
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Experimental Implementation of Distributed Time-Varying Optimization Algorithms Using 
Crazyflie Platform

Permalink
https://escholarship.org/uc/item/9sh5q8xd

Author
Zhang, Yifan

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sh5q8xd
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Experimental Implementation of Distributed Time-Varying Optimization
Algorithms Using Crazyflie Platform

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yifan Zhang

June 2019

Thesis Committee:

Dr. Wei Ren, Chairperson
Dr. Hyoseung Kim
Dr. Ran Cheng



Copyright by
Yifan Zhang

2019



The Thesis of Yifan Zhang is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

Firstly I would like to thank Dr. Wei Ren to be my advisor. He put time and efforts to

help me through the process of my thesis and let me have access to the lab resources. He

also gave me advice on writing this thesis paper, without whose help this thesis would not

exist. Secondly I would like to thank my parents for the support they gave me, both from

physical aspects and spirit aspects. It was a long and hard way to get here writing these

words. And it was tough to raise a child to get a graduate degree from the very beginning

without the experience of being graduate students themselves. But they always support

me through all the obstacles. Thirdly, I would like to thank the co-worker in COVEN

lab, especially Shan Sun. She had endorsed me so much through the process of designing

experiment, coding, and writing this thesis. I would not have done this experiment without

the help from her. The other members from COVEN lab also helped a lot. Pengxiang Zhu

helped me turn on VICON tracking system every time I needed, Bo Wang gave me precious

advice when I got bugs on my program, former lab member Yanzhi Wu helped me control

the device while I had to record the experiment, Hanzhe Teng helped me about the basic

control of the device used in the experiment, former lab member Qianjun Liu accompanied

me with the process from the beginning of this project, and more. Everyone in COVEN lab

in the past year had helped me somehow. And Finally, I would like tothank my landlord

for being so nice to me during the past months, I would like to thank my neighbors for

accompanying me, I would like to thank my friends for giving me advice and being nice to

me, And I would like to thank my committee members, they agreed my request to be my

committee members, I appreciate that.

iv



To my parents and everyone helped me for all the support.

v



ABSTRACT OF THE THESIS

Experimental Implementation of Distributed Time-Varying Optimization Algorithms
Using Crazyflie Platform

by

Yifan Zhang

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2019

Dr. Wei Ren, Chairperson

Formation control and trajectory following using distributed optimization algo-

rithms is validated in this thesis. The crazyflie platform is used for validating the algo-

rithms. Then the implementations on different algorithms and different numbers of robots

take place. Firstly, distributed optimization algorithm with general time-varying cost func-

tions is implemented to make the crazyflies follow a line trajectory in a square formation.

Then another distributed optimization algorithm with time-varying cost functions and non-

identical hessian is used to get the crazeflies follow a circle trajectory in a square formation.

After achieving relatively high accuracy of implementation of the two distributed optimiza-

tion algorithms, a target tracking task is performed to prove the feasibility of the algorithms.

In all, this thesis explores a new way for distributed optimization algorithms on multi-agent

systems such as UAVs.
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Chapter 1

Introduction

1.1 Motivation

Distributed optimization problems are attracting attention nowadays. Distributed

optimization represents an interesting aspect of a multi-agent system where all the agents

work cooperatively to find the optimal solution for the whole team using only local infor-

mation and local communication. This can be used in many situations such as temperature

control using multiple heat generators or radiator fins [9] or a large number of robots trying

to find and track something(either a landing point, a moving person, or something else

depending on the needs) when they lose the GPS signal [10]. Typical usage is in the field

of robotics where each robot acts as an agent. They will be assigned a local cost function

individually and they also achieve the goal as a whole team, such as performing, cleaning or

even measuring tasks where multiple robots could be much better than a single one. In such

a situation, an algorithm to control multiple agents is essential and a distributed algorithm

is better than a centralized algorithm. A centralized algorithm has a central store to store
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all the data and compute them in real time, which will cost too much computing power and

communication between the agent and the center cannot be assured. And the optimization

problem occurs when the agent only gets information about its own cost function and needs

to communicate with the neighbors to calculate the optimal solution in real time. In this

way, they will act as a group to find the optimal solution for the whole team.

