
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Unequal Error Protection for Compressed Video over Noisy Channels

Permalink
https://escholarship.org/uc/item/9sh5p2nv

Author
Vosoughi, Arash

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sh5p2nv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Unequal Error Protection for Compressed Video
over Noisy Channels

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Signal and Image Processing)

by

Arash Vosoughi

Committee in charge:

Professor Pamela C. Cosman, Chair
Professor William S. Hodgkiss
Professor Laurence B. Milstein
Professor Truong Q. Nguyen
Professor Steven J. Swanson

2015



Copyright

Arash Vosoughi, 2015

All rights reserved.



The dissertation of Arash Vosoughi is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2015

iii



DEDICATION

To my dearest parents,

my sister Azadeh, my brother-in-law Alireza, and

my lovely wife Nazanin

iv



EPIGRAPH

You can never cross the ocean until

you have the courage to lose sight of the shore.

—Christopher Columbus

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 3D Video Compression . . . . . . . . . . . . . . . . . . . 1

1.1.1 Multiview Coding (MVC) . . . . . . . . . . . . . 1
1.1.2 Video Plus Depth (V+D) . . . . . . . . . . . . . 5

1.2 Scalable Video Coding . . . . . . . . . . . . . . . . . . . 6
1.2.1 Temporal Scalability . . . . . . . . . . . . . . . . 8
1.2.2 Spatial Scalability . . . . . . . . . . . . . . . . . . 8
1.2.3 Quality Scalability . . . . . . . . . . . . . . . . . 9
1.2.4 Scalability for 3D Video . . . . . . . . . . . . . . 10

1.3 Human Visual System Considerations . . . . . . . . . . . 13
1.3.1 Binocular Suppression . . . . . . . . . . . . . . . 13
1.3.2 Asymmetric Coding . . . . . . . . . . . . . . . . . 13
1.3.3 Video Quality Metrics . . . . . . . . . . . . . . . 14

1.4 Error Concealment . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 EC for 2D Non-Scalable Video . . . . . . . . . . . 17
1.4.2 EC for 3D Non-Scalable Video . . . . . . . . . . . 18
1.4.3 EC for Scalable Video . . . . . . . . . . . . . . . 19

1.5 UEP for Video . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.1 Prior Work for 2D Video . . . . . . . . . . . . . . 23
1.5.2 Prior Work for 3D Video . . . . . . . . . . . . . . 24

1.6 UEP for MIMO Video Broadcasting . . . . . . . . . . . . 26
1.6.1 MIMO Communications . . . . . . . . . . . . . . 27
1.6.2 Hierarchal Constellations for UEP . . . . . . . . . 27
1.6.3 SVC-MIMO Video Broadcasting . . . . . . . . . . 28

vi



1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2 Unequal Error Protection for Multiview Coding . . . . . . . . 31
2.1 Overview of the System Design . . . . . . . . . . . . . . 32
2.2 Modeling the End-to-End Distortion . . . . . . . . . . . 33
2.3 Expected End-to-End Distortion . . . . . . . . . . . . . . 36

2.3.1 Non-Scalable MVC . . . . . . . . . . . . . . . . . 37
2.3.2 Scalable MVC . . . . . . . . . . . . . . . . . . . . 39

2.4 JSCC Problem Formulation for MVC . . . . . . . . . . . 40
2.5 Integer Optimization . . . . . . . . . . . . . . . . . . . . 42
2.6 Simulation Results and Discussion . . . . . . . . . . . . . 43
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.8 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 3 Unequal Error Protection for Video Plus Depth . . . . . . . . 55
3.1 V+D Encoder and Decoder . . . . . . . . . . . . . . . . 56
3.2 Overview of the System Design . . . . . . . . . . . . . . 57
3.3 End-to-End Distortion Based on SSIM . . . . . . . . . . 58
3.4 JSCC Problem Formulation for V+D . . . . . . . . . . . 61
3.5 Simulation Results and Discussion . . . . . . . . . . . . . 62
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 UEP for Scalable Video Broadcasting over MIMO Channels . 70
4.1 MIMO Preliminaries . . . . . . . . . . . . . . . . . . . . 71
4.2 Video Broadcasting over MIMO Channels . . . . . . . . 72

4.2.1 SVC for Video Broadcasting . . . . . . . . . . . . 72
4.2.2 Hierarchical Constellations for UEP of SVC . . . 73
4.2.3 Non-Scalable Baseline Scheme . . . . . . . . . . . 75
4.2.4 Scalable Baseline Scheme . . . . . . . . . . . . . . 75
4.2.5 Proposed Scheme . . . . . . . . . . . . . . . . . . 76

4.3 Simulation Results and Discussion . . . . . . . . . . . . . 77
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



LIST OF FIGURES

Figure 1.1: A typical MVC coding structure. . . . . . . . . . . . . . . . . . 2
Figure 1.2: Illustration of motion compensation and disparity compensation

in MVC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.3: Effect of quantization parameter on the quality of the recon-

structed (decompressed) video. . . . . . . . . . . . . . . . . . . 4
Figure 1.4: V+D representation of 3D video. . . . . . . . . . . . . . . . . . 6
Figure 1.5: Spatially scalable video. . . . . . . . . . . . . . . . . . . . . . . 9
Figure 1.6: Block diagram of spatial scalability with two layers. . . . . . . . 10
Figure 1.7: Quality scalable video. . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 1.8: Block diagram of quality scalability with two layers. . . . . . . 11
Figure 1.9: Proposed spatially scalable MVC. . . . . . . . . . . . . . . . . . 12
Figure 1.10: Binocular suppression. . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 1.11: Channel distortion and error propagation for non-scalable 2D

video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 1.12: Channel distortion and error propagation for 3D video encoded

using MVC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 1.13: Frames 25 to 35 of video sequence ‘Foreman’ where only BL is

decoded and slices 3 to 7 of frame 25 are lost. . . . . . . . . . . 21
Figure 1.14: Frames 25 to 35 of video sequence ‘Foreman’ where both BL

and EL are decoded and slices 3 to 7 of frame 25 of BL are lost. 21
Figure 1.15: Frames 25 to 35 of video sequence ‘Foreman’ where both BL

and EL are decoded and slices 6 to 14 of frame 25 of EL are lost. 22
Figure 1.16: Frames 25 to 35 of video sequence ‘Foreman’ where both BL

and EL are decoded and no packets are lost. . . . . . . . . . . . 22

Figure 2.1: Block diagram of a 3D video communication system employing
the proposed JSCC scheme. . . . . . . . . . . . . . . . . . . . 32

Figure 2.2: Histograms of error ∆PSNR
4
= PSNRm − PSNRest for packet

loss ratios 0.5% and 2%. . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.3: Histograms of error ∆PSNR
4
= PSNRm−PSNRest for two pack-

ets lost in a GOP. . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 2.4: Scatter plot of the code rates allocated by UEP to different

packets of ‘Race’. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 2.5: Received PSNR of the primary view, PSNR1, and the secondary

view, PSNR2, for symmetric coding. . . . . . . . . . . . . . . . 46
Figure 2.6: Results for non-scalable MVC, symmetric coding, and AWGN

and fading channels. . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 2.7: Results for scalable MVC and fading channels. . . . . . . . . . 52
Figure 2.8: Results for non-scalable MVC, asymmetric coding, and fading

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



Figure 2.9: Percentage of bit savings of asymmetric coding compared to
symmetric coding. . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.10: Percentage of bit savings of non-scalable MVC compared to
scalable MVC for symmetric/UEP and fading channels. . . . . 54

Figure 3.1: Block diagram of V+D encoder and V+D decoder. . . . . . . . 56
Figure 3.2: Block diagram of a V+D transmission system employing the

proposed JSCC scheme. . . . . . . . . . . . . . . . . . . . . . . 58
Figure 3.3: Trajectories of the optimum QPs for ↓No, ↓2, and ↓4 for a flat

Rayleigh fading channel. . . . . . . . . . . . . . . . . . . . . . . 63
Figure 3.4: Average color and depth code rates for a flat Rayleigh fading

channel with SNR=8dB for ‘Balloons’ for ↓No. . . . . . . . . . 64
Figure 3.5: Average color and depth code rates for a flat Rayleigh fading

channel with SNR=8dB for ‘Balloons’ for ↓2. . . . . . . . . . . 65
Figure 3.6: Average color and depth code rates for a flat Rayleigh fading

channel with SNR=8dB for ‘Balloons’ for ↓4. . . . . . . . . . . 66
Figure 3.7: R for ↓No, ↓2, and ↓4 for a flat Rayleigh fading channel with

SNR=8dB and Tc=4000. . . . . . . . . . . . . . . . . . . . . . . 67
Figure 3.8: PSNRLR obtained by using UEP for ↓No, ↓2, ↓4, and ↓8 for a

flat Rayleigh fading channel. . . . . . . . . . . . . . . . . . . . . 67
Figure 3.9: SSIMLR obtained by using UEP for ↓No, ↓2, ↓4, and ↓8. . . . . 68
Figure 3.10: PSNRLR of UEP and EEP for ↓4. . . . . . . . . . . . . . . . . . 68
Figure 3.11: SSIMLR of UEP and EEP for ↓4. . . . . . . . . . . . . . . . . . 69

Figure 4.1: Hierarchical 4/64-QAM constellation. . . . . . . . . . . . . . . . 74
Figure 4.2: A baseline MIMO video broadcasting scheme with non-scalable

video and non-hierarchical constellation. . . . . . . . . . . . . . 75
Figure 4.3: A baseline MIMO video broadcasting scheme with spatially scal-

able video and hierarchical constellation. . . . . . . . . . . . . . 76
Figure 4.4: The proposed MIMO video broadcasting scheme. . . . . . . . . 76
Figure 4.5: PSNR performance of a big user for the scalable baseline scheme. 79
Figure 4.6: PSNR performance of a big user for the proposed scheme. . . . 80
Figure 4.7: PSNR performance of a big user. . . . . . . . . . . . . . . . . . 81
Figure 4.8: PSNR performance of a small user for the scalable baseline scheme. 81
Figure 4.9: PSNR performance of a small user for the proposed scheme. . . 82
Figure 4.10: PSNR performance of a small user. . . . . . . . . . . . . . . . . 83

ix



LIST OF TABLES

Table 2.1: Mean absolute value of ∆PSNR
4
= PSNRm − PSNRest in dB for

packet loss ratios 0.5%, 1%, 2%, and 5%. . . . . . . . . . . . . . 36
Table 2.2: Percentage of packet losses of the tested video bit streams pro-

tected by UEP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



ACKNOWLEDGEMENTS

First I would like to thank my advisor Professor Pamela Cosman for all her

support, guidance, and advice throughout my PhD studies. She has been always

generous with her time and forthcoming with her broad knowledge. I have learned

many technical as well as life lessons from her. I thank her for being both advisor

and mentor.

I also express my deepest gratitude to my other advisor Professor Laurence

Milstein for all his support, advice, and friendly attitude. I believe it has been a

great chance for me to have him as my advisor, as I have learned tremendously

from him, lessons that I have used in my personal and professional lives. I greatly

appreciate his punctiliousness, humbleness, and being respectful to the students.

My special thanks are due to the committee members of my dissertation,

Professor William Hodgkiss, Professor Truong Nguyen, and Professor Steven Swan-

son for their invaluable time invested in reviewing my thesis and their constructive

feedbacks.

I want to thank my mother and father who are the most precious people in

my life. None of my achievements have been possible without their support and

help. Raising four kids all with high level academic education is not an easy task; it

requires lots of devotion, self-sacrifice, and patience. Thank you mom and dad for

every thing you have done for me. Thank you for enduring all the hardships when

raising us and we may have been ignorant and not appreciative to you. Thank

you for all the moments that you chose to sacrifice your lives to create happier

memories for us. Thank you for all the painful long journeys you have taken so

far to visit and make sure we have good lives. You are my everything and I want

nothing but your happiness. I hope this thesis is a little gift to you, my dearest

real angels.

I want to thank my sister Azadeh who has always guided me and supported

me throughout all my years of education. I owe lots of my success to Azadeh, as

I always felt I am backed with a kind sister at home who can help me in learning

math and science. Thank you my dear Azadeh for all your support when I was

far from home. You have always been my idol that I learned from you a lot. You

xi



taught me how one can generously be a help not only to his family members but

also to others.

I also want to thank my dearest brother-in-law Alireza who is not among

us anymore. My dear Alireza, you will always be in my mind and my heart. I

can never forget all the things you did for me. You always treated me as your

brother; indeed you were a kind, supportive, and thoughtful brother to me. I

always admired your intelligence and enthusiasm for living a happy life. Thank

you for all your generous help and support, which always remind me to try to be

a better human being.

Last, but not least, I want to thank my beautiful lovely wife Nazanin who

has brought happiness and peacefulness to my life. Thank you my dear Nazanin

for being patient and keeping your hope of having a better life in the gloomy days

of our lives. Thank you for taking care of every thing around home, when I was

extremely busy with my PhD studies.

Chapter 2 of this dissertation is a reprint of the material as it appears in

A. Vosoughi, V. Testoni, P. Cosman, and L. Milstein, “Multiview coding and

error correction coding for 3D video over noisy channels”, Signal Processing: Im-

age Communication, vol. 30, pp. 107-120, Jan 2015, and is, in part, based on

the material as it appears in A. Vosoughi, V. Testoni, P. Cosman, and L. Mil-

stein, “Joint source-channel coding of 3D video using multiview coding”, in Proc.

ICASSP, 2013. I was the primary author and the co-authors Prof. Cosman and

Prof. Milstein directed and supervised the research. The co-author Dr. Testoni

also contributed to the ideas in this work. This research was supported by the

Intel/Cisco Video Aware Wireless Networks (VAWN) program, by InterDigital,

Inc., and by the National Science Foundation under grant number CCF-1160832.

Chapter 3 of this dissertation is a reprint of the material as it appears in

A. Vosoughi, P. Cosman, and L. Milstein, “Joint source-channel coding and un-

equal error protection for video plus depth”, IEEE Signal Processing Letters, vol.

22, Jan 2015. I was the primary author and the co-authors Prof. Cosman and

Prof. Milstein directed and supervised the research. This research was supported

by the Intel/Cisco Video Aware Wireless Networks (VAWN) program and by the

xii



National Science Foundation under grant number CCF-1160832.

Chapter 4 of this dissertation is a reprint of the material as it appears in

A. Vosoughi, S.-H. Chang, S.-H. Kim, P. Cosman, and L. Milstein, “Digital video

broadcasting of spatially scalable video with multiple antennas”, manuscript under

preparation. I was the primary author and the co-authors Prof. Cosman and Prof.

Milstein directed and supervised the research. The co-authors Dr. Chang and Dr.

Kim also contributed to the ideas in this work and helped with the simulation

process. This work was partially supported by the Army Research Office under

Grant #W911NF-14-1-0340, and by the Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded by the Ministry of

Education (2013R1A1A2065143).

xiii



VITA

2000-2005 B. S. in Electrical Engineering, Khajeh Nasir University of
Technology, Tehran, Iran

2006-2008 M. S. in Electrical Engineering, Sharif University of Technol-
ogy, Tehran, Iran

2010-2015 Ph. D. in Electrical Engineering (Signal and Image Process-
ing), University of California, San Diego

PUBLICATIONS

Journal Papers

A. Vosoughi, V. Testoni, P. Cosman, and L. Milstein, “Multiview coding and error
correction coding for 3D video over noisy channels”, Signal Processing: Image
Communication, vol. 30, pp. 107-120, Jan 2015.

A. Vosoughi, P. Cosman, and L. Milstein, “Joint source-channel coding and un-
equal error protection for video plus depth”, IEEE Signal Processing Letters, vol.
22, Jan 2015.

A. Vosoughi, S.-H. Chang, S.-H. Kim, P. Cosman, and L. Milstein, “Digital video
broadcasting of spatially scalable video with multiple antennas”, manuscript under
preparation.

Q. Song, A. Vosoughi, P. Cosman, and L. Milstein, “Rate distortion optimization
and unequal error protection”, manuscript under preparation.

Conference Papers

A. Vosoughi, V. Testoni, P. Cosman, and L. Milstein, “Joint source-channel coding
of 3D video using multiview coding”, in Proc. ICASSP, 2013.

A. Vosoughi and P. Cosman, “Frame loss visibility modeling of stereoscopic video
for H.264/AVC-MVC”, in Proc. ICIP, 2012.

A. Vosoughi, M.B. Shamsollahi, and A. Vosoughi, “Nonsubsampled higher-density
discrete wavelet transform: filter design and application in image contrast enhance-
ment,” in Proc. ICIP, 2009.

A. Vosoughi, A. Vosoughi, and M. B. Shamsollahi, “Nonsubsampled higher-density
discrete wavelet transform for image denoising,” in Proc. ICASSP, 2009.

