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Matroid Intersection and its application to a
Multiple Depot, Multiple TSP

Sivakumar Rathinam1, Raja Sengupta2

Abstract

This paper extends the Held-Karp’s lower bound available for a single Travelling Salesman Problem to the following
symmetric Multiple Depot, Multiple Travelling Salesman Problem (MDMTSP): Given k salesman that start at different
depots, k terminals and n destinations, the problem is to choose paths for each of the salesmen so that (1) each vehicle
starts at its respective depot, visits atleast one destination and reaches any one of the terminals not visited by other
vehicles, (2) each destination is visited by exactly one vehicle and (3) the cost of the paths is a minimum among all
possible paths for the salesmen. The criteria for the cost of paths considered is the total cost of the edges travelled
by the entire collection. This MDMTSP is formulated as a minimum cost constrained forest problem subject to side
constraints. By perturbing the costs of each edge from Cij to Cij := Cij +πi +πj , one obtains an infinite family of lower
bounds, denoted by w(π), for the MDMTSP. Each lower bound, w(π), involves calculating a minimum cost constrained
forest. The minimum cost constrained forest problem is posed as a weighted two matroid intersection problem and
hence can be solved in polynomial time. Since the polyhedra corresponding to the matroid intersection problem has the
integrality property, it follows that the optimal cost corresponding to the LP relaxation of the MDMTSP is actually
equal to maxπ w(π).

I. Introduction

Let V = {1, 2, 3...n} be the set of vertices that represent the destinations to be visited. There are k
(k ≤ n) salesmen initially located at distinct depots represented by vertices S = {s1, s2...sk}. Each salesmen
is required to visit at least 1 vertex in V = {1, 2, 3...n} and reach a terminal. There are k possible terminals
denoted by the set of vertices, T = {t1, t2...tk}. A feasible set of paths for the salesmen consists of k vertex
disjoint paths that start at S and reach T such that all vertices are visited exactly once. An example of a set
of feasible paths for 3 salesman problem is shown in Fig. 1. There exists no edges between any two vertices
in S, T or between S and T . Any other edge joining vertices i and j, if present, has a cost Cij associated
with it. Costs are symmetric, i.e., Cij = Cji. The cost of a path is the sum of the costs of the edges present
in it. The objective of the MDMTSP is to find a feasible set of paths such that the sum of the costs of
the corresponding paths is minimum. To formulate this as an integer programming problem, two additional
root vertices r and r′ are added as shown in Fig. 2. Additional edges are added such that they connect root
vertex r (r′) to each of the vertices in S (T). Also, these additional edges are assigned zero cost. That is, for
all i ∈ S, Cri = 0 and for all i ∈ T , Cr′i = 0 . The MDMTSP is formulated as follows:

Problem I.1: The objective is to find an incidence matrix x such that the following cost given by

C(x) =
∑

i∈S,j∈V

Cijxij +
∑

i∈V,j∈V,i<j

Cijxij +
∑

i∈T,j∈V

Cijxij (1)

is minimized subject to the following constraints.

i.
∑

j∈V xij = 1 for all i ∈ S,

ii.
∑

j∈S xij +
∑

j∈V,i<j xij +
∑

j∈V,j<i xji +
∑

j∈T xij = 2 for all i ∈ V ,

iii.
∑

j∈V xij = 1 for all i ∈ T ,

iv. xri = 1 for all i ∈ S,
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Fig. 1. An example of MDMTSP for 3 salesmen.
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Fig. 2. The MDMTSP with root vertices for 3 salesmen.

v.
∑

{i,j}∈U1
xij ≤ |U1|− 1 for all U1 ∈ {{r}

⋃
U : U ⊆ S

⋃
V

⋃
T},

vi. xr′i = 1 for all i ∈ T ,

vii.
∑

{i,j}∈U2
xij ≤ |U2|− 1 for all U2 ∈ {{r′}

⋃
U : U ⊆ S

⋃
V

⋃
T},

viii.
∑

{i,j}∈U xij ≤ |U |− 1 for all U ⊆ S
⋃

V
⋃

T ,

ix. xij ∈ {0, 1} for all i, j ∈ {r, r′}
⋃

S
⋃

V
⋃

T and i < j if i, j ∈ V .