In this thesis, distributed optimization algorithms with time-varying cost functions

on small Unmanned Aircraft Vehicles (UAVs) are implemented to prove the feasibility

of these algorithms on a real-world problem. Compared with running the algorithms in

simulators, the implementation into the real-world can be significantly different. Each UAV

is assigned with a local function serving as a trajectory for itself. The goal is to achieve a

team optimal solution represented as a formation moving at the same speed following the

same trajectory. The UAVs we used are crazyflies, which are small and easy to operate.

1.2 Literature Review

There are existing works on finding the theoretical minimum time-varying cost

function between many agents[1]. In addition, there are some other related works on various

platforms with different algorithms, such as [2], [3], and [5]. While they focus on formation

control with collision avoidance or use video odometry to estimate the robot parameters or

the coverage problem in an unknown environment, the focus in this study is mainly on the

optimization demonstrated in [1]. However, the algorithm demonstrated in [1] has too many

added assumptions. Our work focuses on how to remove or relax some of the assumptions

while still maintaining the feasibility of the whole theory. Our experiment focused on the
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implementation of those algorithms.

1.3 Contribution

My contribution in this thesis is mainly in designing and building distributed time-

varying optimization controller on Crazyflie. I designed and implemented the controller on

the Crazyflie platform. This includes the following small contributions:

• Usage of Bugbot Simulation

• Usage of the Crazyswarm package with VICON

• Online Tracking Algorithm Designing

• Data Logging and Processing

1.4 Organization

Chapter 1 serves as an introduction to the point of the whole thesis with a dis-

cussion concerning the motivation and real-world possible usage of this thesis project and

contribution.

Chapter 2 presents the algorithm from the mathematical basis to the meaning of the whole

algorithm and also offers a guide through the simulation on Bugbot to demonstrate the

theoretical feasibility of this thesis project.

Chapter 3 gives a guide through the hardware and software used in the implementation.

Chapter 4 Chapter 4 presents a discussion on the test results and error analysis of different

3



algorithms on different numbers and formations of Crazyflies.

Chapter 5 offers conclusions and ideas for future work.
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Chapter 2

Distributed Optimization with

Time-Varying Cost Function

(DOTVCF) Coverage

In this part, the mathematical foundation of the algorithms are discussed.

2.1 Problem Formulation

Consider a network with n agents. In a time-varying distributed optimization

problem, all the agents work together to get the optimal trajectory. More formally,

min F (r) =

n∑
i=1

fi(ri, t) s.t. ri = rj∀i, j ∈ (1, ..., n), (2.1)
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where ri ∈ Rm denotes the states of agent i, r = [r1, · · · , rn] ∈ Rnm is the aggregated states

of all the agents, and fi(ri, t) are convex functions known only to agent i.

A distributed time-varying optimization algorithm was proposed in [1]:

ui = −
∑
j∈Ni

βijsgn(ri − rj) + φi

β̇ij = ||ri − rj ||

φi = −H−1i (ri, t)(∇fi(ri, t) +
∂

∂t
∇fi(ri, t)),

(2.2)

where ui denotes the control input of agent i; ∇fi(ri, t) and Hi(ri, t) are, respectively, the

Gradient and Hessian of the local cost function fi(ri, t) with respect to ri; and sgn() is a

sign function which can be used to restrict the range of input, as described in Figure 4.1.For

the Crazyflies platform which are crazyflies, ui stands for the speed command sent to the

Crazyflies.

A graph is connected when there is a connected path for any two agents in this

network. In a connected graph, there are no unreachable vertices.[14] The topology defines

the relationship among the agents; note that it can be different from the final team formation

and can have various shapes. Moreover, the topology only represents the communication

relationship, has nothing to do with the team formation, and is a kind of connected graph.