A. Vosoughi and M. B. Shamsollahi, “Speckle noise reduction of ultrasound images
using M-band wavelet transform and Wiener filter in a homomorphic framework,”
in Proc. BMEI, 2008.

xiv



ABSTRACT OF THE DISSERTATION

Unequal Error Protection for Compressed Video
over Noisy Channels

by

Arash Vosoughi

Doctor of Philosophy in Electrical Engineering
(Signal and Image Processing)

University of California, San Diego, 2015

Professor Pamela C. Cosman, Chair

The huge amount of data embodied in a video signal is by far the biggest

burden on existing wireless communication systems. Adopting an efficient video

transmission strategy is thus crucial in order to deliver video data at the lowest bit

rate and the highest quality possible. Unequal error protection (UEP) is a powerful

tool in this regard, whose ultimate goal is to wisely provide a stronger protection

for the more important data, and a weaker protection for the less important data

carried by a video signal. The use of efficient video delivery techniques becomes

more important when 3D video content is transmitted over a wireless channel, since

it contains twice as much data as 2D video. In this dissertation, we consider the

xv



UEP problem for transmission of 3D video over wireless channels. The proposed

UEP techniques entail relatively high computational complexity which lend them-

selves to be more suitable for video-on-demand delivery, where the time-consuming

computations are done offline at the transmitter/encoder side.

To adopt UEP for 3D video, we consider a general problem of joint source-

channel coding (JSCC). Solving the JSCC problem yields the optimum amount

of 3D video compression as well as the optimum FEC (forward error correction)

code rates exploited for UEP. We first need to estimate the perceived quality of

the reconstructed video at the receiver. The lack of a good objective metric for

3D video makes adopting UEP a more challenging and problematic task compared

to 2D video. Fortunately, for 3D video, some quality thresholds are derived in

the literature based on the PSNR (peak-signal-to-noise-ratio) metric through ex-

perimental tests. These thresholds allow us to formulate the JSCC optimization

problem using the PSNR in a straightforward but different way from the typical

counterpart optimization problems in the literature. More precisely, we put the

constraints of the optimization problem on the quality of the reconstructed 3D

video and set our goal to minimize the total bit rate. We adopt the multiview

coding (MVC) extension of the H.264/AVC. We also propose a scalable variant of

MVC and formulate and solve the JSCC optimization problem for it. We show

that significant gains are obtained if the proposed UEP scheme is combined with

asymmetric coding.

We also tackle the UEP problem for the video plus depth (V+D) format.

We employ the SSIM (Structural SIMilarity) metric for designing UEP for V+D,

since it has been shown that PSNR does not properly characterize the perceived

quality of a 3D video represented in V+D format. Moreover, the synthesized right

view always shows a huge PSNR loss (even in the absence of compression), which

does not even allow us to use the asymmetric coding PSNR thresholds. This

motivated us to adopt the classical JSCC problem formulation, where our goal is

to maximize the quality of the reconstructed left and right views, given that there

is a constraint on the sum of the number of source bits and the number of FEC bits.

We show that UEP provides significant gains compared to equal error protection.

xvi



We also derive several interesting results; some of them are in accordance with

what have already been published in the literature and some of them are not. We

show that the reason for this inconsistency is that we are solving the UEP problem

in a more general situation, which yields novel solutions.

Lastly, we focus on UEP for video broadcasting over wireless channels. Our

goal here is to design a UEP-based video broadcasting system that well serves

all the users within the service area of a base station. In a service area, there

exist heterogeneous users with different display resolutions operating at different

bit rates. Spatially scalable video is an excellent video compression format for

this scenario, since it allows a user to decode that portion of the scalable bit

stream that fits its operating bit rate as well as its display resolution. We tackle

this problem for a MIMO (multi-input-multi-output) channel which enables us

to exploit either spatial diversity or spatial multiplexing in a multipath fading

channel to increase channel reliability or throughput, respectively. We employ

spatial diversity techniques, in particular the Alamouti code, to encode the base

layer. We also adopt spatial multiplexing techniques, in particular the V-BLAST,

to encode the enhancement layer. By controlling the power allocation between the

base layer and the enhancement layer, we can control the level of protection we

provide to each of them. We also show that the adoption of scalable video in our

system yields much higher gains compared to non-scalable video.

xvii



Chapter 1

Introduction

1.1 3D Video Compression

In Section 1.1.1, we describe 3D video compression using the multiview

coding (MVC) extension of the H.264/AVC standard. We then introduce video

plus depth (V+D) representation of 3D video in Section 1.1.2 and explain how

V+D data is compressed.

1.1.1 Multiview Coding (MVC)

A stereo video is captured by a pair of cameras which mimic the way our

eyes see the real objects around us. Video sequences captured by the left camera

and the right camera are, respectively, referred to as left (primary) view and right

(secondary) view. Figure 1.1 shows a few frames of a stereo video and a typi-

cal structure of predictive coding used to encode (compress) the frames. Arrows

indicate which frames are used as reference frames for predictive encoding. For

example, the first P-frame of the left view uses the I-frame for prediction. I-frames

are coded without reference to any other pictures. Frames of the left view are

coded with a typical hierarchical GOP (group of pictures) structure as provided

by H.264/AVC. For encoding the P-frames and B-frames, motion compensation

is done through temporal prediction and biprediction, respectively (blue arrows

in Figure 1.1). Motion compensation is also utilized for predictive encoding of

1
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Right view (secondary)
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b b b

Figure 1.1: A typical MVC coding structure.

the right view frames (green arrows). MVC can achieve a better compression for

right view by enabling interview prediction (red arrows). Interview prediction ex-

ploits similarities between the frames of the left view and right view to remove the

redundancies of the right view.

Figure 1.2 depicts how an MVC encoder chooses a reference frame from

either the primary view or the secondary view in order to compress a particular

region in a given frame of the secondary view. The encoder starts by finding a

region of pixels in a reference frame which can be a good predictor of the pixels of

the region being coded (current region). The best match for the current region is

found by searching in its spatial neighborhood in the reference frame, while mini-

mizing a proximity measure such as the SAD (sum of absolute differences) or the

SSD (sum of squared differences). The proximity measure is computed between

the reference region and the current region. Once the best match is found, the

encoder computes the difference between the current region and its reference re-

gion (the difference is referred to as residual), calculates the DCT (discrete cosine

transform) of the residual, quantizes the DCT coefficients, and signals the quan-

tized DCT coefficients (referred to as levels) to the decoder. Quantization of the

DCT coefficients is the lossy part of video compression which makes retrieving the
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Figure 1.2: Illustration of motion compensation and disparity compensation in
MVC.

exact original uncompressed video impossible. Now, suppose the current frame

being coded is a frame of the secondary view at time t = 3. To encode the region

bounded by the blue rectangle1, the MVC encoder selects the frame at time t = 2

of the secondary view as the reference frame, since in that frame the encoder can

find a region of pixels that can be used as an excellent predictor of the region being

coded.

To encode the region bounded by the green rectangle in the secondary view

frame at t = 3, the MVC encoder chooses to use the primary view frame at t = 3

as reference, since it can find a better match there. If both the current region and

its reference region belong to the same view, the above procedure is called motion

compensation. On the other hand, if the reference region belongs to another view

1The H.264/AVC standard and its MVC extension only support predictive coding for rectan-
gular regions at the level of macroblocks (a macroblock is a region of size 16 pixels × 16 pixels)
or smaller regions such as 16× 8, 8× 8, 4× 4, etc. The large rectangular regions considered here
are just for illustration of the concepts of motion compensation and disparity compensation.
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Figure 1.3: Effect of quantization parameter on the quality of the reconstructed
(decompressed) video.

(called the reference view), the procedure is called disparity compensation. At the

decoder, the reference region is first decoded to obtain the prediction. The inverse

quantization and inverse DCT are then applied to the coded residuals. The result

is then added to the prediction to reconstruct the coded region.

Quantization step size is one important factor that controls the amount of

compression. The quantization step size is signaled by a particular syntax element

referred to as the quantization parameter (QP). According to the H.264/AVC

standard, a quantization parameter can only take a discrete value from 0 to 51,

where QP = 0 corresponds to the lossless coding mode of compression. A higher

quantization parameter corresponds to a larger quantization step size and heavier

compression. Figure 1.3 compares the visual quality of a reconstructed (decoded)

frame which has been compressed using different quantization parameters.
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1.1.2 Video Plus Depth (V+D)

V+D is an efficient representation of 3D video, where a stereo pair is ren-

dered at the decoder from a color video signal and a per-pixel depth map [1], [2]

(see Figure 1.4). Depth map is a grayscale image whose pixel intensities are related

to distances from cameras. In Figure 1.4, brighter regions are located closer to the

cameras. Depth maps are built using depth estimation techniques, some of them

presented in [3], [4], [5], [6]. V+D format has become popular due to several useful

characteristics it possesses compared to the conventional 3D video representation

exploited in MVC. The first benefit of V+D is that it allows one to synthesize

novel views from a scene which are not captured by the cameras. The goal of

any view synthesis algorithm is to generate a realistic right view with minimal

visual artifacts using the left view and the corresponding depth map [7]. View

synthesis is typically done by linear warping of the left image based on the local

depth information. A view synthesis method should also incorporate ways to deal

with occluded regions. Occlusion happens when some element of a scene is only

captured by one camera and is unknown to the other camera. A simple approach

to deal with occlusions is to mirror the intensities in the scanline adjacent to the

hole. More complicated hole-filling techniques are also proposed in the literature.

Investigating the details of view synthesis is out of the scope of this work and we

refer to [7] for further details on this subject.

The other important feature of V+D is that a same stereo video content can

be more compressed if it is represented by V+D format rather than by conventional

formats exploited in simulcast coding and MVC. The V+D compression consists

of compressing a left view video and a per-pixel depth map instead of compressing

a left view and a right view in an MVC compression scenario. The depth map is

a grayscale video which by itself has less data to be compressed compared to a

color right view. In addition, the depth map typically consists of several regions

each of which having very correlated grayscale values. The dramatic correlation

between the pixels of the depth map can be compressed very efficiently using the

state-of-the-art video compression tools such as H.264/AVC.

Although V+D brings higher compression ratios compared to MVC, it suf-
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Figure 1.4: V+D representation of 3D video. Left view and color are the same.
Right view is synthesized by a view synthesis algorithm which uses color and depth
map.

fers from particular reconstruction errors in the synthesized right view, which are

not present in a right view reconstructed by MVC. These errors may be due to

having noisy/inaccurate depth maps, color mismatch between the left and right

views, and occlusion. These errors are not well captured by the conventional ob-

jective metrics such as PSNR, in that these metrics do not respond to these errors

as like the human visual system (HVS) does. For example, in case of an occlu-

sion, the conventional quality metrics may indicate a huge quality loss (since pixel

interpolation is used to fill the occluded region and the interpolated pixels may

have dramatic different values compared to the original pixel values), while that

occlusion may not be perceived by the HVS.

It has been shown in the literature that some objective quality metrics,

such as SSIM (Structural SIMilarity) and VQM (video quality metric), are more

suitable to measure the quality of a reconstructed video coded using the V+D

format [8].

1.2 Scalable Video Coding

A scalable video bit stream consists of at least two substreams of which

one is called base layer (BL) and the others are referred to as enhancement layers

(ELs). The base layer is always coded independently from the other layers, while
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an enhancement layer is coded using the information contained in the base layer

or the lower enhancement layers. A set of prediction techniques, referred to as

interlayer prediction, are used to capture and remove the redundancy between an

enhancement layer and the lower layers. This implies that an efficient interlayer

prediction is vital to increase the compression efficiency of a scalable video coder.

Scalable video coding (SVC) is an extension of the H.264/AVC standard that

enables transmission and decoding of a scalable video bit stream. It supports three

types of scalability, namely, temporal scalability, quality scalability, and spatial

scalability. For all these three types of scalability, the base layer is coded at a low

bit rate such that decoding the base layer alone yields a video with a basic quality,

while decoding the enhancement layers progressively enhances the quality of the

reconstructed video. More details on scalable video coding are given in Sections

1.2.2, 1.2.3, and 1.2.1.

Several applications of SVC have been proposed in the literature. In this

dissertation, we mainly exploit two features of SVC in designing UEP for video

transmission. First, SVC lends itself to be very beneficial in a video communication

scenario where there exist heterogeneous users operating at different bit rates. For

example, a user with a low resolution display typically works at a low bitrate

(which may be due to either having a smaller number of receive antennas or less

available processing power), while a user with a high resolution display usually

works at a higher bit rate (which may be due to either having a larger number of

receive antennas or more available processing power). In that scenario, we encode

the video content using the desired number of enhancement layers and send the

same scalable video bit stream to all the users.

Consider a case where there are two types of users: a user with a low

resolution display operating at a low bit rate, and a user with a high resolution

display operating at a high bit rate. In that case, the spatially scalable bit stream

has a base layer and only one enhancement layer. A user working at a low bit

rate only decodes a low bit rate base layer, which results in reconstruction of a

low resolution version of the original content that fits the small display screen of

that user. On the other hand, a user working at a high bit rate can decode both
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the low bit rate base layer and a high bit rate enhancement layer, which results in

reconstruction a full-resolution video that fits the big display screen of that user.

The use of SVC in the mentioned scenario clearly obviates the need to encode the

same video content at two different bit rates and send them to all the users.

The second important benefit of SVC is that it can provide a graceful

quality degradation in a video communication system if it is cleverly combined

with UEP. This can be done by unequally protecting the layers according to the

contribution they make in enhancing the quality of the reconstructed video. For

a two-layer bit stream, this is done by providing a stronger protection for the

base layer and a weaker protection for the enhancement layer. The reason for

this choice is that, receiving and decoding the base layer is crucial in achieving a

basic acceptable reconstruction quality and thus it should receive strong protection,

while the enhancement layer can receive less protection.

1.2.1 Temporal Scalability

For temporal scalability, decoding the base layer of the scalable bit stream

yields a low frame rate video with the same original spatial resolution. Video

sequences at higher frame rates are reconstructed by first decoding the base layer

and then by progressively decoding the enhancement layers.

1.2.2 Spatial Scalability

For spatial scalability, decoding the base layer alone produces a spatially re-

duced resolution video at the decoder. Any other higher resolution reconstructions

are obtained by first decoding the base layer and then by progressively decoding

the enhancement layers until the desired resolution is reconstructed (see Fig. 1.5).

Fig. 1.6 shows a block diagram of a two-layer spatially scalable encoder

and decoder. In this figure, f represents an uncoded frame with the original

spatial resolution 2N × 2M , where 2N and 2M denote the number of pixels in

the vertical and horizontal directions, respectively. The uncoded BL frame g with

spatial resolution N×M is obtained by lowpass filtering of f (not shown) and then
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Figure 1.5: Spatially scalable video. Higher resolution videos are reconstructed
at the decoder by progressively decoding more number of layers.

downsampling the result in both directions. The BL bitstream is then obtained

by encoding g. To obtain the EL bit stream, the BL frame ĝ is first reconstructed

by decoding the BL bit stream. The result is then upsampled and interpolated in

both directions which yields a frame with resolution 2N × 2M , which serves as a

predictor of f . The difference between f and the prediction is then coded to build

the EL bit stream. At the decoder, the half-resolution video is obtained by just

extracting and then decoding the BL substream which yields ĝ. The full-resolution

frame f̂ is obtained by decoding the EL substream, upsampling the ĝ, and then

adding them together. We refer to [9] for more details on how the SVC bit stream

is built based on the interlayer prediction.

1.2.3 Quality Scalability

For quality scalability, decoding the base layer yields a low quality (SNR)

video with the same original spatial resolution. Other reconstructions with higher

qualities are obtained by first decoding the base layer and then by progressively

decoding the enhancement layers until the desired quality is obtained (see Fig.

1.7).
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Figure 1.6: Block diagram of spatial scalability with two layers.

Fig. 1.8 shows a block diagram of a two-layer quality scalable encoder and

decoder. Here, f represents an uncoded frame with the original spatial resolution

2N × 2M . The BL frame is obtained by encoding the original frame at a low bit

rate (low quality), while the original resolution is preserved. To obtain the EL

bit stream, the BL frame f ′ is first reconstructed by decoding the BL bit stream,

which is used as a predictor of f . The difference between f and the prediction f ′

is then coded to build the EL bit stream. At the decoder, the low-quality video

is obtained by extracting and decoding the BL substream which yields f ′. The

high-quality frame f̂ is obtained by decoding the EL substream and adding the

result to f ′.

1.2.4 Scalability for 3D Video

Although the SVC extension of H.264/AVC supports all the three types of

scalability, the MVC extension only supports temporal scalability. Results such as

those presented in [10] and [11] show that temporal scalability in either just one
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Figure 1.7: Quality scalable video. Higher quality videos are reconstructed at
the decoder by progressively decoding more number of layers.
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Figure 1.8: Block diagram of quality scalability with two layers.

or both views gives good results for low motion video, but for medium to high

motion video, it may be unacceptable due to visible jumping effects. Although

there is no standard-compliant spatial or quality scalable MVC bit stream, several

non-standard variants have been proposed [12], [13], [14], [15].
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Figure 1.9: Proposed spatially scalable MVC. One MVC bit stream is generated
for the base layer and another MVC bit stream is generated for the enhancement
layer.

