Lawrence Berkeley National Laboratory

 Recent WorkTitle
PROTON HELICITY FROM A DECAY
Permalink
https://escholarship.org/uc/item/9sg9z7mp

Authors

Birge, Robert W.
Fowler, William B.
Publication Date
1960-08-11

UNIVERSITY OF CALIFORNIA

Ernest O. Laurence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory
 Berkeley. California
 Contract No. W-7405-eng-48

PROTON HELICITY FROM Λ DECAY
Robert W. Birge and William B. Fowler August 11。1960

PROTON HELICITYEROM \triangle DECAY
Robert W. Birge and William B. Fowler*
Lawrence Radiation Laboratory
University of California
Berkeley, California
August 11, 1960
When Λ hyperons are producisd with K° mesons in $\pi^{-}-p$ reactions there is a large upodown asymmetry of the decay products with respect to the production plane. ${ }^{1}$ The angular distribution of the decay pion from a completely polarized hyperon at rest can be written as ${ }^{2}$

$$
d N=\frac{1}{4 \pi}(1+a \cos x) d \theta .
$$

where $d \rho$ is the solid angle of the pion momentum vector $\overrightarrow{\mathrm{P}}_{\pi}$, and X the angle between \vec{P}_{π} and the spin of the hyperon. The constant a is given by

$$
a=\frac{2 \operatorname{Re}\left(A^{*} B\right)}{\left|A^{\prime}\right|^{2}+|B|^{2}}
$$

and characterizes the degree of mixing of parities in the decay. A and B are the amplitudes for decay into $s_{1 / 2}$ and $p_{1 / 2}$ final states of the pion-nucle n system. The quantity $a \bar{P}$, which has the possible values $0 \leqslant|a \bar{P}| \leqslant 1$, is a measure of the up-down asymmetry and has been experimentally shown to be $\geqslant 0.73 \pm 0.14^{3}$ This large asymmetry can exist only if the Λ^{\prime} 's are highly polarized in the production process and if there is nonconservation of both parity and charge conjugation in the decay process.

[^0]Another necessarf consequence of parity nonconservation in the decay process is a longitudinal polarization of the decay proton from unpolarized $\Lambda^{\prime} s$ decaying at rest. It can be shown that this longitudinal polarization equals .. a. ${ }^{4}$ Fortunately, this longitudinal polarization of the proton, referred to the c.m. of the A, appears as a partial transverse polarization in the laboratory system when a Λ decays in flight and, hence, can be measured by a suitable scattering experiment. In this way the helicity of the proton can be ubtained, whereas in the $a \bar{P}$ experiments only the lower limit to the magnitude can be determined. The sign of a was determined in a subsequent experiment by Boldt et al. ${ }^{5}$, who found $a=+0.85_{-0.21}^{\text {to }}=0$, based on 54 events in a multipiate cloud charrber.

In the cuurse of an experiment designed to produce Ξ particles ${ }^{5}$ from a high-monentum (l.1-Eev/c) K^{-}beam 7 impinging on the Berkeley 30 -inch propane chamber, about $20,000 \Lambda^{\prime}$ s were produced. A fraction of these (about 800 events) were observed to decay and have a subsequent scattering of the proton within the liquid of the chanber. This constituted a considerably larger zample of events than had been obtzined by Boldt et al. , hence it seemed worth while to repeat the experiment because of its fundamental nature. Preliminary and incomplete results of this experiment have already appeared elsewhere. ${ }^{8}$

Experimental Method

All events visually identified as $\Lambda^{\prime} s$ were measured, and the relevant data were then calculated on an IBM 650 computer. A constraint program was used to find the best fit to the data, taking into account transverse momentrm balance and coplanarity of the A 's with respect to the production origin as well as the " Q " of the decay. In addition, the ionization of all tracks was visually checked for consistency with measured momenta and particle assignment.

Above abont 800 to $900 \mathrm{Mev} / \mathrm{c}$ there was difficulty separating $\theta^{\circ} \mathrm{s}$ from $\mathrm{A}^{\prime} \mathrm{s}$, and those gents were deleted.

A rnajor difficulty was encountered because the proton track, prior to scattering, was often to short to measure the momentum accurately. Because very large errors were assigned to these tracks, the constraint program could not readily compute reliable values for the momenta, yet these values were needed to obtain the asymmetry parameter in the scattering process. For this reason, we assumed an elastic scattering and used the momentum obtained from the scattered prong instad. The events were accepted only when the proton momenta calculated by this method (after appropriate corrections for energy los s by ionization) were consistent with the values needed to give the right Q for the A. In mosit cases the recoil proton stopped in the chamber and a very accurate momenturn determination could be made; unfortunately, however, these lowmomenturr events are just those where the asymmetry from scattering by carbon is quite small. Therefore these events do not help to measure the initial polarization of the proton. In crder to eliminate possible inelastic scattering events an acceptance cutoff oras made in the scattering angle at a point where the elastac scattering cross section still dominates the inelastic processes. Even in those events in which both the incoraing and outgoing momenta could be well measured, it was impossirle to detect excitation into the low-lying levels of carbon; therefore, the cutoff procedure was used for all events. This procedure was necessary because the asymmetry parameter for inelastic scattering can be of opposite sign to that of olastic scattering in certain angular regions. Those events with two yecoll proigs that appeared to be hydrogen scatterings were subjected :o an additional constraint program to determine whether they were indeed elastic hydrogen scatterings.