In the real world, because each Crazyflie has a diameter, they cannot be treated as a dot,

so in this case, we need to add an offset to each algorithm. This can be carried out simply

by substituting ri with r̂i = ri + hi in the algorithm. hi is a constant that varies for each
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different agent. In this case, the original algorithm changes into the following one:

ui = −
∑
j∈Ni

βijsgn(r̂i − r̂j) + φi

β̇ij = ||r̂i − r̂j ||

φi = −H−1i (r̂i, t)(∇fi(r̂i, t) +
∂

∂t
∇fi(r̂i, t)),

(2.3)

In the experiments,the system dynamics were chosen as ṙi = ui,where in this case,

ui is the speed. This dynamic model was used for all of the experiments in this study.

2.2 Algorithm Design

In this section,a brief discussion on how to arrive at the functions implemented

on the Crazyflies is presented. Although we can obtain the basic algorithm from [1], the

algorithm (2.2) presented in [1] only works in situations where all the φs are bounded, i.e.,

there exists a positive constant φ̄ such that ‖φi‖2 ≤ φ̄. Furthermore, algorithm (2.2) only

works under identical Hessian assumptions.Hence, these assumptions are relaxed to make

them fit real-world applications.

2.2.1 DOTVCF with Convex Cost Function

In (2.2), the φi needs to be bounded as the result might not converge for an

unbounded φi. When φ increases, it dominates the whole equation, which may cause a

failure of the consensus. Motivated by [15], we propose the following algorithm which can

achieve distributed optimization under an unbounded φi:
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ui = −
∑

[||φi||+ ||φj ||+ γi + γj ]sgn(ri − rj) + φi

φi = −H−1i (ri, t)[∇fi(ri, t) +
∂

∂t
∇fi(ri, t)],

(2.4)

where the term ||φi|| + ||φj || + γi + γj is introduced to address the possibly unbounded φ,

the term sgn(ri − rj) is introduced to achieve consensus, and φi is introduced to achieve

optimization. As long as the topology is connected and undirected, the Hessians of the local

cost functions are identical,thus algorithm (2.4) can achieve distributed optimization.

To verify the effectiveness of algorithm (2.4), the following cost functions are chosen

as an example. Note that this function is not the only choice for this algorithm; it is just

an example used in the experiments.

fi = (xi − it)2 + (yi − it)2 (2.5)

where xi ∈ R, yi ∈ R denotes the X-Y coordinates in ri. The reason to choose cost functions

(2.5) is that their corresponding φis are unbounded since while time approaches infinity,

the φi do as well.

When placed into our algorithm(2.4), φi changes to this:

φi = −[xi − it− i, yi − it− i]T , (2.6)
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Figure 2.1: Topology for 4 agents

and the Hessian changes into this:

Hi =

 2 0

0 2



, Thus, algorithm (2.4) can be re-written as

ui = −
∑

[||φi||+ ||φj ||+ γi + γj ]sgn([xi, yi]
T − [xj , yj ]

T ) + φi

φi = −[x− it− i, y − it− i]T ,
(2.7)

In this form, ui equals to the speed command that we send to each Crazyflie,while

i represents the number of Crazyflies. ui varies for each Crazyflie depending on the topology.

For example, Crazyflie 4 in the topology is set to be able to communicate with

Crazyflie 2 and Crazyflie 5, so when the algorithm is implemented, the command sent to

crazyflie 4 is as followa:

9



Figure 2.2: Topology for 6 agents

u4 = (sgn(r4 − r5) + sgn(r4 − r2))∗

(norm([−it− i,−it− i]T ) + norm([−jt− j,−jt− j]T ) + γi + γj)

− (r4) + [−it− i,−it− i]T .

(2.8)

2.2.2 DOTVCF with Nonidentical Hessian

In the last part, the Hessian matrix is assumed to be identical.However, in reality,

the Hessian miht be different for a different agent and this difference can be very large,

which can affect the performance. In this section,this restriction is relaxed and nonidentical

Hessians are assumed.

The original function is (2.2), where Hessians Hi(ri, t) are assumed to be identical.

