanisms. We show that

availability fails to reach a single nine (90%) even with 100% wireless coverage.

5.2.1 Wireless-conditioned Availability

We introduce Wireless-conditioned Availability (WA) as the metric to measure the 5G IoT

service availability. It is defined as the percentage of time that data transfer is available

over the device’s wakeup period, given the frequency of connectivity outages (Equation 5.1).

TavgDis is the average disruption time of each connectivity outage. Tawake denotes the total

wakeup time per day of the device. The connectivity outage frequency foutage is determined

by the number of daily outages (wireless outages and device sync-up interruptions).

WA (foutage) = (1− TavgDis × foutage
Tawake

)× 100% (5.1)

We leverage a real-world cold chain logistics service setting [Pro23] to illustrate wireless-

conditioned availability. In this scenario, IoT devices transmit sensory data such as location

and temperature every 5 minutes. Each transmission lasts for 5 seconds before the device

reverts to the sleep mode for energy conservation. Utilizing a single-carrier solution, public

datasets reveal an average connectivity outage disruption time of 37.7 seconds (§5.5.1). With

one connectivity outage per day, availability drops to 97.4%. In the driving scenario, data

traces indicate 9.6 outages per day, further reducing availability to mere 79.9%.

Our study further identifies two primary sources of unavailability: (1) wireless outages

are prevalent, and (2) power-saving mechanisms at the device disrupt synchronization and

degrade availability.
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5.2.2 Prevalent Wireless Outage

The widespread wireless outage poses as a major source of 5G IoT unavailability. It signifies

the loss of communication coverage from the device to its connected carrier. We study four

public datasets with traces from 8 EU and US mobile carriers (dataset details in §5.5.1). On

average, wireless outages arise 7.5 times per day with a long 39.8 seconds average disruption,

thus reducing the availability to 82.8%. Furthermore, single-carrier coverage could be as

low as 40% in rural areas [FCC21], thus exacerbating the issue. Although multiple carriers

offer 99.99% coverage in urban areas and 99.9% in rural regions [FCC21], current practices

still suffer from lengthy disruptions. This is primarily due to the prolonged carrier-switching

process that degrades system availability. Experiments (§5.5.1) reveal that, the average

network-switching duration is 21.8 seconds, and availability is only 87.3% with existing

multi-carrier solutions. Even when dual modems are used, disruptions still persist due to

slow outage detection and response, leading to 19.1 seconds average disruption time; the

88.7% availability fails to reach one nine (90%).

Strong signals indicate available service? Wireless outages definitely arise under weak

radio signals. However, strong signals do not mean that the carrier has coverage in the current

location. Even with strong signals, access policies may further block service access and

hinder data transfer. Such policies are typically configured by operators for various device
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categories and services [LPZ21]. They include blocking specific base station access reserved

for special user groups, or critical services to IoT devices (such as voice and emergency

services [3GP21b]). Consequently, IoT services may remain unavailable even with strong

radio signals and good channel quality. When the device connects to a blocked base station,

it must disconnect first, reselect and reconnect to another base station; this incurs an average

penalty of 10.2 seconds of downtime.

5.2.3 Interrupted Device Sync Up with Power-saving

Unavailablity under perfect wireless coverage Given 100% wireless coverage, we

next show that, the availability can only reach 89.9% at best. This fails to attain one-nine

availability (90%). It is mainly due to the power-saving mechanisms of the IoT device. On

average, interrupted sync-ups at a device occur 7.3 times per day, causing disruptions of 22.1

seconds and lowering availability to 89.9%. We next introduce the unavailability caused by

power saving.

A 5G IoT device conserves its battery through power-saving mechanisms [3GP21b]. Dur-

ing sleep, the device temporarily shuts off its radio module. Most functions, such as channel

measurements and signaling processing, are also suspended for minutes or hours. Despite

more energy savings, sleep mode adversely disrupts device synchronization. This affects both

the control session and the physical channel, resulting in increased downtime.

Impact on control plane Power-saving mechanisms affect the control plane by disrupt-

ing session state synchronization. The device’s radio module is shut off upon power saving,

silencing network notifications. During sleep, the device’s session may be terminated by the

infrastructure for various reasons (e.g., load balance [TKS16], session timeout [Cis23], etc.).

While broadband 5G devices (e.g., smartphones) receive timely notifications and update

their sessions, the IoT devices are unaware that their session has been terminated during

sleep [AC19]. Consequently, they must re-establish the session before data transfer, adding
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an extra 1.2-7.9 seconds of downtime on top of physical channel disruption.

Impact on physical channel Power-saving schemes can also disrupt physical channel

condition sync-up. During sleep, devices are unaware of wireless channel changes. For

example, a device’s mobility may cause it to leave the coverage of its prior base station, or

enter an area without coverage. Even if the device remains static, the prior channel could

become unavailable. A common practice is that, operators adaptively turn base stations

on and off at different time-of-the-day to conserve energy [OKL11]. As a result, when the

device wakes up, it undergoes a prolonged carrier search. This leads to increased downtime

before data transfer can resume. Figure 5.2 shows that, the average unavailable time is 23.5

seconds due to interrupted channel condition sync-up.

5.3 SHIELD Design

We describe SHIELD, a SIM/eSIM-based solution to highly available 5G IoT systems. Using

a SIM-centric approach, we reduce data access unavailable time up to 28× while adding only

4.7% extra power consumption to IoT devices. We thus ensure high availability without

compromising power savings. We next introduce the design guidelines for SHIELD and its

overview, and then elaborate on each component.

Case for SIM/eSIM based minisystem solution The SIM card or eSIM chip naturally

exists on 5G IoT devices. It functions as an independent miniature system equipped with

processor, storage, and security fences. This allows the SIM/eSIM to securely store user

profiles, process data, and authenticate device access. Commercial SIMs have 320KB storage

and a 10MHz processor [Emn23]. The resources already suffice to run lightweight applications

on SIM/eSIM. Industrial IoT SIMs are also reliable with over-10-year lifespans and can

withstand extreme conditions (vibrations, chemicals, corrosion, etc.) [Emn23]. The current

practice on SIM is predominantly limited to device identification [SBA21]. Our proposal

exploits the SIM/eSIM to offload IoT tasks from the device CPU, resulting in two key
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benefits: high availability and energy efficiency. We confirm that, the SIM can function as

an independent, energy-efficient minisystem within the 5G IoT system, effectively handling

IoT tasks including connectivity control, data transfer and security, as well as power-saving

management.

5.3.1 Overview

In a nutshell, SHIELD offers a SIM-centric software solution with minimal hardware support.

It follows two design guidelines: rapid multi-carrier switching and data-first design.

Rapid Multi-Carrier Switching The single-carrier solutions are limited by restricted

coverage [FCC21]. Prior multi-carrier switching [Goo23, One23] also suffers from reactive

outage handling, which only addresses connectivity disruptions after outages have occurred,

resulting in extended downtime. Moreover, blind search and switching without the knowl-

edge of available networks exacerbate the problem. SHIELD devises a rapid multi-carrier

switching scheme. It takes a proactive approach by using a separate, lightweight, software-

defined receiver (SRX) to scan and discover alternative networks. SHIELD further verifies

the network before switching, eliminating the penalties of blind switching. By leveraging a

SIM-based software-hardware co-design, SHIELD ensures rapid multi-carrier switching that
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retains high service availability at a negligible energy cost.

Data-First Design Current IoT systems adopt a control-first design, which involves es-

tablishing the control plane and data plane sequentially prior to data transfer. However, for

IoT services, this session setup procedure results in excessive overhead. The frequent inter-

ruptions under the device power-saving mechanism further exacerbate this issue. In contrast,

SHIELD adopts a data-first design. It enables data-first operations so that application data

can be securely transmitted even without setting up the data plane. SHIELD explores stan-

dardized 5G mechanism to embed IoT data in control signaling, and leverages these features

without modifying device firmware or the 5G infrastructure. Consequently, SHIELD offers

a plug-and-play solution that accelerates data transfer and improves availability.

With both guidelines, SHIELD uses a SIM-centric design to minimize data access unavail-

ability due to wireless outages and interrupted device sync-ups, as depicted in Figure 5.3.

This novel approach efficiently addresses challenges in both active and sleep modes. When

the modem is active, SHIELD enables rapid network switching in the event of wireless out-

ages, ensuring swift recovery. Meanwhile, during sleep mode, SHIELD effectively reduces

power-saving induced interruptions without compromising energy efficiency. We next elab-

orate on each component.

5.3.2 Rapid Network Switching

Existing multi-carrier switching schemes, e.g., Google Fi [Goo23] and OneSIMCard [One23],

take the disconnect-scan-switch approach. To initiate switching, the device first dis-

connects from its current base station to search for alternative carriers. It thus scans all

available frequencies to identify and evaluate those alternative carriers. Finally, the device

switches to the new carrier network that has strong signal strength.

The current scheme causes extended downtime upon wireless outages, with the average

being 39.8 seconds. This is because scanning other networks requires disconnection from
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the connected base station. This feature thus disrupts ongoing data transfer. Consequently,

existing proposals probe alternative networks only during idle states or after outages have

occurred [LDP16, One23]. In usage scenarios with continuous bulk data transfer, devices

might not have enough idle time to scan backup networks. Thus, the current outage handling

is reactive, resulting in prolonged disruptions. Therefore, the following dilemma arises:

should the system prioritize the ongoing data transfer, or suspend the current transfer to

facilitate rapid scanning before an actual outage occurs?

SHIELD introduces a retain-discover-verify scheme for network switching. This ap-

proach proactively discovers alternative networks without disrupting ongoing data transfer.

The novel non-disruptive discovery is enabled with a software-defined receiver (SRX). The

overall procedure has three steps. First, SHIELD retains ongoing data transfer and con-

tinuously monitors signal conditions via SIM. Second, SHIELD delegates backup network

discovery to SRX, thus enabling swift, non-disruptive discovery. Third, SHIELD checks

for policy conflicts using broadcast messages without actual connection to the alternative

network. With the retain-discover-verify scheme, SHIELD enables rapid network switching,

minimizing downtime upon wireless outages.

We next elaborate on how SHIELD performs the backup network discovery. We further

present how SHIELD activates rapid switching while preserving energy efficiency.
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5.3.2.1 Discovering Alternative Carrier Network

In addition to the disruptive feature of scanning, current modems use the timeout-based

outage detection, which identifies an outage after the 15-second timeout [Tel23, DIG23].

Upon timeout, the modem initiates an exhaustive search to scan all available frequencies in

alternative carriers. This brute-force search prolongs the data access downtime during an

outage. As devices cannot receive network-side info during such periods, swiftly identifying

backup networks without using brute-force search becomes an issue. Moreover, current prac-

tices select a network based on the signal strength and then attempt to connect. However,

potential blocking policy configurations may render the service to be inaccessible despite

strong signals (§5.2.2). Policies are also subject to dynamic changes and may vary across

locations. We thus must circumvent policy blocking before trying to establish a connection

with the new carrier.

Our approach SHIELD exploits a low-cost SRX to detect alternative, available networks.

This allows the device to identify such networks without disconnecting from the current

carrier or disrupting ongoing data transfer. SHIELD eliminates blind, exhaustive search by

leveraging an in-SIM frequency map. It further verifies the discovered network to avoid policy

conflicts before the actual switch. Figure 5.4 shows the procedure on discovering alternative

networks in SHIELD. Initially, the SIM learns the current location area from the IoT device

( 1 ). It then provides the most probable available frequency bands to the daemon ( 2 ). The

daemon directs the SRX to initiate network discovery ( 3 ). When network information is

learned, it is forwarded to the policy checker ( 4 ), which assesses potential policy conflicts

with the SIM profile ( 5 ). Finally, the identified backup carrier information is relayed to the

SIM ( 6 ) for network switching.

Preventing blind search SHIELD devises an in-SIM frequency map to prevent the blind

search. It facilitates targeted network discovery without exhaustive search. This approach

exploits the fact that each IoT network carrier operates on its licensed frequencies, which
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can be acquired from publicly available datasets [Cel23]. It does not depend on network-side

coordination, and remains operational during outages. The in-SIM frequency map uses the

Tracking Area Code (TAC) of network carriers as the key, mapping it to the most probable

frequency bands in the location area (e.g., bands 1, 3, 5 for tracking area 6012 in Figure 5.4).

Prior to the discovery, the SIM obtains the current TAC from the device ( 1 ) and provides the

band list ( 2 ). Unlike conventional modems, the SRX can perform targeted measurements

on these bands ( 3 ), thus eliminating exhaustive scanning. When a backup network is

found, the SRX immediately returns the results ( 4 ). Experiments show that, frequencies

provided by the frequency map are available in 98.9% of instances. If no available networks

are detected within the candidate frequencies (1.1% of cases), the SRX sequentially attempts

other frequencies prioritized by the deployed ratio. On average, the backup discovery process

takes about 590 ms, one or two orders of magnitude faster.

Checking for access policy To prevent policy-related access blocking, SHIELD extracts

and verifies policies from the broadcast messages of each carrier. 5G base stations wirelessly

broadcast these messages. The SRX receives them during network discovery without setting

up real connections. SHIELD verifies such messages with the SIM profile to detect access

policy blocking ( 5 ). Specifically, SHIELD examines different levels of policies from the

Master Information Block (MIB) message and various types of System Information Block

(SIB) messages in 5G IoT. For network-level blocking, SHIELD checks for the network ID

embedded in the MIB message. It then verifies whether the ID is on the SIM’s list of

accepted network IDs. SHIELD also examines SIB1 for base-station blocking and SIB2 for

service-level blocking. If no conflicts are detected and the measured signal is strong, SHIELD

provides the frequency and network ID to the SIM ( 6 ), thus enabling a rapid switch. If

policy-based blocking is detected, SHIELD switches to the next candidate frequency and

proceeds the discovery process.
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5.3.2.2 Retaining Energy Efficiency on IoT

While SHIELD enables rapid network switching, maintaining energy efficiency simultane-

ously becomes the next issue. SHIELD devises lightweight, SIM-based outage detection.

The simplified processing with the SRX further results in marginal, extra energy consump-

tion. With the SIM-based software-hardware co-design, SHIELD ensures high availability

while preserving energy efficiency.

SIM-based outage detection SHIELD promptly and proactively detects wireless out-

ages with the SIM. During the active period, the SIM assesses signal conditions and triggers

outage alerts for network probing and backup discovery. Figure 5.5 illustrates the SIM-based

disruption detection pipeline. The SIM continuously checks the modem every second. It as-

sesses the signal strength (RSRP) and quality (RSRQ) with the current base station ( 1 ).

An outage alert is triggered based on a preset signal threshold, controlled by a parameter

T2. When the signal is worse than the threshold, the SIM alerts the device daemon to ac-

tivate SRX for backup network discovery ( 2A ). Concurrently, it sends probe packets to

three preset servers to confirm the connectivity outage ( 2B ). Rapid network switching

is initiated, if a backup network is found ( 3A ) and no responses are received from the

probing packets. However, if any response is obtained ( 3B ) before discovering a backup

network, the identified backup network is cached while server probing continues. Probing

continues until either 1) signal strength exceeds the threshold such that the alert ceases,

or 2) no response is received. Note that no response from probing indicates an outage and

would also initiate rapid network switching. To handle outages under strong signals (e.g.,

5G core network failures), the SIM also periodically sends probe packets every 5 seconds.