Other works proposed for 3D scalable coding attempt to define the best

mode of scalability for 3D video. Early subjective tests with MPEG-2 in [16] and

[17] show that spatial scalability is preferred over quality scalability. The reason is

that in overall stereoscopic perception, especially for low bit rates, blocking arti-

facts produced by quality scalability implementations are more disturbing than the

blurring effect produced by spatial scalability implementations. However, newer

results in [18], [19], [20], indicate that the perceived quality depends on the 3D

display and also that MPEG-2 may cause different artifacts than H.264/AVC on

coded video. According to these results, users prefer quality scalability for polar-

ized projection displays and spatial scalability for autostereoscopic parallax barrier

displays. Results in [20] also show that, if the primary view is encoded at suffi-

ciently high quality and the secondary view is encoded at low quality, users prefer

spatial scalability over quality scalability.

In this dissertation, we adopt spatial scalability for MVC. Since spatial scal-

ability is not supported by the standard, we propose a spatially scalable variant of

MVC. Figure 1.9 shown a block diagram of the proposed spatially scalable scheme.

The primary view and secondary view frames of a GOP are each lowpass filtered

(not shown) and downsampled by a factor of 2 in both directions. These are en-

coded with MVC and constitute the base layer MVC bit stream. The enhancement

layer bit stream is generated through upsampling, interpolation (not shown), and

computing the residual views. These residual views are also encoded by MVC.
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1.3 Human Visual System Considerations

In this section, we first describe binocular suppression theory. We then

explain how binocular suppression can be exploited for asymmetric coding of 3D

video in order to reduce the bit rate of the compressed 3D video. We then study

the objective quality metrics that are usually used for video quality assessment.

1.3.1 Binocular Suppression

The binocular suppression theory [21], [22], [23], [24], [25], [26] says that

the HVS is insensitive to errors which occur in one view only (see Figure 1.10).

This result, determined experimentally, can be explained by the ability of the HVS

to compensate for missing information. Because the visual cortex does not always

receive perfect information from both eyes, it must infer some information given

what is provided. That can mean suppressing errors which occur in a single view,

while obtaining the necessary information from the other. Binocular suppression

theory has given rise to asymmetric video coding, in which one view is coded with

higher quality than the other.

1.3.2 Asymmetric Coding

Asymmetric coding refers to adopting different coding approaches for en-

coding the left and the right images of a pair of stereo images. Examples of

asymmetric coding are adopting different QPs, different resolutions, or different

frame rates (or a combination of them) to encode the left and the right images.

Following binocular suppression theory, asymmetric coding may provide similar

perceived 3D quality with a significant decrease in bit rate. Several papers pro-

pose asymmetric coding schemes [23], [27], [28], [29], [30], where one of the views

is significantly more coarsely quantized than the other, or is coded with a reduced

spatial resolution, generating blurring at the upsampling procedure. In [31], sub-

jective experiments showed that in the asymmetric coding case, where one view is

coded at very high quality (40dB) and the other view is coded at any level down

to a threshold value of approximately 33dB, the resulting stereo video is indistin-
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(a)

(b)

Figure 1.10: Binocular suppression. First row is a stereo pair with left image
at high quality (40dB) and right image at low quality (33dB). Second row is a
stereo pair with both left and right images at high quality (40dB). Both pairs are
perceived the same to the HVS if they are displayed on a stereo TV.

guishable from the symmetric high quality case of both views coded at 40dB. It

was found that when both views are coded above their corresponding thresholds,

asymmetric coding is preferable to symmetric coding at the same total bit rate,

whereas when one or both views are coded below its threshold, symmetric coding

is generally preferable. These thresholds are described and employed in Section

2.4. References [32] [33] [34] introduced scalability and asymmetry into MVC.

1.3.3 Video Quality Metrics

To design a UEP method for compressed video, we need to estimate the

perceived quality of reconstructed video at the receiver. Several quality metrics

have been used for this purpose including the PSNR, SSIM, and VQM. Although

these metrics work relatively well for quality assessment of 2D video, developing a
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quality metric for 3D video is a more challenging task, since such a metric needs to

incorporate the complex perceptual attributes of 3D such as depth, overall image

quality, presence, naturalness, and visual comfort. 3D video quality assessment

is still an open challenge and there are no objective metrics which are widely

recognized as reliable predictors of human 3D quality perception [8]. The 2D video

quality metrics mentioned above are also usually adopted for 3D video quality

assessment [8], [35], [36], [37], [38]. In the following, we describe PSNR and SSIM

which are widely used in the literature and we also use them in this dissertation.

PSNR is the most common objective metric that is used to evaluate the

quality of a reconstructed 2D video. It is computed by

PSNR = 10 log10

(
2552

MSE

)
, (1.1)

where MSE (mean squared error) is calculated from

MSE =
1

T ×W ×H
T∑
t=1

W∑
y=1

H∑
x=1

(
f(x, y, t)− f̂(x, y, t)

)2
. (1.2)

In (1.2), x and y represent the coordinates of a pixel, t is the time index of a

frame, f represents the original video signal, f̂ denotes the reconstructed video, T

denotes the number of frames, W is the frame width, and H is the frame height.

For MVC and simulcast coding, it is very common to use a weighted average MSE

of left view and right view, and compute the PSNR as

PSNR = 10 log10

(
αMSEL + (1− α)MSER

2

)
, (1.3)

where α is typically set to 1
2
. In (1.3), MSEX denotes the MSE that is computed

over the frames of view X ∈ {L,R}.
It has been shown that PSNR is not able to acceptably model the view

synthesis errors [8] in V+D format. Subjective experiments indicate that SSIM
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is better correlated to perceived quality than PSNR [8]. The SSIM between two

images f and g is obtained from

SSIM(f, g) =
(2µfµg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
, (1.4)

where µX and σ2
X , respectively, denote the mean and the variance of the pixels of

image X, and σXY represents the cross-correlation between images X and Y . C1

and C2 are two constants introduced to avoid instability when either (µ2
f + µ2

g) or

(σ2
f+σ2

g) is very close to zero. More precisely, we set C1 = (K1L)2 and C2 = (K2L)2,

where K1 � 1 and K2 � 1 are two small constants, and L is the dynamic range of

pixel values (256 for 8-bit grayscale images). The SSIM is usually applied locally

rather than globally. The local statistics µX , σX , and σXY are usually computed

within a local square window, which moves pixel-by-pixel over the entire image.

Local SSIM is computed for each window and then averaged over the entire image.

SSIM varies between −1 and 1, where larger values correspond to lower distortion.

The SSIM between two GOPs x and y is calculated as the average of SSIMs

between the corresponding frames of x and y, and we denote it by SSIM(x, y). Let

N denote the number of frames in a GOP, then

SSIM(x, y) =
1

N

N∑
i=1

SSIM(xi, yi), (1.5)

where xi and yi represent the ith frame of GOP x and GOP y, respectively. For

3D video, SSIM is first obtained for each view and then the average is taken over

the views.

1.4 Error Concealment

In an error-prone channel, the coding structure of H.264/AVC and its SVC

and MVC extensions can create significant reconstruction errors that may propa-

gate throughout the entire GOP of a reconstructed video. We discuss these errors

and show that how error concealment (EC) attempts to reduce the adverse effects
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of them.

1.4.1 EC for 2D Non-Scalable Video

The H.264/AVC standard allows dividing a frame into several groups of

consecutive macroblocks, where each group of macroblocks is referred to as a slice.

Each slice of a frame is encoded independently from the other slices of that frame,

and, thus, each slice is decoded independently from the others. Although the slic-

ing strategy reduces the coding efficiency of a video encoder, it is tremendously

beneficial in improving the error resiliency of a compressed video transmitted over

an error-prone channel. The fact that the slices of a frame can be decoded inde-

pendently implies that if a few of the slices in a frame are lost, the decoder is still

able to decode the slices that are received correctly and so some portions of the

frame can be reconstructed correctly. In an attempt to further improve the quality

of the decoded video, some techniques referred to as error concealment are usually

applied at the decoder to reduce the effect of errors due to losing the slices in

transmission. A common error concealment is called frame copying in which any

pixel of a lost slice is recovered by copying from the co-located pixel in the nearest

(in terms of display order) previous reference frame that is already decoded and

available at the decoder buffer.

Although the frame copying error concealment can alleviate the adverse

effects of errors due to slice losses, it cannot successfully conceal all kinds of errors

that may happen in transmission. For example, it readily fails in concealing an

error that happen by losing a slice with a high motion content. In that case, copying

from a reference frame may lead to a big error, and even worse, the generated error

can propagate to the other frames. The propagating error stems from the temporal

predictive coding and motion compensation.

Figure 1.13 shows how the errors are propagated throughout a set of consec-

utive frames of a decoded video sequence. It also makes a qualitative comparison

between the errors generated by losses of different slices with different motion con-

tent. Here, a car is moving from right to left. Figure 1.13(a) shows a reconstructed

video with no losses, and Figure 1.13(b) shows a reconstructed video in which two
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(a)

(b)

Figure 1.11: Channel distortion and error propagation for non-scalable 2D video.
(a) Reconstructed video when no losses happen. (b) Reconstructed video when two
slices are lost at t = 2. Slices marked by orange lines at t = 2 are lost and they are
concealed by copying from the regions marked by green lines at t = 1. Rectangular
regions marked in blue at t = 2 depict the reconstructed pixels in the absence of
losses and error concealment.

slices at t = 2 (marked by lines in orange color) are lost and concealed. The top

slice belongs to a static background, while the bottom slice includes a region with

some motion. The two rectangular regions marked by green lines in frame t = 1 are

the co-located pixels from which the frame copying is performed for the two slices

lost at t = 2. Reconstructed pixels in the absence of losses and error concealment

are marked by the blue lines at t = 2 in Figure 1.13(a). Comparing Figure 1.13(a)

and Figure 1.13(b) shows that the error due to losing the top slice is perfectly

concealed by frame copying while, on the other hand, the bottom slice loss is not

successfully concealed and its error propagates to the other frames.

1.4.2 EC for 3D Non-Scalable Video

The MVC extension of H.264/AVC also supports frame slicing for the sake

of error resiliency [39]. We use frame copying for losses both in the primary view

and the secondary view. Errors due to losses in secondary view do not propagate
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to the primary view, however, errors in primary view may propagate to the frames

of secondary view because of the use of interview prediction in MVC. We show this

in Figure 1.12. The situation is similar to the one illustrated in Figure 1.11, with

a difference that now the two lost slices belong to the primary view. We see that

again the error due to losing the top slice is perfectly concealed by frame copying.

However, frame copying is not successful in concealing the bottom slice loss and

the error propagates to the frames of the primary view with t > 2, and to the

frames of the secondary view with t ≤ 2.

1.4.3 EC for Scalable Video

For base layer of 2D scalable video, we can use any error concealment we use

for non-scalable 2D video, since the BL should be decodable by a compliant non-

scalable decoder. For enhancement layers, however, we show that we can adopt a

better strategy which uses the BL for concealing the EL errors.

We continue our discussion by examining an example. In our example, we

encode the video sequence ‘Foreman’ into a base layer and an enhancement layer.

Figure 1.13 shows the decoded frames from time t = 25 to t = 32, where only

the base layer is decoded and frame copying is used for error concealment. Here,

each frame is divided into 9 slices, where all the slices from slice number 3 to

slice number 7 of frame t = 25 are lost and concealed by frame copying. We see

that frame copying is not able to perform well due to presence of some motion in

the region covered by the slices lost in transmission, and the error generated in

reference frame t = 25 propagates to the other following frames.

Although frame copying may not perform well in concealing the errors oc-

curred in the BL, we can adopt a better error concealment strategy for losses

that occur in the EL. Instead of copying from a previously decoded full-resolution

reference frame, for an enhancement layer slice lost from a frame at time t0, we

perform copying from the upsampled pixels of the decoded base layer frame at

time t0. We note that the decoded base layer is not in full-resolution and we need

to do upsampling before copying. Since copying is done from a base layer reference

frame with the same time index, the motion is preserved at the final full-resolution
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(a)

(b)

(c)

(d)

Figure 1.12: Channel distortion and error propagation for 3D video encoded
using MVC. Reconstructed (a) primary view and (b) secondary view when no
losses happen. Reconstructed (c) primary view and (d) secondary view when two
slices are lost in primary view at t = 2. Errors due to losses in primary view
propagate to the frames of both the primary view and the secondary view.

decoded output, which significantly reduces the error propagation due to losses in

the enhancement layer. In Figures 1.14 and 1.15, we compare the effect of losses

in the base layer and enhancement layer, respectively, where in both figures both

the base layer and enhancement layers are decoded. In Figure 1.14, all the base

layer slices from slice number 3 to slice number 7 of the frame at time t = 25 are
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t = 25 t = 26 t = 27 t = 28

t = 29 t = 30 t = 31 t = 32

Figure 1.13: Frames 25 to 35 of video sequence ‘Foreman’ where only BL is
decoded and slices 3 to 7 of frame 25 are lost. Frame copy error concealment is
applied at the decoder.

t = 25 t = 26 t = 27 t = 28

t = 29 t = 30 t = 31 t = 32

Figure 1.14: Frames 25 to 35 of video sequence ‘Foreman’ where both BL and
EL are decoded and slices 3 to 7 of frame 25 of BL are lost. Frame copy error
concealment is applied at the decoder.

lost. We see that the decoded video severely suffers from the losses that occur in

the base layer. In Figure 1.15, all the slices of the enhancement layer from slice

number 6 to slice number 14 of the frame at time t = 25 are lost. It is clearly

seen that the errors in the enhancement layer are successfully concealed. Figure

1.16 illustrates the decoded video without any losses. By comparing the results of

Figures 1.15 and 1.16, we notice some blurring at the locations of losses in Figure

1.15 that is attributed to the upsampling of the base layer.

For scalable 3D video, we only consider spatial scalability for MVC in this
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t = 25 t = 26 t = 27 t = 28

t = 29 t = 30 t = 31 t = 32

Figure 1.15: Frames 25 to 35 of video sequence ‘Foreman’ where both BL and
EL are decoded and slices 6 to 14 of frame 25 of EL are lost. Slices 3 to 7 of frame
25 of BL are upsampled and used for error concealment.

t = 25 t = 26 t = 27 t = 28

t = 29 t = 30 t = 31 t = 32

Figure 1.16: Frames 25 to 35 of video sequence ‘Foreman’ where both BL and
EL are decoded and no packets are lost.

dissertation. The EC we adopted for MVC is similar to the one introduced in

Section 1.4.3. We apply frame copying for BL losses, and perform BL upsampling

from the same view for EL losses.
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1.5 UEP for Video

Video signals carry a huge amount of data which is certainly a big burden

on wireless communication systems. It thus requires adoption of efficient video

transmission strategies which attempt to reach a good trade-off between the data

bit rate and the quality of the reconstructed video at the receiver. Unequal error

protection is a powerful tool in this regard, which aims to wisely provide a stronger

protection for the more important data, and a weaker protection for the less im-

portant data carried by video signal. A stronger (weaker) protection is typically

provided by using a larger (lower) amount of forward error correction (FEC) bits.

UEP tries to efficiently allocate different amounts of FEC to different parts of a

compressed video according to the contribution they make in enhancing the quality

of the reconstructed video.

1.5.1 Prior Work for 2D Video

Compressed video bit stream needs to be protected by FEC before trans-

mission over a noisy channel. Redundancy bits introduced by FEC reduce the

number of bits available for source coding, and hence limit the accuracy of source

coding. Increasing the source coding accuracy forces us to use weaker FEC codes

which increases the distortion due to channel errors. This implies that both source

coding and channel coding should be applied in a clever manner. The trade-off

between source coding accuracy and channel error protection in error-prone chan-

nels is a joint source channel coding (JSCC) problem and is a well-studied area

for single view video sequences. A comprehensive review on this topic is presented

in [40]. The work in [41] applies JSCC specifically for video transmission over

additive white Gaussian noise (AWGN) channels using rate compatible punctured

convolutional (RCPC) codes [42]. The optimal point found by JSCC varies over

different AWGN channel signal-to-noise-ratios (SNRs). JSCC for single view video

sequences is also studied for several wireless environments in [43].

One UEP approach for video transmission is to employ different FEC code

rates for each video packet according to its importance. The importance of each
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packet can be determined by the estimation of the distortion in the reconstructed

video produced by each packet loss separately. The distortion of the reconstructed

video should be reduced when compared to the reconstructed video protected with

equal error protection (EEP), where all video packets are coded with the same

channel code rate. The distortion estimation can rely on traditional quality met-

rics, such as MSE, or on metrics based on human visual perception, such as the

packet loss visibility model presented in [44].

1.5.2 Prior Work for 3D Video

3D video signal carries significantly more amount of data compared to 2D

video. This justifies the importance of adoption of JSCC for 3D video delivery

over noisy channels.

1.5.2.1 MVC

The performance and transmission of MVC bit streams in error-prone chan-

nels have been studied in [45], [46], [47], [48], [49]. Some of the works on multiview

streaming optimization, as in [45], propose end-to-end distortion models taking

into account estimated packet loss probabilities for multiview video packets, but

do not include channel error protection schemes. The work in [46] has the same

characteristics, but includes a form of UEP by simply setting a smaller packet

loss rate for the packets in the base view as well as the packets in the first 20

frames of the other views. Another work [47] that studied the transmission of

multiview video sequences over error-prone channels considered UEP through a

selective packet discard mechanism. Several error resilience techniques for multi-

view video sequences are described in [48] and [49].

