
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
QRnet: Optimal Regulator Design With LQR-Augmented Neural Networks

Permalink
https://escholarship.org/uc/item/9sk4h56r

Journal
IEEE Control Systems Letters, 5(4)

ISSN
2475-1456

Authors
Nakamura-Zimmerer, Tenavi
Gong, Qi
Kang, Wei

Publication Date
2021-10-01

DOI
10.1109/lcsys.2020.3034415

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sk4h56r
https://escholarship.org
http://www.cdlib.org/

QRnet: optimal regulator design with
LQR-augmented neural networks

Tenavi Nakamura-Zimmerer1, Qi Gong1, and Wei Kang2

Abstract— In this paper we propose a new computa-
tional method for designing optimal regulators for high-
dimensional nonlinear systems. The proposed approach
leverages physics-informed machine learning to solve
high-dimensional Hamilton-Jacobi-Bellman equations aris-
ing in optimal feedback control. Concretely, we augment
linear quadratic regulators with neural networks to handle
nonlinearities. We train the augmented models on data
generated without discretizing the state space, enabling
application to high-dimensional problems. We use the pro-
posed method to design a candidate optimal regulator for
an unstable Burgers’ equation, and through this example,
demonstrate improved robustness and accuracy compared
to existing neural network formulations.

Index Terms— Optimal control, Machine learning, Neural
networks, Distributed parameter systems

I. INTRODUCTION

WHILE the linear quadratic regulator (LQR) is firmly
established as one of the most powerful tools in linear

control, the design of optimal regulators for nonlinear systems
continues to challenge the control community. The bottleneck
in optimal feedback design is the need to solve a Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE). Due
to the well-known “curse-of-dimensionality,” this can be ex-
tremely difficult for high-dimensional nonlinear systems.

For this reason, there is an extensive literature on methods
for approximating solutions of HJB equations. Some key
examples include series expansions [1]–[5], level set methods
[6], patchy dynamic programming [7], [8], semi-Lagrangian
methods [9], [10], method of characteristics and Hopf formula-
based algorithms [11], [12], tensor-based methods [13], and
polynomial approximation [14]. Unfortunately, many of these
methods are limited to moderate dimensions, local solutions,
or dynamics with certain algebraic structure.

In recent years, neural networks (NNs) have gained con-
siderable attention as a promising tool for high-dimensional
problems since they can avoid the use of spatial grids. Many
NN-based methods represent the solution of the HJB equation
– called the value function – with a NN and minimize the
residual of the HJB PDE and boundary conditions at randomly
sampled collocation points [15]–[17]. That is, they solve the

1Tenavi Nakamura-Zimmerer and Qi Gong are with the Depart-
ment of Applied Mathematics, Baskin School of Engineering, Uni-
versity of California, Santa Cruz, CA. tenakamu@ucsc.edu,
qigong@soe.ucsc.edu

2Wei Kang is with the Department of Applied Mathematics, Naval
Postgraduate School, Monterery, CA. wkang@nps.edu

HJB PDE in the least-squares sense. [18] propose a method for
learning a suboptimal policy and approximate value function
locally around some nominal trajectories.

Finally, a number of recent works have demonstrated the
potential of data-driven methods for HJB. The core idea is
to generate data by solving a number of two-point boundary
value problems (BVPs) which describe the characteristics of
the value function. These BVPs can be solved independently,
without a spatial mesh, and in parallel, thus making the
algorithm causality-free. This property allows the method to
be applied to high-dimensional problems. Given BVP data,
one then constructs a model of the value function based on
this data. In [19], [20] the value function is calculated with
sparse grid interpolation, in [21]–[23] supervised learning is
used to train a NN model, and in [24] the value function is
approximated by sparse polynomial regression. Lastly, [25]
consider a related approach which connects forward-backward
stochastic differential equations with the HJB equation in
stochastic optimal control.