In this part, we propose the following algorithm is proposed to remove the identical Hessian

10



assumption.

ui = −βH−1i (ri, t)
∑
j∈Ni

sgn(ri − rj) + φi

φi = −H−1i (ri, t)[∇fi(ri, t) +
∂

∂t
∇fi(ri, t)],

(2.9)

where β is the control gain to be designed and the inverse of the Hessian term is added in

front of the sign function while the other parts remain unchanged. This can help because the

sign function is used to combine all the agents together. Adding another term can counter

the difference in the Hessians. In algorithm (2.9), the term βH−1i (ri, t)
∑

j∈Ni
sgn(ri − rj)

is used to achieve consensus under the situation of nonidentical Hessians, and the term φi

is introduced to achieve optimization. As long as the topology is connected and undirected,

and the control β is big enough, the algorithm (2.9) can achieve distributed optimization.

In this part, function fi(ri, t)is chosen to be as follows. Again, this function can

be very different, and this is just an example in the experiment, as there exists infinite

numbers of choices for the cost function :

fi = (ixi − sin(t))2 + (iyi − cos(t))2 (2.10)

which represents a circle in a real implementation.

By substituting fi(ri, t) with the function provided above, our φi changes to be-

come:

φi = −H−1i [2ixi − 2 sin(t)− 2 cos(t), 2iyi − cos(t) + sin(t)]T , (2.11)

11



and Hessian Hi changes to become:

Hi =

 2i 0

0 2i

 , (2.12)

In this part, the topology is designed as in Figure 2.2.

For example, under the topology in Figure 2.2, Crazyflie number 4 should be able

to communicate with Crazyflie number 2 and Crazyflie number 5.Thus, we have

u4 = −βsgn(r4−r5)−βsgn(r4−r2)−[xi−
1

i
sin(t)− 1

i
cos(t), yi−

1

i
cos(t)+

1

i
sin(t)]T (2.13)

2.2.3 Moving Target Tracking

In the moving target tracking problem, the main purpose is to minimize the

distance between target and agents(Crazyflies). Now fi(xi, t), turns into :

fi = (xi − positionitarget)2, (2.14)

where xi denotes the position of agent i and positionitarget denotes the position of the

target sensed by agent i. By using this cost function, the agent can communicate with its

neighbors so as to track a moving the target by minimizing the summation of all of the

local cost functions.

In this experiment, the same algorithm as in section 2.2.1 is used, because it is

an unbounded function, the target position cannot be guaranteed to be bounded, So φi is

12



changed:

φi = −(positiontargeti + velocitytargeti ) (2.15)

φi = −H−1i (ri, t)[∇fi(ri, t) +
∂

∂t
∇fi(ri, t)]. (2.16)

In reality, because the Crazyflies cannot crash and they may have different mea-

surements of the same target because of error, each Crazyflie has different targets.

The topology and numbers of Crazyflies are the same as those in Section 2.2.1. All

the Crazyflies will be assigned an identical target. The goal is to maintain the formation (as

a representation of the topology) while tracking each target independently. This algorithm

can deal with unbounded φ cases but not with nonidentical Hessian just like the first

proposed algorithm.

13



Chapter 3

Hardware and Software

There are many UAVs serving in our daily life and research nowadays, such as

in[10].In addition, there are other considerations about implementing the algorithm on

other platforms such as P3-AT mobile robots[5]. However, Crazyflies are small and easy to

operate [6] [4], thus they were used in the implementation of the algorithm.

3.1 Crazyflie Hardware

Crazyflies are small unmanned aircraft weighing 27 grams with only basic flight-

control functions assembled. However, they can be used for more complex jobs such as

motion capturing [6], [4], [13]. The basic components are a single Crazyflie 2.0 controller

board, 2 clockwise propellers, 2 counter-clockwise propellers, 4 motor-mounts, a 240-mAh

LiPo battery which can provide a flight time of up to 13 minutes[6], [4]. 4 coreless DC

motors and a battery holder expansion board. The Crazyflies needed to be assembled after

being purchased, as shown in Figure 3.1 with a slight modification with VICON markers.

14



The markers are used for motion capture in the VICON system.

