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Targeted occupant surveys: A novel method to effectively 
relate occupant feedback with environmental conditions 
Carlos Duarte Roa1, Stefano Schiavon1, Thomas Parkinson1 
1Center for the Built Environment, University of California, Berkeley, CA, USA 

Highlights 
● Developed survey platform to distribute “right-now” assessments based on targeted 

IEQ measurements. 
● Conducted pilot study in a radiantly conditioned building to test survey platform. 
● Pilot study shows collected dataset better approaches ideal point dispersion (41%) 

compared to other methods (23, 19, and 12%). 
● New survey platform decreased occupant disturbance and data redundancy. 

Abstract 
Occupant satisfaction surveys are widely used in laboratory and field research studies of 
indoor environmental quality. Field studies pose several challenges because researchers 
usually have no control over the indoor environments experienced by building occupants, it 
is difficult to recruit and retain participants, and data collection methods can be 
cumbersome. With this in mind, we developed a survey platform that uses real-time 
feedback to send targeted occupant surveys (TOS) at specific indoor environmental 
conditions and stops sending survey requests when collected responses reach the maximum 
surveys required. We performed a pilot study of the TOS platform with occupants of a 
radiant heated and cooled building to target survey responses at 16 radiant slab surface 
(infrared) temperatures evenly distributed from 15 to 30 °C. We developed metrics and 
ideal datasets to compare the TOS platform against other occupant survey distribution 
methods. The results show that this novel method has a higher approximation to 
characteristics of an ideal dataset; 41% compared to 23%, 19%, and 12% of other datasets in 
previous field studies. Our TOS method minimizes the number of times occupants are 
surveyed and ensures a more complete and balanced dataset. This allows researchers to 
more efficiently and reliably collect subjective data for occupant satisfaction studies. 
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1. Introduction 

1.1. Literature review 
Post-occupancy evaluation (POE) is a general approach to obtaining feedback about a 
building’s performance during operation. POEs can include assessments for energy and 
water performance, indoor environmental quality (IEQ), and occupant comfort, 
satisfaction, and productivity. If defined and used properly, they provide a wealth of 
information to help researchers and other stakeholders identify building features and 
characteristics that function as intended and areas that need improvement (Leaman, 
Stevenson, and Bordass 2010). They also provide diagnostic information for building 
managers and owners to identify specific problems, and feedback for designers to improve 
future buildings (Preiser 1995). 
  
Occupant surveys are one method often used in POEs to evaluate occupant comfort and 
satisfaction with the built environment (Humphreys 1976; P. Li, Froese, and Brager 2018). 
There are two main types of occupant surveys; general and comprehensive assessments, 
and ‘right-now’ surveys that are known in other research fields as ecological momentary 
assessments (Shiffman, Stone, and Hufford 2008). General POE surveys are designed to 
gather an overall description of the building, assess occupants’ long-term satisfaction and 
comfort, and collect occupant characteristics (Schiller et al. 1988; Frontczak et al. 2012) . 
In contrast, the right-now surveys are designed to provide a snapshot of how occupants 
perceive their indoor environment at the moment in time they are completing the survey 
e.g. ‘Right now I feel …’, ‘Right now I prefer …’, etc (Benton, Bauman, and Fountain 1990). 
Right-now surveys are typically coupled with IEQ measurements, such as temperature, air 
velocity, sound pressure level, illuminance, and CO2 concentration. However, there are 
several obstacles to reliably gathering the contemporaneous IEQ measurements necessary 
for robust analyses of paired subjective and objective data. 

Researchers have employed different methods to distribute occupant surveys and 
simultaneously monitor environmental conditions in buildings. Administering surveys 
traditionally involved labor-intensive distribution of paper-based format, but in recent 
years has advanced to the use of computer software (Newsham and Tiller 1997; Zagreus et 
al. 2004) with some optimized for use on mobile devices (Parkinson, Candido, and de Dear 
2012). Today, web-based tools like SurveyMonkey™, Qualtrics™, and Google Forms™ have 
reduced the technological barriers to create, distribute, and analyze digital surveys (Finley 
2019; Qualtrics 2014; Google 2019). Aside from the distribution method, the content of IEQ 
surveys has been through many iterations. The Center for the Built Environment’s (CBE) 
Occupant Survey developed in 2000 is currently the most widely used standardized IEQ 
survey method (Zagreus et al. 2004; Frontczak et al. 2012; CBE 2019; Graham, Parkinson, 
and Schiavon 2020). Other widely used survey methods are Building Use Studies Ltd’s 
PROBE, Overall Liking Score, and Building Occupants Survey System Australia (Cohen et al. 
2001; Levermore 1994; Candido et al. 2016; Dykes and Baird 2013). 

Detailed spot measurements have historically been performed using different design 
iterations of mobile carts and stationary sensor kits (Benton, Bauman, and Fountain 1990; 
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Heinzerling et al. 2013; Newsham and Tiller 1997; Chiang et al. 2001; Lai et al. 2009; 
Ncube and Riffat 2012). A subject would complete a right-now survey while the researcher 
measured their immediate indoor environment. This process is time-consuming and 
expensive since assessments are normally done using only one or two of the expensive 
sensor arrays. Improvements in measurement technologies have led to sensors becoming 
inexpensive, increasingly accurate, easy-to-use, smaller, and more portable. This sensor 
revolution has driven the development of continuous IEQ monitoring systems designed to 
be permanently distributed throughout an indoor environment (Brager, Paliaga, and de 
Dear 2004; Goto et al. 2007; Cheung et al. 2017; de Dear, Kim, and Parkinson 2018; Kim et 
al. 2019; Liu et al. 2019; Parkinson, Parkinson, and de Dear 2019).  