In this paper we propose a physics-informed machine
learning method to solve high-dimensional infinite horizon
quadratic regularization problems. This important class of con-
trol problems arise in the design controllers for regularization
or set-point tracking, and has numerous engineering applica-
tions in e.g. aerospace, robotics, chemical process control, and
distributed parameter systems. The contributions of the present
work are to 1) extend the framework introduced in [21]–[23]
to infinite horizon problems; and 2) introduce a NN value
function model which includes a quadratic term based on the
LQR approximation for the linearized dynamics. The proposed
model structure mirrors the form of a series expansion with
the NN accounting for higher order terms.

We contend that the proposed model structure, which we
call QRnet, has the following advantages:
• In common practice, linear and nonlinear parts of the

control are often treated separately. On the other hand,
the QRnet feedback controller smoothly integrates these
components to achieve good performance on large do-
mains while retaining the local robustness of LQR.

• Model training is LQR-initialized: rather than learning
from scratch, the NN builds on the scaffolding of the
LQR value function. As we show in Section IV-B, this
can reduce sensitivity to variations in the data set and
weight initialization.

II. PROBLEM SETTING

We consider infinite-horizon nonlinear optimal control prob-
lems (OCPs) of the form

minimize
u(·)

J [u(·)] =

∫ ∞
0

L(x,u)dt,

subject to ẋ(t) = f(x,u),
x(0) = x0.

(1)

Here x : [0,∞) → Rn is the state, u : [0,∞) → Rm is
the control, and f(x,u) : Rn × Rm → Rn is a Lipschitz
continuous vector field. We consider problems with quadratic
running cost,

L(x,u) = (x− x̄)TQ(x− x̄) + (u− ū)TR(u− ū), (2)

where Q ∈ Rn×n is positive semi-definite, R ∈ Rm×m is
positive definite, and x̄ ∈ Rn, ū ∈ Rm are a (possibly unsta-
ble) fixed point of the dynamics such that f (x̄, ū) = 0. This
standard cost function is a natural choice for regularization
or set-point tracking problems where we want to stabilize the
objective state x̄.

Throughout this paper, we assume that the OCP (1) is well-
posed, i.e. an optimal feedback control u∗(t) exists. This
ensures that the optimal controlled trajectory, x∗(t), satisfies
limt→∞ L(x∗(t),u∗(t)) = 0. Due to real-time application
requirements, we would like to design a closed-loop feedback
controller, u∗(t) = u∗(x(t)), which can be evaluated online
given any measurement of x.

A. The Hamilton-Jacobi-Bellman equation
Following the standard procedure in optimal control, to

compute the optimal feedback control we begin by defining
the value function V : Rn → R as the optimal cost-to-go of
(1) starting at the point x(0) = x. That is,

V (x) := J [u∗(·)] . (3)

It can be shown that the value function is the unique viscosity
solution [26] of the steady state HJB PDE,{

min
u

{
L(x,u) + V Tx (x)f(x,u)

}
= 0,

V (x̄) = 0,
(4)

where we denote Vx := ∂V/∂x. If (4) can be solved (in the
viscosity sense), then it provides both necessary and sufficient
conditions for optimality.

Given the value function V (·), we define the Hamiltonian

H(x, Vx,u) := L(x,u) + V Tx f(x,u). (5)

The optimal control satisfies the Hamiltonian minimization
condition,

u∗(x) = u∗ (x;Vx(x)) = arg min
u

H (x, Vx,u) . (6)

Then if we can solve (4), the optimal feedback control is
obtained online as the solution of (6).