Our study shows that this category contributes about 3.9% of all outages.

Simplified processing with SRX Due to energy constraints, the replication scheme

2The threshold is (RSRP<-90-T dBm or RSRQ<-10-T dB), T=5 by default. An -90dBm RSRP and an
-10dB RSRQ indicate comparable signal conditions.
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commonly used in the cloud is not suitable for IoT devices. For example, dual-modem

solutions use the replica schemes of one primary and one backup. However, dual-modem

solutions consume excessive energy, as the backup modem needs to periodically transmit

signals to maintain the backup session. Therefore, such solutions are power-hungry and only

used on powerful gateways, rather than IoT devices [Pep23].

The SRX passively monitors without sending any wireless signals. Incorporating the

SRX into the design simplifies both hardware and software processing. For hardware, the

SRX requires only the radio-frequency (RF) hardware module, rather than the complete set

of modem hardware modules (processor, memory, storage, RF, etc.). Software components

are also simplified. The host daemon, which processes received signals and decodes 5G mes-

sages, focuses solely on the needed tasks. This eliminates additional processing, including

transmission, encoding, mobility/session management, and encryption/decryption. In sum-

mary, merely 5% of processing is required compared with the commodity modem [GGS16].

Moreover, SHIELD only powers on the SRX when in use, thus conserving device energy even

further.

Empirical results Our experiments confirm that, rapid network switching can reduce

downtime to just 3.7 seconds, 3.2-9.2× reduction compared with the current practices (§5.5.1).

Together with the concurrent data/control design (§5.3.3.1), disruption is further decreased

to 1.3 seconds (10.8-28.0× reduction). Furthermore, an unsuccessful connection request due
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to policy blocking incurs 10.2 seconds of data access downtime. SHIELD avoids potential

blocks by verifying the policy conflicts during discovery. Our experiments show that, SHIELD

incurs 4.7% extra energy consumption, enabling rapid network switching with marginal en-

ergy overhead.

5.3.3 Handling Power-saving Interruptions

Rapid network switching handles outages when the device is at active state. The power-

saving schemes in 5G IoT introduce more issues. We next present how SHIELD manages

interruptions when the device is in the sleep mode.

Power-saving instruments effectively conserve energy, but also introduce data access un-

availability, as described in §5.2.3. They disrupt device synchronization with the 5G infras-

tructure, on both updated control session states and which base station to connect to. For

example, the control session can be terminated by the infrastructure while the device is in

sleep mode. The device might be unaware of such changes upon waking. Moreover, when

moving to a new location (e.g., with the driving truck), the device may seek to connect to the

prior base station (before sleep) upon waking. In both cases, power-saving mechanisms lead

to state inconsistency between the device and the infrastructure. This results in additional

downtime for data access.

SHIELD minimizes data access downtime induced by 5G power-saving operations. It em-

ploys a concurrent data/control transfer mode, enabling IoT devices to securely transmit data

even without establishing a data plane. Furthermore, SHIELD devises a monitor-wakeup-

reconnect mechanism, allowing devices to find the updated base station at the current spot

upon mobility. Overall, SHIELD still ensures high availability in the presence of power-saving

operations.
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5.3.3.1 Handling Control Interruptions

The control session could be released by the network side (e.g., due to insufficient resources or

load balancing), when the device is in the sleep mode. When the control session is released,

its associated context info (aka bearer info, e.g., IP address) mandated by 5G standards

[3GP21b] will also be deleted. This will adversely affect the data session when the device

wakes up. As a result, the IoT device must reestablish both the control and data plane

before data transfer can start. The slow data plane setup upon device wake-up definitely

prolongs the data service downtime.

Concurrent data/control transfer SHIELD takes a concurrent data/control trans-

fer approach, allowing a device to securely transmit its IoT data without establishing a

data plane. It exploits the standardized Data-over-NAS (DoNAS) mechanism for 5G net-

works [3GP21b], thus enabling IoT data to be piggybacked into control-plane messages. This

approach reduces data delivery latency and eliminates complex data plane setup procedures,

such as data radio bearer setup and gateway session initialization. Upon modem wake-up,

the SIM directs it to utilize DoNAS mode for data transfer. This mode is readily available

on commodity modems and can be configured with common modem APIs [3GP21c]. The

DoNAS mode has also been supported on commercial 5G networks to date [Mob20]. Lever-

aging the SIM-modem interface, the SIM controls the modem and activates DoNAS mode.

Importantly, control plane encryption and integrity protection keys are established prior to

embedding data into the control message flow. This guarantees that concurrent data/control

transfers are secure. Furthermore, SHIELD does not affect standardized data transfer if the

control session remains uninterrupted. By utilizing DoNAS, SHIELD provides a secure and

fast data transfer solution, particularly in scenarios involving control-plane interruptions.

Plug-and-play SHIELD’s design guarantees compatibility with both commodity IoT

devices and 5G infrastructure. It explores the standardized 5G IoT mechanism, without

modifying device firmware or base stations. This approach results in a plug-and-play solution
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that speeds up data service setup. This way, SHIELD effectively minimizes the unavailability

resulting from prolonged session setup in 5G IoT systems.

5.3.3.2 Handling Mobility-induced Out-of-Service

During its sleep mode, the device may move out of the coverage of its connected base

station, or enter an area without coverage. Current solutions take a wakeup-timeout-

search approach. Upon wake-up, despite being beyond the coverage area, the device still

seeks to connect to the prior, connected base station by default. If the prior base station

cannot be detected, it keeps trying to search base stations belonging to the prior carrier, until

timeout (typically 15 seconds [Tel23, DIG23]). If still unsuccessful, the device initiates an

exhaustive network search and switches to another network. This scheme results in prolonged

data access disruption with an average of 23.5 seconds of downtime.

SHIELD employs a different, monitor-wakeup-reconnect strategy. It first instructs

the SRX to monitor current channel conditions, allowing the device to detect out-of-service

from the connected base station during sleep, without impairing power-saving modes. Upon

wake-up, the device checks for any detected out-of-service instances. If found, SHIELD

directs the modem to execute fast base station reconnect. To accelerate the reconnect,

SHIELD ingeniously leverages the IoT band-lock capability to reduce the search space, and

achieves fast reconnect. This approach effectively reduces out-of-service downtime caused

by the device’s mobility under sleep.

Monitoring during power saving During the modem’s sleep mode, the device daemon

periodically activates the SRX to measure the signal from the previously connected base

station. If the base station is undetectable, the modem experiences interruptions upon

wake-up from its power-saving mode. SHIELD thus searches for base stations associated

with the old carrier. If none is available, SHIELD performs backup network discovery. The

daemon caches the available frequency and network ID. Upon wake-up, the daemon sends
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the cached results to the modem, which initiates fast base station reconnect. Since the SRX

is only active for a short period and only receives signals without transmitting signals, its

consumed energy is marginal.

The monitoring period can be customized to accommodate diverse mobility patterns. For

driving or walking scenarios, configuring a short interval in accordance with traffic patterns

facilitates timely outage detection while conserving energy. In contrast, for static IoT set-

tings, a large interval helps minimize unnecessary energy consumption. This allows SHIELD

to meet the demands of various IoT applications, ensuring high availability at a marginal

energy cost.

Fast reconnect SHIELD uses fast base station reconnect to eliminate long timeout and

exhaustive search. Upon wake-up, SHIELD locks the modem to the previously detected

frequency if interruptions arise. This locking reduces the search space and enables fast base

station search. The current commodity modems have supported band locking. Prior efforts

used band locking to prevent automatic channel switches under fluctuating signals [Cor23],

thus avoiding ping-pong effects [Net23] and enhancing network speed [DLH20]. SHIELD is

the first to leverage band locking for fast reconnect to reduce the downtime due to out-of-

service. In the event that the previous carrier is unavailable, SHIELD instructs the modem

to perform rapid network switching with the discovered backup carrier network ID.

Empirical Results We quantify the data session setup time with three major US 5G op-
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erators. Our study shows that, the current sequential control-data setup requires 3.1 seconds

on average before actual data transfer (Figure 5.6). The concurrent data/control transfer en-

ables data service within 497 ms. We also assess the downtime caused by out-of-service from

the prior base station during sleep on three commodity IoT modems: Quactel BG95, Quactel

BG96, and Telit ME910C. We find that, the wakeup-timeout-search procedure results in an

average downtime of 20.2 seconds (Figure 5.7). In contrast, our monitor-wakeup-reconnect

scheme reduces the downtime to about 440 ms on average.

5.4 Implementations

Figure 5.8 illustrates the prototype of SHIELD. Its SIM-centric workflow operates as fol-

lows. The SIM employs the application protocol data unit (APDU) as its communication

protocol [APD23], acting as a byte-stream interface. This allows the SIM to directly control

the modem through standardized proactive commands [ETS19b]. While traditionally used

for over-the-air SIM profile updates [KR18], SHIELD leverages this channel in an innova-

tive fashion to control the modem for rapid network switching and power-saving induced

disruption handling. The APDU also provides a communication channel between the SIM

and the host daemon. The host daemon exchanges bytes with the SIM through the modem

via AT commands [3GP21c], enabling it to query frequency maps, verify SIM profiles, and
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cache discovered network information. SHIELD leverages the commodity hardware HackRF

One [Hac23] as its SRX. Based on the SIM’s responses, the daemon instructs the SRX for

discovery and monitoring. We next elaborate on the implementation of each component.

SIM Applet The SIM applet comprises three essential modules: the frequency map,

the modem controller, and the connection monitor. To store the frequency map within the

limited SIM storage, SHIELD compresses the frequency map using compact tables, with each

carrier having a corresponding table. SHIELD uses 2 bytes for the tracking-area code (TAC)

and a 3-byte representation for the three most commonly used frequencies from the supported

carriers. Considering approximately 5,000 tracking areas for three major US carriers [Cel23],

the in-SIM frequency map occupies about 25KB storage, and readily fits into the current

320KB SIM storage capacity [Emn23]. The modem controller triggers proactive commands

to control the modem to perform essential tasks in rapid network switching and power-saving

disruption handling. The tasks include carrier selection, signal condition acquisition, DoNAS

mode control, and band locking. The connection monitor enhances outage detection by

evaluating signal conditions and initiating probing packets. It further notifies the daemon

to activate SRX for alternative network discovery. Notably, the SIM does not actively

trigger signal measurements. Instead, the modem measures and caches results automatically,

independent of SIM queries. This SIM-based detection ensures marginal energy consumption.

Working with Commercial SIM We developed two versions for the SIM applet im-

plementation. The first aims to validate SHIELD on operational 5G IoT networks. Com-

mercial SIM cards have to be used, but they are closed-sourced and could not be modified.

To overcome this limitation, we ingeniously utilize the SIMTrace board [Osm23], originally

developed for capturing SIM-modem communications. We modified the board’s firmware to

activate APDU injections between the SIM and the modem, thus enabling SHIELD applet

functions on commercial SIM cards. This implementation consists of 953 lines of C++ code.

The second version aims to validate SHIELD’s feasibility on physical SIM cards. We leverage

the publicly available Flora-eSIM [Flo23b], an open-source, Javacard-based eSIM platform.
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Javacard is popular for SIM development and shares the same hardware configuration as

commercial SIM cards. We implement an applet with 1486 lines of Java code. The second

version does not rely on the SIMTrace board and can be deployed via over-the-air software

updates on SIM cards or eSIM chips.

Host Daemon The daemon has 1240 lines of C++ code and runs on the 5G IoT device. It

has two modules: the SRX controller and policy checker. We implement the SRX controller

based on the open-source code of Sonica [DZT21], and extended it to support both Cat-M

and NB-IoT. The SRX controller adaptively activates SRX for alternative network discovery

and channel monitoring. The policy checker implements a broadcast message decoder to

verify potential policy conflicts from incoming broadcast messages, to avoid penalties due

to policy blocking. In short, SHIELD is transparent to the IoT application running on the

device. The IoT application transfers its data through the networking stack of the device

OS as usual without any modification.

SHIELD Power Control The lack of a power switch in SRX poses the new implemen-

tation issue of adaptive power control. SHIELD addresses this issue via a new trick. It uses

a BIG7 USB hub board [BIG23] to bridge the SRX and the IoT host device. This allows

the device to programmatically control the hub board, enabling the daemon to fully power

off SRX when not in use. Consequently, SHIELD achieves efficient power management by

minimizing energy overhead.

Plug-and-Play The deployment of SHIELD can be plug-and-play on the IoT device.

SHIELD design does not modify the device firmware, operating systems, IoT applications,

IoT clouds, or 5G IoT infrastructure. The SIM applet could be easily updated through

existing over-the-air channels [KR18]. The host daemon and SRX are also plug-and-play on

the device.
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Figure 5.9: Experimental setup.

5.5 Evaluation

This section presents the experimental evaluation of SHIELD and compares its performance

with current practices. SHIELD outperforms existing solutions, reducing up to 28× un-

available time. It achieves this high availability while incurring modest 4.7% extra energy

consumption. In our showcase IoT applications, SHIELD attains 99.3% availability. These

results demonstrate an-order-of-magnitude improvement over existing solutions.

Experimental setup In our experiments, we used the Raspberry Pi 3 Model B+ as

the IoT device (Figure 5.9), running Ubuntu 20.04 with 1GB memory and 512MB storage.

We employed the HackRF One as the SRX, which was connected to the BIG7 USB hub

board, enabling complete power-off when not in use. We use the Telit ME910C1 in the

single modem setup and utilize the Quactel BG96 modem as the backup modem in the dual-

modem setting for existing solutions. Both modems operated in the 5G Cat-M mode during

experiments. To measure the device’s power consumption, we employed the MakerHawk

power meter. For the SIM Applet, we utilized two different versions: the commercial network

version with the SIMTrace v2 board and the OneSIMCard TCNS-C SIM card supporting

T-Mobile, AT&T, and Verizon networks; and the Javacard version deployed on J3R110
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Solution Description
SM-SC Default: a single modem with a single carrier
SM-MC Single modem with multiple supported carriers
DM-C Cold backup modem only wakes up upon outages
DM-H Active backup transmits data upon outages
SHIELD Ours: SIM-based mini-system with SRX

Table 5.1: Compared solutions in evaluation.

JavaCard running JCard 3.0.5 with 110KB EEPROM and 4KB RAM. Since commercial

5G IoT devices currently support only 5G Non-Standalone (NSA) signaling, we validate the

NSA option on commercial networks. We further confirm the viability of the Standalone

(SA) option with the testbed deployed with srsRAN [srs23] running on an Ubuntu 18.04

server with an i7-9700K 8-core CPU.

We evaluate five solutions listed in Table 5.1. Among them, four solutions are existing

approaches: single-modem, single-carrier (SM-SC), single-modem, multi-carrier (SM-MC),

dual-modem, cold standby (DM-C), and dual-modem, hot standby (DM-H). SHIELD ap-

plies a SIM-based software-hardware co-design with SRX. We assess the availability and

power consumption for all five solutions. We further evaluate SHIELD on two real-world

applications.