As a result of rejecting θ-like events, inelastic scattering, poorly measured events, events with large kinks in the tracks, and events in which all tracks were too short t:o be measured accurately or the momentum was obviously too low for analysis, only 212 events remained for further analysis. Finally, all single $\Lambda^{\prime} s$ without visible production origins were eliminated from the sample, leaving 183 events. Of these, 36 were cases in which the proton was scattered by hydrogen in the propane and the remainder were elastic carbon scatterings.

It is difficult to see how any bias can creep into the selection of these events even with such a high filtering factor, because the sign of the polarization is not an obvious quantity when the event is viewed in a bubble chamber picture.

The following procedure was then used to analyze the selected events. First, for each event the angle between the spin of the proton and the direction of motion of the proton in the laboratory system was computed in a manne: prescribed by Stapp. ${ }^{9}$ The sine of this angle multiplied by the magnitude of the original longitudinal polarization ($-a$) is the magnitude of the transverse polar ization. Second, correction was made for the precession of the proton spin in the magnetic field of the bubble chamber prior to the scattering event. The rate of precession of the spin was computed according to the equations derived by G. W. Fcrd and set forth in the pa;er by Nelson et al., ${ }^{10}$ namely,

$$
\omega_{s}=\frac{e \vec{B}}{m_{0} \gamma c}[1+(g / 2-1) \gamma]-\frac{\vec{v}}{|v|}(\gamma-1)(g / 2-1) \frac{e \vec{B} \cdot \vec{v}}{m_{0} \gamma c|v|},
$$

$$
\text { where } \begin{aligned}
\vec{b} & =\text { magnetic field } \\
\vec{v} & =\text { velocity of the proton } \\
g / 2 & =2.79275
\end{aligned}
$$

Third, because of spin orbit forces, the scattered intensity is proportional to $1+\left(-a \vec{P}_{1}\right) \cdot \vec{P}_{2}(\theta)$ where $-a \vec{F}_{1}$ is the transverse polarization of the in coming proton at the position of the scattering (as determined by the above transformation) and P_{2} is the asymmetry parameter in the scattering nress. The direction of $P_{2}(\theta)$ is alcng the normal to the scattering plane $\vec{\eta}_{2}=\vec{k} \times \vec{k} \vec{k}^{\prime} /\left|\vec{k} \times \vec{k}^{\prime}\right|$. The magnitude of $P_{2}(\theta)$ is a function of incoming momenturn and ecattering angle and has been determined experimentally elsewhere. For example, with an initial transverse polarization downwards, $P_{2}(\theta)$ is determined as

$$
P_{\partial}(\theta)=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}
$$

where N_{E} and N_{L} are the number of protons scattered to the right and to the left. (The angle ϕ betwees P_{1} and P_{2} is 0 deg and 180 deg, respectively.) In Figs. 1 and 2 the values of $P_{2}(\theta)$ are summarized as a function of laboratorysystem momentum and scittering angle for protons scaitered by carbon and hydrogen, obtained fron 1 eferences available in the literature and by private communication. A list of references from which these data were taken is available on request. Data from these charts were put into the memory rif the computer and intermediate values obtained by interpolation. A dotted line in Fig. 1 indicates the elastic cutoff. Below 300 Mev/c the asymmetry pararneter Y_{2} was set equal to 0 , even though at very low momenta P_{2} again becomes finite. This condition eliminated another 63 events and left only 120 events if sigrificance.

Finally, the probaidity that a proton scatter to the right is $\frac{N_{R}}{N_{R}+N_{L}}$
 where $P_{i}=P_{1} P_{2} \cos \phi$ for the ith event. The product of all of these independent probabilities is the likelihood function

$$
L=\pi_{i}\left(1-a P_{i}\right)
$$

which may be plotted as a function of a to obtain the most likely value for the magnitude and sign of a.

In Fig. 3 the natural logarithm of L is plotted for 120 events.
These data would indicate $a=-0.45 \pm 0.4$, implying positive helicity for the proton in contradiction to theoretical predictions ${ }^{10}$ based on the universal Fermi intaraction, and to the experimental findings by Boldt et al., ${ }^{5}$ whose results are plotted on the same graphs as a dashed line, and contrary to our own preliminary results. ${ }^{8}$ In addition, the magnitude of a is smaller than that obtained by the up-dcwn asymmetry experiments (where $a P \geqslant 0.73 \pm 0.14$), although the difference in magnitude is not statistically significant. The ratic of the likelihood functions at $a=-0.45$ to that at $a=+0.45$ is $12: ?$; at $a=0.85$ the ratio is $140: 1$.