The Crazyflie also had a radio named Crazyradio PA attached to an external

computer’s USB port. It is used to send commands to the Crazyflies from the computer,

as shown in the Figure 3.2,

Figure 3.1: A Crazyflie

3.2 Official Client User Interface [11]

The official client window was enough to test the flight ability and enables the

function to manually control a single Crazyflie. However, this client lacked the ability to

execute external scripts, and for this reason, its use was limited to only flight test. Although

its function was relatively limited, it still served as an essential part of the whole experiment.

15



Figure 3.2: A Crazyradio

It enabled changing the communication address which made it possible to control a large

number of Crazyflies at the same time by assigning a different address each time to each

one. Figure 3.3 shows the user interface when it not connected to any Crazyflies.

When connected to a Crazyflie, the interface offers a choice says ”connected on

usb://0”, then Moves cursor to ”connected on usb://0”, and some buttons then appear(the

interface should be in full screen mode otherwise nothing show up). Press the connect

button showing up menu, and press configure2.0; this window should show up as shown in

Figure 3.4. In this window, the ability to change the address is offered. The radio channel

parameter should be changed to another value between 0-100 when the number of Crazyflies

exceeds 15 according to [4]. The radio bandwidth is the bandwidth the Crazyflies occupy

when radio communication happens.

16



Figure 3.3: Manual controls and settings interface

Each Crazyflie should have a different address, but everything else can remain

the same, which is true for 4 Crazyflies using Crazyswarm or the Crazyflie ROS platform

(which were used in the experiment). For using Crazyswarm, changing the address to

0xE7E7E7E70X is necessary, where “X” represents a Crazyflie number. For example, for

Crazyflie 3, this address should be “0xE7E7E7E703”.

If a gaming pad is plugged into a computer and open the client window opened,

the crazyflie Crazyflies can be controlled manually. This is not recommended because it

highly depends on the gaming pad, and so can only be used it for entertainment.

3.3 The Crazyswarm Package

The Crazyswarm package was created by USC-ACT lab [6]and is well documented

[7] on the website. It is relatively easy to control the Crazyflies to do complicated movements

using this package, and according to the high-level commands available, it is easy to use for

17



Figure 3.4: Channel Address Selection

controlling a large quantity of Crazyflies as testers only need to write a python script and

run it in a separate terminal.

Crazyswarm has a complex structure. Basically, the low-level script, which is

Crazyswarm server.cpp, registers some ROS services and ROS topics while launching radio

communication. The high-level scripts can use these topics and services to send commands

to the Crazyflies. In the experiment, the high-level programs were all written in python

and used the API provided by the low-level Crazyswarm server.cpp.

3.3.1 Crazyswarm Simulation

Crazyswarm simulation is pretty easy to use; for example, the individual hover.py

is under the path /Crazyswarm/ros ws/src/Crazyswarm/scripts. If we open a terminal

under the same folder, type “python individual hover.py –sim”, the script mentioned can

be tested via a simulation. However, the high-level API used to control the Crazyflies has

not yet been implemented in a simulation and other ways to control the speed are not

18



stable. This makes it difficult to simulate any 3D trajectory planning, and another offline

simulation platform is also needed. As stated before, the Bugbot python library was used

to test the code and the algorithm before implementing on real machines.

3.3.2 Crazyflie ROS Package [12]

Crazyflie ros package was developed by USC-ACT lab[6], and at the time writing,

is still being maintained by them. It is a package which can serve as a low-level part to

control the Crazyflies. In fact, Crazyswarm is based on this package. It contains its own

method for controlling speed, which, however, is too complex; too many commands are

needed for very simple movements. Nevertheless it provides a way to build the basis ROS

structure for communicating between the Crazyflie and the host computer.

3.3.3 Configuration

To communicate with the VICON tracking system and using a Kalman Filter

which is built in to Crazyswarm, it is necessary to be careful with the configuration. First,

adding markers to the Crazyflies is needed, which should be assigned differently on each

Crazyflie so the tracking system can keep track of them. The configuration used in this

experiment for 8 Crazyflies is as in Figure 3.5. Next, to use Crazyswarm, all of the Crazyflies

need the input of their initial positions for the initialization of the built-in Kalman Filter.