5.5.1 Availability Improvement

We use four public datasets to assess the outage frequency foutage of current IoT carrier

networks: [KRC22] provides large-scale measurements in Rome, Italy, covering two major

IoT network operators. [RQZ18] offers client-side mobile network key performance indicators

collected from two major Irish operators. [FHM22] includes datasets of two-year drive tests

in Austria, detailing signal conditions, data rates, etc. The fourth dataset is collected by us

with over 50GB traces from 2022-Q1 to 2023-Q1 from three major US operators using the

public, open-source tool MobileInsight [LPY16]. These datasets contain data traffic details

(e.g., timestamps, signal conditions, outages, etc.) covering 1600+ base stations. We assess
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Figure 5.11: Wireless-conditioned
availability vs. outage frequencies.

the outage frequencies under three different mobility scenarios covered by the datasets: static,

walking, and driving. The results reveal that, the outage frequency foutage for these scenarios

is 3.4, 7.3, and 9.6, respectively. We then quantify each solution’s average disruption time

TavgDis, and then compare the wireless-conditioned availability (i.e., Equation (5.1) in §3.1)

of all five solutions.

We evaluate all five solutions on commercial US carrier networks to determine their

average disruption time, TavgDis. For the single-carrier solution (SM-SC), we restrict the IoT

device to a single operator in the modem setting. In contrast, the multi-carrier (SM-MC)

solution allows the device to freely select among supported carriers. We also implement dual

modem solutions with cold (DM-C) and hot (DM-H) standby configurations. We collect

and analyze traces for each solution, then assess disruption time during connectivity outages

induced by both wireless outages and power-saving interruptions. We use Mobileinsight to

quantify the effectiveness of concurrent data/control transfer. We assess the data session

setup time with signaling traces from commercial networks. Finally, SHIELD’s effectiveness

on the 5G SA option has been confirmed on the testbed.

The results are presented in Figure 5.10. The default SM-SC solution has an average

disruption time of 37.7s. SM-MC suffers from slow outage detection and exhaustive network

search, resulting in an average disruption time of 21.8s. For DM-C, prolonged timeout-based

detection on the main modem leads to extended downtime, and the cold standby modem
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SM-SC SM-MC DM-C DM-H SHIELD
Static 91.8 95.1 95.7 96.5 99.7

Walking 84.0 90.0 91.2 92.8 99.3
Driving 79.9 87.3 88.7 90.7 99.1

Table 5.2: Wireless-conditioned availability (%) of five solutions under different
mobility scenarios.

further suffers from slow session setup, causing 19.1s disruptions. Although DM-H does

not require session setup with the hot standby modem, the timeout-based slow detection

still results in 15.4s disruption. In contrast, rapid network switching and power-saving

interruption handling in SHIELD reduces the average disruption time to about 1.3 seconds,

resulting in a reduction ranging from 10.8-28.0× compared with existing solutions. These

results show that, SHIELD significantly reduces the data access downtime.
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To gauge wireless-conditioned availability, we follow the real-world IoT application set-

ting [Pro23] and quantify the total awake time Tawake. The IoT device sends sensory data

every 5 minutes, remaining active for 5 seconds for data transfer before going to the sleep

mode to save energy. Table 5.2 presents the comparison results for the five solutions across

static, walking, and driving scenarios. SHIELD achieves 99.1% availability in driving sce-

narios, while existing solutions only attain 79.9%-90.7%. Across all three mobility scenarios,

SHIELD consistently retains two-nine availability (99.1%-99.7%). In contrast, even under
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static scenarios, existing solutions only achieve 91.8%-96.5% availability and fail to achieve

two nines.

We also evaluate wireless-conditioned availability under varying outage frequencies, as

shown in Figure 5.11. SHIELD ensures two-nine availability with up to 11 outages per day.

Under the same outage frequency, existing solutions only achieve 77.6%-89.5%, failing to

reach even 90% (one nine). They can only tolerate between 0.4 and 0.9 outages per day,

in order to reach two-nine availability. SHIELD offers more than an order of magnitude

improvement compared with all prior solutions.

5.5.2 Power Consumption

We evaluate the average daily power consumption for each solution. During the experiments,

we employ a power meter to gauge power consumption at various stages, including data

transmission, network search, and power saving. We measure power consumption associated

with SRX and SIM processing. The daily energy consumption is quantified in the same IoT

application setting in §5.2.1, together with traces from the corresponding driving scenario.

Figure 5.12 plots the daily energy consumption for the five solutions. Default SM-SC

results in 42.8 mAh/day of energy consumption. In contrast, SM-MC consumes slightly

less at 41.5 mAh/day. With its multi-carrier support, SM-MC reduces outage duration,

enabling the device to return to the sleep mode more quickly and thereby conserving more

energy. DM-C exhibits similar 43.3 mAh/day consumption comparable to SM-SC, as the

modem in cold standby awakens only upon outages. On the other hand, DM-H consumes

63.9 mAh/day, 49.3% increase over the SM-SC solution, due to its active backup modem.

SHIELD’s energy consumption amounts to 44.8 mAh/day, reflecting modest 4.7% in-

crease in consumed energy3. More frequent outages and longer disruptions not only reduce

system availability, but also cause the device to remain active for a longer duration for net-

3SHIELD sets the default threshold T=5 (RSRP<-95 dBm or RSRQ<-15 dB).
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work search, thus consuming more energy. Figure 5.13 shows how daily energy consumption

evolves with the outage frequency.

5.5.3 Choice of Parameter T

SHIELD offers a customizable parameter T, thus allowing users to configure signal condition

thresholds to trigger the outage alert. We study the extra power consumption (Figure 5.14)

and availability (Figure 5.15) under various configurations using SHIELD. The energy over-

head and availability for different T values are learned. By default, SHIELD sets T=5 (i.e.,

RSRP<-95 dBm or RSRQ<-15 dB), achieving 99.1% availability with 4.7% increase in en-

ergy consumption. Traces show that, 96.1% of connectivity outages will trigger the outage

alert under this default setting. The SIM’s periodic probing every 5 seconds further de-

tects the remaining 3.9% of failures that occur under strong signals (e.g., 5G core network

failures).

The default threshold (T=5) balances high availability and energy efficiency in our set-

ting. It can be fine-tuned to meet other IoT requirements. For IoT devices with more

constrained battery capacities, a higher threshold, e.g., T=9 (RSRP<-99 dBm or RSRQ<-

19 dB), can be selected. This option reduces the energy overhead to 1.8% while decreasing

availability to 97.0%. A more sensitive threshold improves availability, but increases power
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Figure 5.16: Deployments in different scenarios.

consumption due to more frequent discoveries. For example, using T=1 (RSRP<-91 dBm or

RSRQ<-11 dB) results in 99.2% availability with 9.8% energy overhead. This improvement

in availability comes at the cost of increased energy consumption.

5.5.4 Availability on Real-world IoT Applications

We examine the performance of two real-world 5G IoT applications: cold-chain logistics

with periodic data transfer, and a gas pipeline fire alarm with event-driven data transfer.

The cold-chain app, based on commercial settings [Pro23], sends location and temperature

data for 5 seconds every 5 minutes. The gas pipeline IoT app activates the alarm upon fire

detection, continuously transmits data until the alarm stops, and reports keep-alive heartbeat

messages on an hourly basis. Both apps are developed on Raspberry Pi with sensors, and

enter into the sleep mode during inactivity. We compare the multi-carrier (SM-MC) solution

and SHIELD in our experiments using two side-by-side IoT devices.

For cold-chain logistics, we performed drive tests in urban and rural areas across the

western United States, covering 600 miles of routes. The results indicate that, SHIELD

achieves 99.3% availability, outperforming the SM-MC solution with only 89.8% availability.

SHIELD reduces unavailability by a factor of 14.6. In terms of energy efficiency, the amor-

tized daily energy consumption for SHIELD is 43.4 mAh, while SM-MC registers at 41.1

mAh, resulting in a marginal increase of 5.5% in extra energy consumption.

We assessed the gas pipeline fire alarm application at five locations: two outdoor rural
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areas, one indoor facility, and two underground parking structures. Figure 5.16 shows the

deployments in different scenarios. Alarms were triggered randomly throughout the day.

Timely IoT data transfer is critical, as a small flame can turn into a major fire in less than

30 seconds [Hom23]. However, the default SM-MC solution failed to ring the alarm within

the critical 30-second window in 13.5% of instances. In contrast, SHIELD successfully sends

out the alarm within 30 seconds in every case. The daily energy consumption for SHIELD

was 5.04 mAh, compared with 4.47 mAh for SM-MC. The primary source for energy overhead

came from monitoring during sleep (every 5 hours set for the app). Adaptive monitoring

optimization could further reduce this; we plan to explore this option in the future.

5.6 Discussion: The Road to Five Nines

To achieve even higher availability, say, four to five nines to match with the cloud service

availability, SHIELD could be extended with a software-defined transceiver with both trans-

mitter (TX) and receiver (RX) capabilities. The slow carrier search and switching on existing

modems are the main causes of unavailability. To address it, the transceiver could emulate

a mobile device to initialize a session using the concurrent data/control transfer schemes,

while the modem is performing the switch. The transceiver uses a backup profile in the SIM

card to enable the DoNAS mode. The transceiver continues to piggyback the data with the

DoNAS for data transfer, until the modem successfully connects to the new carrier. 5G net-

works enable the transceiver to access within 6ms [TA19]. Therefore, our calculation shows

that, this scheme can achieve 99.999% (five nines) in the static scenario and 99.996% (four

nines) in the driving scenario under the measured outage frequencies. The disruption during

modem switching could be fully masked.

In this case, although the transceiver needs both RX/TX capabilities, it is still much

simpler than a commodity modem. It only requires software support for limited signaling

exchanges used in the DoNAS procedures. The flexibility of the transceiver eliminates the
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need to complete the entire session setup procedures. Portable transceivers, such as LimeSDR

Mini [Mic23c], already support all these required components (RX/TX, clock sync, etc.) to

achieve the aforementioned functions.

5.7 Related Work

Multi-carrier switching Current mobile IoT network operators facilitate switching

devices between various network carriers [One23, SIM23]. Leveraging multiple carriers

has garnered research interests from both the network and device sides. Network-side ef-

forts include sharing infrastructure [PB20, KCY21, SCS16] and radio resources [SKR20,

GGD19, QZM20] between carriers for deployment cost reduction. Device-side, multi-carrier

efforts focus on enhancing switching performance [Goo23, LDP16, BKS19], improving se-

curity [CSB20, OJE20], and resolving policy conflicts [YLL18]. However, achieving rapid

multi-carrier switching remains a largely unaddressed issue. Prior methods are reactive and

involve exhaustive searches, leading to prolonged disruptions. We introduce SHIELD, a novel

SIM-based solution that facilitates rapid multi-carrier switching. Our approach proactively

anticipates outages and identifies backup networks in advance, thus making switching faster

and more reliable.

High-availability Design There are extensive studies on enhancing cloud system avail-

ability, which serves as the back-end for many IoT systems. To ensure high availability, back-

end clouds deploy both hardware redundancy and software techniques. Numerous hardware

solutions are employed, including backup power supplies [AAB21], RAID storage [KMA22],

and hot-swappable components [SHC18], to name a few. However, they do not apply to

IoT systems due to intensive processing and energy overhead [MOC14]. The choice of dual

modems [Pep23], can result in excessive energy costs. SHIELD addresses this issue by em-

ploying a SIM-based software-hardware co-design. Our approach provides high availability

with minimal energy overhead. Software techniques include failover mechanisms [KJR21],
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data replication [KMA22], load balancing [BTY20], auto-scaling [KLH18], for a few samples.

These designs cannot be directly applied to IoT devices due to their complexity. SHIELD

introduces a novel data-first design, simplifying the session setup and enabling fast data

service recovery.

Device Reliability The IoT devices to date have sufficient hardware capabilities, in-

cluding the ability to operate over a wide range of temperatures, IP68 waterproofing, and

10-year batteries [EFE23]. These features ensure dependable operations even in harsh envi-

ronments [MNZ20, OH16]. Prior IoT device reliability research focuses on security protec-

tion [WWN22, Has19], firmware verification [SPL19, KKK20], rollback schemes [RCR20], etc.

SHIELD is orthogonal to these studies. More recent 5G device reliability research mainly fo-

cuses on smartphones [LLL21, ZTX22] and addresses protocol failures without resolving wire-

less outages. SHIELD facilitates fast outage handling upon wireless outages [YLL18, LLZ20].

Furthermore, the impact of power-saving on availability remains unexplored. To the best of

our knowledge, SHIELD is the first to examine the availability impact due to both wireless

outage and power-saving induced disruptions for 5G IoT systems.

5.8 Conclusion

Cloud-based 5G IoT systems are on the rise [SKS20] in recent years, for their wide-area

coverage, mobility support, and carrier-grade services. Ensuring high system availability is

essential to deploying such systems in mission-critical and enterprise application scenarios.

Our study reveals that, the 5G IoT network, rather than the cloud and the IoT devices,

poses the bottleneck for high availability. In this chapter, we have described our device-

side solution, without changing the 5G infrastructure, or device OS and firmware. The key

innovation is a SIM-centric software mini-system that exploits the in-device SIM card and a

plug-and-play, miniature, software-defined receiver hardware. We rely on pure, device-based

operations to enable fast inter-carrier-network switching and data-first handling of mobility
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or power-saving induced disruptions. The solution suite is plug-and-play at the device,

and works with the 5G infrastructure without any changes. Given the hardware/software

configuration choices, we can readily achieve two to three nines (even four to five nines in

the immediate future) for 5G IoT, thus eliminating it as the system bottleneck for high

availability.
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CHAPTER 6

SecureSIM: SIM/eSIM Authentication and Access

Control

Ensuring the security of 5G networks is crucial for maintaining high resilience. This disser-

tation demonstrates that, despite single entities offering security protection, the interactions

between the SIM, modem, and 5G/4G infrastructure reveal new vulnerabilities. Attackers

can exploit these vulnerabilities to carry out traffic eavesdropping, man-in-the-middle, and

impersonation attacks. The root cause lies in the inability of current SIM/eSIM technology

to provide fine-grained access control and authentication. To address this issue, we propose

a novel certificate-based SIM protection mechanism that enables fine-grained access control

and mitigates a wide range of attacks.

This chapter is organized as follows: §6.1 presents the vulnerabilities in current SIM-

based 5G/4G authentication schemes. §6.2 elaborates on a novel two-step attack against the

existing SIM, which leads to multiple attack vectors. §6.3 introduces our design, SecureSIM,

which enables fine-grained access control and ensures proper authentication for SIM/eSIM.