1.2. Motivation and objectives 
Collecting subjective data relied on repeated right-now surveys based on a schedule, time 
intervals, or manual triggers. These survey distribution methods lack a mechanism for 
feedback and can result in responses during environmental conditions that do not add new 
information to the set of measurements e.g. responses were previously collected within 
the same study or external studies. If environmental conditions are oversampled or the 
research objectives are not to verify the outcomes of previous studies then subjects are 
unnecessarily disturbed in such cases, leading to survey fatigue (Porter, Whitcomb, and 
Weitzer 2004) and unbalanced or incomplete datasets. 

Given these challenges and shortcomings of methods currently used in field studies, there 
is a need for more advanced and robust survey methods to collect occupant responses for 
research studies. Important design characteristics of such a tool are: 1) ability for storage 
and retrieval of completed occupant responses along with specific environmental 
conditions the moment the survey was completed, and 2) ability to distribute occupant 
surveys at specific environmental conditions or throughout the researcher-defined region 
of interest depending on researchers’ study objectives while avoiding clustering of data. 
We define the “region of interest” as the range of environmental conditions that 
researchers are interested in surveying. Meeting the two design characteristics listed above 
necessitates the use of continuous real-time IEQ measurements. It also requires a tracking 
system for distribution details, target conditions, and recording when surveys are sent and 
completed. As such, the primary objectives of this research are: 

1. develop an online platform that incorporates these characteristics to administer 
right-now surveys based on specific IEQ measurements, 

2. conduct a pilot study of the survey platform using occupants of an office building. 

2. Methods 

2.1.Targeted occupant survey 

2.1.1.System overview 
The targeted occupant survey (TOS) platform runs on any local or remote computer with an 
internet connection. Figure 1 is a schematic representation of the main components of a 
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TOS study. There are three key parameter sets for configuration by the researcher or other 
survey designer: occupant, survey distribution, and physical measurement parameters. The 
TOS platform uses these parameters to define when and whom to send the occupant 
surveys. The occupant list contains the relevant participant information, including email 
addresses, personalized survey links, and identification number of the assigned IEQ sensor. 
The survey distribution parameter controls when occupant survey requests should be sent 
to participants e.g. during office hours only. In addition, the researcher can implement a 
sampling method for survey distribution based on the number of eligible participants. The 
sampling method can be defined by time of day / day of week, the number of survey 
requests, or participant responses. If no sampling method is defined, the TOS platform 
distributes the occupant survey to all eligible participants. Another key input among the 
distribution parameter is the maximum allotted surveys per participant per target IEQ bin. 
The TOS platform stops sending additional survey requests to a participant for the specific 
target IEQ bin when the maximum number of surveys for that condition has been met. The 
TOS platform would be performing as designed if the collected surveys match the defined 
maximum surveys input. The physical measurement parameter controls any 
transformations performed on incoming sensor data. The actual sensor reading, along with 
any transformation, can be defined to trigger survey requests. For example, raw data can 
be used to define a new metric such as the ramp/drift rate for the previous hour or the 
maximum/minimum temperature of the last 15 minutes. These flexible parameters offer a 
significant advantage to using TOS for field studies of occupant satisfaction. 

  

Figure 1: Targeted occupant survey (TOS) platform overview. The top schematic shows a high-level overview 
of how TOS projects are setup while the bottom schematic shows the TOS program flow. 

  5
Building and Environment, October 2020, 184                                                             https://doi.org/10.1016/j.buildenv.2020.107129 
CBE Report, June 2020  https://escholarship.org/uc/item/9sj1c34p

https://doi.org/10.1016/j.buildenv.2020.107129
https://escholarship.org/uc/item/9sj1c34p


2.1.2.Software program environment 
The TOS platform is written in Python (Python 2018, version 3.6.8) (Kuhlman 2012). We 
used pandas and NumPy to manage and analyze time-series data (pandas 2019; NumPy 
2019). Data analysis for the pilot study was done in R Statistical Software (The R 
Foundation 2019, version 3.6.1) with the tidyverse package (Wickham et al. 2019). Links to 
the source code for the TOS platform, helper programs, and analysis can be found in the 
supplementary material. 

2.1.3.Survey service 
The TOS platform can interface with any survey service that supports the download and use 
of data within the Python environment. We used Qualtrics Survey Software for the pilot 
study (Qualtrics 2014). Qualtrics uses a REST API to request survey information (Fielding et 
al. 2017) for subsequent download and analysis of responses. The questionnaire used in the 
pilot study is described in 2.2.2, and the full questionnaire can be found in Appendix A. 

2.1.4.IEQ measurements 
The TOS platform was designed to be sensor-agnostic and supports any device that can 
leverage a Python environment for code execution. The IEQ measurement collection 
program, referred to as the polling program, is an independent module that polls each 
sensor and transmits data to storage for later use. We developed and tested two 
acquisition systems, and plan to support more in the near future. The first acquisition 
system uses a simple data structure in Javascript Object Notation (JSON) format stored on 
the project computer. The second system uses an open-source database called simple 
Measurement and Actuation Profile (sMAP) (Dawson-Haggerty et al. 2010). We chose to use 
sMAP since it uses REST API for data retrieval for both TOS and post-processing, and also 
provides long-term storage solution. Appendix B contains more details about the data 
acquisition systems we tested. 