According to [7], the initial position can have several centimeters of inaccuracy but the

more accurate, the better. The initial Crazyflie positions for each experiment were stated

for each experimental session. Following this, flashing the pre-built firmware into each

Crazyflie used in the experiment was needed. This includes the stm32 and nrf firmware and
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the radio module. After launching Crazyswarm on a separate terminal, the Crazyswarm

package was ready for use.

Figure 3.5: Crazyflies with a marker configuration

3.3.4 Crazyswarm Python API

There are many Python APIs provided in the Crazyswarm class, this class is

defined in folder pycrazyswarm/crazyflie.py

The high-level APIs can be found in the appendix.
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3.3.5 Added New Function

During the testing of the Distributed Optimization of Time-Varying function, a

class object was created that used high-level commands to form a formation between the

drones and to follow the trajectory dynamically using cmdFullState(). This class sets the

distance between the different Crazyflies to maintain their formation while following the

trajectory. It represents a dynamic online path planning algorithm which can be written as

ui = α ∗
∑
j∈Ni

sgn(ri − rj − hj) + β ∗ (desireposition − ri − hi), (3.1)

where ui is the velocity and hi represents the offset between each Crazyflie to

prevent them from crashing and to maintain the formation. The desire-position parameter

is given from outside the method and when provided, is added to the offset; hi represents

the offset to the target position of each Crazyflie. hi sometimes is the same as hj , but

sometimes not because the offset depends on how the topology is defined.

Because this algorithm is similar to most consensus algorithm, it is believed that

it has the potential to realize another consensus algorithm.

The added new functions can be found in appendix.

3.4 VICON Configuration

VICON system tracking calibration was a part of the experiment that caused

many problems and is discussed briefly in this part. Figure 3.6 shows the VICON system

user interface run on another computer in the lab.
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Figure 3.6: The VICON user interface

This interface also indicates whether all cameras used in the lab were functioning

normally. To carry out the experiment, a new object needed to be added to this interface

under the (object) tag.

After all of the cameras had been calibrated and all Crazyflies used in the ex-

periment had been added to this interface, the origin needed to be set properly for each

experiment. Because the lab is relatively small, the available space for the experiment was

4x4x2 m3. To make the Crazyflies move for at least half a minute in the lab, the origin was

set to the corner in the experiment with DOTVCF and Convex Cost Function, for which

an algorithm was implemented to make the Crazyflies follow a line. In another experiment

with DOTVCF and Changing Hessian, we set the origin in the center of the lab because

the Crazyflies were expected to follow a circle which requires as much spare space as could

be provided.
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Chapter 4

Tests and Results

In this part, we will talk about the experiment results regarding different algo-

rithms presented in the chapters before. In each part, we will talk about initial set up

positions, initial topology graph, initial parameters, and expected results.

4.1 Lab Environment Setup

Our lab has the empty space of 4 meters×4 meters×2 meters, the speed of crazyflie

could not exceed the limitation of 1 m/s. And because the limitation of the platform

stability, the speed in our algorithms should be somewhere near 0.5 m/s. All crazyflies start

at randomly initialized places and take off to the height of 0.5 meter. The all experiment

process will be at this height. We have 10 VICON cameras facing the center of the lab. 8

of them are Bonita cameras, 2 of them are Vero cameras. All crazyflies under experiment

have different vicon markers assigned to them. These setup look different under all kinds of

transformation including rotation and transition. At the end of the experiment when there
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is an emergency or the crazyflies fly out of the experiment region, an emergency stop signal

is sent through the host computer and all crazyflies stop immediately.

4.2 DOTVCF with Convex Cost Function Results on Four

Crazyflies

For DOTVCF with convex cost function algorithm we have such mathematical

equation as in Equation 2.4.

This function represents a line starts from (0,0,0.5) to infinity in real-world, and

it could be computed before experiment as we know the initial positions. All crazyflies

should catch up with this trajectory by having an average trajectory as close as possible

to it. However, because the length of the lab is not infinity in reality, we have to stop the

program when crazyflies flying out of the research area.