The implementation is discussed in §6.4, and the approach is evaluated in §6.5. In §6.6, we

examine how new security schemes introduced in cellular networks are unable to prevent

attacks and how our solution continues to protect devices in such situations. We present the

related work in §6.7 and conclude this chapter in §6.8.
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6.1 Vulnerability & Threat Models

6.1.1 Vulnerabilities

The SIM plays a critical role in the 5G/4G connection for authentication and protecting

communication. The current SIM design has been prevailing for years due to its simplicity

and extendability. Diverse schemes in 5G/4G, such as the fast reattach service, are also

designed to improve network performance. However, the interoperability between various

entities, such as the SIM, modem, and protocol stacks, exposes vulnerabilities:

First, the PIN-based access control cannot provide enough file protection (V1). The

SIM cannot differentiate between various entities that access the SIM by PIN verification.

Sensitive files, including identities, security-related keys, phonebooks, etc., can be accessed

by modems, card readers, OS, or apps. 5G/4G-related files such as the security context

are only intended for the modem. Leaking such sensitive files allows attackers to launch

eavesdropping, man-in-the-middle (MitM), and impersonation attacks. Furthermore, the

current PIN-based authorization is insufficient. Though all the files mentioned above are only

accessible after PIN authorization, the SIM only verifies the PIN once, then unlocks access

until SIM is unplugged or the device turns off. The attacker without the PIN can still access

files during the power cycle, although the user enables the PIN authorization. Even worse,

operators usually set the SIM PIN to an identical default number and keep SIM unlocked

by default [HP07]. For example, AT&T and Verizon use 1111 and T-Mobile uses 1234 as

the default PIN and need users to activate it manually [AT, Ver, T M]. We conducted an

informal survey to assess mobile users’ sensitivity to SIM security. We collected responses

from 103 volunteers from the authors’ social networks in the US and 86 responses from

anonymous online participants, which were solicited from a US university’s public forums on

online social networks. The participation was open to everybody and there was no material

incentive. The participants cover a wide range of age groups, as shown in Figure 6.1. Among

participants, 94.2% of the users set the password for their phones, but only 10.6% set the
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Figure 6.1: SIM/eSIM usage survey.

SIM PIN. Our survey results indicate that the vast majority of mobile users do not enable

the SIM PIN, exposing all protected files to attackers.

Second, the SIM and 5G/4G protocol stack interoperation exposes vulnerabilities (V2).

Storing the security context is mandatory, but the current design cannot provide enough

protection. According to the standard, if the SIM supports the fast reattach service, the

modem shall store the NAS security context into the SIM when the UE detaches from the

network [3GP20b]. The modem would delete the context when it detects the SIM is changed

during the power-on state. During the power-off state, however, the modem cannot detect

if the SIM has been changed. The attacker can unplug the SIM and acquire the context.

Supposing that the attacker inserts the SIM card back when the modem’s power is off, the

UE and network will use the same context to perform the fast reattach, which allows various

attacks, including traffic eavesdropping, man-in-the-middle (MitM), and impersonation.

Third, the channel between the modem and the SIM is unencrypted (V3). It enables
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malicious hardware such as a SIM sticker [SIMa] to eavesdrop on and spoof the APDU

traffic. The attacker can acquire all the files as plaintext when the modem reads them from

the SIM. Multi-layer keys in 5G/4G can also be accessed through the unencrypted APDU.

Prior work leveraged CK/IK leakage during the AKA procedure to attack the VoLTE and

VoWiFi [CSP17]. We discover that the KAMF leaks when the modem stores the NAS security

context into the SIM. Moreover, the attacker hardware can modify the APDU or actively

send APDUs to the mobile device to acquire the device location, network conditions, device

ID, calling information, etc. The attacker can also leverage APDUs to set up calls or send

messages without notifying the victim.

6.1.2 Threat Model

We consider two types of attackers. A passive attacker can set up the standard-compliant

SDR devices to eavesdrop the radio layer information. The passive attacker could log the

ciphered signaling and data messages between the victim UE and gNB/eNB, which remains

unperceivable. An active attacker can set up forged UE, gNB/eNB, and 5GC/EPC to send

standard-compliant signaling and data messages in the communication channel. The active

attacker could also forge or alter packets from/to the victim at the forged gNB/eNB and

5GC/EPC. Both types of attackers leverage low-cost SDR devices. We assume both attackers

can acquire sensitive files such as the NAS security context from SIM with one-time physical

access through customized hardware (such as the SIM sticker or card reader in §6.2.1) or

malware installed on the victim’s mobile devices.

Our experiments also observe ethical rules. We ensure that tests on commercial networks

do not harm other users. We own the SIM cards used in the experiments. Our passive

attacker does not send signals over the licensed band. We use the unlicensed bands for

experiments on the MitM and impersonation attacks. We are also informing mobile operators

of our findings.
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Attack Method
Physical
access?

Device
rooted?

Need
phone

password?

Need SIM
PIN?

Effective
to SIM?

Effective
to eSIM?

SIM Sticker Yes No No No Yes No
Card Reader Yes No No Yes Yes No
Malware No Yes No No Yes Yes

Table 6.1: Requirements of hardware and software attacks.

6.2 Attacks

We next devise a novel two-step attack against the current SIM. First, we introduce a

component attack that obtains sensitive files, such as the security context, from the SIM.

We show that the attacker only needs one-time physical access to acquire sensitive files,

which opens a door for other attacks. Second, based on the one-time access attack, we

devise three novel attacks: traffic eavesdropping, context-based MitM, and impersonation

attack. We present the attack procedures for each attack and validate them on two US

mobile operators, denoted as OP-I and OP-II.

6.2.1 One-time Access Attack

Current SIM with PIN-based access control cannot differentiate between access entities.

Attackers could leverage cheap hardware or malware to acquire sensitive files, such as the

victim’s identities and the security context. The prerequisite for our attacks is to obtain

the security keys via one-time physical access to the SIM card or malware on the rooted

device. Table 6.1 shows requirements for attacks from different hardware and software. SIM

is susceptible to both hardware/software attacks, and eSIM is only susceptible to software

attacks.

Attackers can leverage the customized hardware, such as a SIM sticker, to extract sen-

sitive files from the victim’s SIM. The SIM sticker, as shown in Figure 6.2, is a small chip

with a processor and storage. The SIM sticker has the same size as a SIM card and can be

attached to the SIM. It is used to support multi-IMSI or unlock the carrier lock [Kno, Hei].
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Figure 6.2: SIM sticker.

The attacker can extend it to log the sensitive files. To attack the victim with the SIM

sticker, the attacker first needs one-time access to the victim’s device. The attacker unplugs

the SIM, attaches the sticker to the SIM card, and inserts them back into the device. The

attack through the sticker does not require the device password or SIM PIN. APDUs between

the modem and SIM will go through the sticker. Even if the victim enables the PIN, the

sticker could still eavesdrop on all the APDUs as plaintext (V3). The attacker does not

need to reaccess the device or unplug the sticker to read data. The sticker can forge APDUs

and send the captured files through SMS to the attacker’s number, enabling the attacker to

control the APDU channel and acquire SIM files remotely.

The attacker can also use a SIM card reader to obtain sensitive files. Reading files

with the card reader does not require the device password but requires that the SIM PIN

is not enabled or the attacker knows the PIN. The attacker needs one-time access to the

victim’s device first. To acquire the security context files, the attacker triggers the UE

detach procedure by enabling airplane mode from the status bar or turning off the device by

pressing the power button. It forces the modem to store the security context into the SIM

(V2). This procedure usually does not require unlocking the phone. The attacker unplugs

the SIM, reads files with a card reader (V1), then plugs the SIM back into the victim’s

device.

To achieve the same purpose, the attacker can allure victims to install a malicious ap-
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plication on the phone or piggyback malicious codes in SDKs used by mobile applications

[LLB17]. Attackers extract sensitive files through system APIs (V1) and acquire Identities,

phonebooks, SMS if the user grants privileges to the malware. It is feasible since most users

cannot make security decisions correctly based on the prompt window’s limited informa-

tion [FHE12, RFW19]. With root privilege, the attacker can further access all files with the

PIN access mode by sending APDUs to the SIM or eSIM. The malware can send acquired

files from various channels, including Bluetooth, Wi-Fi, 5G/4G, SMS, to name a few.

The various approaches above target different scenarios. The malware, which can bypass

the PIN authentication on rooted devices, is able to attack both the SIM and eSIM. For

unrooted devices, the attacker could launch the hardware attack to the SIM with one-time

access. In addition to smartphones, cellular IoT devices using SIM cards are also vulnerable

to such a one-time access attack. By default, the SIM PIN is disabled. The attacker can

directly use a card reader to extract sensitive files. Even though the victim enables the PIN,

the attacker can still insert the SIM sticker along with the SIM card into the device to capture

all APDUs, including the PIN, as plaintexts. After getting the context with the one-time

access attack, all the following attacks, including traffic eavesdropping, context-based MitM,

and impersonation attacks, are feasible for both SIM and eSIM.

Experimental Validation We validate the feasibility of the one-time access attack with

hardware and software. With a card reader, we implement a program with Python that can

automatically extract all the files readable with the PIN, including NAS security context,

identities, and phonebooks, to name a few. Current commercial SIM stickers do not provide

open-source SDK. Thus, we use the SIMTrace [Osm23] board to emulate the SIM sticker’s

behavior. Results show that it can eavesdrop on all the APDU communication to extract

keys, identities, location updates, etc., and further send them out through SMS. We imple-

ment the software attacker as an Android application that acquires SIM files on the rooted

devices with system APDU interfaces. We test it on Google Pixel, XIAOMI MIX2, and

Google Pixel 4a. As shown in Figure 6.3, we can successfully send APDUs to the SIM and
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00A40004026F07 Select IMSI File (6F07)
9000 Success (9000)
00B0000009 Read IMSI; Length 9B
083901629024727407 9000
00A40004026FE4 Select EPSNSC (6FE4)
9000
00B2010436 Read EPSNSC; Length 54B
A0348001078120BA84471ACCBDF7F011
EECCEBEDBC188C82809262DB0046A5
E023F                                               9000

11:39:30.128: SEND: 
11:39:30.147: RECV:
11:39:30.149: SEND: 
11:39:30.165: RECV: 
11:39:30.167: SEND: 
11:39:30.183: RECV: 
11:39:30.186: SEND: 
11:39:30.202: RECV: 

IMSI File Content

                EPSNCS File Content

Figure 6.3: Malware attack APDU traces.

acquire sensitive files. We compare performances when acquiring files with a card reader for

SIM and with software for both SIM and eSIM. Regarding the average time to read a file, it

takes 10.5 ms for the SIM reading with a card reader. The software leveraging the Android

API takes a similar time for SIM and eSIM, which are 11.3 ms (SIM) and 10.8 ms (eSIM).

We also conduct a survey to evaluate the SIM/eSIM usage and user security sensitivity.

Our survey results from 189 responses show that 75.8% of participants’ phones support eSIM,

as shown in Figure 6.1. Among all participants, 54.1% only use the SIM, 15.3% only use the

eSIM, and 30.6% use both SIM and eSIM for their devices. For the hardware attack, the SIM

sticker can only be discovered when the user plugs out the SIM, e.g., by switching the SIM

cards for the current phone. However, it is an infrequent behavior for daily usage. 75.6%

users plug out the SIM card less than once a year, which makes the sticker attack potentially

last for a long time once the one-time access is successful. Also, 53.4% of participants admit

that there are chances for other people to access the phone physically in offices, homes, etc.,

making them vulnerable to the one-time access attack.

6.2.2 Traffic Eavesdropping

Given the one-time access attack exploiting the interoperation vulnerability (V2), the adver-

sary can eavesdrop and decipher victim’s data and signaling messages. The attack includes
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two stages: the online trace collection stage and offline decoding stage.

At the online trace collection stage, the attacker camps on the victim’s connected cell

and eavesdrops on the victim’s traffic. The attacker can infer the victim’s connected cell

through monitoring the paging channel [SBA15]. With the inferred cell ID, the attacker

camps on the cell based on broadcasted configurations [3GP19]. To locate the victim’s traf-

fic in the channel, the attacker needs to know the victim’s Cell Radio Network Temporary

Identifier (C-RNTI), which can be acquired by monitoring the unciphered signaling mes-

sages [KRH19]. Then the attacker could log the ciphered signaling/data traces. At the same

time, the attacker collects the bearer configurations for later decryption. Afterward, the

attacker performs the one-time access attack. By acquiring the file EPSNSC storing the NAS

security context, the attacker can get the KAMF, uplink/downlink NAS counter, and NAS

integrity/encryption algorithm identifiers.

At the offline decoding stage, the attacker leverages the NAS security context and logged

signaling and data bearer configurations to decrypt the traces. The attacker derives KNASenc,

KNASint, and KgNB from the NAS security context. Note the decryption also needs to infer

algorithm identifiers for RRC and data decryption. The identifiers are static for the cell, and

attackers can infer them by another mobile with software such as MobileInsight [LPY16].

In the worst case, there are three candidate algorithms [3GP13] and the attacker can brute-

force them to derive keys for RRC signaling and user data. Combing the keys, the frame

counter in unciphered frame headers, and the bearer configurations from the online stage,

all the traces eavesdropped can be deciphered offline.

Furthermore, the KAMF can last for a long time, enabling the attack not only before the

one-time access but also for later traffic. The KAMF will only change when a new AKA

procedure happens, or the 32-bit counter wraps around, which rarely happens due to the

low volume of NAS messages. When the UE handover is due to mobility, only the KgNB will

change, and the KAMF remain the same. In the fast reattachment procedure, operators decide

whether to perform the AKA procedure. If the operator does not run the AKA procedure,
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Figure 6.4: Attacker testbed setup.

the network and UE will keep using the same KAMF even the phone restarts.

Experimental Validation We perform the validation on the commercial network and

phones. We implement the attacker node upon the open-source srsLTE stack [GGS16] on an

Ubuntu 18.04 server with i7-9700K CPU and use USRP B210 as the RF frontend, as shown in

Figure 6.4. We deploy the attacker node with OP-I’s configurations. As shown in Figure 6.5,

it contains two components: the online tracer and the offline decoder. First, the online tracer

monitors the signaling and data frames at the physical layer and logs the ciphered messages

as MAC traces. It also collects the bearer configurations for the decryption. Then we perform

the one-time access attack. We read the NAS security context file EPSNSC from the SIM.

The offline decoder automatically parses the file to generate KNASenc, KRRCenc, and KUPenc. It

performs the RLC and PDCP decoding and decrypts the UE’s traffic. Experiments show the

attacker node can successfully eavesdrop on the victim UE connecting with OP-I network.

Figure 6.6 shows the eavesdropped traffic before and after the decryption. The OP-II in

the experimental area uses a different modulation and coding scheme in the physical layer,

which the current open-source 5G/4G testbed cannot support. We perform a trace analysis

and a similar attack procedure can also work with OP-II theoretically.

We perform a user study of the KAMF’s lifetime on OP-I and OP-II. During the testing,

devices follow daily usage scenarios with various mobilities, including static, walking, and

driving. For both operators, the same KAMF can last for more than one week. Experiments
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Figure 6.5: Eavesdropping implementation.