2.2.Pilot study 
We tested the TOS platform in a pilot study conducted in the David Brower Center (DBC) 
building in Berkeley, CA from October 20 through December 10, 2019. Berkeley has a 
Köppen Csb climate zone (California climate zone 3, ASHRAE climate zone 3C) 
characterized by dry, warm summers and mild winters. UC Berkeley’s Committee for the 
Protection of Human Subjects approved the IRB protocol (IRB-2011-04-3163). 
This pilot study is one example of a use-case scenario for the TOS platform. We designed 
the parameter sets above to give researchers extensive control over the data collection 
process. The key advantage of the TOS platform is that researchers define specific 
environmental conditions to trigger survey requests based on their particular study 
objectives and research questions. This increases the probability that more of the 
collected survey responses will contribute to answering their research questions.  

2.2.1.Building characteristics 
The DBC building is a 4-story mixed-use building with a floor area of 3,900 m² (42,000 ft²) 
for multiple tenants and a total of approximately 150 occupants (Raftery, Duarte, and 
Dawe 2018). The heating, ventilation, and air-conditioning (HVAC) system includes a 
thermally activated building (TABS) radiant system for the primary heating and cooling in 
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the office spaces (Babiak, Olesen, and Petras 2009). A 100% outside air underfloor air 
distribution (UFAD) system and natural ventilation through operable windows provide fresh 
air. The TABS radiant system uses a control strategy developed by Raftery et al. (2017) 
where the extreme thermal conditions of the zone from the previous day are used to 
adjust the slab setpoint for the next day. 

2.2.2.Subjects and questionnaires 
We recruited eight occupants from the DBC building to respond to three surveys for our 
pilot study. The first survey was used to gather a general description of the built 
environment, occupant characteristics, the long-term satisfaction and comfort, and 
invitation to our pilot study. The second survey asked information about personal 
characteristics (i.e. sex, age, height weight), use of personal comfort devices, temperature 
sensitivity, method of commute, work desk location, and email address. The third 
questionnaire was a right-now survey of 11-questions that took about a minute, on 
average, to complete. We used this survey in conjunction with the TOS program. The goal 
of the right-now survey was to characterize whole-body thermal comfort (thermal 
sensation, thermal acceptability, and thermal preference) and self-reported well-being 
(ability to concentrate, level of sleepiness, and perceived productivity) when subjects 
completed the survey. We used a continuous scale with 7-points (the ASHRAE scale: -3 - 
cold; 0 - neutral; +3 - hot) to evaluate subjects’ thermal sensation (ASHRAE 2017). For 
thermal acceptability, subjects marked their responses on a continuous scale with 7-points 
ranging from clearly not acceptable (-3) to just unacceptable (-0.1), and from just 
acceptable (+0.1) to clearly acceptable (+3); subjects were required to distinguish 
between acceptable and unacceptable. Subjects were asked to rate their thermal 
preference by selecting if they prefer to be cooler, warmer, or no change. Self-reported 
productivity questions used a 5-point discrete scale. We also asked subjects about their 
level of activity in the past 15-20 minutes, clothing ensemble, and their use of fans and 
windows. The complete right-now survey can be found in Appendix A. Data were 
anonymized and made publicly available. 

2.2.3.IEQ measurements 
We built a small IEQ measurement system to monitor indoor dry-bulb temperature, relative 
humidity, operative temperature, and surface (infrared) temperature. We placed one 
sensor kit on each subjects’ desk to measure their immediate environmental conditions but 
did not assess the difference in measurements due to the position of the sensor due to 
limited placement options. Figure 2 shows the stand-alone sensor kit and positioned on a 
subject’s desk in the case study building. We used Senseware nodes to create a mesh 
network, and a central Senseware gateway device to transmit data to both the Senseware 
database and our sMAP archiver (Senseware 2019). Table 1 reports specifications of the 
sensors use in the kit while Appendix C contains more details about the sensors and the 
calibration method. 
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Table 1: Custom IEQ measurement system’s sensors specifications. 

   

Figure 2:  Small custom-made sensor kit used in our pilot study. We placed one sensor kit on the subject's 
desk as shown within white circle of the bottom image. The sensor kit measured dry-bulb air, operative, and 
infrared temperature and relative humidity. 

In addition to the sensor measurements, we collected three different temperatures; zone 
radiant slab, zone dry-bulb as measured through the thermostat, and outdoor air. The 
radiant slab and thermostat temperatures are part of the building’s energy management 
system. We compared its measurements with calibrated sensors and found no meaningful 
difference between the two. We downloaded outdoor air temperature from a nearby 
weather station (www.wunderground.com). Since the building’s HVAC system switched 
between heating and cooling, we grouped temperature measurements by HVAC mode. 
Measured data are publicly available with collected survey responses. 

2.2.4.TOS input parameters 
We configured the TOS to administer surveys on weekdays from 8:00 to 18:00, with each 
subject receiving a maximum of three surveys per day at least two hours apart. Based on a 
15-minute iteration interval, the TOS polls sensors and identifies eligible subjects to 
receive survey requests. A subject is eligible if the environmental conditions are at the 
defined IEQ measurement targets within the region of interest, the subject has not 
exceeded the maximum number of completed surveys per IEQ measurement target and/or 
the maximum number of surveys per day, the current time is within the specified range for 
survey distribution, and the interval time between subsequent surveys is greater than what 
is defined. 