xij is a decision variable that is equal to 1 if the edge between vertex i to j is chosen and xij equal to 0
otherwise. Constraints i,ii,iii enforce the degree constraints on each vertex. Constraint iv and v removes any
possibility of a path joining vertices corresponding to the depots. Similarly, constraints vi and vii removes
any possibility of a path joining vertices corresponding to the terminals. Constraint viii doesn’t allow any
cycle in the graph induced by the vertices S

⋃
V

⋃
T . The MDMTSP is closely related to the Multi-Depot

TSP that has been addressed in GuoXing (1995). GuoXing is motivated by a Chinese truck company service
where there are three depots and a set of trucks available at each depot. Each truck has to accomplish atleast
one task and return to any of the three depots. The constraint here is that each depot should retain the same
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number of trucks after the service. The main difference between MDMTSP and the problem addressed in
GuoXing (1995) is that MDMTSP allows for the possible set of terminals to be distinct from the set of depots.
GuoXing provides a transformation to a standard single TSP wherein most applicable literature for the single
TSP can be put to good use. An integer programming formulation of a generalized version of the problem
discussed by GuoXing is presented in Kara and Bektas (2005). In the formulation of Kara and Bektas, there
is an upper and lower bound on the number of vertices visited by each salesman. As pointed out in Kara
and Bektas, an earlier version of this problem also appears in Kulkarni and Bhave (1985). In this paper, we
formulate MDMTSP as a minimum cost constrained forest problem subject to side constraints. To facilitate
further analysis, an additional constraint is added to MDMTSP without changing its set of feasible solutions.
This is stated in the following lemma.

Lemma I.1: The following additional constraint can be added to problem I.1 without changing its set of
feasible solutions: ∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij +
∑

i∈T,j∈V

xij = n + k (2)

Proof: Refer to the appendix.
Now, MDMTSP can be reformulated with the additional constraint as follows,

Problem I.2: The objective is to find the incidence matrix x such that the following cost given by

C(x) =
∑

i∈S,j∈V

Cijxij +
∑

i∈V,j∈V,i<j

Cijxij +
∑

i∈T,j∈V

Cijxij (3)

is minimized subject to the following constraints.

i.
∑

j∈V xij = 1 for all i ∈ S,

ii.
∑

j∈S xij +
∑

j∈V,i<j xij +
∑

j∈V,j<i xji +
∑

j∈T xij = 2 for all i ∈ V ,

iii.
∑

j∈V xij = 1 for all i ∈ T ,

iv.
∑

i∈S,j∈V xij +
∑

i∈V,j∈V,i<j xij +
∑

i∈T,j∈V xij = n + k,

v. xri = 1 for all i ∈ S,

vi.
∑

{i,j}∈U1
xij ≤ |U1|− 1 for all U1 ∈ {{r}

⋃
U : U ⊆ S

⋃
V

⋃
T},

vii. xr′i = 1 for all i ∈ T ,

viii.
∑

{i,j}∈U2
xij ≤ |U2|− 1 for all U2 ∈ {{r′}

⋃
U : U ⊆ S

⋃
V

⋃
T},

ix.
∑

{i,j}∈U xij ≤ |U |− 1 for all U ⊆ S
⋃

V
⋃

T ,

x. xij ∈ {0, 1} for all i, j ∈ {r, r′}
⋃

S
⋃

V
⋃

T and i < j if i, j ∈ V .

Let the constraints i,ii,iii be denoted by A1x = B1. The constraints defined by iv,v,vi,vii,viii,ix can be
written as A2x ≤ B2. Since the cycle elimination constraints ensure that each xij can never exceed 1, the
above minimization problem can be restated as

Copt = minx {C(x) : A1x = B1, A2x ≤ B2,x ≥ 0,x is an integer}. (4)

The LP relaxation of this problem is:

Clp = minx {C(x) : A1x = B1, A2x ≤ B2,x ≥ 0}. (5)
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Fig. 3. An example of a constrained forest with 3 trees.