A typical JSCC optimization approach is to fix a total rate of B bits and

then determine the optimal division of B between source and FEC, where the

objective function could be the average MSE to be minimized. An example of this

type of optimization for 3D video can be found in [50], where a weighted average

MSE of the left view and of the right view is used as the objective function to be

minimized. Formulating the optimization in this way is problematic for 3D video



25

because although MSE is well-defined for each of the individual left view and right

view, there is not yet any well-accepted way to quantify the quality of the combined

3D video [51],[52]. Minimizing the average MSE subject to a rate constraint would

imply that left/right MSEs of (MSEL,MSER) = (ε, 3ε) and of (MSEL,MSER) =

(2ε, 2ε) produce equivalent average MSEs, although the subjective visual quality

might be very different. This issue motivated us to formulate the JSCC problem

in a different way as we describe in the following.

Our alternative approach to the optimization is to fix the distortion or

PSNR of each view to some level, and then attempt to minimize the number of

bits required to achieve it. Putting the distortion in the constraint, rather than in

the objective function, allows one to choose two separate constraints (one for each

view). Therefore, the particular goal of our JSCC scheme is to minimize the total

bit rate, composed of source and error-correction bits, while both reconstructed

views achieve predetermined PSNR values. Fortunately, some quality thresholds

are derived for the reconstructed stereo video based on the PSNR metric through

experimental tests [19]. These quality thresholds, which are derived according to

binocular suppression theory, enable us to formulate the JSCC problem using the

PSNR as we discussed above. Details of the proposed JSCC scheme is given in

Chapter 2.

1.5.2.2 V+D

We are interested in the delivery of V+D data over mobile devices [1]. The

quality of a received 3D video in V+D format is affected by both the source coding

accuracy of the color video and the depth map, and the amount of redundancy

introduced by FEC to protect them over the channel. Therefore, for a fixed bit

rate, it is crucial to design a clever method to divide the bits between the source

and the FEC such that the quality is maximized at the receiver. Our goal here

is to maximize the average quality of the reconstructed left view and right view,

given that there is a constraint on the sum of the number of source bits and the

number of FEC bits.

In [53], two different protection levels are considered for V+D, and the
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authors concluded that color should be protected more strongly than depth. Fol-

lowing this conclusion, a UEP method is proposed in [54] for V+D data over

WiMAX communication channels based on unequal power allocation. In [55], it is

concluded that depth can be compressed more compared to color, and downsam-

pling the depth by a factor of two is recommended to increase coding efficiency,

although the effect of a channel is not investigated.

We consider both downsampled and full-resolution depth scenarios. Both

the color and depth are encoded by an H.264/AVC encoder [56] and then protected

by FEC using UEP such that each individual packet is protected according to its

importance. The importance of packets is based on the SSIM index [57]. The

JSCC yields the optimum color and depth quantization parameters as well as the

UEP code rates that jointly maximize the quality at the receiver. Turbo codes [58]

are used for FEC, and simulation results are given for flat Rayleigh fading chan-

nels. The performances of different scenarios are compared, and UEP performance

is compared to EEP. We show that the adopted UEP provides significant gains

compared to the EEP. We also derive several interesting results. Some of these

results are in accordance with what have already been published in the literature

and some of them are not. We show that the reason of this inconsistency is that

we are solving the UEP problem in a more general situation which yields novel so-

lutions. For example, we show that although the depth map should be compressed

more compared to color (which is in agreement to prior works in the literature), it

should be protected more compared to color (which is in contrast to prior works

in the literature). We also propose to use a depth map that is downsampled by a

factor of 4 instead of 2, which the latter is proposed in the literature.

1.6 UEP for MIMO Video Broadcasting

In Chapter 4 of this dissertation, we consider UEP for video broadcasting

over wireless channels. Our goal here is to design a UEP-based video broadcast-

ing system that benefits all types of users within a service area of a transmitter

in an optimum way. We assume that heterogeneous users with different display
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resolutions and different operating data rates are present in the service area. We

tackle this problem for a MIMO (multi-input-multi-output) channel. We propose

to use scalable video coding for video compression. For MIMO communication, we

propose to use spatial diversity techniques for BL transmission and spatial multi-

plexing techniques for EL transmission. We superpose the BL and EL in a way

that a stronger protection is provided for the BL compared to the EL.

1.6.1 MIMO Communications

MIMO refers to a collection of signal processing techniques that have been

developed to enhance the performance of wireless communication systems using

multiple antennas at the receiver, the transmitter, or both [59]. MIMO techniques

can be used either to combat multipath fading to improve the link reliability, or

to exploit multipath fading to increase the data rate. Improving the channel reli-

ability is made possible by creating spatial diversity, and increasing the data rate

is provided by spatial multiplexing. Spatial diversity techniques extract a diversity

gain to combat fading, and they thus improve the link reliability. A popular ex-

ample of these techniques are orthogonal space-time block codes (OSTBCs) [60],

[61], which achieve full diversity with a simple linear receiver. Spatial multiplexing

techniques use a layered approach to increase the channel data rate [62], [63]. One

popular example is the vertical Bell Laboratories layered space-time (V-BLAST)

architecture, where independent data streams are transmitted over different an-

tennas to increase the data rate. Although spatial multiplexing increases the data

rate, it cannot usually achieve the full spatial diversity. However, some space-time

block codes have been studied in the literature which can yield the benefits of both

spatial diversity and multiplexing [64], [65], [66], [67], [68], [69].

1.6.2 Hierarchal Constellations for UEP

In mobile video broadcasting systems such as Digital Video Broadcasting

(DVB), there exist various types of user equipment which usually have different

number of receive antennas. For example, a tiny mobile phone may have a single
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antenna due to its limited hardware space. On the other hand, a tablet or a note-

book computer usually has more than one antenna, since it has a larger hardware

space and a higher computational capability.

Theoretical investigation of efficient communication from a single source to

multiple receivers established the fundamental idea that optimal broadcast trans-

mission could be achieved by a hierarchical transmission scheme [70], [71]. In

addition, it has been shown [72]–[73] that a practical UEP method is achieved by

using a constellation of nonuniformly spaced signal points that is referred to as

hierarchical modulation. In this constellation, the more important bits of a symbol

have a larger minimum Euclidean distance compared to the less important bits

of that symbol. Hierarchical constellations have been intensively studied for dig-

ital broadcasting systems [72][73], and the Digital Video Broadcasting-Terrestrial

(DVB-T) standard [74] has incorporated hierarchical QAM (quadrature amplitude

modulation) for scalable video transmission.

1.6.3 SVC-MIMO Video Broadcasting

Higher diversity and/or spectral efficiency gains can be achieved if a MIMO

system employs a larger number of antennas. Let Nt and Nr denote the number of

transmit and receive antennas, respectively. By using spatial diversity techniques,

we can achieve a diversity gain of up to Nt ×Nr [59]. On the other hand, we can

achieve a spectral efficiency gain of up to min(Nt, Nr) by using spatial multiplexing

techniques [59]. This indicates that the users with one receive antenna cannot

achieve a spectral efficiency larger than 1, since for them we have min(Nt, 1) = 1.

This implies that the base station needs to broadcast video using spatial diversity

rather than spatial multiplexing, so that the data is decodable by all types of users.

We also note that, for high data rates, spatial multiplexing techniques such as V-

BLAST outperform spatial diversity techniques such as OSTBC [75][76]. That

means forcing the base station to adopt only spatial diversity techniques for all

types of users may lead to a significant performance loss, particularly for users

which are able to achieve spectral efficiencies larger than one by exploiting more

than one receive antennas.
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In Chapter 4 of this dissertation, we propose an efficient broadcasting strat-

egy that combines space-time coding and scalable video coding to tackle this prob-

lem. We suppose that the number of antennas of a device and the size of its screen

is mainly limited by the hardware space affordable by the device. This means that

a user with more receive antennas can have a higher-resolution screen. With these

suppositions, we consider a MIMO video broadcasting system where the base sta-

tion possesses two transmit antennas, and two different types of user devices reside

in the service area: i) a big user with two receive antennas and a high-resolution

screen, and ii) a small user with a single receive antenna and a low-resolution

screen.

We propose an efficient video broadcasting scheme which combines spatial

diversity and spatial multiplexing techniques with spatially scalable video coding.

The base layer of the scalable video is encoded using spatial diversity techniques,

such as the Alamouti code, while the enhancement layer is encoded using spatial

multiplexing techniques, such as the V-BLAST.

1.7 Thesis Outline

In Chapter 2, we tackle the UEP and the JSCC problem of a 3D stereo

video transmitted over a noisy wireless channel. We first model the end-to-end

distortion of a stereo video compressed by the MVC extension of the H.264/AVC.

The model captures the distortion due to the compression of both the primary

and secondary views as well as the distortion due to the channel losses in both

views. We show that the model is accurate enough in estimating the end-to-end

distortion of both views. We then use these estimates to predict the average end-

to-end distortion over a lossy channel. We formulate the UEP/JSCC optimization

problem based on two distortion thresholds; one for the reconstructed left view and

another for the reconstructed right view. Finally, we validate the performance of

the designed UEP/JSCC scheme for several video sequences by performing many

channel realizations and measuring the average distortion values. The measured

distortion values show that the quality thresholds determined in the UEP design
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are indeed satisfied on the average over many channel realizations.

In Chapter 3, we consider the UEP/JSCC problem of a 3D video represented

by the V+D format. We investigate a downsampled depth map as well as a full-

resolution one. In doing that, we first derive a measure to quantify the quality of

the left view and the synthesized right view based on assigning individual quality

scores to individual slices of both the compressed color and depth. We compute the

scores using the SSIM metric. We use these scores to quantify the average end-to-

end distortion of a V+D content compressed by the AVC/H.264 and transmitted

over a noisy wireless channel. We show that the proposed UEP/JSCC scheme

performs much better compared to the EEP/JSCC scheme. We also derive some

interesting results and discuss them.

In Chapter 4, we consider UEP for video broadcasting over wireless chan-

nels. Our goal is to design a video broadcasting system that well serves all types

of users within the service area of a base station. Users have different display

resolutions as well as different operating data rates. We consider this problem for

a MIMO channel. We use spatial scalable video coding for video compression. We

propose to use spatial diversity techniques for encoding the base layer and spatial

multiplexing techniques for encoding the enhancement layer. We superpose the

BL and EL bit streams in a way that the BL is protected stronger than the EL.

We show that our proposed UEP scheme significantly outperforms the baseline

schemes in terms of the PSNR.



Chapter 2

Unequal Error Protection for

Multiview Coding

In this chapter, we propose a UEP method for 3D video transmission over

noisy channels. To compress 3D video, we use the MVC extension of H.264/AVC.

We also propose a type of spatially scalable MVC. To design UEP for 3D video,

we consider a general problem of joint source-channel coding. Solving the JSCC

problem yields the optimum quantization parameters of an MVC-encoded stereo

video as well as the optimum FEC code rates used for UEP. Our goal is to minimize

the total number of bits, which is the sum of the number of source bits and the

number of FEC bits, under the constraints that the quality of the left and right

views must each be greater than predetermined PSNR thresholds at the receiver.

We first consider symmetric coding, for which the quality thresholds are equal.

Following binocular suppression theory, we also consider asymmetric coding, for

which the quality thresholds are unequal. The optimization problem is solved

using both EEP and the proposed UEP scheme. An estimate of the expected end-

to-end distortion of the two views is formulated for a packetized MVC bit stream

over a noisy channel. The UEP algorithm uses these estimates for packet rate

allocation. Results for various scenarios, including non-scalable/scalable MVC,

symmetric/asymmetric coding, and UEP/EEP, are provided for both AWGN and

flat Rayleigh fading channels. The UEP bit savings compared to EEP are given,

and the performances of different scenarios are compared for several stereo video

31
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Figure 2.1: Block diagram of a 3D video communication system employing the
proposed JSCC scheme.

sequences.

This chapter is organized as follows: Section 2.1 shows how the proposed

JSCC scheme is adopted in a video transmission system. In Section 2.2 and Sec-

tion 2.3, we derive estimates to predict the end-to-end distortion in a 3D video

transmission scenario. Sections 2.4 and 2.5, respectively, describe the JSCC prob-

lem formulation and how we solve it using integer programming. Section 2.6 gives

simulation results for various coding schemes for both AWGN and flat Rayleigh

fading channels, and Section 2.7 concludes this chapter.

2.1 Overview of the System Design

The system block diagram is shown in Figure 2.1. The primary and sec-

ondary views are jointly compressed by an MVC encoder. The amounts of com-

pression of the primary view and the secondary view are controlled by two separate

quantization parameters q1 and q2, respectively. The MVC bit stream is protected

by adding FEC bits and then transmitted over a channel. UEP provides different

levels of protection at the packet level through allocating different FEC rates. At

the receiver, channel decoding is applied to detect the erroneous bits. Our assump-

tion is that if even one bit of a transmitted packet is erroneous, the whole packet is

marked as undecodable and not decoded by the video decoder. The primary and

secondary views are then decompressed by an MVC decoder, where error conceal-

ment is done for the lost packets. We use frame copying error concealment (see

Sections 1.4.1 and 1.4.2).
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2.2 Modeling the End-to-End Distortion

A UEP design for compressed video requires accurate estimation of the

end-to-end distortion in a video communication system. An end-to-end distortion

measure should incorporate both the distortion due to source compression and the

distortion due to packet losses. In this section, we model the end-to-end distortion

of a GOP of an MVC-encoded 3D video that is sent over a noisy channel. We

show by simulation that the model we adopt is accurate in predicting the actual

end-to-end distortion measured for different packet loss ratios. The model is then

used in Section 2.3 to derive an estimate of the expected end-to-end distortion.

Later on in Section 2.4, we use the estimates for UEP.

We first consider the non-scalable MVC case. Let f (v) represent the original

pixel values of view v of a GOP, and f̂ (v) be the reconstructed values at the encoder,

where v = 1 represents the primary view and v = 2 represents the secondary view.

We denote the pixel values of view v of the GOP at the decoder as f̃ (v). The

distortion of view v is the sum of distortions of all its pixels. It is common in

the literature to approximate the source quantization distortion and the channel

distortion as being uncorrelated [50], [46], [77], [78]. With this approximation, the

expected distortion of view v of the GOP can be written as

D(v) = E{cmse(f (v), f̂ (v))}+ E{cmse(f̂ (v), f̃ (v))}
= D

(v)
Src +D

(v)
Loss, (2.1)

where cmse(x(v), y(v)) is the cumulative mean squared error (CMSE) between the

pixels of view v of GOP x and view v of GOP y, D
(v)
Src represents the source

distortion over the entire view v of the GOP, and D
(v)
Loss denotes the distortion

introduced by the channel due to packet losses. In (2.1), we model the end-to-

end distortion such that the source distortion and channel distortion are additive,

where the precise value of D
(v)
Src is computed at the encoder. To compute D

(v)
Loss for

a set of lost packets, we assume that the error signals due to individual losses from

either the primary or the secondary view are separate throughout the GOP. For

example, if a slice is lost at the top of a frame and another slice is lost at the bottom
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of that frame (or another frame), the error signals due to the loss of these packets

are generally independent. Using this assumption, the CMSE contributions of the

individual packets to the CMSE of either the primary view or the secondary view

of the GOP are additive. To compute the channel distortion D
(v)
Loss for a set of lost

packets, the model adds up the CMSE values due to the individual lost packets.

This additivity assumption is also used for example in [50], [79], [80], [81], [82],

[83], [84]. A CMSE value represents the precise error propagated throughout a

view of the GOP, and we assume that it has already been computed offline at the

encoder for each packet of the GOP.

Now, we investigate the accuracy of the model in estimating the end-to-

end distortion of a GOP. In our experiment, packets of an encoded 3D video are

randomly dropped with different packet loss ratios (PLRs), where 1000 random

realizations are done for each PLR. For non-scalable MVC, for error concealment

we implemented linear interpolation for lost I slices, and slice copy for lost P slices,

such that a lost P slice is concealed from its reference frame in the same view. Figs.

2.2(a)-(d) show histograms of ∆PSNR
4
= PSNRm − PSNRest for PLRs 0.5% and

2% for the sequence ‘Oldtimers’, where PSNRm is the actual PSNR measured at

the receiver (that is computed between the original uncompressed video and the

lossy decoded video) and PSNRest is computed by the model. The model computes

the end-to-end distortion using (2.1), that accounts for both the source distortion

and the channel distortion. We see that the model is accurate in estimating the

end-to-end distortion if few packets of a GOP are lost in transmission. If the

channel gets bad such that the number of losses after the channel decoder becomes

large, the accuracy of the model decreases. However, our JSCC scheme allows us

to add as many parity bits as needed to meet the quality constraints for a bad

channel condition.