(a)	Captured	Packet (b)	Decrypted	Packet

Type:IPv4
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Total	Length:84bytes

Figure 6.6: Eavesdropped traffic decryption.

show that OP-II does not perform the AKA procedure when the UE reattaches to the

gNB/eNB. The UE keeps using the same KAMF after the restart or turning on/off the airplane

mode. The attacker can acquire all the traffic without end-to-end encryption, such as DNS,

HTTP, or IoT sensory data [IoT].

6.2.3 MitM Attack

The attacker can leverage the SIM vulnerabilities and exploit the fast attachment procedure

to perform the MitM attack. Prior work exploited the missing integrity protection of the user

plane on the physical layer to introduce bit flips and redirect traffic to another destination

[RKH19]. The fake base station (FBS) performs diverse attacks [YBS19, Str07, SBA15],

106



including denial of service, network downgrade, UE identities, location tracking attacks, etc.

They all use a relay node between the victim UE and commercial gNB/eNB, which cannot

perform decryption. We propose the context-based MitM, the first attack that can perform

the decryption for both the control and data plane and further manipulate signaling and

user data. We next introduce our context-based MitM attack.

The attack requires the NAS security context and GUTI, which can be acquired from

EPSNSC and EPSLOCI by the one-time access attack. When the victim UE tries to reattach, it

scans all supported RF bands, filters out cells of its operator’s Public Land Mobile Network

(PLMN), and selects the cell with the strongest signal to attach. Simultaneously, the attacker

sets up a fake gNB/eNB and 5GC/EPC with the same PLMN as the victim’s operator and

loads the context into it. The attacker node increases the transmit power to be the strongest

among all victim candidate cells. The UE will send the Attach Request with GUTI to the

attacker node to perform the fast reattachment.

After receiving the Attach Request, the attacker node returns the NAS Secure Mode

Command (SMC) with the corresponding 4-byte NAS-MAC derived from the stolen security

context. After the UE verifies the NAS SMC’s integrity, it connects the Internet with the

fake gNB/eNB and 5GC/EPC. All the data packets are forwarded to the Internet by the

P-GW in the fake 5GC/EPC. Attackers can eavesdrop on all the traffic and perform het-

erogenous MitM attacks such as IP/ARP/DNS spoofing, SSL hijacking, and SSL stripping,

to name a few. It risks the victim’s email, bank, or social media accounts and further causes

financial losses [CYT18, JG17]. The attacker can also derive the integrity key so that pre-

vious solutions, e.g., adding integrity protection for the 5G/4G data plane, cannot prevent

this attack [RKH19, RKH20].

Experimental Validation We implement the attacker node as shown in Figure 6.7 upon

the srsLTE, which includes a fake gNB/eNB and 5GC/EPC, the dynamic context loader,

and the traffic MitM module. We validate the attack on OP-I and OP-II with commodity

phones, including Google Pixel 4a, XIAOMI MIX2, and iPhone 7 as the victim UE. When
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Figure 6.7: Context-based MitM.

performing the one-time access attack, the attacker sets the victim to airplane mode and

configures the attacker node with the same PLMN as the victim’s operator on an unlicensed

spectrum, following the ethical guidelines. We ensured that experiments do not harm real-

world users.

The dynamic context loader loads the acquired EPSLOCI and EPSNSC and updates the

attacker node’s cached context. It will also derive the KNASenc and KNASint. After receiving

the Attach Request from the victim UE, the attacker node will generate the NAS SMC

integrity protected by the KNASint. Experiments show that the victim validates the NAS

SMC’s integrity, and the attacker node passes the UE authentication. The victim completes

the following attach procedure and transmits all the data and signaling through the attacker

node. With the USRP B210 as the front end, the attacker node can maintain the highest

signal strength among all the candidate cells within 10 meters of the victim. We believe the

distance can be larger with more powerful RF devices.

The traffic MitM module can perform heterogenous MitM attacks. Results show the

victim UE for both OP-I and OP-II will connect to the attacker node. We build the show-

case MitM attack, including DNS spoofing and SSL stripping. Leveraging the DNS spoofing,

the attacker could forge the DNS packets to make the victim connect to phishing websites.

As shown in Figure 6.8(a), the victim will enter the phishing bank website with the cor-

rect domain name. The attacker could set up phishing page layouts identical to the real

login page, which makes the account information vulnerable. Even for websites that enable
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[19:21:30] [inf] hstshijack Callback received from 172.16.xxx.xxx 
for zimbra.cs.ucla.adu
[19:21:30] [hstshijack.callback] CALLBACK http://
zimbra.cs.ucla.adu/ZabhlsexpXHNzuJ?
loginOp=login&zrememberme=1&username=testuser&password
=testpass&=Sign%20In

(a)	DNS	Spoofing	A.ack (b)	SSL	Stripping	A.ack

(c)	Captured	Account	Username	and	Password	

Figure 6.8: MitM attack validation.

HTTPS, it is still feasible to attack the user session with SSL stripping. The SSL stripping

could downgrade the connection from HTTPS to HTTP to be able to perform the MitM

attack [HPI18]. Figure 6.8(b) shows that the HTTPS connection to the email webpage is

downgraded to HTTP. The attacker node could capture the username and password from

the victim’s request with an HTTP proxy, as shown in Figure 6.8(c).

6.2.4 Impersonation

The attacker can further impersonate the victim’s identity by leveraging the vulnerabilities

in SIM and fast reattachment service. A recent study reveals that the lack of physical layer

integrity protection along with ICMP reflection mechanisms allows the impersonation attack

[RKH20]. The prior attack is limited to the user plane and requires the attacker’s relay node

to be close to the victim. We leverage the SIM vulnerabilities with fast reattachment to

impersonate the victim on both the control and user plane. This attack can be launched

remotely during the impersonation, thus making it more challenging to be detected.
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The impersonation attack includes three steps. First, the attacker acquires the fast

reattachment context files (EPSLOCI and EPSNSC) from the SIM by the one-time access attack.

Second, the attacker derives the KNASint and KNASenc with KAMF and integrity algorithm

identifier from the EPSNSC. The UE fast reattachment requires the victim’s NAS keys, GUTI,

and network capability. The network capability of a device is public information. Finally,

the attacker sets up a fake UE with SDR devices to send the NAS Attach Request with

GUTI from the EPSLOCI, which is integration protected by the NAS-MAC derived from

KNASint. After the AMF/MME authenticates the fake UE and grants it access to the Internet,

the attacker can drain the victim’s data plan or attack other entities with the victim’s

identity. Some operators verify device access to applications or services through the cellular

identity/keys [RKH20]. It protects users when the application or SMS one-time passwords

are leaked. However, the SIM impersonation attack could still bypass the checking and cause

financial losses. Note that the attacker with the context can launch attacks far from the

victim, which makes locating attackers challenging for law enforcement agencies.

Experimental Validation We perform the validation on the SDR testbed with the same

hardware configurations before. With one USRP B210 as the gNB/eNB, we use commodity

phones with programable SIM cards that support fast reattach service to connect to our pri-

vate 5G/4G network. We test Google Pixel, Google Pixel 4a, XIAOMI MIX2, and iPhone 7.

Through the one-time access, the attacker acquires the EPSLOCI and EPSNSC from the SIM.

Another USRP B210 runs srsUE as the rogue UE. The rogue UE loads the context, derives

KNASint and KNASenc, and sends NAS Attach Request with the valid GUTI, UE network ca-

pability, and NAS-MAC derived from KNASint. The results show that the rogue UE will be

authenticated as the victim’s identity and set up the 5G/4G connection. Figure 6.9 shows

corresponding logs at the gNB/eNB. We also perform trace analysis on the commercial net-

work successfully. Traces show that OP-II does not run a new AKA procedure when the UE

performs the fast reattach, allowing attackers to impersonate the victim’s identity.
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19:14:29.730205 [S1AP] [I] Received Initial UE message -- Attach Request
19:14:29.730211 [NAS ] [I] Attach request -- M-TMSI: 0xd9bc07a
19:14:29.730213 [NAS ] [I] Attach request -- eNB-UE S1AP Id: 5
19:14:29.730214 [NAS ] [I] Attach request -- Attach type: 2
…
19:14:29.730231 [NAS ] [I] Attach Request -- Found previously attached UE.
19:14:29.730238 [NAS ] [I] Integrity check ok. Local: count=6, Received: count=6
19:14:29.730241 [NAS ] [I] GUTI Attach -- NAS Integrity OK. UL count 6, DL count 3
19:14:29.730247 [NAS ] [I] Generating KeNB with UL NAS COUNT: 6
… Successfully attached as the victim

GUTI attach 
request with  
victim’s context

Figure 6.9: Impersonation validation.

6.3 SecureSIM Design

We design SecureSIM to enable flexible access control and ensure proper authentication at

SIM. Our solution seeks to address two issues:

• How to enable fine-grained file access control for heterogeneous entities? The

current SIM includes about 200 files, and different entities have various access requirements

for these files. We devise a novel access graph to organize the SIM files. Moreover, we

examine common scenarios that require SIM access, including all off-card units and in-card

applets. We consequently design a multi-rooted tree in the access graph to offer fine-grained

access control to various entities. To improve usability, we design APIs for the access graph,

which provides a flexible way for operators to manage file access. Operators specify the

intended access policies for various entities. SecureSIM detects conflicts and generates the

access graph to perform its fine-grained access control.

• How does the SIM distinguish various entities and ensure security? Fine-

grained access control itself cannot prevent attackers from acquiring files. Attackers may

pretend to be another entity for file access. Proper authentication is thus needed (V1). It

should defend against authentication attacks from the card reader, SIM sticker, malware,

physical thefts, etc. SecureSIM devises the certificate-based solution to ensure authentica-

tion, flexibility, and scalability. We design the certificate chain for SecureSIM to distinguish
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various entities. The certificate ID binding protects the SIM from physical theft. To protect

the APDU communication channel (V3), we propose selective encryption to ensure data

secrecy with negligible overhead. With the authentication and APDU channel protection,

SecureSIM protects SIM files such as identities, security context, etc., to prevent traffic

eavesdropping, MitM, and impersonation attacks (V2). Most users do not enable the cur-

rent PIN-based protection. SecureSIM makes an effort to be more user-friendly. We thus

co-design automated verification and revocation with the modem to protect users without

degrading usability.

6.3.1 Control SIM Access with Graph

To address the first issue, we leverage two types of relations in our design. The relation

among files enables a flexible approach to managing these SIM files. The relation between

entities facilitates the access to be fine-grained for various scenarios. We consequently devise

a novel access graph to model the relations in the SIM access control.

6.3.1.1 Access Graph

The access graph, as shown in Figure 6.10, has three types of nodes: file node, profile node,

and schema node. Each file node denotes a single file stored in the current SIM. Each profile

node denotes a category of files. Each schema node contains the policy blueprint for a given

entity.

Card	Reader

Off-card	Units In-card	Applets

Modem

System	App User	App

GameOperator	App

Loca<on
Tracking

	QoS	
Monitoring

IMSI Phone	Number

Applica<on

File	Node

Schema	Node
Operator
Usage

Subscriber
Usage

Iden<ty

Iden<ty
Switching

Profile	Node

Streaming

•	•	•NAS	Context CK/IK

Security•	•	•

EPSLOCI Loca<on	Area•	•	•

•	•	•

•	•	•

Loca<on •	•	•

•	•	•

Figure 6.10: Managing SIM file access for off-card units and in-card applets with
access graph.
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Profile Type Included Files
Identity IMSI (6F07), Phone number (6F40), etc.
Security NAS Security Context (6FE4), CK/IK (6F08), etc.
Location EPS location Info (6FE3), Location Area (6F7E), etc.
User Information Phonebook (5F3A), SMS (6F3C), etc.
Operator Information Operator Name (6F46), Icon (6FDE), etc.
Network Configurations Services Table (6F56), Access Technology (6F60), etc.

Table 6.2: SIM profile node types.

We design the profile node to organize files into a small number of categories for systematic

access management. With more services added to the SIM, the first issue is how to manage

diverse SIM files. Different from servers or smartphones, which have enough processing

capabilities and storage to manage a large number of files, SIM’s processing speed and

storage are limited. It is burdensome to manage each file’s access control for more than 200

files in the SIM, which requires an access control design that fits the hardware capabilities.

To better manage files with the same requirements, we examine current SIM files, and classify

them into six categories (shown in Table 6.2). Each category is with a profile node. In the

access graph, each file node connects to only one profile node. Every profile node contains

multiple files sharing the same access control permissions.

We design the schema node to classify heterogeneous entities. Organizing various entities

systematically and flexibly is challenging. By reviewing current usage scenarios, we classify

entities into off-card units and in-card applets, which are organized as a multi-rooted tree.

The schema node provides a convenient and intuitive way to construct the tree based on

practical scenarios. All profile nodes connect to the tree to check entities’ privilege. Each

schema node contains the node name and access privileges. We prescribe the tree structure

with access schema in Table 6.3. Symbol / splits schema nodes into multiple layers. Symbol []

denotes extensible schema nodes. For example, the UE category indicates the modem’s

capabilities. A schema node Modem links [UE Category] schema nodes, enabling operators

to customize the access control for specific devices such as NB-IoT. The applications contain

system applications and user-installed applications, which are further classified based on
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Type Class Access Schema

Off-card

Modem /Offcard/Modem/[UE Category]/[Modem ID]
System App /Offcard/App/SystemApp/[App ID]
User App /Offcard/App/UserApp/[App Type]/[App ID]
Operator /Offcard/Reader/Operator/[Operator ID]
Subscriber /Offcard/Reader/Subscriber/[Subscriber ID]

In-card Services /Incard/[Service Type]/[Applet ID]

Table 6.3: Access schema.

application types. The SIM grants access to applets based on the service type. The finest

granularity for all entities is the unique ID, such as the application ID [And, App], the

modem ID [Qua], and the applet ID [ISO04]. The schema nodes contain each profile node’s

privileges, including Read (R), Update (U), Delete (D), etc., which complies with the current

standard [ISO13].

The graph’s characteristics benefit access control management. Schema nodes follow the

least privilege principle: an entity is given the minimum levels of access it needed. Fine-

grained entities should have higher or equal privileges than coarse-grained entities [FSG01,

AZH12]. The more fine-grained child node can possess higher privileges than its parent.

For example, the system application can Read identities, but a general application cannot.

Each schema node inherits its parent privilege by default. When a schema node’s privilege

changes, all children’s default privileges also change accordingly. When an entity accesses

files, SecureSIM first checks the file’s profile nodes, then follows schema nodes and grants

access based on the corresponding leaf node’s privilege.

The access graph is flexible for future extensions. When adding new files, the access

graph can link each file to one of the current profile node. If new files cannot fit current

profiles, the access graph supports extending new profile nodes for them. The access graph

supports heterogeneous scenarios by extensible schema nodes. In rare cases, If the SIM wants

to further control the access for a specific file, it can add a new profile node, change the file’s

profile node to the new one, and set access privileges in schema nodes.
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Access Policy ID Sec Loc UserInfo OpInfo NetConf
/Offcard/Modem/Cat(1,3)/∗ R R,U R,U R,U R R,U
/Offcard/App/SystemApp/∗ R R R,U R
/Offcard/App/UserApp/
Operator/{ID1,ID2} R R R R,U

/Offcard/App/UserApp/∗
/Offcard/Reader/Operator/OP-I All1 All All All All All
/Offcard/Reader/Subscriber/0001 R R R R,U R R
/Incard/Identity/∗ R,U

Table 6.4: Access policy examples.