In this equation, u is the speed. β and α are constants and could be changed during

each test. They have big effects on performance. Also, the communication is limited. Be-

cause we setup the communication mode to only communicate to the neighboring crazyflie,

the sum between i and j got down to only neighbors and the crazyflie itself, for example, if

the crazyflie 2 only has a neighbor crazyflie 4, the sum would get down to sgn(x2− x4).

And the sgn() function is changed to the function shown below to have a smoother

performance:

In our python scripts, we are sending speed commands in every loop, the execution

time for each loop is relatively fast. To fix this, we only change the speed commands every
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Figure 4.1: An approximation of sign function used in the experiment

few milliseconds. In this experiment, this was set to 0.01s which is 10 milliseconds.

At first, we were afraid that the speed of crazyflie would be too fast, so we set the

beta to be 0.6 and assigned a parameter of 0.01 to φ. This made the crazyflies to converge

to a formation fast. But this made the team moved too slowly to be observed.

Then we realized that set a parameter other than 1 to ui is inappropriate. Then

the parameter was set back to 1, and the parameter in front of β was kept as 0.6. Because

it could not be larger than 1 in a randomly placed formation. Compulsively assigning

parameters larger than 1 would cause crashing among the crazyflies. Also, the stability of

crazyflies should be considered when choosing those parameters.

When we changed the parameter of β, a stable flight is achieved at the end of the
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flight. But shaking of crazyflies becomes a problem too obvious to be ignored.

Consequently, β should be kept as small as possible to achieve stable flights in a

relatively long time. We chose β of 0.6, which is smaller than the ideally parameter but is

proved in the later experiments that the crazyflies could have stable flight in a long time.

The initial position of 4 crazyflies are r20 = [0.0, 0.5]T , r40 = [0.0, 1.0]T , r50 =

[1.0, 0.0]T , and r70 = [0.5, 0.0]T .

And the topology is presented as the 2.1. This means the crazyflie 2 could com-

municate with number 4 and number 7, the crazyflie 4 could communicate with crazyflie 2

and 5, the crazyflie 5 could communicate with number 4, the crazyflie 7 could communicate

with the number 2. By communicating with each other, the crazyflie could get target’s

real-time position and offset it needs.

The result is shown in 4.2: The red line is average trajectory which should match
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Figure 4.2: Results of 4 Crazflies

theoretical trajectory in theory. The green line is the theoretical trajectory. The blue lines

are the connections between crazyflies. Notice that the z axis is time. There is a small

gap between red line and green line about 10mm, which matches the error of 1 crazyflie

flight control error. The crazyflies kept their formation during the test whiling following

the designed trajectory. In conclusion, the result is as we expected.

Because the crazyflies are flying out of the lab, we manually stopped the crazyflies,

so there is a sharp line at the end of the graph. It should not influence the result of this

experiment.
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4.3 DOTVCF with Convex Cost Function Results on Six

Crazyflies

For DOTVCF with convex cost function we have equation as Equation 2.9: This is

the same with the case of 4 crazyflies, the only difference is how the crazyflies are connected

and the initial position. The sgn() function is kept the same as in Figure 4.1 The topology

is as 2.2 ,where each of the crazyflie could communicate with its two neighbors but cannot

know the whole topology. The reason for changing the diagram is to make the topology more

complex and more convincing. Because when we only have 4 crazyflies, the topology is too

simple that may bring out doubts that some of our agents could get almost all information

in a topology.

The initial position for this experiment is randomly selected. It is presented in the

Figure 4.3 by the first blue rectangle. During the flight, the crazyflies formation will change

back to the one as in 2.2. The result is presented in Figure 4.3.

The result plot shows that the average trajectory (red line) is close to the theo-

retical trajectory (green line) and at the end of the flight, the distance between these two

lines is about 0.1m, which is as we expected.

4.4 DOTVCF with Changing Hessian Results on Six Crazyflies

Everything else is not changed except the topology and the β parameter in our

algorithm, comparing to the 4 crazyflies case. The topology used is shown as the 2.1. The
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Figure 4.3: Results of 6 Crazyflies

initial position of crazyflies is randomly selected.