But as discussed in Section I, solving (4) is extremely
challenging. Thus a common approach is to linearize the
dynamics about (x = x̄,u = ū) to obtain the linear system{

d
dt (x− x̄) ≈ A (x− x̄) +B(u− ū),

A := ∂f
∂x (x̄, ū), B := ∂f

∂u (x̄, ū).
(7)

Under the mild conditions that (A,B) is controllable and
(A,Q1/2) is observable, the value function of the OCP with
the linear dynamics (7) and quadratic cost (2) is

V LQR(x) = (x− x̄)TP (x− x̄), (8)

where P ∈ Rn×n is a positive semi-definite matrix satisfying
the Riccati equation,

Q+ATP + PA− PBR−1BTP = 0. (9)

Furthermore, the resulting state feedback controller is linear
with constant gain:

uLQR(x) = −Kx, K = R−1BTP . (10)

This approach has yielded many successful engineering
applications, but it is suboptimal and in some cases even fails
to stabilize the nonlinear dynamics. For this reason we are
interested in modeling the value function V (·) for the full
nonlinear dynamics.

B. Pontryagin’s Minimum Principle
To make use of (6) for general nonlinear systems, we

need an efficient way to approximate the value function and
its gradient. Like [19]–[24], rather than solve the full HJB
equation (4) directly, we exploit the fact its characteristics
evolve according to a two-point BVP, well-known in optimal
control as Pontryagin’s Minimum Principle (PMP, [27]):

lim
tf→∞

ẋ(t) = Hλ = f(x,u∗(x;λ)), x(0) = x0,

λ̇(t) = −Hx(x,λ,u∗(x;λ)), λ(tf) = 0,
v̇(t) = −L(x,u∗(x;λ)), v(tf) = 0.

(11)
Here λ : [0,∞) → Rn is called the costate. The two-point
BVP (11) provides a necessary condition for optimality, and
if we further assume that the solution is optimal, then along
the characteristic x = x∗(t;x0) we have

V (x) = v(t), Vx(x) = λ(t), u∗(x) = u∗(t). (12)

In general, the BVP (11) admits multiple solutions. So while
the characteristics of the value function satisfy (11), there
may be other solutions to these equations which are sub-
optimal and thus not characteristics. In certain problems the
characteristics can also intersect, giving rise to non-smooth
value functions and difficulties in applying (12).

Optimality of solutions to (11) can be guaranteed under
some convexity conditions (see e.g. [28]). For most dynamical
systems it is difficult to verify such conditions globally, but we
can guarantee optimality locally around an equilibrium point
[2]. Addressing the challenge of global optimality is beyond
the scope of the present work, so in this paper we assume
that solutions of (11) are optimal. Under this assumption, the
relationship between PMP and the value function given in (12)
holds everywhere.

Note the proposed method can still be applied even when
this assumption cannot be verified. In such cases PMP is the
prevailing tool for finding candidate optimal solutions, and
from these the proposed method yields a stabilizing feedback
controller which satisfies necessary conditions for optimality.

III. NEURAL NETWORK VALUE FUNCTION MODELING

A. Data generation

Like [22]–[24], we generate data by solving the two-point
BVP (11) for a set of randomly sampled initial conditions.
Critically, these BVPs can be solved independently without
knowledge of nearby solutions. Methods based on this idea
are referred to as causality-free [19], [20], [22]–[24]. Note that
the related method proposed in [21] differs slightly because it
does not allow one to choose initial conditions freely.

1) Generating infinite-horizon data: Different from these
prior works which consider fixed finite time OCPs, in this
paper we are interested in infinite-horizon problems. Notice
that the infinite-horizon PMP (11) is obtained with the limit
tf → ∞ of a finite-horizon problem [27]. To reflect this, we
solve (11) up to some fixed final time tf . Next we check
if the running cost L(x(tf),u(tf)) is smaller than a desired
tolerance. If not, we extend the time horizon and – using the
previous solution as an initial guess – re-solve the BVP until
the running cost is sufficiently small.

Once the running cost is small enough, it follows that
the finite-horizon solution approximates the solution of the
infinite-horizon problem as further integration should not
change the cost significantly. This conclusion is reasonable
as closed-loop stability is a necessary condition for finiteness
of the value function. Then by applying (12) at each point
along the trajectory x = x(t;x0) and aggregating data from
all infinite-horizon BVP solutions, we obtain a data set

D =
{
x(i), V (i),λ(i)

}|D|
i=1

,

where V (i) := V
(
x(i)

)
, λ(i) := Vx

(
x(i)

)
, and |D| denotes

the number of data points in D. Note that there is no need
to distinguish data from different trajectories as the value
function and its gradient are time-independent.