The model adopted for non-scalable MVC can also be used for estimating

the end-to-end distortion of scalable MVC. That is, we assume that the source

distortion and channel distortion are additive, and that the CMSE contributions

of lost packets are additive. This can again be verified by realizing many channel

realizations and different PLRs. For scalable MVC, error concealment was imple-



35

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 0.5%

∆ PSNR
1
 (dB)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 0.5%

∆ PSNR
2
 (dB)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 2%

∆ PSNR
1
 (dB)

(a) (b) (c)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 2%

∆ PSNR
2
 (dB)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 0.5%

∆ PSNR
1
 (dB)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 0.5%

∆ PSNR
2
 (dB)

(d) (e) (f)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 2%

∆ PSNR
1
 (dB)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.5

1
"Oldtimers", PLR = 2%

∆ PSNR
2
 (dB)

(g) (h)

Figure 2.2: Histograms of error ∆PSNR
4
= PSNRm − PSNRest for packet loss

ratios 0.5% and 2%, and video sequence ‘Oldtimers’. (a), (b), (c), and (d) Non-
scalable MVC, and (e), (f), (g), and (h) scalable MVC. ∆PSNR1 and ∆PSNR2

correspond to primary and secondary view respectively.

mented such that, when a BL packet is lost, frame copying is used for the BL, and

EL information is preserved (linear interpolation is used for lost I slices of the BL);

when an EL packet is lost, an upsampled version of the co-located slice of the BL

is used for error concealment [85], and if two co-located BL and EL slices are lost

simultaneously, frame copying is used for both. Figs. 2.2(e)-(h) show histograms

of the errors for PLRs 0.5% and 2% for the sequence ‘Oldtimers’ for the scalable

coder.

Table 2.1 shows the mean absolute value of ∆PSNR, which is defined as

|∆PSNR| = 1
N

∑N
i=1 |∆PSNRi|, where N is the number of realizations. The small

|∆PSNR| values indicate that the model is accurate in estimating the measured

PSNR values at the receiver.

We also investigate the accuracy of the additivity approximation for partic-

ular packet loss patterns where two packets are lost at the same time. We consider
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Table 2.1: Mean absolute value of ∆PSNR
4
= PSNRm−PSNRest in dB for packet

loss ratios 0.5%, 1%, 2%, and 5%.

PLR
non-scalable scalable

|∆PSNR|Pri |∆PSNR|Sec |∆PSNR|Pri |∆PSNR|Sec

Oldtimers

0.5% 0.007 0.01 0.009 0.013

1% 0.016 0.017 0.017 0.023

2% 0.028 0.029 0.034 0.047

5% 0.056 0.067 0.059 0.092

Race

0.5% 0.017 0.018 0.029 0.030

1% 0.036 0.045 0.079 0.073

2% 0.089 0.105 0.142 0.150

5% 0.226 0.278 0.237 0.239

the following packet loss patterns: (1) packets which are in adjacent rows within

the same frame, (2) packets which are located in the same row in different frames

(spaced apart from 1 to NF−1 frames, where NF is the number of frames in a view

of a GOP), and (3) all other possible combinations of two packets. Figure 2.3(a)

shows a histogram of all possible adjacent combinations, which comprise 0.6% of

all possible combinations, Figure 2.3(b) depicts a histogram of all combinations of

two packets located in the same row but in different frames, which comprise 6%

of all the possible combinations, and Figure 2.3(c) is a histogram of all the other

combinations, which comprise 93.4% of all the possible combinations. We observe

that the model is not very accurate for some combinations of packet loss patterns

(1) and (2). On the other hand, the model is highly accurate for all other combi-

nations. These observations show that the model is inaccurate only for adjacent

losses and losses from the same row (which together comprise a small percentage of

all possible combinations) because in such cases, the propagated errors may affect

each other.

2.3 Expected End-to-End Distortion

In this section, we derive an estimate of the expected end-to-end distortion

of a GOP of an MVC-encoded video sent over a noisy channel using the model
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Figure 2.3: Histograms of error ∆PSNR
4
= PSNRm − PSNRest for two packets

lost in a GOP (see text for description).

developed in Section 2.2. We first derive the estimate for non-scalable MVC and

then consider scalable MVC.

2.3.1 Non-Scalable MVC

In the following, d
(v′)
m,v denotes the CMSE contribution of the mth packet

of view v ∈ {1, 2} to the CMSE of view v′ ∈ {1, 2}, and f̃
(v′)
m,v represents the

reconstructed view v′ of the GOP at the decoder when the mth packet of view

v is lost. Also, p
(v)
i is the probability that the ith packet of view v is lost in

transmission.

The CMSE contribution of the ith packet of the primary view to the CMSE

of the primary view is zero if the packet is not lost, and is equal to d
(1)
i,1 (q1) if the

packet is lost, where q1 is the quantization parameter used to encode the primary

view of the GOP. Thus, following the model assumptions, the average end-to-end

distortion of the primary view can be estimated as

D(1)(q1, r
(1)
1 , . . . , r

(1)
K ,Θ) = D

(1)
Src(q1) +

K∑
i=1

p
(1)
i

(
r
(1)
i , s

(1)
i (q1),Θ

)
d
(1)
i,1 (q1), (2.2)
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where K is the number of primary view packets in a GOP (which is the same

as the number of secondary view packets in the GOP), and d
(1)
i,1 (q1) is equal to

cmse(f̂ (1)(q1), f̃
(1)
i,1 (q1)). Packet loss probability p

(1)
i depends on the packet size s

(1)
i

in bits, the code rate r
(1)
i by which the packet is protected, and Θ, which represents

the channel characteristics; Θ = SNR for an AWGN channel and Θ = (SNR, Tc)

for a flat Rayleigh fading channel, where Tc is the channel coherence time, de-

fined in Section 2.6. It is assumed that the coded packets are lost independently.

This assumption holds for an AWGN channel. For flat Rayleigh fading channels,

independent losses within a GOP are obtained for an archival video by interleav-

ing GOPs such that each interleaved block contains at most one packet from a

particular GOP. In this work, the quantity d
(1)
i,1 (q1) is computed at the encoder.

In addition, since there is no closed-form expression to compute the packet loss

probability p(r, s,Θ) for RCPT (rate compatible punctured turbo) codes, a lookup

table is made by simulation, which yields p(r, s,Θ) for different ranges of packet

sizes. The probability p(r, s,Θ) is obtained for packet sizes 250, 750, 1500, 2500,

3500, and 5000 in bits, and respectively used for all the packet sizes in the ranges

[0, 500), [500, 1000), [1000, 2000), [2000, 3000), [3000, 4000), and [4000,∞).

The distortion generated in the secondary view can be formulated in a

similar manner. However, since the error due to a lost packet in the primary view

propagates in both the primary and secondary views, for the secondary view, the

CMSE contribution of lost primary packets should be considered as well as the

CMSE contribution of lost secondary packets. Therefore, the average end-to-end

distortion of the secondary view can be estimated as:

D(2)(q1, q2, r
(1)
1 , . . . , r

(1)
K , r

(2)
1 , . . . , r

(2)
K ,Θ) = D

(2)
Src(q1, q2)+

K∑
i=1

p
(1)
i

(
r
(1)
i , s

(1)
i (q1),Θ

)
d
(2)
i,1 (q1, q2) +

K∑
j=1

p
(2)
j

(
r
(2)
j , s

(2)
j (q1, q2),Θ

)
d
(2)
j,2(q1, q2),

(2.3)

where d
(2)
i,1 (q1, q2) = cmse(f̂ (2)(q1, q2), f̃

(2)
i,1 (q1, q2)), and D

(2)
j,2 (q1, q2) =

cmse(f̂ (2)(q1, q2), f̃
(2)
j,2 (q1, q2)). The quantities d

(2)
i,1 (q1, q2) and d

(2)
j,2(q1, q2) are com-
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puted at the encoder and used in the simulations. Computing the distortion values

at the encoder side requires decoding the whole GOP for each slice of the GOP.

The computational complexity of our algorithm at the encoder side is high and it

can be done offline.

2.3.2 Scalable MVC

Similar to the case of non-scalable MVC, an estimate of the expected end-

to-end distortion of the primary view for the scalable MVC case is given by

D(1)(qBL1 , r
(BL1)
1 , . . . , r

(BL1)
K
2

, qEL1 , r
(EL1)
1 , . . . , r

(EL1)
K ,Θ)

= D
(1)
Src(qBL1 , qEL1) +

K
2∑

i=1

p
(BL1)
i

(
r
(BL1)
i , s

(BL1)
i (qBL1),Θ

)
d
(1)
i,BL1

(qBL1 , qEL1)+

K∑
j=1

p
(EL1)
j

(
r
(EL1)
j , s

(EL1)
j (qBL1 , qEL1),Θ

)
d
(1)
j,EL1

(qBL1 , qEL1). (2.4)

For the secondary view, we have

D(2)(qBL1 , r
(BL1)
1 , . . . , r

(BL1)
K
2

, qEL1 , r
(EL1)
1 , . . . , r

(EL1)
K ,

qBL2 , r
(BL2)
1 , . . . , r

(BL2)
K
2

, qEL2 , r
(EL2)
1 , . . . , r

(EL2)
K ,Θ) = D

(2)
Src(qBL1 , qEL1 , qBL2 , qEL2)+

K
2∑

i=1

p
(BL1)
i

(
r
(BL1)
i , s

(BL1)
i (qBL1),Θ

)
d
(2)
i,BL1

(qBL1 , qEL1 , qBL2 , qEL2)+

K∑
j=1

p
(EL1)
j

(
r
(EL1)
j , s

(EL1)
j (qBL1 , qEL1),Θ

)
d
(2)
j,EL1

(qBL1 , qEL1 , qBL2 , qEL2)+

K
2∑

m=1

p(BL2)
m

(
r(BL2)
m , s(BL2)

m (qBL1 , qBL2),Θ
)
d
(2)
m,BL2

(qBL1 , qEL1 , qBL2 , qEL2)+

K∑
n=1

P (EL2)
n

(
r(EL2)
n , s(EL2)

n (qBL1 , qEL1 , qBL2 , qEL2),Θ
)
d
(2)
n,EL2

(qBL1 , qEL1 , qBL2 , qEL2),

(2.5)
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where in (2.4) and (2.5) d
(v′)
t,l denotes the CMSE contribution of the tth packet

of layer l ∈ {BL1,BL2,EL1,EL2} to the CMSE of view v′ ∈ {1, 2}, and p
(l)
t is

the probability that the tth packet of layer l is lost in transmission. In (2.4) and

(2.5), d
(v)
i,l = cmse(f̂ (v), f̃

(v)
i,l ), where f̃

(v)
i,l represents the reconstructed view v of a

GOP at the decoder when the ith packet of layer l is lost, and f̂ (v) denotes the

reconstructed view v of the GOP when there are no packet losses. The quantity

d
(v)
i,l is computed at the encoder.

2.4 JSCC Problem Formulation for MVC

The objective of our JSCC problem is to minimize the total number of bits,

which is the sum of the numbers of source bits and FEC bits of both the primary

and secondary views. For non-scalable MVC, the objective function is formulated

as

min
q1∈Q1
q2∈Q2

r
(1)
1 ,...,r

(1)
K ∈R

r
(2)
1 ,...,r

(2)
K ∈R

(
K∑
i=1

s
(1)
i (q1)

r
(1)
i

+
K∑
j=1

s
(2)
j (q1, q2)

r
(2)
j

)
, (2.6)

where R = {R1, R2, . . . , RN} is the set of available RCPT code rates, and Q1 and

Q2 are the sets of quantization parameters. The optimization is done jointly over

a primary view and the corresponding secondary view of a GOP. Quantization

parameters q1 and q2 are applied for all macroblocks of the primary and secondary

views of a GOP.

In minimizing the objective function (2.6), quality constraints must be sat-

isfied. For the symmetric coding case, we require that the expected distortions of

the primary and secondary views be less than or equal to a predetermined thresh-

old T1 at the receiver. However, for the asymmetric coding case, we require that

the expected distortion of the primary view and the expected distortion of the

secondary view be less than or equal to two different predetermined thresholds, T1

and T2. Using (2.2) and (2.3), this can be expressed for both the symmetric and
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asymmetric coding cases as:

D(1)(q1, r
(1)
1 , . . . , r

(1)
K ,Θ) ≤ T1

D(2)(q1, q2, r
(1)
1 , . . . , r

(1)
K , r

(2)
1 , . . . , r

(2)
K ,Θ) ≤ T2, (2.7)

where for the symmetric coding case T1 = T2 = 10(− 40dB
10

), and for the asymmetric

coding case T1 = 10(− 40dB
10

) and T2 = 10(− 33dB
10

). The reason for choosing the

particular PSNR values 40dB and 33dB is explained in Section 1.3.2.

The objective function of the JSCC problem for scalable MVC can be for-

mulated as was done for the non-scalable case. For scalable MVC, we have

min
(qBL1

,qBL2
,qEL1

,qEL2
)∈QS

r
(BL1)
i , r

(BL2)
j , r

(EL1)
m , r

(EL2)
n ∈R

( K
2∑

i=1

s
(BL1)
i (qBL1)

r
(BL1)
i

+
K∑
j=1

s
(EL1)
j (qBL1 , qEL1)

r
(EL1)
j

+

K
2∑

m=1

s
(BL2)
m (qBL1 , qBL2)

r
(BL2)
m

+
K∑

n=1

s
(EL2)
n (qBL1 , qEL1 , qBL2 , qEL2)

r
(EL2)
n

)
, (2.8)

where QS is a set of 4-tuple quantization parameters.

Similar to the non-scalable MVC case, two constraints must be satisfied in min-

imizing the objective function (2.8). Using (2.4) and (2.5), these constraints are

written as

D(1)(qBL1 , r
(BL1)
1 , . . . , r

(BL1)
K
2

, qEL1 , r
(EL1)
1 , . . . , r

(EL1)
K ,Θ) ≤ T1

D(2)(qBL1 , r
(BL1)
1 , . . . , r

(BL1)
K
2

, qEL1 , r
(EL1)
1 , . . . , r

(EL1)
K ,

qBL2 , r
(BL2)
1 , . . . , r

(BL2)
K
2

, qEL2 , r
(EL2)
1 , . . . , r

(EL2)
K ,Θ) ≤ T2, (2.9)

where for the symmetric coding case T1 = T2 = 10(− 40dB
10

), and for the asymmetric

coding case T1 = 10(− 40dB
10

) and T2 = 10(− 33dB
10

).

In the two optimization problems introduced in (2.6) and (2.7), and (2.8)

and (2.9), different code rates are typically assigned to different packets. The code

rate assigned to a particular packet depends on 1) the size of the source packet as

determined by the quantization parameters q1 and q2 for the non-scalable MVC
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source encoder, and by qBL1 , qBL2 , qEL1 , and qEL2 for the scalable MVC source

encoder, 2) the distortion the packet generates if it is lost in transmission, and 3)

the probability that the packet is lost, which depends on channel characteristics

specified by Θ. To find the quantization parameters and code rates that minimize

the objective functions (2.6) and (2.8), we search over a grid of QPs, where for non-

scalable MVC the search is done over a two-dimensional grid specified by vector

(q1, q2) and for scalable MVC is done over a four-dimensional grid specified by

vector (qBL1 , qBL2 , qEL1 , qEL2). The solution is obtained as a quantization vector in

the grid and a set of code rates, which together produce the smallest total number

of bits and, at the same time, meet the quality constraints. The sets Q1 and Q2 in

(2.6), and QPs in (2.8), are determined for each GOP of a given video sequence.

To do that, for the MVC-non-scalable case, we first perform a binary search over

q1 and q2 to rule out the QPs for which the noise-free encoded video does not meet

the quality constraints, and find the largest possible QPs, q
(max)
1 and q

(max)
2 , that

satisfy the constraints. The ruled out QPs are not considered for optimization since

they do not meet the quality constraints even in the absence of channel distortion.

The sets Q1 and Q2 are then defined as the sets whose members are QPs less than

or equal to q
(max)
1 and q

(max)
2 , respectively. For the scalable case, we perform an

exhaustive search over the QPs qBL1 , qBL2 , qEL1 , and qEL2 , to rule out the ones for

which the noise-free encoded video does not meet the quality constraints.

2.5 Integer Optimization

The optimization problems introduced in Section 2.4 are nonlinear inte-

ger programming problems, which can be solved by the branch-and-bound (BnB)

method [86]. The BnB method is based on binary variables [86]. For non-scalable

MVC, we transform each variable r
(1)
i to N binary variables xi,l (1 ≤ l ≤ N), and

each variable r
(2)
j to N binary variables yj,l, where x and y take values from the set

{0, 1}. We then substitute r
(1)
i with

∑N
l=1 xi,lRl and r

(2)
j with

∑N
l=1 yj,lRl in (2.6)

and (2.7). With these transformations, 2K equality constraints are considered
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along with the inequalities given in (2.7), which are

N∑
l=1

xi,l = 1, 1 ≤ i ≤ K

N∑
l=1

yj,l = 1, 1 ≤ j ≤ K. (2.10)

Now, we consider the scalable MVC case. We transform each variable r
(BL1)
i to N

binary variables xi,l (1 ≤ l ≤ N), each variable r
(BL2)
j to N binary variables yj,l,

each variable r
(EL1)
m to N binary variables zm,l, and each variable r

(EL2)
n to N binary

variables tn,l, where x, y, z, and t take values from the set {0, 1}. We then make

the following substitutions in (2.8) and (2.9): r
(BL1)
i is substituted with

∑N
l=1 xi,lRl,

r
(BL2)
j is substituted with

∑N
l=1 yj,lRl, r

(EL1)
m is substituted with

∑N
l=1 zm,lRl, and

r
(EL2)
n is substituted with

∑N
l=1 tn,lRl. From these transformations, 3K equality

constraints must be considered in conjunction with the inequalities in (2.9), which

are:

N∑
l=1

xi,l = 1, 1 ≤ i ≤ K

2

N∑
l=1

yj,l = 1, 1 ≤ j ≤ K

2

N∑
l=1

zm,l = 1, 1 ≤ m ≤ K

N∑
l=1

tn,l = 1, 1 ≤ n ≤ K. (2.11)

2.6 Simulation Results and Discussion

Simulation results for AWGN and flat Rayleigh fading channels are given

in this section. Binary phase shift keying (BPSK) modulation/demodulation is

employed for data transmission over the channel. Samples of the received signal,

at a given signal-to-noise ratio Eb/N0, can be represented by y = αx + n, where

Eb is energy-per-bit, N0 is the one-sided power spectral density of the noise, n
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is a zero-mean Gaussian random variable with standard deviation
√
N0/2Eb, and

x ∈ {−1, 1}. For an AWGN channel, α is unity, and for a Rayleigh fading channel,

α has Rayleigh distribution with E{α2} = 1. The coherence time of a fading

channel, Tc, represents the number of symbols affected by the same fade level,

and assuming a block-fading channel, each fade is considered to be independent

of the others. An interleaver is used to mitigate the effect of error bursts due to

the fading channels, and we used a fixed size block interleaver with depth 500 and

width 100.