Measurement Manufacturer and model Uncertaint
y

Additional 
comments

Dry-bulb temperature Senseware node 0.3 °C -

Relative humidity Senseware node 2% -

Operative temperature HOBOware TMC1-HD 0.25 °C 2 min response time

Infrared temperature Melexis MLX90614 0.5 °C 90° field of view
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For the IEQ measurement targets, we defined 16 binned radiant slab surface temperatures 
measured from the infrared sensor in the kit at which survey requests were sent to 
subjects. We also defined a maximum number of surveys collected per target temperature 
for each subject; four for each infrared target bin except for bins 23, 24, and 25 °C where 
only two surveys were collected. Furthermore, we implemented a sampling method where 
the probability of sending a survey to an eligible subject decreased linearly with each 
survey they completed. That is, they had a 100%, 67%, 33%, 0% probability of receiving a 
survey request if the subject had completed 0, 1, 2, and 3 surveys that day, respectively. 
This sampling method helped avoid multiple surveys completed within one day at the same 
target infrared temperature. We anticipated the number of survey requests sent and, by 
extension, the number of completed surveys to be higher at the beginning of the 
distribution timeframe than later in the day. We instructed subjects to reply to the last 
survey request they received if multiple unanswered requests accumulated. 

2.2.5.TOS performance 
We developed a new metric,  , to measure the points’ proximity to other points within 
the TOS platform’s dataset as well as the datasets from other studies we used for 
comparison. The metric can be used to evaluate the clustering of data points. If the 
resulting   is low, it indicates that many survey responses were collected at similar 
environmental conditions which may be undesirable. To derive the metric,  , we first 
calculated the Euclidean distance between each point   and its   nearest points, averaged 
the   distances to get one value per point ( ), and found the median among the   
calculated   to get one value per dataset ( ). We use the median because the 
distributions of the target measurements might be different for each dataset. Equation 1 
shows the calculation for   for any dataset. 

     Equation 1.1 

     Equation 1.2 

Where  is the number of dimensions in the Euclidean space,   is the current point and   
is one of the   nearest points. We used two dimensions in our analysis - target IEQ 
measurement and time at which the subject took the right-now survey - and chose five 
total nearest points to find  . We found that the rate of change between   and  for 
k≥5 is fairly constant for the datasets evaluated in this study. We chose time as one of the 
dimensions because the current TOS version does not allow researchers to set multiple IEQ 
measurement targets; this limitation is addressed in Section 5. We also calculated the 
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variance of each dimension and in conjunction with the   metric, quantified the 
dispersion, or spread, in a dataset. 

We calculated the two metrics for the dataset collected in our pilot study and thermal 
comfort datasets from Liu et al. (2019),  Kim et al. (2019), and Cheung et al. (2017). Liu et 
al. (2019) collected environmental parameters, occupant behavior, physiological 
measurements, and occupant thermal satisfaction responses from 14 subjects for 2-4 
weeks to develop personal comfort models. Subjects in this field study completed right-
now surveys at their own discretion but researchers required 12 surveys per day, with 
incentives to complete more. Kim et al. (2019) collected environmental parameters, 
occupant behavior, and occupant thermal satisfaction responses from 37 subjects for 12 
weeks to study the use of personal comfort systems. Researchers sent email invitations to 
complete right-now surveys three times a day. Subjects completed the survey during their 
available time after the request was sent. Cheung et al. (2017) collected dry-bulb 
temperature, relative humidity, and carbon dioxide concentration, as well as thermal and 
air quality acceptability responses from 15 subjects for seven consecutive days. The 
researchers requested subjects complete a survey on their smartphone after each 
significant change in environmental conditions i.e. transitions between outdoor and indoor 
environments. 
  
To accompany these field measurements, we created ideal datasets for each field study 
with the assumption that the number of points were evenly distributed throughout the 
regions of interest which is consistent with each study’s research objectives. Collecting 
evenly distributed occupant responses within the region of interest is just one-use case for 
the TOS platform. Researchers can also use the TOS platform to survey occupants at only 
extreme or very specific environmental conditions (e.g. every time a fan is first used and 
when it is turned off) while ignoring the rest. The ideal datasets were generated using 
Halton sequences (Halton 1960), a quasi-random sampling method with applications in 
Monte Carlo simulations. The region of interest for the datasets are: in our pilot study, 
time between 8:00 and 18:00 and radiant slab surface temperatures between 19 and 27 °C;  
in Liu et al. (2019), time between 0:00 and 23:59 and hourly mean outdoor air temperature 
between 3 and 32 °C; in Kim et al. (2019), time between 6:00 and 18:00 and indoor 
operative temperature between 18 and 29 °C and; in Cheung et al. (2017), time between 
0:00 and 23:59 and carbon dioxide concentration between 370 and 4720 ppm. The 
temperature or concentration range corresponds to the observed minimum and maximum 
in each dataset, and the time range corresponds to the building occupancy hours in our 
pilot study and in Kim et al. (2019). For Liu et al. (2019) and Cheung et al. (2017), we 
considered all 24 hours because subjects were able to take surveys at their discretion with 
no time restrictions.  

In practice, achieving the characteristics of an ideal dataset is a challenge because:  

1. subjects may not take the survey immediately following the request, or may 
complete the survey at another target IEQ measurement that falls outside the region 
of interest;  

D5
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2. researchers do not have control over the environment that subjects are exposed to 
during field studies, so there is a higher likelihood to survey subjects at average 
conditions than more extreme conditions; and  

3. given that there is no control over the environment, subjects may never experience 
the conditions depicted in the ideal dataset. 

The ideal datasets provide a measure of how effectively the data collection methods 
sampled the respective region of interest. The hypothesis is that the TOS platform will 
collect more occupant survey responses sampled from within the region of interest with 
the available survey requests.  

3. Results 
The results are split into two sections. First, we analyze the TOS performance, quantify its 
collected data distribution with the ideal counterpart, and compare its data distribution to 
other datasets collected in other studies. Second, we present the subjective and IEQ 
measurement data collected during the pilot study.  