6.3.1.2 Access Policy

The access graph provides fine-grained SIM access control. However, directly setting up the

privilege for every schema node is error-prone. Privileges may violate the least privilege

principle. Duplicate sibling nodes with conflicting privileges may also exist. We provide the

access policy as APIs for operators to grant privileges.

Operators need a flexible way to grant the same privilege to many entities. For example,

the SIM may grant Read identity privilege to all system applications without specifying the

application ID. The access policy uses a notation similar to the regular expression. The ∗

matches any name. {...} to represent a list of names. (a, b) represents a range from a to

b. Table 6.4 shows an example access policy for SIM files. Note that SecureSIM forbids all

applications to acquire the security files to prevent software attackers. The modem plays a

critical role in network connection and could read or update most of the files. A wildcard

covers all system applications without specifying the ID. The operator can restrict SIM

usage to only a range of UE categories. A list of operator applications can read the operator

information for add-on services.

The operator grants privileges by access policies with the following steps: First, the

operator specifies policies for each profile type; Second, SecureSIM checks policy conflicts.

1All grant privileges for all operations including Read, Update, Append, Delete, Create, Activate and
Deactivate.
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The conflicting access control could lead to several damages. A higher privilege to an entity

leaks keys or privacy, and an insufficient privilege blocks normal functions. SecureSIM

leverages the graph’s characteristics to assist the automated privilege checking. SecureSIM

checks privileges with the least privilege principle for the parent and children nodes, detects

duplicate or conflicting privileges for sibling nodes, and verifies the tree structure correctness

with the access schema. Upon detecting conflicts, SecureSIM notifies the operator to fix till

no conflict exists; Finally, SecureSIM generates the access graph on the SIM with access

policies. With the access graph, SecureSIM controls various entities’ access as described in

Section 6.3.1.1.

6.3.2 Rethink SIM with Certificates

The second question for the SIM design is: How does the SIM distinguish various

entities and ensure security?

To identify various entities, the SIM requires authentication before the entity access

files or performs functions such as AKA procedure. The current SIM takes password-based

authentication for years, and the eSIM follows the same approach. The PIN verification is

easy to deploy considering the SIM’s limited storage and computation capability. SIM only

allows limited tries (usually three times), making it robust to brute force and side-channel

attacks. However, the current PIN only contains 4-8 digits and lacks enough strength.

Furthermore, simply extending the PIN mode to multiple modes cannot distinguish various

entities. It is not flexible for heterogeneous entities.

Another solution is to improve the strength with a shared key between the SIM and

each entity. Nevertheless, the shared-key authentication is not scalable. Entities must own

different keys to be distinguished. The SIM needs to store all keys and corresponding en-

tity names for the fine-grained access control. Although the SIM with 50K free memory

could hold more than one hundred keys, managing the keys is still challenging. Whenever

the operator adds a new entity, all SIM cards need to update keys remotely. The cumber-
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Figure 6.11: SIM certificate chain.

some distribution procedure limits the scalability and cannot perform fine-grained identity

checking and access control.

SecureSIM takes the certificate-based authentication, which is much more scalable than

the password or shared key authentication. The SIM does not have to store keys for each

entity but only a single certificate or several certificates. The certificate is flexible for het-

erogeneous entities. We design the certificate chain for SecureSIM with ID binding to ensure

security and flexibility. To protect the plaintext APDU channel, we design selective encryp-

tion for SIM-modem communication with negligible overheads. Considering SIM’s limited

processing capability, performing all tasks on the SIM will affect the user experience. We

leverage the modem to accelerate SecureSIM. We devise the automated certificate verifica-

tion and revocation procedure to improve security without hindering usability. SecureSIM

design cannot be directly applied to existing phones and require operators and modem man-

ufacturers to update the SIM applets and modem firmware. All functions can be updated

over the air and do not need extra hardware. We discuss how SecureSIM could leverage

the current infrastructure for each scheme to be deployed gradually. Now we introduce the

details of certificate-based SecureSIM design.
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6.3.2.1 Certificate Chain with ID Binding

We design the certificate chain as shown in Figure 6.11 for fine-grained access control (V1).

In the certificate chain, the root certificate is self-signed and organized by a trustworthy third

party such as GSMA [GSM]. Operators collaborate with SIM vendors to manufacture SIM

cards and sign certificates for SIMs, subscribers, and applets. Independent of operators, the

modem original equipment manufacturer (OEM) manufactures modems according to 3GPP

standards. The root certificate signs the modem OEM certificates, and each OEM signs

the modem. The current eSIM system also leverages the certificates to validate operators’

SIM packages and eSIM chips. GSMA defines specific Public Key Infrastructure (PKI)

for eSIM remote provisioning, and signs certificates to operators and OEMs [GSM20]. The

current eSIM infrastructure can be extended to support the SecureSIM certificate chain. The

root certificate also signs certificates for operating systems, which further sign applications.

Current operating systems, such as Android, require the application to be signed before

installation. For example, when the developer publishes the application to the google play

store, Google provides the platform to sign and publish the application [Goo]. SecureSIM

could leverage the platform pipeline to sign applications automatically.

The certificates include a customized attribute SchemaName that follows the access

schema for access control. SecureSIM leverages the ModemID in the SchemaName to pre-

vent physical thefts. Each modem possesses a unique modem ID. The user needs to send

the modem ID to the operator when requesting the SIM for the first time. The operator sets

the ID into a whitelist in the SIM. Only whitelisted modems can pass the authentication.

If the user wants to change the device, he can add more modem IDs to the list through

authenticated devices or request the operator. For IoT devices, the SIM can store a modem

ID pattern as the access policy to whitelist a collection of modems. Through the Modem

ID binding, the SIM can prevent physical thefts from stealing the data plan or the iden-

tity. In current eSIM deployments, operators also require users to submit the eSIM chip ID

before activating the eSIM usage. The modem ID could also be submitted simultaneously.
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Figure 6.12: SIM-Modem APDU encryption.

Regarding usability, registering the Modem ID does not require extra steps compared with

the existing deployment.

6.3.2.2 Selective Encryption

Limiting the SIM access to certified roles cannot prevent eavesdropping on the plaintext

APDU channel (V3). We design the APDU encryption mechanism between the SIM and

modem to prevent the SIM sticker attack. Generally, asymmetric encryption takes relatively

more time than symmetric encryption [PNN16, Mar01]. Considering SIM’s limited resources,

we first perform a Diffie-Hellman (DH) key exchange and later use the generated key to

perform the symmetric encryption for later APDU traffic.

As shown in Figure 6.12, the SIM generates a random SIMChallenge and sends it to the

modem. The modem generates the DH Key pair and uses its secret key of the certificate to
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Figure 6.13: Automated verification procedure

sign the SIMChallenge and the modem DH public key. Then the modem sends the signature

ModemSign with signed information and its certificate to the SIM. The SIM prevents the

replay attack by a random SIMChallenge every time. After receiving the information, the

SIM first verifies the modem certificate and SIMChallenge, then authenticates the Modem-

Sign with the certificate’s public key. If the modem passes all the checking, the SIM follows

a similar way to send its DH public key with the signature SIMSign and its certificate. After

the modem validates the SIM, both sides derive the key from the shared secrets and encrypt

all later APDUs with the symmetric encryption algorithm such as AES. We further devise a

selective scheme to reduce the overhead. Most of the APDUs sent by the modem are stan-

dardized and do not contain sensitive information, such as selecting a file. These APDUs can

be plaintext so that the SIM can eliminate the decryption latency. The selective encryption

only ciphers the sensitive information, including file contents returned by the SIM, updated

file contents sent by the modem, and authentication procedures such as 5G/4G AKA. The

selective encryption ensures security with marginal overheads. Current eSIM performs the

package decryption and certificate verification inside the eSIM chip. Considering the mo-

dem’s hardware is more powerful than eSIM chips, it is feasible to deploy the functions inside

a modem by firmware updates.

6.3.2.3 Automated Verification

SecureSIM enables an automated verification scheme, as shown in Figure 6.13. Consider-

ing the limited RAM and computation resources, performing all certificate authentication
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in the SIM increases the processing latency and affects the user experience. To speed up

the verification procedure, SecureSIM offloads the certificate validation to the modem after

authenticating its certificates. Compared with OS or applications, which are vulnerable on

root devices, the attacker is hard to compromise a modem. Thus, the modem can be a

trustworthy device for application authentication. After the modem validates the applica-

tion’s certificate, it sends the application’s SchemaName to the SIM and enables the APDU

communication with selective encryption. For in-card applets, SecureSIM verifies their cer-

tificates automatically before they access files. Through automated verification, SecureSIM

can distinguish various entities with negligible overheads.

For both the SIM and the modem, SecureSIM ’s design does not change the file contents

or the APDU interfaces, or require extra hardware. All functions can be updated through

SIM or modem firmware updates over the air. SecureSIM schemes could be enabled based

on the SIM/modem’s capability, which provides backward compatibility for current devices

and can be rolled out gradually. Considering the usability, the current SIM PIN is disabled

by default and requires users to enable it manually. SecureSIM does not require users to

manually enable the PIN or enter the PIN every time the phone starts. All the verifications

are automated through certificates and do not affect users’ daily usage.

6.3.3 Security Analysis

We analyze the security of SecureSIM in comparison to the current SIM design.

5G/4G Key Leakage The 5G/4G key leakages allow attackers to perform eavesdrop-

ping, MitM, and impersonation attacks. SecureSIM provides fine-grained access control and

certificate verification. Only whitelisted modems can acquire the security-related keys. The

attacker cannot read them by hardware such as a card reader or a random modem out of the

whitelist. The malware cannot pass the automated verification even with the root privilege.

APDU MitM SecureSIM protects the APDU communication with selective encryption
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between the SIM and modem. Both sides sign the APDUs in the key agreement procedure so

that the attacker cannot forge or manipulate them. The symmetric encryption for APDUs

protects all sensitive files.

Physical Thefts SecureSIM leverages the modem whitelist to restrict SIM usage on

credible devices. Physical thefts cannot use the stolen SIM on other devices for data service

or impersonate the victim’s identity.

SIM Cloning The 2G/3G SIM algorithm’s weakness allows SIM cloning attack [SRL13,

RRS02]. 5G/4G SIM cards improve the algorithm security, but attackers can still get the

master K to clone the SIM from side-channel attacks like differential power analysis [LYS15,

IIT02]. Improved implementations with anti-cloning mechanisms can defend these attacks

[AT07, HOM06]. SecureSIM only grants whitelisted devices to perform AKA authentication,

increasing the difficulty of collecting traces for compromising. Even if the master K leaks,

attackers cannot compromise the certificates and clone the SIM.

SIM Swapping SIM swapping occurs when the attacker tricks the operator into porting

the victim’s phone number to the attacker’s SIM. For example, the attacker acquires the

victim’s personal information through phishing emails or social engineering and claims that

they have lost their phone. While SecureSIM prevents the attacker from accessing the SIM

from unauthorized devices, defending against SIM swap attacks still requires the operator

to improve the security checking like a mandatory strong account password.

Abused Modem If attackers extract modem keys and impersonate a certified modem,

the SIM security is risked. However, it is hard to be achieved in practice. First, the modem

firmware is usually closed-sourced and hard to be attacked. Modems also provide separate

hardware and software stacks from the host device, making it difficult to execute malicious

codes and be abused. Second, even if the attacker abuses a specific modem, critical files such

as keys in SecureSIM could only be accessed by whitelist modems. Abused modem with

other Modem ID cannot access keys successfully.
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6.4 Implementation

We implement SecureSIM with Javacard, one of the most prominent platforms for smart card

development. Javacard has similar hardware capabilities to the commercial SIM. Operators

could build SIM with smart cards and install an applet running SIM functions. Javacard

defines a subset of the Java programming language and provides APIs for smart cards [Jav].

We develop a SIM card applet as a platform that can support standard SIM file operations

and the MILENAGE algorithm to perform the 5G/4G AKA mutual authentication. It

consists of 5263 lines of Java code. To the best of our knowledge, there is no open-source

SIM implementation on the smart card. We release the applet at [Flo].

We deploy the SecureSIM based on our SIM applet. We develop an access policy parser

with Python. It parses access policies provided by operators, checks for conflicts, and gen-

erates the corresponding access graph for the SIM applet. The SIM applet holds files as

standardized in [3GP20a]. In the standard, each file contains a header, including file format,

length, etc. We extend the header with the file’s profile category. For each profile, schema

nodes encode granted operations with one byte, which complies with the standard [ISO13].

When an entity starts a new APDU session, the SIM matches the SchemaName from the

certificate verification procedure. By checking the schema tree, SecureSIM could acquire the

entity’s privileges for each profile type. When the entity performs file operations such as

Read or Update, SecureSIM grants access based on the file’s profile.

SecureSIM adopts certificate-based authentication and communication. We generate the

certificate chain with X.509 v3 standards and add customized attribute SchemaName. For

certificate algorithms, we select ECDSA for its smaller key size compared with RSA. The

current phone modem firmware is closed-source. Thus, we deploy a module with Java in an

Android application to simulate the modem’s selective encryption, automated verification,

and certificate revocation procedure. We use the Elliptic-curve Diffie-Hellman (ECDH) over

the secp256k1 curve to perform the key agreement described in section 6.3.2.2 and gener-
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Figure 6.14: Performance comparison.

ate shared secrets. The later symmetric encryption uses the AES-128-CBC algorithm. For

automated verification, the SIM first authenticates the module with the modem certificate

CERT.Modem.ECDSA, then the module handles all the other certificate verifications auto-

matically. The module also collaborates with SIM for storing and updating the certificate

revocation list.

6.5 Evaluation

We evaluate the performance of SecureSIM on J3R180 Javacard supporting Java Card 3.0.5

specifications with 180KB EEPROM and 8KB RAM. We assess the performance with Google

Pixel 4a with Qualcomm Snapdragon 730G running Android 10. We first compare the

overall performance of the commercial SIM card (Legacy) and SecureSIM. We then evaluate

each module’s performance, including certificate verification, selective encryption, and access

policy checking. We further measure the energy overhead introduced by new mechanisms

in SecureSIM. The results show that the overhead of SecureSIM is marginal compared with

the current SIM design.
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Overall Evaluation We use SIMTrace to record all the APDUs when the modem loads

SIM files once the SIM is inserted into the phone. Then we replay the APDUs and measure

the overall performance at the SIM initial stage between the commercial SIM card and Se-

cureSIM. The results show that SecureSIM takes 6.3±0.1s, while the commercial SIM takes

5.4± 0.2s, as shown in Figure 6.14(a). The execution time increases mainly because of cer-

tificate verification. It only happens once at the start of the APDU session and will not incur

overhead for follow-up communication. Our implementation is based on the generic smart

card API. It cannot directly control the hardware resource. Customized devices could further

improve execution efficiency. Moreover, the eSIM chip with more powerful computational

resources can also reduce the overhead.