Results are presented for two video sequences, ‘Race’ and ‘Oldtimers’, with

resolution 640 × 480, where ‘Race’ is a high-motion video that contains moving

objects and camera panning, and ‘Oldtimers’ is low-motion. We used the JM 18.2

reference software (stereo profile) for encoding the sequences, where each row of

macroblocks of either the primary or secondary view is encoded as a slice. We used

the JMVC 8.2 reference software for decoding the MVC bit stream. The primary

view frames of a GOP are coded as IPPP. . . , the secondary view frames are coded

as PPPP. . . , and the GOP size is 20 frames.

We used turbo codes for channel coding. The turbo encoder is composed of

two recursive systematic convolutional encoders with constraint length 4, which are

concatenated in parallel [87]. The feedforward and feedback generators are 15 and

13, respectively, both in octal. The mother code rate of the RCPT code is 1
3
, the

puncturing period P = 8, and the set of available rates is { P
P+l
|l = 1, 2, . . . , 2P}.

An iterative soft-input/soft-output (SISO) decoding algorithm is used for turbo

decoding. We considered eight iterations to compute the decoded word error rates.

Figure 2.4 shows a scatter plot that depicts how the UEP allocates code

rates to different packets of an encoded video. This scatter plot is for ‘Race’,

where the video is encoded by a non-scalable MVC encoder, SNR = 11dB, and

the channel experiences flat Rayleigh fading with Tc = 2000. Each point on the

scatter plot corresponds to a packet that belongs either to the primary or secondary

view. The x-axis represents the normalized packet size, and the y-axis represents

the inverse of the allocated code rate (higher inverse of code rate corresponds to

more protection of the code). For a primary view packet, the z-axis indicates the
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Figure 2.4: Scatter plot of the code rates allocated by UEP to different packets
of ‘Race’, where SNR = 10dB, and Tc = 2000.

normalized sum of distortions in the primary and secondary views if that packet

is lost, and for a secondary view packet, the z-axis represents the normalized

distortion generated in the secondary view if the packet is lost. In this scatter

plot, similar levels of distortion are depicted with similar ranges of colors. Packets

which generate high distortions are protected with strong codes. These packets

are typically the particular slices that generate significant error propagation if they

are lost. We also notice that for packets with similar levels of distortion, larger

packets are protected less than smaller packets. If two packets generate the same

level of distortion, the larger packet might receive less protection than the smaller

packet in order to minimize the total number of bits.

We performed validation tests with 2000 channel realizations to see if the

UEP solution obtained using the model and the expected end-to-end distortion

estimates (developed in Sections 2.2 and 2.3) meets the quality constraints for

realistic channel realizations. Figure 2.5 shows the received PSNR histograms of

‘Race’ and ‘Oldtimers’, where symmetric coding is considered, and UEP is used

for protection of the encoded video over the channel. We see that the average
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Figure 2.5: Received PSNR of the primary view, PSNR1, and the secondary view,
PSNR2, for symmetric coding and both non-scalable and scalable MVC. Results
are obtained for 2600 channel realizations of the tested SNR values and Tc’s.

PSNRs generally meet the specified 40dB constraints. In Figs. 2.5(a) to (h), the

percentage of received PSNRs which are larger than 40dB are 87%, 93%, 82%,

82%, 89%, 85%, 88%, 80%.

In the following, we compare the total number of bits required by UEP and

EEP for different scenarios. By EEP, we mean that all of the packets are protected

by the best single code rate, which is determined by exhaustive simulation over

all possible EEP rates. Each scenario is specified by 1) UEP or EEP, 2) channel

is AWGN or fading, 3) non-scalable MVC or scalable MVC encoder/decoder is

used, and 4) symmetric coding or asymmetric coding is utilized. In all of the

comparisons, the percentage of bit savings of scenario A compared to scenario B

is defined as

e =
#bits(B) −#bits(A)

#bits(B)
× 100%. (2.12)

Figure 2.6 shows the results of non-scalable MVC and symmetric coding for 100

frames of video sequences ‘Race’ and ‘Oldtimers’, and both AWGN and fading
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channels. Figs. 2.6(a), (c), (e), and (g) show the total number of bits, and Figs.

2.6(b), (d), (f), and (h) depict the percentage of UEP bit savings compared to EEP.

UEP always requires fewer bits than EEP. As expected, fewer bits are required

when the channel SNR increases. For the fading channel, for a particular SNR,

more bits are required for a larger coherence time. This is because when the

coherence time gets larger, the diversity order becomes smaller which reduces the

capability of a code to protect a packet, and thus, packets need to be protected

with a stronger code. The average gains of UEP over EEP for AWGN and fading

channels are 11.6% and 13.4%, respectively, for ‘Race’, and 13.7% and 16.2% for

‘Oldtimers’.

From Figure 2.6, we see that the UEP bit savings decreases for higher SNR

values, which indicates that the UEP and EEP performances become close for

higher SNR values. This is because, as the SNR increases, packets do not need

much protection, so both EEP and UEP can use high code rates. For fading

channels, we also observe that, for a particular SNR, the UEP bit savings is higher

for larger coherence times. As shown in Figure 2.6(a) and (e), and discussed above,

for a larger coherence time, EEP needs to protect the data with a lower code rate.

UEP can flexibly select from many available code rates, leading to a higher bit

savings over EEP.

Comparing the ‘Race’ and ‘Oldtimers’ results reveals that the number of bits

required for ‘Race’ (high-motion content) is always higher than that of ‘Oldtimers’

(low-motion content), which is expected. An interesting observation is that the

percentage of bit savings of UEP is slightly higher for ‘Oldtimers’ compared to

‘Race’. For low-motion video, there are fewer packets that should be protected

using the strong code rates, and these are the ones that contain high motion and

their error propagation can not be concealed efficiently. A larger number of low-

motion video packets can be protected with weak codes, which are the ones that

belong to the static background or very low-motion regions. These packets generate

an insignificant amount of distortion if they are lost in transmission, since their

error propagation can be efficiently concealed.

Now we present the results for scalable MVC and symmetric coding. Figs.
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2.7(a) and (b) show the number of bits required by UEP and EEP, and Figs. 2.7(c)

and (d) illustrate the percentage of bit savings of UEP compared to EEP for fading

channels. Comparing the results of Figure 2.6 and Figure 2.7, we see that all the

observations made for the non-scalable case are also made for the scalable case.

The average gains of UEP over EEP for the fading channels are 17.5% and 19.5%

for ‘Race’ and ‘Oldtimers’, respectively.

So far, we have presented results for symmetric coding. Asymmetric coding

results are presented in Figure 2.8 for non-scalable MVC, and in Figure 2.7(e)

and (f) for scalable MVC. The percentages of bit savings of UEP over EEP are

comparable to the symmetric coding case.

Figure 2.9 compares the results of symmetric and asymmetric coding for

non-scalable video. In this figure, the percentage of bit savings of asymmetric/UEP

is compared to both symmetric/UEP and symmetric/EEP. The average gain of

asymmetric/UEP over symmetric/UEP and symmetric/EEP for fading channels

is 36.4% and 45.2% for ‘Race’, and 36.8% and 47.1% for ‘Oldtimers’, respectively.

For AWGN, the average gains are 38.3% and 45.4% for ‘Race’, and 36.1% and

45.0% for ‘Oldtimers’, respectively. We made similar comparisons between scal-

able/asymmetric and scalable/symmetric and obtained similar results.

It is also interesting to compare the performance of non-scalable and scal-

able scenarios to see how much overhead (coding inefficiency) is caused by scal-

ability. By comparing the non-scalable and scalable results, we observe that the

number of required bits for scalable MVC is always higher than that of non-scalable

MVC. Figure 2.10 depicts the percentage of overhead of scalable MVC compared

to non-scalable MVC for ‘Race’ and ‘Oldtimers’, and for symmetric coding. Com-

parable results are obtained for asymmetric coding. Although scalable MVC has

an overhead penalty, scalability has an advantage if the subjective quality of the

lossy decoded bit stream is considered at the receiver. When a BL packet is lost

through transmission, frame copying error concealment is used at the decoder,

which generates a noticeable error propagated throughout the GOP [85], specif-

ically for slices possessing high motion content. However, when an EL packet is

lost, an upsampled version of the BL is used for error concealment at the decoder,
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Table 2.2: Percentage of packet losses of the tested video bit streams protected
by UEP over the flat Rayleigh fading channel.

non-scalable
scalable

BL EL BL & EL

Race 0.10% 0.02% 0.08% 0.0000%

Oldtimers 0.34% 0.12% 0.24% 0.0006%

which perhaps causes a less noticeable error [85].

Table 2.2 shows the percentages of packets that are lost from either the

BL, EL, or both layers, for 2600 flat Rayleigh fading channel realizations of all

the tested SNR values and coherence times. Results are given for both scalable

MVC and non-scalable MVC, where the encoded bit streams are protected using

the code rates obtained by the UEP approach. Considering ‘Race’ for example, we

observe that 0.02% and 0.08% of the packets are respectively lost from the BL and

the EL. This indicates that the majority of losses occur in the EL, whose errors

are concealed more effectively than ones in the BL. In addition, we see that the

percentage of BL losses is considerably lower than that of the non-scalable losses.

These observations suggest that scalability can perform better than non-scalability

in terms of subjective quality.

2.7 Conclusions

In this chapter, we addressed the JSCC problem of a 3D video sent over

AWGN and fading channels with the goal of minimizing the total number of trans-

mitted bits while subject to video quality constraints. We considered non-scalable

MVC and a type of spatial-scalable MVC, and both symmetric and asymmet-

ric coding. The UEP approach proposed here proved to be efficient at achieving

this goal when compared to EEP for all the scenarios considered, where the av-

erage gains vary from 11.6% to 19.5%. Asymmetric coding was also compared to

symmetric coding. Comparable gains were obtained for non-scalable MVC and

scalable MVC, where the asymmetric/UEP gain over symmetric/UEP and sym-

metric/EEP vary, respectively, from 36.1% to 38.3% and from 45.0% to 47.1%.
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We also showed that although using scalability leads to an overhead compared to

non-scalable MVC, it may have an advantage in terms of the subjective quality of

the received video, since most of the lost packets occur in the enhancement layer

whose errors are less noticeable to the human visual system compared to the errors

due to packets lost in the base layer.
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Figure 2.6: Results for non-scalable MVC, symmetric coding, and AWGN and
fading channels. (a), (c), (e), (g) Total number of bits required by UEP and EEP,
and (b), (d), (f), and (h) percentage of bit savings of UEP compared to EEP.
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Figure 2.7: Results for scalable MVC and fading channels.
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Figure 2.8: Results for non-scalable MVC, asymmetric coding, and fading
channels.
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Figure 2.9: Percentage of bit savings of asymmetric coding compared to symmet-
ric coding for non-scalable MVC and both AWGN and fading channels. (a), (c),
(e), (g) Bit savings of asymmetric/UEP over symmetric/UEP, (b), (d), (f), and
(h) bit savings of asymmetric/UEP over symmetric/EEP.



54

7 8 9 10 11 12 13
0

10

20

30

40

50

60

70

SNR (dB)

P
er

ce
nt

ag
e 

of
 b

it 
sa

vi
ng

s

 

 

T
c
 = 500

T
c
 = 2000

T
c
 = 4000

7 8 9 10 11 12 13
0

10

20

30

40

50

60

70

SNR (dB)

P
er

ce
nt

ag
e 

of
 b

it 
sa

vi
ng

s

 

 

T
c
 = 500

T
c
 = 2000

T
c
 = 4000

(a) Race (b) Oldtimers

Figure 2.10: Percentage of bit savings of non-scalable MVC compared to scalable
MVC for symmetric/UEP and fading channels.



Chapter 3

Unequal Error Protection for

Video Plus Depth

In the previous chapter, we considered UEP for 3D video compressed using

MVC. In this chapter, we consider UEP for 3D video compressed using the video

plus depth (V+D) format. We propose a JSCC scheme for V+D data. Full-

resolution and downsampled depth maps are considered. The proposed JSCC

scheme yields the optimum color and depth quantization parameters, as well as

the optimum FEC code rates used for UEP at the packet level. Different coding

scenarios are compared, and the UEP gain over EEP is quantified for flat Rayleigh

fading channels. We show that the proposed UEP scheme significantly outperforms

EEP. We also derive several interesting results on how the color and depth are

compressed and protected compared to each other.

This chapter is organized as follows: Section 3.1 describes V+D encoder

and decoder. Section 3.2 shows how the proposed JSCC scheme is adopted in a

video transmission system. Section 3.3 derives an end-to-end distortion measure

based on the SSIM for both the left view and the synthesized right view. Section

3.4 gives the JSCC problem formulation for V+D using the end-to-end distortion

measure introduced in Section 3.3. Section 3.5 discusses simulation results, and

Section 3.6 concludes this chapter.

55
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Figure 3.1: Block diagram of (a) V+D encoder, and (b) V+D decoder.

3.1 V+D Encoder and Decoder

V+D is an efficient representation of 3D video, where a stereo pair is ren-

dered at the decoder from a color video signal and a per-pixel depth map. V+D

data is usually compressed by independently compressing the color and depth us-

ing a compression tool such as H.264/AVC. Figure 3.1(a) and Figure 3.1(b) depict

V+D encoder and decoder, respectively. We may downsample depth by a factor

of M before the compression (for example, downsampling by 2 is recommended

in [55]). At the decoder, left view is obtained by decompressing the compressed

color video. Depth map is decompressed and right view is synthesized using both

the decompressed color and depth. We note that depth should be upsampled by

a factor of M if it is downsampled at the encoder. We assume that precomputed

depth maps are available at the encoder and our focus will be on the compression

and protection of the color and depth and their impacts on the quality of the

reconstructed left and right views.
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3.2 Overview of the System Design

Our goal is to solve the JSCC problem for V+D data. We consider both the

downsampled and full-resolution depth map scenarios. In formulating the JSCC

for V+D, we follow the typical JSCC problem formulation in which the bit rate is

set as constraint and the goal is to maximize the quality at the receiver. It is worth

mentioning that we are not able to apply the MVC quality thresholds 40dB/40dB

(for symmetric coding) and 40dB/33dB (for asymmetric coding) to the V+D case.

The quality of the synthesized right video in terms of the PSNR always shows

a great loss even in the absence of any compression (30dB on the average over

different video sequences). Although this PSNR loss is mostly tolerated by the

HVS, it does not even meet the 33dB quality threshold of the asymmetric coding.

The PSNR loss is due to occlusion, color mismatch between the right view and

left view, and noisy/inaccurate depth maps, which are unavoidable in any view

synthesis algorithm.

The system block diagram is shown in Figure 3.2. The color video and depth

map are first both compressed by an H.264/AVC encoder. A UEP technique is

used to assign FEC to packets of the compressed color and depth. The protected

color and depth bit streams are then transmitted over the channel. At the receiver,

channel decoding is performed and the erroneous packets are detected. The color

(left view) and depth bit streams are decoded by an H.264/AVC decoder, where

error concealment is done for the erroneous packets that are already detected by

the channel decoder. The right view is then synthesized using the decoded color

and depth. The depth map may be downsampled by a factor of M at the encoder

before the compression. Having the depth map downsampled by a factor of M ,

we should upsample the depth map by a factor of M before performing the view

synthesis. We consider full-resolution and downsampled depth by factors of 2 and

4, which are represented by ↓No, ↓2, and ↓4, respectively.
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Figure 3.2: Block diagram of a V+D transmission system employing the proposed
JSCC scheme.