3.1.TOS Performance 
A summary of the TOS statistics during the pilot study are shown in Table 2. The TOS 
platform sent 329 survey requests, with subjects completing 216 surveys at a response rate 
of 66%. Subjects evaluated their whole-body thermal comfort and well-being at the 
moment they completed the survey rather than when the survey request was sent. Thus, 
subjects only completed one survey in cases where multiple unanswered survey requests 
had accumulated. The average number of completed surveys per subject was closely 
aligned with the defined maximum number of surveys, with the exception of the 23 and 24 
°C bins due to an issue in the TOS programming. The issue prevented proper parsing of 
timestamps to determine when survey requests were sent and surveys completed. This 
resulted in surveys requests being sent to subjects that violated the minimum time interval 
between survey requests. After fixing the issue, the TOS platform sent survey requests at 
an average time interval of 215 minutes; well above our minimum. It also administered 
surveys within our defined distribution hours and days of the week after fixing the issue. 
The number of surveys across the target temperature range shows that more extreme 
indoor temperatures were rarely experienced in the building. 

Table 2: Comparison between our input maximum number of surveys per target temperature per occupant 
and total survey requests sent and survey completed. TOS is designed to stop sending survey requests to a 
participant at a particular bin when the bin’s maximum allotted survey threshold is reached. TOS is 
performing well when the maximum allotted surveys match the actual completed surveys collected per 
participant per bin.  

Radiant slab surface 
(infrared) 

temperature target 
[°C]

Maximum 
allotted 
surveys¹

Total survey 
requests sent

Total surveys 
completed²

Average 
surveys 

completed per 
subject³
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The goal of the TOS platform in this study is to minimize data clusters by more evenly 
distributing responses across various conditions with minimal redundancy. Figure 3 shows 
visualizations of point dispersion of measurements from the datasets for A) our pilot study, 
B) Liu et al. (2019), C) Kim et al. (2019), and D) Cheung et al. (2017) in the top row, along 
with their respective ideal dataset in the bottom row. Table 3 shows the calculated values 
for the metrics   and variances for each dataset. The higher the variance, the larger the 
spread in the data, suggesting greater sampling of that dimension. The desired outcome is 
for metric values to be close or identical to the ideal values. By dividing the actual metric 
by its ideal counterpart, we could quantify the percentage of ideal (%I). The higher the %I, 
the closer the metric approaches the ideal. The %I shows that our pilot study with the TOS 
platform is closer to the ideal dataset – 41% compared to 23%, 19% and 12%. Also, the 
variance in y (target measurement) is further apart from its respective ideal in other 
studies when compared to our pilot study. These results suggest that the TOS platform can 
accomplish the desired objective of better data representation.  

Table 3: Calculated values of data dispersion metrics for each of four actual datasets and their ideal 
counterpart along with percentage of ideal (%I).  

15 4 | 32 0 0 0

16 4 | 32 0 0 0

17 4 | 32 0 0 0

18 4 | 32 0 0 0

19 4 | 32 0 0 0

20 4 | 32 23 5 | 1 0.63

21 4 | 32 64 22 | 1 2.75

22 4 | 32 63 37 | 12 4.62

23 2 | 16 64 42 | 13 5.25

24 2 | 16 57 32 | 10 4

25 2 | 16 44 21 | 7 2.62

26 4 | 32 9 6 | 1 0.75

27 4 | 32 5 4 | 2 0.5

28 4 | 32 0 0 0

29 4 | 32 0 0 0

30 4 | 32 0 0 0

Total 58 | 464 329 169 | 47 21.13

1. Categorized as: per subject | total for all subjects 
2. Categorized as: at workplace | not at workplace 
3. Average only includes responses where subjects were at workplace
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TOS pilot study Liu et al. (2019) Kim et al. (2019) Cheung et al. (2017)

Survey 
distribution 

method

TOS Subject’s discretion 
with hourly text 

reminders

Email requests three 
times a day

Subject’s discretion after 
environmental changes

Region of 
interest

8:00-18:00 and 19-27 
°C

0:00-23:59 and 3-32 
°C

6:00-18:00 and 18-29 
°C

0:00-23:59 and 370-4720 
ppm

Target IEQ 
measurement

Radiant slab surface 
temperature

Hourly mean outdoor 
air temperature

Indoor operative 
temperature

Carbon dioxide 
concentration

Actua
l

Ideal %I Actual Ideal %I Actua
l

Ideal %I Actual Ideal %I

Variance in x 6.51 8.32 78 27.26 47.99 57 7.81 11.99 65 22.35 47.85 47

Variance in y 2.14 5.35 40 18.42 70.06 26 1.22 10.08 12 382,999 1,576,44
0

24

0.175 0.431 41 0.049 0.215 23 0.006 0.031 19 39.8 334.7 12 D5
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Figure 3: Visualization of point dispersion in actual datasets for A) our pilot study, B) Liu et al. (2019), C) Kim 
et al. (2019), and D) Cheung et al. (2017) in the top row and the their respective ideal dataset in the bottom 
row. Ideal datasets contain the same number of points as its respective actual dataset; A) N=169, B) N=3585, 
C) N=4655, and D) N=550. 