Held and Karp (1970) formulated the single TSP as a minimum cost 1-tree problem with side constraints.
Just as how the 1-tree played an important role in the single TSP, a forest with k disjoint trees satisfying the
following constraint plays an important role in MDMTSP: Each tree in the forest spans exactly one vertex
from S, exactly one vertex from T and a subset of vertices from V . An illustration of such a forest with 3
trees is shown in Fig. 3. Using the notation in equation 4, the constrained forest problem, denoted by CF,
can be formulated as:

Cf = minx {C(x) : A2x ≤ B2,x ≥ 0,x is an integer}. (6)

One can now see that the MDMTSP is actually CF with additional degree constraints present in A1x = B1.
Similar to the results for the single TSP given in Held and Karp (1970), this paper presents the following
results for MDMTSP. A review of the generalizations of the Held-Karp’s work to other variants of TSP’s can
be seen in Westerlund et al. (2006).
• By perturbing the costs Cij to Cij := Cij + πi + πj , where πi is a weight assigned to vertex i, in MDMTSP
and CF one can obtain an infinite family of lower bounds for MDMTSP, namely w(π).
• For a given weight vector π, each lower bound w(π) can be calculated using any weighted two matroid
intersection algorithm.
• The optimal cost corresponding to the LP relaxation of the MDMTSP denoted by Clp is equal to maxπ w(π).

II. Lower Bounds

Let P denote the set of all feasible solutions for the MDMTSP as defined in equation 4. That is, P :=
{A1x = B1, A2x ≤ B2,x ≥ 0,x is an integer}. Similarly, let F denote the set of all feasible solutions for the
constrained forest problem. That is, F := {A2x ≤ B2,x ≥ 0,x is an integer}. Now, let us perturb the costs
Cij to Cij := Cij + πi + πj where πi is a weight assigned to vertex i. The objective function of MDMTSP in
problem I.2 gets modified to minx∈P C(x), where,

C(x) = C(x) +
∑

i∈S

πi +
∑

i∈V

2πi +
∑

i∈T

πi. (7)

Similarly, the objective function for the constrained forest problem gets modified to minx∈F C̃(x), where,

C̃(x) = C(x) +
∑

i∈S

πi

∑

j∈V

xij +
∑

i∈V

πi(
∑

j∈S

xij +
∑

j∈V,i<j

xij +
∑

j∈V,j<i

xji +
∑

j∈T

xij) +
∑

i∈T

πi

∑

j∈V

xij
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(8)

Note that any feasible solution for the MDMTSP is also a feasible solution for the constrained forest problem.
Hence we must have, minx∈F C̃(x) ≤ minx∈P C(x). Substituting for C(x) and C̃(x) using equations (7), (8)
and rearranging the terms we get the following lower bound for MDMTSP.

min
x∈F

C̃(x)−
∑

i∈S

πi −
∑

i∈V

2πi −
∑

i∈T

πi ≤ min
x∈P

C(x) (9)

Since the above equation is true for any π, we get the following lemma:
Lemma II.1:

max
π

w(π) ≤ Copt, (10)

where w(π) is defined as follows:

w(π) = min
x∈F

[C(x) +
∑

i∈S

πi(
∑

j∈V

xij − 1) +
∑

i∈V

πi(
∑

j∈S

xij +
∑

j∈V,i<j

xij +
∑

j∈V,j<i

xji +
∑

j∈T

xij − 2)

+
∑

i∈T

πi(
∑

j∈V

xij − 1)],

= min
x∈F

[C(x) + πT (A1x−B1)]. (11)

The left hand side of equation 10 provides a lower bound to the MDMTSP. Note that for any fixed π, the
inner minimization problem in equation 11 is that of calculating an optimal constrained forest.

III. The main result

Theorem III.1: Let Copt, Clp and w(π) be given by equations 4, 5 and 11 respectively. Then,

Copt ≥ Clp = max
π

w(π). (12)

Before we prove this, a useful property of the set of feasible solutions denoted by {A2x ≤ B2,x ≥
0, x is an integer} is stated in the following theorem.

Theorem III.2: The optimal solutions of the problem, minx{C(x) : A2x ≤ B2,x ≥ 0}, are integers. This
implies that minx{C(x) : A2x ≤ B2,x ≥ 0} = minx{C(x) : A2x ≤ B2,x ≥ 0, x is an integer}. Also the
constraint forest problem (CF) can be solved using any weighted two matroid intersection algorithm.

Proof: Let V := S
⋃

V
⋃

T . Let E be the set of all edges present in MDMTSP. Let I1 and I2 be two
collections of subsets of E as follows:

E ⊇ A1 ∈ I1 if and only if graph (V , A1) is free of cycles and free of paths connecting any pair of vertices
in S.