3.3 End-to-End Distortion Based on SSIM

To formulate the JSCC problem within a V+D framework, we need an

objective metric that is able to measure the end-to-end distortion of the recon-

structed left and right views. It has been shown that the conventional objective

metric PSNR is not able to model the distortions that are due to view synthesis

errors [8]. We use SSIM to quantify the end-to-end distortion, since it has been

shown that perceived quality is better correlated to SSIM than to PSNR [8]. The

SSIM between two GOPs x and y is calculated as the average of SSIMs between

the corresponding frames of x and y, and we denote it by SSIM(x, y). In contrast

to the MSE, the SSIM is highly nonlinear and thus we cannot model the end-to-end

distortion as in Section 2.2. Instead, we define a quality score based on the SSIM,

that is computed for each individual slice of the compressed color and depth.

We first derive a measure of the end-to-end distortion for the left (color)

view based on the SSIM. This measure should incorporate both the effects of the

color source distortion and the color channel distortion. We assign a score to each

packet of the color. The score depends on whether the packet is or is not lost.

More precisely, if the ith packet of a color GOP is lost, the score assigned to that

packet is computed by

dLi,C(qC) = SSIM
(
fL, f̃L

i,C(qC)
)
, (3.1)

where qC is the color quantization parameter, fL denotes the original uncompressed

left view GOP, and f̃L
i,C(qC) represents the left view decoded GOP with error
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concealment as if only the ith color packet were lost. We note that dLi,C(qC) reflects

the quality throughout the left view GOP (including the effect of error propagation)

due to losing the ith color packet; larger values of dLi,C(qC) correspond to lower

distortion generated due to loss of the ith packet. If the ith color packet is not

lost, the score assigned to that packet is computed by

dLs (qC) = SSIM
(
fL, f̂L(qC)

)
, (3.2)

where f̂L(qC) denotes the left view error-free decoded GOP. Since each packet has

two different scores (given in (3.1) and (3.2)), the score is a random variable. Let

Di be the random variable representing the score assigned to the ith packet. Thus,

{Di = dLi,C(qC)} if the packet is lost, and {Di = dLs (qC)} if the packet is not lost.

For a particular qC , dLi,C(qC) and dLs (qC) can be computed offline at the encoder for

1 ≤ i ≤ NC , where NC is the number of packets in a color GOP. Now, we take the

expected value of the average of the scores of all the color packets as the quality

of the left view:

EL = E

{
1

NC

NC∑
i=1

Di

}
. (3.3)

Let pi,C

(
si,C(qC), ri,C ,Θ

)
be the probability of losing the ith color packet, where

pi,C depends on the source packet size in bits, si,C(qC), the code rate allocated to

that packet, ri,C , and the channel characteristics Θ. For a flat Rayleigh fading

channel, Θ=(SNR, Tc), where Tc is the coherence time. Following (3.3), we have

EL =
1

NC

NC∑
i=1

(
dLs (qC) + pi,C

(
si,C(qC), ri,C ,Θ

)(
dLi,C(qC)− dLs (qC)

))
. (3.4)

For the synthesized right view, scores are defined for both the color and depth

packets, since both contribute to the quality of the synthesized right view. If the

ith color packet is lost, we compute the score as

dRi,C(qC , qD) = SSIM
(
fR, f̃R

i,C(qC , qD)
)
, (3.5)
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and if the ith depth packet is lost, we compute the score from

dRi,D(qC , qD) = SSIM
(
fR, f̃R

i,D(qC , qD)
)
. (3.6)

In (3.5) and (3.6), qD is the depth quantization parameter, fR is the GOP synthe-

sized from the original left view ([88], [89]), f̃R
i,C(qC , qD) denotes the right view GOP

after decoding, error concealment, and view synthesis as if only the ith packet were

lost from the color, and f̃R
i,D(qC , qD) denotes the right view GOP after decoding,

error concealment, and view synthesis as if only the ith packet were lost from the

depth. If the ith packet of the color or the depth is not lost, the score assigned to

that packet is computed by

dRs (qC , qD) = SSIM
(
fR, f̂R(qC , qD)

)
, (3.7)

where f̂R(qC , qD) denotes the error-free decoded synthesized right view GOP. Sim-

ilar to (3.3), we consider the expected value of the average of scores of color and

depth packets as the quality of the synthesized right view:

ER =
1

NC+ND

 NC∑
i=1

(
dRs (qC , qD)+pi,C

(
si,C(qC), ri,C ,Θ

)(
dRi,C(qC , qD)− dRs (qC , qD)

))
+

ND∑
i=1

(
dRs (qC , qD) + pi,D

(
si,D(qD), ri,D,Θ

)(
dRi,D(qC , qD)− dRs (qC , qD)

)),
(3.8)

where ND is the number of packets of a depth GOP, si,D(qD) is the size of the

ith depth source packet in bits, and ri,D and pi,D are, respectively, the code rate

allocated to that packet and the probability of losing that packet.

We now define the objective function of the JSCC problem as

EL + ER

2
, (3.9)

that is to be maximized. An interpretation of this objective function is as follows:
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Let us consider the ith and the jth packets of the color, where i 6= j and 1 ≤
i, j ≤ NC . The contribution of the ith packet and the jth packet to the EL

term of the objective function is equal to fi =
dLs (qC)+pi,C×

(
dLi,C(qC)−dLs (qC)

)
NC

and

fj =
dLs (qC)+pj,C×

(
dLj,C(qC)−dLs (qC)

)
NC

, respectively. We note that dLk,C(qC)− dLs (qC) ≤ 0

for 1 ≤ k ≤ NC . Thus, if pi,C = pj,C and dLi,C(qC) > dLj,C(qC), or, if pi,C < pj,C

and dLi,C(qC) = dLj,C(qC), then fi > fj. This means that a packet with a lower

distortion value (larger score) or a smaller loss probability has a larger contribution

to the objective function, that is to be maximized. Further, note that if dLi,C(qC) =

dLs (qC), then fi = dLs (qC)
NC

, meaning that the contribution of a packet with no channel

distortion due to error concealment is equal to the source distortion averaged over

all the packets. The interpretation given above is for the EL term of the objective

function; a similar interpretation can be made for the ER term.

3.4 JSCC Problem Formulation for V+D

We formulate the JSCC problem as: given a bit budget B, we seek to

maximize the overall quality of the reconstructed 3D video that is measured by

the objective function defined in (3.9). We note that the total number of bits,

which is the sum of the number of source bits and FEC bits, is equal to

NC∑
i=1

si,C(qC)

ri,C
+

ND∑
i=1

si,D(qD)

ri,D
. (3.10)

Let R be the set of available code rates, and QC and QD represent the sets of

quantization parameters used to encode the color and depth, respectively. Let

RC , (r1,C , r2,C , . . . , rNC ,C), and RD , (r1,D, r2,D, . . . , rND,D). To maximize the

quality of the received 3D video, we maximize the objective function

max
(qC ,qD)∈QC×QD

RC∈RNC ,RD∈RND

EL + ER

2
, (3.11)
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subject to the bit constraint

NC∑
i=1

si,C(qC)

ri,C
+

ND∑
i=1

si,D(qD)

ri,D
≤ B, (3.12)

where B is the bit budget. The optimization problem introduced in (3.11) and

(3.12) is a discrete optimization problem that is solved using the branch and bound

method [86].

3.5 Simulation Results and Discussion

We present simulation results for flat Rayleigh fading channels with BPSK

modulation/demodulation. We use block-fading model and employ a block inter-

leaver with depth 500 and width 100. We use UMTS turbo codes for FEC [87].

The available code rates we considered are {8
9
, 4
5
, 2
3
, 4
7
, 1
2
, 4
9
, 2
5
, 4
11
, 1
3
}, obtained by

puncturing a mother code of rate 1
3
. An iterative SISO decoding algorithm is used

for turbo decoding. Each row of macroblocks is encoded as a packet, the GOP

structure is IPPP, and the GOP size is 10 frames.

Figure 3.3 shows the trajectories of the optimum QPs obtained for a GOP

of ‘Balloons’ video sequence (1024×768) as the bitrate constraint increases, where

SNR=8dB and Tc=4000. For the ↓No scenario, when the bitrate constraint is 3.1

Mbps, QPdepth=50 and QPdepth=35. When the bitrate constraint increases to 12.3

Mbps, QPdepth goes to 40 and QPcolor goes to 22. This shows that over a range of

rates, the depth can be significantly compressed compared to the color. When the

depth is downsampled, QPdepth is still larger than QPcolor, but the gap is smaller

than for the ↓No scenario, showing that when depth has lost spatial resolution,

the optimization does not penalize it so much on compression.

Figures 3.4, 3.5, and 3.6 show the color and depth average code rates versus

the bitrate constraint for video sequence ‘Balloons’ for scenarios ↓No, ↓2, and ↓4,

respectively. The average code rates decrease when the bitrate constraint increases.

Considering the ↓No scenario, we see that although the depth is significantly com-

pressed compared to the color (see Figure 3.3), it is protected more since the depth
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Figure 3.3: Trajectories of the optimum QPs for ↓No, ↓2, and ↓4 for a flat
Rayleigh fading channel with SNR=8dB and Tc=4000. Numbers next to the tra-
jectories denote the bitrate constraints in Mb/sec.

average code rate is lower than that of the color. In [53], the authors concluded

that color should be protected more than depth. That conclusion was made for

the symmetric coding case, where QPcolor=QPdepth=30. We also solved the JSCC

problem with the additional symmetric coding constraint, i.e., we set qC=qD in

(3.11) and (3.12), and our results showed that, indeed, the color should be pro-

tected more than the depth, in agreement with [53]. In other words, we are in

agreement with the results of [53] for the special case of identical quantization pa-

rameters, but the general case of unequal quantization parameters yields the result

that depth should be compressed more severely than color, but that then depth

should be protected more. Results for ↓2 and ↓4 also indicate that the JSCC tends

to protect the depth slightly more than the color.

We now compare the scenarios ↓No, ↓2, and ↓4 in terms of FEC protection.
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Figure 3.4: Average color and depth code rates for a flat Rayleigh fading channel
with SNR=8dB for video sequence ‘Balloons’ for ↓No.

We compute the average code rate R:

R =
#color source bits + #depth source bits

#color source+FEC bits + #depth source+FEC bits
.

Figure 3.7 shows R versus the bitrate constraint for ‘Balloons’. For a particular

bitrate, R decreases when the downsampling factor increases, meaning that for the

same bitrate constraint, a stronger protection is needed for a larger downsampling

factor.

Different scenarios are also compared for channel realizations using the

PSNR and SSIM metrics. Following [88] and [89], in computing the full-reference

metrics PSNR and SSIM, the reference of the right view is obtained by view synthe-

sis from the original uncompressed left view. For each channel realization, the left

and right view SSIMs are averaged and then the average is taken over all the chan-

nel realizations, which is denoted by SSIMLR. The average PSNR for each channel

realization is calculated by 10 log10

(
2552

(MSEL+MSER)/2

)
, where MSEL and MSER are

the mean-squared errors obtained for the left and right views, respectively. The av-

erage is then taken over all the channel realizations, which is denoted by PSNRLR.

Figs. 3.8 shows PSNRLR for 200 channel realizations for video sequence ‘Balloons’,
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Figure 3.5: Average color and depth code rates for a flat Rayleigh fading channel
with SNR=8dB for video sequence ‘Balloons’ for ↓2.

where SNR=8dB and Tc=4000. Results for SSIMLR are given in Figure 3.9. We

see that the ↓4 scenario outperforms the other scenarios except for high bitrates,

for which the ↓2 scenario slightly outperforms the others.

Lastly, we compare the performance of UEP to that of EEP. Results are

given for scenario ↓4, which was the best for most of the bitrates and channel

conditions considered. Fig. 3.10 shows PSNRLR for video sequence ‘Balloons’.

UEP outperforms EEP by up to 4.3dB. Figure 3.11 shows SSIMLR, where we see

that the UEP outperforms EEP in terms of the SSIM as well.

3.6 Conclusions

In this chapter, we studied JSCC for video plus depth. Full-resolution and

downsampled depth by factors of two and four were considered. Results show that

the depth can be significantly compressed compared to the color (especially for

↓No and ↓2), although it needs to be protected more by FEC. We showed that

when depth is downsampled, it should be less compressed and more protected to

maximize the quality. In contrast to prior work which only considered equal quan-
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Figure 3.6: Average color and depth code rates for a flat Rayleigh fading channel
with SNR=8dB for video sequence ‘Balloons’ for ↓4.

tization parameters and found that color should be more protected than depth,

we found that depth should be compressed more severely than color and then pro-

tected more. We also showed that the downsampled depth by a factor of four

outperforms the other scenarios except for high bitrates. The UEP approach pro-

posed here was shown to yield up to 4.3dB gain in PSNR compared to EEP for

flat Rayleigh fading channels.
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Figure 3.7: R for ↓No, ↓2, and ↓4 for a flat Rayleigh fading channel with
SNR=8dB and Tc=4000.
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Figure 3.8: PSNRLR obtained by using UEP for ↓No, ↓2, ↓4, and ↓8 for a flat
Rayleigh fading channel with SNR=8dB and Tc=4000.
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Figure 3.9: SSIMLR obtained by using UEP for ↓No, ↓2, ↓4, and ↓8 for a flat
Rayleigh fading channel with SNR=8dB and Tc=4000.
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Figure 3.10: PSNRLR of UEP and EEP for ↓4.
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Figure 3.11: SSIMLR of UEP and EEP for ↓4.



Chapter 4

UEP for Scalable Video

Broadcasting over MIMO

Channels

This chapter addresses UEP for video broadcasting over wireless channels.

We assume that heterogeneous users with different display resolutions and different

operating data rates are present in a service area of a base station. Our goal is

to design a video broadcasting system that well serves all types of users within

the service area. We tackle this problem for a MIMO (multi-input-multi-output)

channel. We use spatial scalable video coding for video compression which readily

enables us to provide UEP at the layer level. For MIMO communication, we

propose to use spatial diversity techniques for base layer, and spatial multiplexing

techniques for enhancement layer. The BL and EL bit streams are superposed

in a way that the BL receives a stronger protection compared to the EL. We

compare the performance of our proposed scheme with that of two baseline schemes

which only adopt spatial diversity techniques. We show that our proposed scheme

significantly outperforms both the baseline schemes. This chapter is organized as

follows: The system model and technical preliminaries are provided in Section 4.1.

In Section 4.2, we first present two baseline MIMO video broadcasting schemes

and then introduce the proposed scheme. Section 4.3 provides simulation results

and Section 4.4 concludes this chapter.

70
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4.1 MIMO Preliminaries

We first introduce a mathematical description of a MIMO channel which de-

scribes the relationship between the transmitted and received signals. We assume

that the signal bandwidth is less than the coherence bandwidth of the channel or,

in other words, channel is frequency non-selective. This allows us to model the

channel between a transmit and a receive antenna with a complex gain. Suppose

Nt and Nr represent the number of transmit and receive antennas, respectively.

We define the following parameters:

hij , complex channel gain between the jth transmit antenna

and the ith receive antenna;

ri , receive signal at the ith receive antenna;

sj , symbol transmitted from the jth transmit antenna;

zi , noise signal at the ith receive antenna.

Using the above notation, we can write the received signal as

ri =
Nt∑
j=1

hijsj + zi, i = 1, . . . , Nr. (4.1)

We can write (4.1) in matrix form as

r = Hs + z, (4.2)

where

s , [s1, . . . , sNt ]
T , (4.3)

r , [r1, . . . , rNr ]
T , (4.4)

z , [z1, . . . , zNr ]
T , and (4.5)
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H ,


h11 . . . h1,Nt

...
. . .

...

hNr,1 . . . hNr,Nt

 . (4.6)

The entries of H are modeled to be independent and identically distributed (i.i.d.)

∼ CN (0, 1), and they are assumed to be known at the receiver, but not known at

the transmitter. It is assumed that H is constant over T symbol durations. z is

a zero-mean complex white Gaussian noise vector such that E
{
z(z∗)T

}
= σ2

zINr .

SNR per symbol is defined as γs , E {|si|2}/σ2
z . Now, let S = [s1, . . . , sT ] represent

a space-time code that is obtained by concatenating T transmit vectors s1, . . . , sT .

Note that the space-time code S consists of Nt×T symbols which are transmitted

from Nt transmit antennas in T symbol durations. Also, let Ns denote the number

of symbols which are packed in S. The spatial multiplexing rate of S is defined as

Ns/T .

4.2 Video Broadcasting over MIMO Channels

We consider a MIMO video broadcasting system which consists of a base

station with two transmit antennas and two types of user devices: i) a big user with

two receive antennas and a high-resolution screen, and ii) a small user with a single

receive antenna and a low-resolution screen. In Section 4.2.1, we briefly describe

a few benefits of using SVC for video broadcasting that motivated us to adopt

SVC for video compression. Section 4.2.2 introduces hierarchical constellations

which provide UEP for scalable video transmitted over noisy channels. We then

introduce two baseline schemes in Sections 4.2.3 and 4.2.4. By baseline scheme we

refer to a one in which video is broadcast only using spatial diversity techniques.

Our proposed MIMO broadcasting scheme is detailed in Section 4.2.5.

4.2.1 SVC for Video Broadcasting

The use of scalable video coding is very beneficial in video broadcasting

systems [9]. SVC lends itself to be very useful in a video communication scenario
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where there exist heterogeneous users that operate at different data rates. In that

scenario, we encode the video content using the desired number of enhancement

layers and send the same scalable video bit stream to all the users. Each user can

decode that portion of the scalable bit stream that fits its operating data rate.