3.2. Subjective and IEQ measurements 
During the pilot study, the observed minimum and maximum outdoor dry-bulb air 
temperature were 4 and 30 °C, respectively, leading the HVAC system to both heat and 
cool during the monitoring period. The HVAC system was in cooling mode for six 
consecutive days at the start of the study and one more day in the middle of November. 
Figure 4 shows (A) indoor and (B) outdoor temperature box-and-whisker plots grouped by 
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HVAC mode. Figure 4 (A) only includes temperatures during the building occupancy hours 
(8:00-18:00) while (B) contains temperatures from all hours of the day. Measurements from 
both our sensor kits located on subjects’ desks (workplace air) and from thermostats 
suggest that subjects experienced slightly cooler temperatures during heating mode than 
during cooling mode; 0.4 °C lower on average. As expected, the zones’ radiant slab 
temperatures are 0.8 °C higher during heating mode on average when comparing the slab 
temperatures during cooling mode. The outdoor daily mean average was 9.2 °C higher in 
cooling mode than during heating mode. Overall, the building HVAC system maintained 
similar indoor temperatures during both heating and cooling modes. Therefore, we do not 
expect significant differences in subjects’ satisfaction votes between modes. 

  

Figure 4: Box-and-whisker plots grouped by the building’s heating, ventilation, and air-conditioning (HVAC) 
mode of A) various indoor temperatures collected through our sensor kits placed on subjects’ desk and the 
building’s energy management system and B) outdoor air temperature (OAT). The box represents the 
interquartile range (25th-75th percentiles) and the whiskers represent the 5th and 95th percentiles. 

Figure 5 shows occupant thermal satisfaction results collected during our pilot study. 
Thermal preference is often the most useful discomfort parameter from a system controls 
perspective because subjects explicitly specify the corrective action for the HVAC system 
to improve their comfort. During the pilot study, 68% of responses voted “No change” to 
their thermal conditions, 15% voted “Cooler”, and 17% voted “Warmer”. The majority 
(82%) of “Warmer” responses occurred at temperatures below 22.5 °C. In contrast, there is 
no clear temperature threshold where subjects collectively responded with a preference 
for “Cooler” within the radiant slab surface temperatures measured during the study. The 
“Cooler” votes are scattered among the “No Change” votes.  

Figure 5 (B) shows thermal acceptability votes across radiant slab surface temperatures, 
and acceptable and not acceptable votes as a percentage of total votes. Eighty one 
percent of responses were slightly to clearly acceptable thermal conditions at the time 
they completed the right-now surveys over an operative temperature range of 20.4 to 25.2 
°C (5th and 95th percentiles respectively). This is slightly higher than the 80% goal of the 
ASHRAE thermal comfort standard (ASHRAE 2017). Comparing thermal acceptability to 
thermal preference, subjects were more lenient when responding to “Rate your 
acceptance of the current thermal environment.” than to “Right now, you prefer.” 
Occupants may willingly tolerate the current thermal environment even when their ideal 
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thermal conditions are not being met. The same results have been observed in other 
studies (Schiavon et al. 2017; Kim et al. 2019). This suggests that measures of thermal 
preference will lead to lower percentages of positive responses (“No change”) than 
thermal acceptability questions (P. Li et al. 2019). 

We also collected whole body thermal sensation votes, and Figure 5 (C) shows the 
relationship of subjects’ thermal sensation votes across radiant slab surface temperatures. 
The majority of votes are within the central three thermal sensation points: slightly cool, 
neutral, and slightly warm. The complete dataset from this study, including all IEQ 
measurements and survey responses, is publicly available. 
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Figure 5: Occupant thermal satisfaction results from eight subjects in pilot study. Thermal A) preference, B) 
acceptability, and C) whole body sensation. Daily radiant slab surface measurements collected with our 
sensor kits on all subjects’ workplaces and represented as gray lines in A). The solid black line in B) and C) is 
the local polynomial regression (LOESS) fit with 95% confidence interval in shaded area. Point color and shape 
in all scatter plots indicate thermal preference and acceptability votes, respectively. 
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4. Discussion 

4.1.TOS platform 
Field studies of thermal comfort are necessary to verify results of human-subject 
laboratory tests or to gain new insights on occupant perception and behavior in real world 
settings. Because office workers are often time-poor, it can be challenging to recruit them 
for such studies. Furthermore, researchers usually do not have control over the occupants’ 
indoor environment. These challenges often lead to field research methods that may not 
optimally collect subjective responses. The survey platform we developed is designed to 
address these methodological issues by performing targeted right-now surveys (TOS). 

The goal of any TOS platform is to minimize disruptions to building occupants while 
maximizing the amount of useful data collected with right-now occupant satisfaction 
surveys. We achieved this by adding response feedback to the survey administering logic, a 
crucial element missing from existing solutions. Implementing a tracking system into the 
TOS platform allowed us to maintain records of when and at what target IEQ measurements 
the building occupants have completed right-now surveys. This is a significant 
improvement over current methods where researchers distribute surveys several times a 
day based on a schedule, manual triggers, or at participants’ discretion. Although the 
intention may be to collect responses at different environmental conditions, the results in 
Table 3 and Figure 3 demonstrate the outcome is often far from ideal. The metric  , 
which is a measure of the points’ proximity to other points in the same dataset, is much 
smaller in other studies without the use of the TOS platform which indicates a more 
clustered dataset. Our field study data approaches the characteristics of an ideal sample 
as demonstrated by the higher percentage to ideal metric (I%) across the different 
parameters. Although 41% is a long way from 100%, it is a marked improvement from what 
other field studies have achieved. Moreover, we don’t know the upper limit to I% given the 
data collection limitations in Section 2.2.5. Nonetheless, this metric suggests that the TOS 
platform is successfully minimizing redundancy in the collected data, one of the key 
objectives of the platform.  