A second way of determining the sign of a is to measure the right left asymmetry directly. The result obtained in this manner is
 based on the average of the product of the input polarization $-\alpha P_{1}$ and the asymmetry parameter $P_{2}(\theta)$, is 0.16 for $a=1.0$, and 0.07 for $a=-0.45$.

The exper mentai aspmmetry is in agreement with both of these values.

Finally, we have computed the quantity $D=-\sum_{i} P_{i} \cos \phi_{i}$ as suggested by Bowen et al. ${ }^{12}$ so that these data may be combined with other results. The value fbtained here is $D=-2.79$, to which may be added Bowen's -0.142 .

Every effort has heen made to detect errors in the experiment, to the extent that the signs and magnitude of the polarization of the individual events making up the most signisicant part of the data have boen checked numerous times. Although these data disagree with previous measurements of the cign of alpha, we have no other choice but to present the results as they now stand. It is with pleasure that we acknowledge the work dcne by Howard White and his group in programming the computer and processing all the data. Dr. Cyril Henderson collaborated with us on a preliminary version of this experiment. We are indebted to Dr. Wilson Pcwell and to all the members of the 30 -inch propane chamber group, and to the staff of the Eevatron for their part in making a successful run of the chamber.

We thank the many scanners and technicians for their help in the analysis. Discussions with 3 r 。 Frencis Muller and Dr. Oreste Piccioni were most helpful, as well as discussions with many other people too numerous to list.

REFERENCES

1. Crawford, Cresti, Guod, Gottstein, Lyman, Solmitz, Stevenson, and Ticho, Phys. Rev. 108, 1102 (1957); Eisler, Plano, Prodell, Samios, Schwartz, Steinberger, Bassi, Borelli, Puppi, Tanaka, Woloschek, Zaboli, Conversi, Franzini, Manelli, Santangelo, Silvestrini, Claser, Graves, and Peri, Phys. Rev. 108, 1353 (1957).
2. Lee, Steinberger, Feinberg, Kabir, and Yang, Phys. Rev. 106, 1367 (1957).
3. Frank S. Crawford, Jr. (Lawrence Radiation Laboratory) private communicatirn results from experiments in Reference 1.
4. T.D. Lee and C.N. Yang, Phys. Rev. 108, 1645 (195?); R. Gattc, University of California Radiation Laboratory Report "Possible Experiments on the Behavior of the Weak: Hyperon Decay Interactions Under P, C, and T." UCRL-3795, June 1957 (unpublished); J. Leitner, Nucvo ciment. 8, 68 (1958).
5. Boldt. Bridge, Caldvell, and Pal, Phys. Rev. Letters 1, 256 (1958).
6. Fowler, Birge, Eberhard, Good, Powell, and Ticho, reported at the Kiev Conference, 1959.
7. P. Eberhard, M. L. Gocd, and H. K. Ticho, Lawrence Radiaticn Laboratory Report "A Separated 1.17-Bev/cK" Meson Beam," UCRL-8878, Aug. 1959 (unpublished).
8. R.W. Birge and W.F. Fowler, Bull. Am. Phys. Soc. 4, 46, 355 (1959).
9. Henry Stapp, "Relativistic Transformation of Spin Directions," UCRL-8096, Dec. 1957 (unpublisred).
10. Neis on, Schupp. Pids, and Crane, Phys. Rev. Letters 2, 492 (1959).
11. R.P. Feynman and Mi. Gell-Mann, Phys. Rev. 109, 193 (1958);
E. Sudershan and R. Marshak, Phys. Rev. 109, 1860 (1958): J. J. Sakurai, Nuovo cimento ?, 649 (1958).
12. Bowen; Sun, and Werbrouci, Determination of the Sign of the Asymmetry Parameter in Λ^{0} Decay from the Scattering of the Decay Proton, Princeton University Report NP-7079, December 1958 (unpublished).

FIGURE LEGENDS

Fig. 1. Curves of constant asymmetry for elastic scattering of protons from carbon as a function of laboratory-system momentum and scattering angle. Dashed line indicates cutoff where elasticscattering cross section still dominates inelastic scattering.

Fig. 2. Curves of constint asymmetry for proton-proton ocattering as a function of labot atory-system morrentum and scattering angle.

Fig. 3. Natural logarithm of the likelihood function L as a function of a. The longitudinal polarization of the proton from Λ^{0} decay is a. Solid curvs is this work. Dashed line is that of Boldt et al. ${ }^{5}$. This experiment indicates $a=-0.45 \pm 0.4$.

Fig. 1

Fig. 2

Fig. 3

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission; or his employment with such contractor.

[^0]: Now at Brookhaven Natjonal Laboratory