E ⊇ A2 ∈ I2 if and only if graph (V , A2) is free of cycles and free of paths connecting any pair of vertices
in T .

It is known in the literature (Cerdeira (1994), Cordone and Maffioli (2004)) that M1 = (E1, I1) and
M2 = (E2, I2) are matroids. Note that if there exists no independent set in either M1 or M2 with n+k elements,
then there exists no feasible solution in {A2x ≤ B2,x ≥ 0,x is an integer}. Hence, without loss of generality,
one can assume that both matroids M1 and M2 have atleast one independent set with n + k elements. Any x
is feasible in {A2x ≤ B2,x ≥ 0,x is an integer} if and only if the set of edges corresponding to x is a common
independent set of matroids M1 and M2 with n+k elements. Hence CF can be posed as a maximum weighted
two matroid intersection problem. Lawler (2000) has shown that the set of feasible solutions corresponding
to the intersection of two matroid polyhedra has its extremal points as integers. Hence, the integer constraint
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on the decision variables can be removed in the constrained forest problem. This essentially implies the first
result in the theorem that the optimal solutions of the problem, minx{C(x) : A2x ≤ B2,x ≥ 0}, are integers.
Also the optimal solution for CF can be found using any one of the weighted matroid intersection algorithms
available in Brezovec et al. (1986), Frank (1981) or Lawler (2000). Hence proved.

A. Proof of theorem III.1

Proof: Let C(x) = cTx.

Clp = minx {C(x) : A1x = B1, A2x ≤ B2,x ≥ 0}

= minx {cTx : A1x = B1, A2x ≤ B2,x ≥ 0}

Dualizing the problem, we have,

Clp = max
π,v

{−B1π −B2v : AT
1 π + AT

2 v ≥ −c, v ≥ 0},

= max
π

max
v

{−B1π −B2v : AT
1 π + AT

2 v ≥ −c, v ≥ 0}.

Again dualizing the inner maximization problem, we have,

Clp = max
π

minx {cTx + πT (A1x−B1) : A2x ≤ B2,x ≥ 0},

= max
π

(−πT B1 + minx {(cT + πT A1)x : A2x ≤ B2,x ≥ 0}),

= max
π

(−πT B1 + minx {Ĉ(x) : A2x ≤ B2,x ≥ 0}).

where Ĉ(x) = (cT + πT A1)x. Now, using theorem III.2 and the definition of w(π) given in equation (11),

Clp = max
π

(−πT B1 + minx {Ĉ(x) : A2x ≤ B2,x ≥ 0,x is an integer}),

= max
π

minx {cTx + πT (A1x−B1) : A2x ≤ B2,x ≥ 0,x is an integer},

= max
π

w(π).

Hence proved.

IV. Conclusions

The well known Held-Karp’s lower bound available for a single Travelling Salesman Problem is extended
to a Multiple Depot, Multiple Travelling Salesman Problem (MDMTSP). By perturbing the costs of each
edge from Cij to Cij := Cij + πi + πj , one obtains a infinite family of lower bounds, namely w(π), for the
MDMTSP. Each lower bound w(π) involves calculating a minimum cost constrained forest that can solved
using any weighted, two matroid intersection algorithm. Similar to the single vehicle case, it is also shown
that the optimal cost corresponding to the LP relaxation of the MDMTSP is actually equal to maxπ w(π).
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V. Appendix

Lemma V.1: The following additional constraint can be added to problem I.1 without changing its set of
feasible solutions: ∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij +
∑

i∈T,j∈V

xij = n + k (13)

Proof: Summing the constraint i in problem I.1 for all vertices in S, we get
∑

i∈S,j∈V xij = k. Similarly,
summing constraint iii, we get

∑
i∈T,j∈V xij = k. Summing constraint ii for all vertices in V and using the

fact that
∑

i∈V,j∈V,i<j xij =
∑

i∈V,j∈V,j<i xji, we get,
∑

i∈S,j∈V

xij + 2
∑

i∈V,j∈V,i<j

xij +
∑

i∈T,j∈V

xij = 2n

⇒
∑

i∈V,j∈V,i<j

xij = n− k.

Therefore,
∑

i∈S,j∈V

xij +
∑

i∈V,j∈V,i<j

xij +
∑

i∈T,j∈V

xij = k + (n− k) + k

= n + k.