Scheduled or manual triggering of surveys without feedback will inevitably lead to clusters 
of responses around the mean of the target IEQ measurement and fewer responses towards 
the extremes. These clustered measurements create unbalanced datasets that provide less 
usable information for the development of predictive models (D. Li, Menassa, and Kamat 
2017; Cheung et al. 2017; Salamone et al. 2018; Kim et al. 2019; Liu et al. 2019). Avoiding 
clusters through the use of a TOS platform will lead to less participant disturbance and 
help limit associated costs of research subject participation. With the TOS platform, we 
defined 16 target radiant slab surface (infrared) temperatures with two or four maximum 
number of surveys per target temperature per subject. The TOS platform sent survey 
requests more frequently at the beginning of the study, but the frequency decreases as 
subjects completed them. We observed that the first conditions to reach the maximum 
allotted survey responses are those around the mean. As those allotments are fulfilled, the 
TOS platform will wait until extreme conditions are observed in the built environment. This 
functionality helps achieve the second key objective of reducing unnecessary participant 
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involvement. These results show that the TOS platform functions as expected and achieved 
the desired goals. 

Performing a controlled field study at that site with the same research objectives of our 
pilot study but without the use of the TOS platform would have allowed us to better assess 
the usefulness of the TOS platform. However, we were unable to perform this experiment 
due to time constraints and availability of participants. It is for this reason that we 
compared our pilot study to other field studies where the researchers’ goal was to collect 
survey responses distributed throughout a region of interest. Nonetheless, we expect that 
experiments with and without the TOS platform would likely result in the same conclusions 
as our present study but with a different number of survey responses collected between 
the two experiments. Experiments without the TOS platform would have more responses 
because there is no feedback to guide survey requests towards the environmental 
conditions of interest. Researchers would therefore need to send more requests to increase 
the probability that the collected data will be useful to the research objective. In contrast, 
the feedback and storage of previous survey responses by the TOS platform will ensure that 
much of the collected data falls within the region of interest defined by the researcher 
while reducing the burden on the subject. 

4.2.  Subjective and IEQ measurements 
We purposely selected a building with a radiant system to test the capabilities of the TOS 
platform to add to the body of literature on thermal comfort in radiant buildings 
(Karmann, Schiavon, and Bauman 2017). We aimed to collect survey responses at more 
extreme indoor temperatures to guide any modifications to the control sequences of the 
radiant system. The low number of recruited subjects meant we were unable to generalize 
our findings from the pilot study, but it was useful for testing our methods, and the dataset 
is publicly available for researchers to use in combination with other field study data 
(Duarte Roa, Schiavon, and Parkinson 2020). Nevertheless, we can make a few observations 
from the small dataset. 
  
The average difference in the five indoor temperature measurements between the heating 
and cooling modes was 0.4 °C which is of little practical significance. It also demonstrates 
that the radiant system was able to maintain consistent indoor temperatures as the HVAC 
modes switched. In addition, the median infrared and dry-bulb temperature measured in 
the occupied zone by our sensor kits were 22.6 °C and 22.8 °C, respectively, indicating 
that there are negligible differences in air and mean radiant temperatures experienced by 
occupants in this building (Dawe et al. 2020). The subjective thermal satisfaction responses 
from the small number of subjects indicate that this radiant building exceeds the ASHRAE 
80% acceptability criteria (Figure 5). These acceptability votes were cast at infrared 
temperatures ranging from 19.6 to 26.9 °C. Indicating we were able to receive votes at 
extreme conditions even though they did not happen often during our study period. A 
longer study period would have eventually fulfilled our defined maximum number of survey 
responses at mild target conditions forcing the TOS platform to only send survey requests 
at the extremes. The use of feedback to meet our input requirements is the key advantage 
of the TOS platform. In conclusion to our survey responses in our pilot study, the small 
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dataset does not suggest a thermal comfort advantage in this radiantly conditioned 
building when compared to all-air buildings (Karmann, Schiavon, and Bauman 2017). 

5. Limitations and future work 
The current version of the TOS platform allows researchers to use a single sensor to define 
target IEQ measurements. However, it does support the use of raw data points or a 
transformed metric like rate of change. It may be beneficial for future work to expand the 
functionality to include defining multiple target IEQ measurement types or multiple 
transformations of the same measurement type e.g. temperature rate of change at a 
specific temperature. We demonstrated that TOS performed well with one type of IEQ 
measurement target (indoor infrared temperature) and time, but it is uncertain how it will 
perform with the definition of multiple IEQ target types not including time. The joint 
probability distribution will change as multiple combinations of target IEQ measurement 
types are added. Thus, there should be an a priori understanding of the relationship 
between the proposed IEQ types in order to define effective target values. Nevertheless, 
the added functionality in the TOS platform would enable more effective data collection to 
study interaction effects (e.g. physiological signals with environment conditions Liu et al. 
(2019) or illuminance levels with indoor temperatures). The metric,  , can still be used 
to compare the actual collected dataset to an ideal as the Euclidean distance is 
generalizable to multiple dimensions. 

The main challenge of deploying the TOS platform is the need for real-time IEQ 
measurements. This requires sensors within an internet connected network infrastructure. 
Companies generally do not grant access to corporate networks, so using ad-hoc local 
networks is recommended. Alternatively, existing sensors in the energy management 
system could be used even though they may differ from actual conditions experienced by 
building occupants due to their location and accuracy. 