Certificate Verification We measure the time for the automated verification procedure.

SecureSIM delegates its authentication task to the modem after the SIM validates its cer-

tificates. We compare the SIM-modem and modem-application verification time. As shown

in Figure 6.15, the SIM-modem authentication time is 639 ± 23ms. It only happens once

when the modem starts the APDU session. The session can last within the SIM power cy-

cle, which can be hours or days. SecureSIM leverages the modem to accelerate application

authentication. The automated verification can reduce the modem-application verification

time to 6.5 ± 1.2ms. It only happens once when the app requires SIM access and incurs

marginal overhead.

Encryption We measure APDUs that read files from the SIM with and without selec-

tive encryption. With symmetric encryption, reading a file needs on average 11.5 ± 0.6ms,
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comparable with the Legacy without encryption (10.9 ± 0.6ms), as shown in Figure 6.16.

Furthermore, we compare the performance of encrypting all APDUs (naive encryption) and

selective encryption in SecureSIM. Experiments show that selective encryption can reduce

15% of the average time (from 13.6 ± 0.9ms to 11.5 ± 0.6ms). We measure the benefits of

selective encryption at the initial stage. The results show that selective encryption could

reduce the average package loading time by 1.1s (from 7.4± 0.1s to 6.3± 0.1s).

Access Policy Checking SecureSIM matches the entity’s SchemaName with the access

graph once and gets corresponding access policies. Then SecureSIM only needs to check the

file’s profile type to grant access. We measure the operation execution time of SecureSIM

access policy checking and the Legacy with access mode checking. Figure 6.14(b) shows

that SecureSIM (9.2 ± 0.4ms) will not introduce extra overhead compared with Legacy

(9.5± 0.7ms).

Energy Consumption We further measure the energy consumption of SecureSIM and

Legacy. We measure the 1-hour energy consumption of an application that reads SIM files

through APDU every 50ms. The results show that SecureSIM consumes comparable power

(0.064%) as Legacy (0.062%), as shown in Figure 6.14(c). The increased energy consumption

(3.2%) caused by encryption is marginal. We measure the modem’s daily APDU traffic

pattern with SIMTrace. During the whole session, the modem sends 0.2 APDU/s. The

power consumption will be more insignificant. We also measure the energy overhead caused

by automated verification. Our test application launches the certificate verification every

100ms. The 1-hour test consumes 1.1% of the power. Usually, the application only needs to

authenticate once at the start, thus incurring negligible amortized energy overhead.

6.6 Discussion

Here we discuss whether our findings apply to new security schemes in 5G networks. The

5G SIM does not transmit the permanent identifier, such as IMSI, during the attachment
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to improve privacy protection. However, it still stores the security context and temporary

identities for fast reattachment. 5G defines three authentication methods: 5G-AKA, EAP-

AKA, and EAP-TLS. The 5G-AKA and EAP-AKA utilize a similar pre-shared key scheme

as the 5G/4G AKA. 5G introduces EAP-TLS for private networks or IoT environments

to handle the devices without SIM to perform the AKA authentication, such as laptops

or IoT sensors. EAP-TLS sets up the TLS connection based on the devices’ certificates.

EAP-TLS does not rely on the symmetric master key K but generates keys from the TLS

session. However, current vulnerabilities still exist in 5G. All three methods derive a shared

key called KAMF, which is still stored in the SIM. Furthermore, the 5G SIM adds support to

store intermediate authentication keys. 5G also supports fast reattachment with the cached

security context. These files are under current PIN-based protection and put 5G users at

risk of traffic eavesdropping, MitM, and impersonation attacks.

The 5G/4G trust models require the long-term symmetric key. All the keys depend on

the master key K, which exposes high operational risk during the multi-layer key derivation

and transmission. In future work, certificates in the SIM make a case to redesign the 5G

authentication scheme. Certificates can derive one-time keys to set up security between the

UE, serving network, and home network. Multi-layer keys can be independent and flexible

for heterogeneous devices and services.

6.7 Related Work

The current SIM design has been largely inherited from the legacy 2G/3G networks, where

end devices do not assume much intelligence. Prior studies have exploited its implementation

vulnerabilities to clone SIM cards [LYS15], track user location [Simb], or attack VoLTE calls

[CSP17]. Recent efforts exploit the vulnerability in the remote SIM provisioning procedure

to exhaust the memory at eSIM [MQS18, CZA18]. In contrast, we look into the vulnerability

of in-card file access for both SIM and eSIM, and use the obtained information to reconstruct
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the keys for 5G/4G attacks. We thus allow for attacks against both the victim device and the

5G/4G infrastructure within the standards. Therefore, we differ from existing studies that

use the 5G/4G design or implementation vulnerabilities to attack the victim user [LLL20,

RKH19, RKH20, SBA15] or the network [LTP15, XTL20, HYA18].

To the best of our knowledge, we report the first effort on authentication and access

control for SIM/eSIM. We take a novel approach with the access graph to enable fine-grained

access control on SIM files. It differs from the recent graph-based vulnerability analysis in

account access [HRS19]. Prior efforts analyzed the mobile operating system’s access control

and vulnerability for both Android [SST18] and iOS [DCB20]. They further proposed access

control designs for mobile operating systems [RCC12, BHS13, NKZ10] and IoT applications

[SST18, ZML18]. Such OS or IoT access control schemes cannot prevent information leakage

at SIM/eSIM.

6.8 Conclusion

The security of SIM/eSIM is critical to both mobile users and 5G/4G infrastructure opera-

tions, since it contains various IDs, security keys, and personal information of a mobile user.

Despite its importance, SIM/eSIM security is a largely unaddressed topic in the research

community. This is partly because SIM/eSIM is widely considered as a closed module only

accessible to mobile operators and vendors. However, as recent initiates seek to open up

SIM and make it more programmable (e.g., adding new over-the-air services into SIM/eSIM

[ETS19a]), the conventional wisdom probably will not hold. As a result, the current SIM

protection is not sufficient. The fundamental problem is that, SIM/eSIM does not offer

proper authentication to various in-SIM applets and off-card units. Moreover, it does not

provide fine-grained access control to hundreds of in-SIM files that store keys and personal

data. Consequently, various attacks are made feasible. In this chapter, we uncover three

such vulnerabilities, devise new attacks against both the victim device and the 5G/4G in-
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frastructure, and propose solutions. Our prototype and evaluation have validated both the

attacks and our defenses.
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CHAPTER 7

Highly Resilient Open-Source 5G Platform

We establish a testbed for demonstrating the highly resilient 5G system designs. We develop

the first open-source, Javacard-based eSIM platform. Moreover, we have designed an open-

source mobile AR/VR platform to showcase the incoming 5G applications. The testbed

utilizes commercially available 5G and 5G IoT devices equipped with our Javacard-based

eSIM and executes the mobile AR/VR application, allowing us to assess resilience on both

5G devices and networks. This chapter is organized as follows: we first introduce the eSIM

platform in §7.1. We then describe the 5G/4G mobile AR/VR platform in §7.2.

7.1 eSIM Platform

The open-source SIM card promotes transparency, innovation, and accessibility in mobile

communication technologies. The importance of open-source SIM cards stems from their

ability to offer users increased control and customization, enabling them to switch carriers

or select the best network profiles with ease. Furthermore, open-source solutions foster

collaboration and innovation, allowing developers to build upon existing technology and

address the specific needs of different user segments. Despite its importance, there has not

been a widely-adopted open-source SIM card project. This may be due to the complex

nature of telecommunications technology, and the dominance of proprietary solutions by

major manufacturers and network operators.

To address this gap, We develop the first open-source eSIM platform [Flo23b]. We
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Figure 7.1: eSIM platform.

leverage Javacard, which is a widely-used, secure, and flexible platform that has been em-

ployed for various applications, including smart cards, secure tokens, and SIM cards. By

combining the versatility of Javacard with eSIM technology, the platform aims to provide

an open-source solution for both single and multi-profile SIM cards. This applet features a

basic SIM file structure, SIM authentication, and customizable APDU handling functions,

making it compatible with a wide range of mobile devices and network configurations.

The eSIM platform consists of four critical components, as illustrated in Figure 7.1,

which work in tandem to provide a seamless and efficient eSIM experience: (1) an applet

that enables basic SIM file structure for single and multi-profile, SIM authentication, and

customized APDU handling functions; (2) a SIM profile loader program designed to build

the eSIM multi-profile structure on the eSIM-Applet, as well as read, write, and customize

all fields and parameters within the profile; (3) an Android app that facilitates profile down-

loading, installation, switching, and deletion on mobile devices by integrating Javacard with

the eSIM-Applet, and enables automatic carrier selection, presenting two cases for auto-

selection based on latency and throughput, while offering APIs for users to deploy their

own algorithms; (4) a simplified SM-DP+ server that supplies profile download functions

to the LPA-App, allowing dynamic profile downloading from a cloud server and subsequent

installation as a local profile with WING-SMDP.

eSIM-Applet The eSIM applet, supported by the Javacard-eSIM, offers an extensive
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feature set catering to the varied needs of users and developers. It enables read/write oper-

ations on standardized and customized SIM structures, ensuring compatibility with diverse

network profiles. The applet also incorporates the MILENAGE algorithm for robust SIM au-

thentication, which is vital for secure and reliable mobile communications. Additionally, the

multi-profile storage feature allows for smooth transitions between network profiles, granting

users the flexibility to choose the most suitable carrier and plan. The eSIM applet facilitates

profile installation, deletion, and switching, while also supporting basic proactive commands

for managing mobile communications. Finally, the dynamic profile downloading feature, in

conjunction with the LPA-App and WING-SMDP, enables users to effortlessly access and

update their eSIM profiles as required.

eSIM-Loader eSIM-Loader is a Python tool crafted to customize the SIM profile. This

loader constructs multi-profile structures for the eSIM-Applet and supports reading and

writing standardized SIM/USIM EF/DF/ADF fields, such as IMSI, ICCID, Key, OPc, and

others, in compliance with the 3GPP specifications [3GP20a]. Additionally, it accommodates

customized SIM/USIM EF/DF/ADF fields, offering versatility in profile management.

LPA-App An Android local profile assistants (LPA) App enables the communication

between Android phones and SIM cards. This app allows reading and writing standardized

and customized SIM structures directly from mobile devices. It also streamlines eSIM pro-

file downloading from the WING-SMDP server, as well as eSIM installation, deletion, and

profile switching. Moreover, the LPA-App provides dynamic profiling, and automatic carrier

selection, and supports customized algorithms for carrier selection, delivering a personalized

user experience.

WING-SMDP The WING-SMDP (Subscription Manager for Data Preparation) server

serves as a central hub for remote profile storage and management. This server supports

basic authentication functions with Android phones and the eSIM-Applet, ensuring secure

communication. As a cloud database for SIM profiles, WING-SMDP facilitates profile down-

132



load functions for the LPA-App, simplifying the process of managing and updating eSIM

profiles on mobile devices.

Our eSIM platform delivers convenience, flexibility, and security for 5G/4G communi-

cation. Compliant with established standards, the SIM is designed to function seamlessly

with a variety of 5G/4G devices, including smartphones and IoT modems. By offering an

open-source solution, our platform fosters innovation and facilitates future advancements

in SIM/eSIM design and deployment. Our platform complements the open-source RAN

and Core infrastructure, effectively bridging the final gap in the open-source mobile cellular

network ecosystem.

7.2 Mobile AR/VR Platform

We develop an open-source mobile AR/VR platform [Flo23a] to demonstrate the potential

of emerging 5G applications. This platform delivers a high-fidelity, real-time AR/VR expe-

rience designed for 5G/4G networks, enabling users to access AR/VR content anywhere and

anytime. It operates without root or system privileges, ensuring compatibility with a wide

array of commercially available 5G and 5G IoT devices.

7.2.1 System Components

The platform, as shown in Figure 7.2, consists of two primary components: the Android

AR/VR Controller Application and the Edge Server. The Android AR/VR Controller Ap-

plication is responsible for providing real-time user data to the AR/VR edge server. This

data includes gyroscope information for adjusting viewpoints, GPS location for mapping

real-world locations onto virtual scenes, camera streams for real-time AR applications, and

user controls that facilitate game actions (e.g., light control, scene selection).

The edge server supports various AR/VR tasks and comprises the following components:
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Figure 7.2: Mobile AR/VR platform.

User Data Receiver This component continuously updates the virtual camera based

on real-time user movements, such as viewpoint and position changes, camera streams, and

game controls. This synchronization ensures that the virtual environment remains consistent

with user actions and movements. The receiver also processes user camera streams for an

array of downstream AR tasks.

ML-based AR Module The AR module utilizes advanced machine learning algorithms

for tasks like face and skeleton recognition, real-time multi-camera stitching, and 3D point

cloud rendering. This functionality allows our platform to offer an interactive user experience,

expanding the possibilities within mobile AR.

Frame Rendering Engine This engine renders the latest AR/VR frame, based on ei-

ther the virtual camera’s field of view for VR or machine learning outcomes for AR. This

approach ensures that users are presented with a visually captivating and immersive experi-

ence, continuously updated in response to their movements and interactions.

Real-time Streaming Module The streaming module utilizes WebRTC to deliver real-

time game views, ensuring low-latency streaming (¡50ms) compared to traditional RTSP or

RTMP solutions (¿200ms). It supports high-quality VR streaming, such as 1080p-60FPS

and 4K-30FPS. Users can simply access the AR/VR stream through their web browsers,

facilitating easy access to AR/VR content.
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7.2.2 Enabling AR with 5G IoT

We further design an AR application that operates using 5G IoT connectivity. 5G IoT

provides more extensive coverage and longer battery life than traditional 5G broadband

networks. Specifically, the increased range of NB-IoT enables the transmission of messages

from remote rural areas, extending over ten times the distance of 5G/4G networks. However,

delivering AR/VR services under the constraints of limited bandwidth, which can be as low

as 100 kbps, presents a significant challenge. To address this issue, we have developed an AR

intrusion detection application that demonstrates the feasibility of AR on NB-IoT devices.

Our AR system offers a solution for detecting unwanted intruders that may pose a threat

to remote facilities such as pipelines, farms, and ranches. IoT cameras in these areas identify

the skeletons of potential intruders in real-time. The data is compressed and transmitted

through the NB-IoT network to the cloud, where it is reconstructed with 3D characters to

provide a clear understanding of the intruder’s actions. This process enables rapid detec-

tion and monitoring of potential attacks on facilities. To deploy the system, we employed

Raspberry Pi as the front-end IoT device, connected to commercial NB-IoT modems for

network transmission. We further demonstrate the feasibility of our approach by leveraging

software-defined radio to enable a standard-compliant base station and core network. Our

open-source application provides a new benchmark for AR/VR services on cellular IoT de-

vices. This solution allows remote facilities to be monitored and protected against intruders,

ensuring the safety and security of crucial infrastructure.