The use of SVC clearly obviates the need to encode the same video content at

several different bit rates and send them to all the users. In addition, SVC can

provide a graceful quality degradation in a video communication system if it is

cleverly combined with unequal error protection. This can be done by unequally

protecting the layers according to the contribution they make in enhancing the

quality of the reconstructed video. For a two-layer bit stream, this is done by

providing a stronger protection for the base layer and a weaker protection for the

enhancement layer.

4.2.2 Hierarchical Constellations for UEP of SVC

Hierarchical constellations are power tools in providing UEP for transmis-

sion of a scalable video bit stream over an error-prone channel. Figure 4.1 shows an

example of a hierarchical 64-QAM constellation. The 64 signal points are divided

into four clusters (quadrants) and each cluster consists of 16 signal points. The

minimum Euclidean distance between two clusters is dM . Clusters represent the

two most significant bits (MSBs) of a transmitted symbol. For example, the MSBs

of any symbol transmitted from a cluster denoted by ‘00’ are ‘00’. The four least

significant bits (LSBs) determine which of the 16 signal points within a cluster is

chosen, and their minimum distance is dL. The distance ratio α = dM/dL(> 1)

determines how much more the MSBs are protected compared to the LSBs against

the channel errors. It is readily inferred that we provide a stronger protection for

MSBs by increasing the value of α, since we make the distances between the clus-

ters bigger by doing so. We note that, in bad channel conditions (e.g., deep fades),

the decoder only needs to establish which cluster the received signal belongs to in

order to determine the MSBs. On the other hand, in good channel conditions, the

decoder not only can determine the cluster (i.e., MSBs) but it may also be able to

recover the LSBs. The hierarchical 64-QAM constellation in Figure 4.1 (which is
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Figure 4.1: Hierarchical 4/64-QAM constellation. Six bits are transmitted per
symbol. MSBs are displayed in green and LSBs are displayed in blue. Red arrow
depicts the transmitted signal when the MSBs are ‘00’ and the LSBs are ‘0001’.

denoted by 4/64-QAM) can be viewed as a superposition of quadrature phase shift

keying (QPSK) and 16-QAM subconstellations. For low SNR, it operates as only

a basic QPSK subconstellation having larger minimum distance. For high SNR,

hierarchical 64-QAM can operate as both basic QPSK and secondary 16-QAM

subconstellations.
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Figure 4.2: A baseline MIMO video broadcasting scheme with non-scalable video
and non-hierarchical constellation.

4.2.3 Non-Scalable Baseline Scheme

Figure 4.2 depicts a baseline MIMO broadcasting scheme with non-scalable

video coding. We refer to this baseline scheme as the non-scalable baseline scheme

throughout this chapter. The system takes the compressed non-scalable bit stream

and adds FEC. The coded bit stream is then mapped to constellation symbols.

Note that a uniformly-spaced signal constellation (i.e., a non-hierarchical constel-

lation) is employed for the non-scalable baseline scheme, and thus UEP is not

provided for it. The constellation symbols are encoded by the Alamouti code and

transmitted from two antennas.

4.2.4 Scalable Baseline Scheme

Figure 4.3 shows another baseline MIMO broadcasting scheme which em-

ploys spatial SVC and hierarchical constellations. We refer to this baseline scheme

as the scalable baseline scheme throughout this chapter. The BL and EL bit

streams are each transformed into a sequence of channel codewords. The two

coded bit streams are then mapped to hierarchical constellation symbols. Note

that the base layer is mapped to the MSBs of the hierarchical constellation, while

the enhancement layer is mapped to the LSBs. This implies that the BL receives

more protection compared to the EL. The hierarchical constellation symbols are

encoded by the Alamouti code and transmitted from two antennas.
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Figure 4.3: A baseline MIMO video broadcasting scheme with spatially scalable
video and hierarchical constellation which provides UEP for scalable bit stream.
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Figure 4.4: The proposed MIMO video broadcasting scheme with spatially scal-
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stream.

4.2.5 Proposed Scheme

Figure 4.4 shows a block diagram of our proposed MIMO video broadcasting

scheme. The BL and EL bit streams are each transformed to a sequence of channel

codewords. Each bit stream is mapped to a symbol bit stream using its own

symbol constellation. The two different symbol streams are then coded using the

space-time codes. We use Alamouti code to encode the BL symbol stream, and

V-BLAST to encode the EL symbol stream. The resultant BL and EL symbols

are multiplied by the transmit gains GBL and GEL, respectively, and superposed

afterward. The transmit gain ratio β = GBL/GEL (> 1) determines how much

more the BL is protected compared to the EL. In Figure 4.4, sBL
i (i = 1, 2, 3, . . .)

denote the constellation symbols for the BL, and sEL
i represent the constellation
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symbols for the EL. The transmit matrix can be written as

G =

[
GBL s

BL
2i−1 +GEL s

EL
4i−3 −GBL (sBL

2i )∗ +GEL s
EL
4i−1

GBL s
BL
2i +GEL s

EL
4i−2 GBL (sBL

2i−1)
∗ +GEL s

EL
4i

]
, (4.7)

where each row corresponds to a transmit antenna (spatial dimension) and each

column corresponds to a symbol time (temporal dimension).

We note that the BL can be decoded by both the small user and the big

user (the decoding procedure is elaborated in Section 4.3). However, the EL is

only decodable by the big user. We recall that spatial multiplexing outperforms

spatial diversity at high data rates. The fact that the EL has higher data rates

compared to the BL motivated us to exploit spatial diversity techniques for BL

and spatial multiplexing techniques for EL.

4.3 Simulation Results and Discussion

In this section, we evaluate the PSNR performance of the proposed MIMO

video broadcasting scheme. For the proposed scheme depicted in Figure 4.4, we

consider QPSK for BL, and 16-QAM for EL. During one symbol time duration, the

proposed scheme transmits 2 bits of the BL and 8 bits of the EL. This is because

the spatial multiplexing rate of the Alamouti code is equal to 1 (i.e., 1 QPSK

symbol per symbol time), and that of V-BLAST is equal to 2 (i.e., 2 16-QAM

symbols per symbol time).

We also evaluate the PSNR performances of the baseline schemes. For the

scalable baseline scheme depicted in Figure 4.3, we use a hierarchical 4/1024-QAM

constellation. A hierarchical 4/1024-QAM consists of a primary QPSK subconstel-

lation and a secondary 256-QAM subconstellation. This implies that the scalable

baseline scheme and the proposed scheme provide the same data rates. For the

non-scalable baseline scheme depicted in Figure 4.2, we employ a 1024-QAM con-

stellation. The data rate of this scheme (which corresponds to 10 bits per symbol

time) is equal to that of the scalable baseline scheme and the proposed scheme.

For the baseline schemes, we use optimal maximum likelihood (ML) decod-
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ing. For the proposed scheme, we use successive decoding [90] as is detailed in the

following steps:

1. Alamouti decoding is performed on the received signal to decode the BL

symbols;

2. The decoded BL symbols are subtracted from the received signal to obtain

a residual signal;

3. MMSE (minimum-mean-squared-error) or ML decoding is performed on the

residual signal in order to decode the EL symbols.

Although it has a suboptimal performance, successive decoding offers a much lower

computational complexity compared to the ML decoding of the entire received

signal. In step 3 above, we use ML decoding for V-BLAST.

We use H.264/SVC and evaluate the performance for video sequence ‘Fore-

man’. The higher-resolution video reconstructed from decoding both the BL and

EL has a resolution of 352×288, and the lower-resolution video reconstructed from

decoding only the BL has a resolution of 176× 144. We assume that the transmit-

ted video signal experiences a slow fading channel such that the channel coefficients

are nearly constant over a GOP. We use a B-frame hierarchical GOP structure,

where each GOP has 16 frames. We also assume a perfect channel estimation at

the receiver.

Figure 4.5 depicts the PSNR performance of a big user when the scal-

able baseline scheme is employed. We recall that a big user has a high-resolution

screen. This means that when only the BL is decoded, a low-resolution video is

reconstructed which needs to be upsampled in order to be displayed on a high-

resolution screen. For a particular α in Figure 4.5, we observe that when SNR

is low, PSNR reaches a plateau of about 30 dB. The reason is that, for low SNR

values, only the BL is decodable, since it has been protected stronger compared

to the EL. The low PSNR plateau of 30 dB is due to upsampling the BL which

is needed for the big user. For a particular α, when channel SNR increases, the

receiver gradually becomes able to decode the EL, and thus the quality of the

decoded video gradually improves until it reaches the maximum PSNR value of



79

0 5 10 15 20 25 30 35 40

15

20

25

30

35

40

SNR per symbol (dB)

P
S

N
R

 (
dB

)

 

 

α = 2

α = 3

α = 4

α = 6

α = 8

α = 20

α = 105

Figure 4.5: PSNR performance of a big user for the scalable baseline scheme.

about 40 dB. Another interesting observation is that, for a particular SNR value,

when α increases, the performance in the range of low PSNRs improves. For a

fixed channel SNR in that range of PSNRs, increasing α corresponds to providing

a stronger protection for the BL, which leads to a better reconstruction quality.

However, for a fixed channel SNR, when α increases, PSNR decreases in the range

of high PSNRs. The reason is that a higher α translates to providing a weaker

protection for the EL, which implies that we need a higher SNR to achieve the

same reconstruction quality with a larger α.

Figure 4.6 depicts the PSNR performance of a big user when the MIMO

broadcasting system employs the proposed scheme. The profile of the results is

similar to the one presented in Figure 4.5. We see that as β increases, the perfor-

mance in the range of low PSNRs improves, while the performance in the range of

high PSNRs degrades.

Figures 4.5 and 4.6 indicate that the proposed scheme outperforms the

scalable baseline scheme for a big user. Some of the curves in Figures 4.5 and 4.6

are plotted again in Figure 4.7 for better visual comparison. It is observed that

in both low and high PSNR ranges, the proposed schemes with β = 3, 3.5, and 4
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Figure 4.6: PSNR performance of a big user for the proposed scheme.

outperform the baseline schemes with α = 2, 4, and 8, respectively. We note that

typical values of α are 2 and 4 [74]. Figure 4.7 also depicts the PSNR performance

of the non-scalable baseline scheme. We see that the maximum PSNR the non-

scalable baseline scheme can reach is slightly larger than the maximum PSNRs

the others can reach. This is because the compression efficiency of non-scalable

coding is slightly higher than that of the scalable coding. Disregarding this minor

performance loss, we see that the proposed scheme significantly outperforms the

non-scalable baseline scheme.

Figure 4.8 depicts the PSNR performance of a small user when we employ

the scalable baseline scheme. We recall that a small user has a low-resolution

screen. We also note that since we use the Alamouti code for both the BL and EL,

a small user is able to decode both of them. In fact, it is possible that a small user

achieves a better reconstruction quality by decoding both the BL and the EL and

then downsampling the resulting full-resolution video, compared to the case where

it decodes only the BL. We did extensive simulations with various video sequences,

and concluded that if we let the small user decode the EL when at least 80% of

the EL packets are received correctly, decoding the EL in conjunction with the BL

is more beneficial than decoding the BL alone. We see in Figure 4.8 that a high



81

0 5 10 15 20 25 30 35 40

15

20

25

30

35

40

45

SNR per symbol (dB)

P
S

N
R

 (
dB

)

 

 
Baseline (non−scalable)

Baseline (scalable): α = 2

Baseline (scalable): α = 4

Baseline (scalable): α = 8

Proposed: β = 3

Proposed: β = 3.5

Proposed: β = 4

Figure 4.7: PSNR performance of a big user. The performance of the baseline
scheme with non-scalable video coding is shown together with those of the pro-
posed scheme and the baseline scheme with spatially scalable video coding and
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Figure 4.8: PSNR performance of a small user for the scalable baseline scheme.

enough PSNR (about 39 dB) is achieved even when the BL is decoded alone. We

observe that when both the BL and EL are decoded, PSNR improves to about 46
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Figure 4.9: PSNR performance of a small user for the proposed scheme.

dB. We note that such high PSNR values are usually perceived identically by the

human visual system (HVS), and thus a PSNR of 46 dB is not considered as a

major performance improvement compared to the PSNR of 39 dB. We also observe

that as α increases, the performance in the range of low PSNRs and high PSNRs

improves and degrades, respectively.

Figure 4.9 depicts the PSNR performance of a small user when the proposed

scheme is employed. We recall that the proposed scheme employs V-BLAST to

encode the enhancement layer. We note that a small user with a single receive

antenna cannot decode data that is encoded by V-BLAST. Thus, the small user is

able to decode only the BL and it can achieve the maximum PSNR value of about

39 dB.

Some of the curves in Figures 4.8 and 4.9 are plotted again in Figure 4.10

for better visual comparison. For PSNRs lower than 40 dB, the proposed schemes

with β = 3, 3.5, and 4 outperform the baseline schemes with α = 2, 4, and 8,

respectively. On the other hand, for PSNRs higher than 40 dB, the baseline scheme

outperforms the proposed scheme. Such high PSNR values are usually perceived

identically by the HVS, and thus they are not usually of interest. Figure 4.10 also
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Figure 4.10: PSNR performance of a small user. The performance of the base-
line scheme with non-scalable video coding is shown together with those of the
proposed scheme and the baseline scheme with spatially scalable video coding and
hierarchical constellation.

depicts the PSNR performance of the non-scalable baseline scheme. We see that

the non-scalable baseline can provide a slightly higher maximum PSNR compared

to the other schemes. However, the proposed scheme outperforms the non-scalable

baseline scheme over the entire range of PSNRs we are interested in.

4.4 Conclusions

In this chapter, we considered UEP for video broadcasting over wireless

channels. We assumed that two types of users are present within the service

area of the transmitter: a user with a low-resolution screen and a user with a

high-resolution screen. We used spatially scalable video that readily enables us

to adopt UEP at the layer level. We proposed a UEP scheme for broadcasting

of scalable video over MIMO channels. We employed spatial diversity techniques

to encode the base layer and utilized spatial multiplexing to encode the enhance-

ment layer. The BL and EL are then superposed in a way that BL receives more
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protection compared to the EL. We compared the performance of our proposed

scheme to that of two baseline schemes both of them exploiting only spatial diver-

sity techniques. We showed that the proposed scheme significantly outperforms

the baseline schemes for both types of users considered.
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Chapter 5

Conclusions

In this dissertation, we have proposed UEP schemes for compressed 3D

video. The UEP schemes are proposed within a framework of joint source-channel

coding and are proposed for both MVC and V+D. We have also proposed unequal

error protection for video broadcasting over the MIMO channels based on the

hierarchal modulation and spatially scalable video.

In Chapter 2, we addressed the joint-source channel coding problem of a 3D

video sent over AWGN and fading channels with the goal of minimizing the total

number of transmitted bits while subject to video quality constraints. We consid-

ered non-scalable MVC, proposed a type of spatially scalable MVC, and addressed

both symmetric and asymmetric coding. The UEP approach proposed here proved

to be efficient at achieving this goal when compared to EEP for all the scenarios

considered, where the average gains vary from 11.6% to 19.5%. Asymmetric coding

was also compared to symmetric coding. Comparable gains were obtained for non-

scalable and scalable MVC. The asymmetric/UEP gain over symmetric/UEP and

symmetric/EEP vary, respectively, from 36.1% to 38.3% and from 45.0% to 47.1%.

We also showed that, although using scalability leads to an overhead compared to

non-scalable MVC, it may have an advantage in terms of the subjective quality of

the received video, since most of the lost packets occur in the enhancement layer

whose errors are less noticeable to the human visual system compared to the errors

due to packets lost in the base layer.

In Chapter 3, we studied joint source-channel coding for video plus depth.
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Full-resolution and downsampled depth by factors of two and four were considered.

Results show that the depth can be significantly compressed compared to the color,

although it needs to be protected more by FEC. We showed that when depth

is downsampled, it should be less compressed and more protected to maximize

the quality. In contrast to prior work which only considered equal quantization

parameters and found that color should be more protected than depth, we found

that depth should be compressed more severely than color and then protected more.

We also showed that the downsampled depth by a factor of four outperforms the

other scenarios except for high bitrates. The UEP approach proposed here was

shown to yield up to 4.3dB gain in PSNR compared to EEP for flat Rayleigh fading

channels.

In Chapter 4, we studied UEP for video broadcasting over wireless chan-

nels. We assumed that two types of users are present within the service area of a

transmitter: a user with a low-resolution screen operating at a low data rate, and a

user with a high-resolution screen operating at a high data rate. We used spatially

scalable video for video compression. We proposed an efficient UEP scheme for

scalable video broadcasting over wireless MIMO channels. We employed spatial di-

versity techniques (in particular the Alamouti codes) to encode the base layer and

utilized spatial multiplexing techniques (in particular the V-BLAST) to encode

the enhancement layer. The BL and EL are then superposed in a way that BL re-

ceives a stronger protection compared to the EL. We compared the performance of

our proposed scheme to that of two baseline schemes both of them exploiting only

spatial diversity techniques. We showed that the proposed scheme significantly

outperforms the baseline schemes for both types of users considered.
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