6. Conclusion 
We developed the targeted occupant survey (TOS) platform to give researchers greater 
flexibility in distributing right-now occupant satisfaction surveys. The TOS platform 
provides control over many parameters that dictate the recipients and timing of survey 
requests. We established two design goals when developing the TOS platform for our field 
study: 1) minimize redundancy in the collected data, and 2) minimize disruptions to 
participants. These two goals are met by using feedback and a tracking system, which led 
to a more complete and balanced dataset, reduced respondent fatigue, and minimized 
survey time and costs. We created environment sensor kits and performed a pilot study 
with eight participants to test the TOS platform in a building with a radiant heating and 
cooling system located in a mild climate. We defined several infrared temperature target 
values at which to administer the right-now thermal comfort survey and collected an 
average of ~21 completed surveys from each subject over the study period. The results 
indicate that the TOS program achieved the two design goals. Our collected dataset better 
approached an ideal data point dispersion (41%) when compared to three other field study 
datasets (23%, 19%, and 12%). We found less redundancy in our dataset, thereby limiting 
unnecessary disturbances for participants. These advantages of the TOS platform over 
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current survey methods allow building stakeholders to quickly and effectively collect data 
necessary to answer research questions and evaluate indoor environmental quality. 
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Appendix 

A. Right-now survey used our pilot study 

Targeted right-now survey 

Are you currently at your workplace? 

Yes No 

Have you been at or near your workspace for 15-20 minutes continuously? 

Yes No 

Please select your predominate activity within the building during the last 15-20 minutes. 

Sitting Standing and light activities 

  

Walking and climbing stairs Jogging, running and others 

  

Thermal environment for whole body 

Rate your current whole-body thermal sensation 

-3 -2 -1 0 1 2 3 

Rate your acceptance of the current thermal environment (select a non- zero value) 

 

-3 -2 -1 0 1 2 3 

Right now, you would prefer to be: 

Cooler No change Warmer 
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Are you using any type of air moving devices e.g. desk fans, ceiling fans, open 
window, etc right now? 

Desk Fan  

Ceiling Fan 
Open Window  

None 

Please select your approximate clothing ensemble right now: 
 

Naked 
0 1 2 3 4 5 6 7 8 

Right now, how do you feel? 

I am sleepy                 I am alert 

It is difficult for me to concentrate                   It is easy for me to concentrate 

I do not feel productive                    I feel very productive 

B. Data acquisition systems tested 

We tested two data acquisition methods. The first option uses simple data structure in 
Javascript Object Notation (JSON) format as illustrated in Figure B1. In this format, we 
require that each data entry contains a unique sensor ID along with the measured value, 
polling time in seconds from epoch (epoch is usually January 1, 1970, 00:00:00 (UTC)), 
description, and unit of measured value. Researchers can also assign additional information 
as metadata. If researchers select this option, the polling program will create a new file 
for each device used in the study every hour. The polling program then uses this file to 
append data entries up until the next hour. We define a device as a collection of sensors 
that are taking measurements from the same space. As an illustration, all of the sensors in 
a sensor kit can be considered as one device and each individual sensor is given a unique 
sensor ID to that device. The filename is then encoded with the date and hour it was 
created as well as with the device ID e.g <date>_<hour>_<device_id>.json. We found that 
this method allowed us to quickly find and retrieve data measurements for use within the 
TOS program. 
  
The first option is beneficial for researchers who do not want to use external databases to 
store their data which may require subscription fees. This option is simple to setup and 
use. It avoids the increased complexity when using external databases. This polling 
program has the option to save the data on the local project computer. We also 
implemented a method to deploy multiple minicomputers like the Raspberry Pi to poll 
sensors attached to it and send data entries to a remote project computer over the 
internet. 
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Figure B1: Schematic of JSON data structure for sensor data measurement entries within the targeted right-
now survey program. 

The second option we implemented was using an open-source database for storing and 
accessing time-series data and actuating connected devices called simple Measurement 
and Actuation Profile (sMAP) developed by UC Berkeley’s Electrical Engineering and 
Computer Sciences Department (Dawson-Haggerty et al. 2010). We used the second option 
in the TOS pilot study because we already have a central sMAP archiver that we used for 
our research group’s field studies. We attached the same sensor point information and 
metadata when using sMAP as we described in our JSON example above. sMAP uses a REST 
API to retrieve data from our archiver using a unique data stream ID and a date interval. 
The REST API facilitates data imports into a Python environment for use within the TOS 
platform. 

C. Sensor kit details 

The dry-bulb temperature (0.3 °C accuracy) and relative humidity (2% accuracy) sensors 
were integrated into a Senseware node. We measured operative temperature using a small 
globe sensor, which has a HOBOware TMC1-HD temperature probe (0.25 °C accuracy and 2 
min response rate) placed in the center of a 40 mm ping pong ball painted grey with 95% 
emissivity (Humphreys 1977). We used a Melexis MLX90614 sensor to measure infrared 
temperature (0.5 °C accuracy). This infrared sensor has a 90° field of view and it points 
directly to the ceiling surface which does most of the heat exchange for the radiant 
system. It was inevitable that we only capture the ceiling surface. The sensor’s field of 
view may also capture window and monitor surfaces, but the sensor’s sensitivity drops 
dramatically after 40° from its center reducing its impact on the reported average 
temperature. The infrared sensor also contains an optical filter that filters out most of the 
shortwave radiation (i.e. direct sunlight and lights). We calibrated the temperature probe 
sensors using a recirculating oil bath (PD7LR-20, Polyscience, U.S.). We also calibrated the 
infrared sensors using a thin metal pan coated with black matte paint submerged in the oil 
bath. We performed a four-point calibration from 15 to 30 °C for both sensor types.

{“sensor_id_1”: { 
    “value”: 22.27, 
    “reading_time”: 1563483364.6483772, 
    “description”: “dry-bulb temperature”, 
    “unit”: “degC”, 
    “location”: “room A” 
    }, 
{“sensor_id_n”: 
    “value”: <float>, 
    “reading_time”: <float>, 
    “description”: <string>, 
    “unit”: <string>, 
    }
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