In summary, our open-source mobile AR/VR platform enhances the AR/VR experience

over 5G and 5G IoT networks. The applications include built-in metrics for quantifying 5G

network resilience, such as throughput, latency, and disruption times. This platform serves

as a benchmark for future resilient 5G network developments.
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CHAPTER 8

Conclusion and Future Work

The global rollout of 5G mobile systems is advancing at an unprecedented pace, primarily

targeting mission-critical and enterprise applications such as autonomous vehicles, smart

factories, and remote health care that necessitate high service resiliency. As 5G deployments

continue to burgeon, they achieve universal coverage and enhanced performance via higher

radio spectrums. Nevertheless, challenges beyond wireless technology itself, including pro-

tocol failures, connectivity outages, and security vulnerabilities, impede the realization of

highly resilient 5G services.

A key contributor to this diminished resiliency is the “smart core, dumb terminal” design

philosophy prevalent in 5G systems. This paradigm emphasizes intelligent infrastructures

while relegating end-user devices to passive roles, thereby neglecting the potential of devices

to respond autonomously during service disruptions.

This dissertation demonstrates that augmenting device-side intelligence with the use

of SIM/eSIM offers a novel approach to bolstering resiliency. SIMs facilitate simple yet

effective device-side management, leading to enhanced resilience through the incorporation

of lightweight operations, such as multi-tier resets and rapid multi-carrier switching. These

operations empower SIMs to expedite recovery from protocol failures, enhance connectivity

outage handling, and strengthen security against vulnerabilities. By harnessing the potential

of device-side intelligence, SIMs actively contribute to the resilience of both 5G and 5G IoT

systems, laying the foundation for more robust and reliable communication networks in the

future.

136



In the following sections, we summarize our results in §8.1, discuss the lessons learned in

§8.2, and envision future directions in §8.3.

8.1 Summary of Results

This dissertation reveals that the roadblocks toward highly resilient 5G systems are caused

by a complex interplay of factors, including protocol stacks, device mobility, power-saving

designs, and security mechanisms. To address these issues, we propose a novel SIM/eSIM-

based approach that enhances resiliency in 5G and 5G IoT systems. By using the SIM card

and eSIM chip as an independent miniature system, we offer plug-and-play, highly resilient

5G services without requiring modifications to device firmware, operating systems, or base

stations. The main contributions are as follows:

SEED: A SIM-Based Solution to 5G Failures We present SEED, our first effort

in diagnosing and handling 5G failures using a novel SIM-based solution. SEED exploits

the available error codes in standardized 5G signaling messages to infer root causes. It

further improves diagnosis with a simple, domain-specific machine-learning algorithm. Upon

identifying the cause of failure, SEED takes adaptive, multi-tier reset/redo actions (resetting

protocol operations, refreshing outdated configurations, reloading profiles, etc.), enabling

swift diagnosis and handling of 5G protocol failures.

SHIELD: SIM-Based Rapid Connectivity Outage Handling We introduce SHIELD,

a SIM-based solution aimed at highly available 5G and 5G IoT systems. The key innova-

tion is a SIM-centric software mini-system that leverages the in-device SIM card and a

plug-and-play, miniature, software-defined receiver hardware. Our approach relies on pure,

device-based operations to facilitate rapid inter-carrier-network switching and data-first de-

signs to handle mobility and power-saving-induced disruptions. Our designs readily achieve

two to three nines (potentially four to five nines in the near future) of availability for 5G

services, effectively eliminating connectivity outages as a system bottleneck.
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SecureSIM: Enhanced 5G Security with SIM/eSIM We identify three vulnera-

bilities in the current SIM/eSIM practice. We demonstrate that PIN-based access control

may expose in-SIM data to adversaries through both hardware and software means. Once

compromised, this in-SIM data can be utilized to reconstruct various keys used for device

authentication, data encryption, and more, enabling attacks such as traffic eavesdropping,

man-in-the-middle attacks, and impersonation. We propose a new solution that provides

both authentication and fine-grained access control to hundreds of in-SIM files for various

in-card applets and off-card units. By redesigning SIM/eSIM security, we address the secu-

rity vulnerabilities in current SIM designs and enhance 5G service resiliency against diverse

attacks.

8.2 Lessons Learned

8.2.1 Emphasizing Device-side Intelligence for 5G Resiliency

The pursuit of highly resilient 5G systems is often hindered by the prevailing cellular design

convention, which adheres to a “smart core, dumb terminal” philosophy. This approach pri-

oritizes intelligent infrastructure, while neglecting the potential for end-user devices to play

more active roles. The root cause of this imbalance can be traced back to historical design

choices that emphasized centralized control, leaving little room for distributed intelligence.

As a result, resiliency design has predominantly focused on network-side mechanisms, cre-

ating a single point of failure and limiting the devices’ capacity to respond autonomously

during service interruptions.

It is through recognizing the inherent limitations of this design philosophy that we can

begin to explore alternative approaches. This dissertation proposes a SIM-centric design,

which aims to enhance device intelligence and unlock the latent potential of end-user devices

to contribute to network resilience. The SIM is uniquely situated within the 5G ecosystem,

being both produced and managed by the network, while residing on cellular devices. This
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distinctive role empowers the SIM to act as an ambassador, enabling device-side intelligence

while leveraging the network knowledge and ensuring high resiliency in 5G networks.

For example, SEED enables fine-grained diagnosis with multi-tier reset for fast failure

handling, even under disruptions (§4). Additionally, SHIELD facilitates rapid carrier switch-

ing and a data-first design at the device level during connectivity outages (§5). By capital-

izing on the SIM’s unique position, we can effectively challenge the status quo of “dumb

terminal” designs and usher in a new era of device-side resiliency that is both simple and

effective. This shift in design philosophy not only addresses the limitations of the current

approach but also paves the way for a more robust and adaptive 5G infrastructure.

8.2.2 High Resiliency Is Beyond Enhancing Wireless

The notion that disruptions in cellular networks result primarily from weak signal conditions

is an oversimplification. This dissertation reveals that multiple factors contribute to the lack

of resiliency in 5G networks, even under optimal signal conditions. The complex interplay

among protocols, mobility and power-saving schemes, and security vulnerabilities collectively

constrains the potential for high resiliency.

This work offers insights into both current 5G operations and future deployments. The

analysis presented herein allows for a more accurate diagnosis of network failures by dis-

tinguishing between wireless and non-wireless issues. Understanding these causes can guide

efforts to develop more resilient and reliable 5G systems. Additionally, the solutions pro-

posed in this dissertation, such as multi-tier reset mechanisms (§4.3.4), rapid multi-carrier

switching (§5.3.2), and fine-grained access control (§6.3), effectively address both wireless

and non-wireless challenges at the 5G device. These designs can be readily deployable to

enhance the resiliency of 5G services on existing 5G devices.
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8.2.3 Optimization Can Be Plug-and-Play

The 5G mobile ecosystem encompasses numerous mobile network operators, device vendors,

OS vendors, and application developers. The heterogeneity of this ecosystem complicates the

optimization process, and the proprietary nature of core components, such as modems, base

stations, etc., further exacerbates the challenge of implementing new designs. Traditionally,

optimization efforts have necessitated root privileges [LPZ21, TDZ21a] or modifications to

device firmware or operating systems [LLZ20, ZLL22], often leading to lengthy deployment

times or introducing potential security threats.

This dissertation demonstrates that standardized interfaces hold significant potential for

optimization within the 5G ecosystem. For example, widely available SIM-device interfaces

facilitate high-availability designs by enabling data-first designs and fast reconnect (§5.3.3).

Additionally, the SIM leverages supported APIs to handle failures (§4.3.4), obtain real-time

network conditions (§5.3.2.2), and authenticate applications (§6.3.2). The enhanced resilient

designs can be implemented as plug-and-play solutions on commodity devices, without the

need to modify firmware, applications, operating systems, or 5G infrastructure. In the future,

leveraging readily available APIs in conjunction with standardized interfaces will provide new

opportunities to repurpose existing functions to achieve more novel optimization objectives.

8.3 Looking Forward

As we stand at a crucial juncture in the evolution of mobile networking, with rapid advance-

ments in both 5G and beyond-5G (B5G) systems, it is important to recognize the challenges

that accompany this progress. While significant strides have been made in improving wireless

technologies and implementing more flexible network frameworks like SDN and NFV, these

solutions are insufficient to fully exploit the potential of client-side capabilities or ensure

resilient network operations.

It is critical for 5G/B5G to create high-performance, highly resilient networks that can
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support mission-critical services, such as Industrial IoT, autonomous vehicles, and digital

twins. However, the current 5G systems have become excessively complex due to the convo-

luted protocol stacks and heterogeneous schemes introduced incrementally between devices

and infrastructure components. We believe that the key to overcoming these challenges lies

in harnessing the potential of SIM/eSIM technology to develop simplified, resilient cellular

designs. By capitalizing on the SIM’s unique position within the ecosystem, we can unveil

new opportunities for innovative cellular designs in the 5G/B5G core, radio access networks,

and devices.

In this section, we explore future research that delves into how SIM-centric designs can

bolster 5G/B5G systems. We introduce the concept of the SIM Trust Core, a secure frame-

work that streamlines cellular designs by positioning the SIM at the heart of the network.

The SIM/eSIM enables a trusted and simplified 5G network, fostering a more efficient and

secure architecture across various network entities: the trusted state for core network design

(§8.3.1), trusted access for wireless fusion (§8.3.2), and trusted AL/ML for cellular devices

(§8.3.3). By embracing the SIM Trust Core, we can address the root cause of complexity

and pave the way for a more reliable, adaptable, and high-performing mobile networking

landscape.

8.3.1 State Snapshot for Resilient 5G/B5G Core Design

As 5G and beyond-5G (B5G) networks continue to evolve, addressing their inherent com-

plexities and vulnerabilities become essential. The current design, which relies on multiple

states at different protocol levels, such as RRC/NAS, and corresponding gateway status

management, results in complications and inconsistencies during mobility and power-saving

scenarios. Additionally, the centralized network-side management of states introduces a new

single point of failure, compromising network resilience.

Our future work aims to tackle these issues by proposing the SIM card as a trusted

storage medium for a state snapshot, encompassing all the necessary states within the core
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network. Upon state generation by the core, the snapshot will be securely transmitted to

and stored in the SIM card. In the event of mobility or failures, the devices can leverage

standard-compliant methods to provide the stored state copy, allowing for rapid and efficient

recovery of lost control and data plane status. This approach will enable not only swift state

restoration but also ensure secure state handling.

To this end, the trusted state snapshot achieves a distributed and scalable design, effec-

tively eliminating the single point of failure inherent in current systems. By decentralizing

state management, we will be able to enhance network resilience and reliability while also

catering to the ever-growing demands of 5G and B5G core networks.

8.3.2 Trusted Access for Resilient Wireless Fusion

5G networks feature intricate wireless designs, marked by complex physical resource manage-

ment across various spectrums at the physical layer and sophisticated control and scheduling

at the MAC layer. The current designs give rise to considerable complexities and create po-

tential security vulnerabilities. For future cellular networks that are both efficient and secure,

it is crucial to simplify design and reinforce security.

Wireless fusion offers a compelling approach to alleviate these complexities by merging

the cellular protocol stack with the physical layer of other wireless technologies, such as

Wi-Fi. The efficient use of unlicensed spectrum could streamline the PHY and MAC designs

without compromising connectivity. Furthermore, wireless fusion promotes the seamless

integration of diverse wireless technologies, laying the groundwork for a unified and adapt-

able communication framework. However, providing secure access within such a converged

environment remains an essential challenge.

Our proposed solution centers on the SIM Trust Core, which acts as a unified security an-

chor on devices, storing access keys for various wireless technologies. By harnessing the SIM

as a centralized, secure element, devices can directly connect to different access technolo-
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gies, such as Wi-Fi, 5G, and B5G, in a trusted manner. This SIM-based design heightened

protection against device malware and diminished vulnerability to hacking attempts. As we

progress toward a future of wireless fusion, the SIM Trust Core emerges as a vital component

for secure and consolidated access management.

8.3.3 Resilient AL/ML Services for Cellular Devices

The significance of privacy continues to grow, fueling the demand for solutions that safeguard

user data while still harnessing the power of AI and ML technologies. Federated learning has

emerged as an approach to meet these needs, enabling AI advancements without sacrificing

user privacy. By distributing ML tasks across numerous devices, federated learning allows for

collaborative model training, with each device retaining its data locally—effectively reducing

privacy risks.

The SIM card, traditionally employed for secure storage and communication, can be em-

ployed as a secure execution environment to support federated learning on mobile devices.

Utilizing the inherent security features, it can offer a protected environment for the storage

and processing of lightweight user data. Furthermore, the SIM can act as an authentication

gatekeeper, ensuring that only authorized devices participate in the federated learning pro-

cess. This approach paves the way for the seamless integration of privacy-preserving AI and

ML techniques within the mobile ecosystem.

Looking ahead to the future of AI and mobile devices, the SIM card holds immense

potential for striking a balance between intelligence and privacy. By enabling devices to

securely engage in federated learning, the SIM lays the foundation for a new era in which

AI development and deployment prioritize privacy. This paradigm shift will unlock unprece-

dented opportunities for AI and ML applications on mobile devices, while maintaining user

control over their data—ultimately fostering a more secure, private, and intelligent digital

landscape.
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Appendix A

Supplementary Materials for Chapter 4

A.1 Standardized Failure Causes Related to Configuration Issues

Control plane management failures with the required configurations from the infrastructure:

• #26-Non-5G authentication unacceptable: Supported RAT

• #27-N1 mode not allowed: Supported RAT

• #31-Redirection to EPC required: Supported RAT

• #62-No network slices available: Sugested S-NSSAI

• #72-Non-3GPP access to 5GCN not allowed: supported RAT

• #91-DNN not supported or not subscribed in the slice: Suggested DNN

• #95-Semantically incorrect message: Invalid/missed config

• #96-Invalid mandatory information: Invalid/missed config

• #100-Conditional IE error: Invalid/missed config

Data plane management failures with the required configurations from the infrastructure:

• #27-Missing or unknown DNN: Suggested DNN

• #28-Unknown PDU session type: Suggested session type
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• #33-Requested service option not subscribed: Suggested DNN

• #39-Reactivation requested: Suggested DNN

• #41-Semantic error in the TFT operation: Suggested TFT

• #42-Syntactical error in the TFT operation: Suggested TFT

• #43 –Invalid PDU session identity: Activated PDU session

• #44-Semantic errors in packet filter(s): Suggested packet filter

• #45-Syntactical error in packet filter(s): Suggested packet filter

• #54 –PDU session does not exist: Activated PDU session

• #59-Unsupported 5QI value: Suggested 5QI

• #68-Not supported SSC mode: Suggested packet filter

• #70-Missing or unknown DNN in a slice: Suggested DNN

• #83-Semantic error in the QoS operation: Suggested packet filter

• #84-Syntactical error in the QoS operation: Suggested packet filter

• #95-Semantically incorrect message: Invalid/missed config

• #96-Invalid mandatory information: Invalid/missed config

• #100-Conditional IE error: Invalid/missed config

A.2 AT Commands List for Fast Failure Handling

• Modem reset: AT+CFUN

• PLMN selecion: AT+COPS
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• Control-plane reattachment: AT+CGATT

• Data session setting: AT+CGDCONT

• Data plane reset: AT+CGACT
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