The initial position of 6 crazyflies are r20 = [0.0, 1.0]T , r40 = [0.5, 1.0]T , r50 =

[0.5, 0.5]T , r70 = [0.0, 0.5]T , r10 = [−0.5, 0.0]T , and r80 = [0.0, 0.0]T .

The result is shown in Figure 4.4 The average line (green line) is close to the

theoretical line(red line), the result is as we expected.

4.5 Experiment of Target Following With DOTVCF

In this experiment, we use 6 real targets instead of 6 virtual targets represented

as a virtual functions f in the last algorithms. We use a board with 6 marked area noted on

it and initialized its position randomly. And we tracked both the target and the crazyflie

with VICON system. The position data of corresponding target will be sent to the correct
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Figure 4.4: Result of DOTVCF on Six Crazyflies

crazyflie. For example, the position data of target 2 will be sent to crazyflie number 2 and

crazyflie number 4 and crazyflie number 5 in our experiment, and then we will calculate

the target velocity based on the position data we got when we communicate with VICON

system.

The initial position of target is randomly selected as stated before, the initial

position of crazyflies are the same as the last experiment as shown in Figure 4.5.

The process of experiment is as follows: the crazyflies will first take off to a specific

height, and we set this height to be 0.5 meter out of the security concern. Then the algorithm

takes control. The crazyflies will begin following the target meanwhile maintaining the

formation. The reason we use a fixed height is because the height control is not one of our

focus in this experiment and it is not accurate in the experiment.
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The initial position is the same as in section 4.4, representing as in Figure 4.4.

The six targets are as shown in Figure 4.5. The markers on the whiteboard rep-

resents the targets, and there is a small cart which could be dragged by hand under the

whiteboard. How it looks like is shown in Figure 4.5.

Figure 4.5: Experiment Targets

The expected result will be the crazyflies maintaining the height and formation

while following the targets.

The experiment process is as shown in Figure 4.6

The result is shown in Figure 4.7

Z-axis is time, red line is target average position over time, green line is crazyflie

trajectory average position over time, blue line is the formation at the beginning and a

random moment during the process. The green line almost has no drift from the red line

except the beginning moments when the crazyflies need time to become stable with the

algorithm. In a word, the result is up to our expectation.
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Figure 4.6: Experiment Process

Figure 4.7: Target Tracking Results
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Chapter 5

Conclusions

In our experiment, we did DOTVCF with convex cost function and changing

hessian on 4 or 6 crazyflies. This has demonstrated the possibility of implementing the

algorithm into the real world where there is limited information about the environment.

Using our algorithm, maintaining the formation using only the local and the neighbor

information (without the need to know the whole formation) is possible when there is a loss

of communication to the GPS signal.
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Appendix
Symbols

symbol meaning page

u velocity p 6,7,8,9,10,11

Hi Hessian matrix p 6,7,8,9,10,11

positiontargeti the i-th target position p11

velocitytargeti the i-th target velocity p11

sgn() signum function p 6,7,8,9,10,11

∇ gradient as respect to x p 6,7,9,10
∂
∂t differential as respect to t p 6,7,9,10

Ni denotes the set of neighbors p 6

Rm set of real domain with m× 1 dimension p 6,7

self adaptive coefficient p 6

Crazyswarm High-level Apis
setGroupMask() set crazyflies as groups

takeoff() take off

land() land

stop() emergency stop

goTo() go to a stationary point

uploadTrajectory() upload pre-defined trajectory

startTrajectory() start pre-defined trajectory

Position() get position coordinates

getParam() get PID, accelerator parameters

setParam() set PID, accelerator parameters

cmdFullState() online path executor

cmdStop() emergency stop

setLEDColor() flash the LED lights

Added New Functions
get pos() return current position of the Crazyflie

get target pos() return target neighbor position

update param() updates the position data into class private param.

get cf v() returns and updates the velocity

phi restriction() additional constrains on phi

update cf v() replacement of get cf v when using phi restriction()
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