While generating data in this way is efficient because we
extract a lot of data from each successful BVP solution, it
has the side effect of concentrating a large amount of data
near the equilibrium. On the other hand, we are interested in
designing controllers which are effective over large regions
of the state space and consequently we need data sets which
support learning far from the equilibrium. To this end, instead
of including the whole trajectory in the data set, we only take
points with t ≤ tf/T for a parameter T ≥ 1. T is chosen
to balance efficiency in data generation with the competing
objective of adequately representing the entire state space; in
this paper we set T = 3.

2) LQR warm start for reliable BVP solution: In this paper,
we solve the two-point BVP using the SciPy [29] implemen-
tation of the BVP solver introduced in [30]. This algorithm
is highly accurate but convergence is highly sensitive to the
initial guess for x(t) and λ(t). Furthermore, convergence is
increasingly dependent on good initializations as we increase
the length of the time interval to approximate the infinite-
horizon problem.

To mitigate this difficulty we simulate the dynamics up to
some large final time tf with an LQR controller (10) to close
the loop. This provides a guess for the optimal state trajectory,

and a guess for the costate can be obtained with the LQR
approximation λ(t) ≈ 2Px(t). While the costate guess is
often far from perfect, we find that it is usually close enough
to facilitate reliable convergence over large time horizons. We
refer to this strategy as LQR warm-start.

B. Neural network architecture
We employ a simple and intuitive architecture to model

the value function. The main idea is to augment the LQR
value function approximation with a NN which accounts for
nonlinearities. The LQR value function is computed with
respect to the dynamics linearized around (x̄, ū), and provides
a good local approximation. The NN corrects and extends the
approximation throughout the training domain.

As for the NN, we use a standard fully-connected feed-
forward architecture. We denote the output of the network as
WNN(·). Feedforward NNs approximate complicated nonlinear
functions by a composition of simpler functions, namely

WNN(x) = gL ◦ gL−1 ◦ · · · ◦ g1(x), (13)

where the `th layer, ` = 1, . . . , L, is defined as g`(z) =
σ`(W`z + b`). Within each layer, W` and b` are the weight
matrices and bias vectors, respectively, and σ`(·) denotes a
nonlinear activation function applied component-wise to its
argument. We keep the scalar output layer gL(·) linear, so
σL(·) is the identity function.

We combine the raw NN prediction (13) with the LQR value
function (8) for the linearized dynamics (7) as

V NN(x) =
1

c
log
[
1 + cV LQR (x)

]
+WNN (x) , (14)

with a trainable parameter c > 0. Intuitively, LQR pro-
vides a good approximation near x̄. There V LQR (x) is
small and hence c−1 log

[
1 + cV LQR (x)

]
≈ V LQR (x)

for all c ∈ (0,∞). Further away from x̄, we have
c−1 log

[
1 + cV LQR (x)

]
� V LQR (x), thereby increasing the

relative importance of the corrective NN. The parameter c
governs the radius in which this term approximates V LQR(x);
in particular limc→0 c

−1 log
[
1 + cV LQR (x)

]
= V LQR (x).

Notice that the model structure (14) is similar to a series
expansion, except that we explicitly reduce the impact of lower
order terms away from the linearization point.

Finally, the NN-based feedback control is evaluated by
substituting V NN

x (·) into (6) in place of the gradient of the
true value function:

uNN (x) := u∗
(
x;V NN

x (x)
)
. (15)

It should be emphasized that the gradient V NN
x (·) is calculated

using automatic differentiation, and is therefore exact and
computationally efficient.

C. Physics-informed learning
Suppose we have generated a data set D as discussed in

Section III-A. This data takes the form of input-output pairs:
x(i) are the inputs and

(
V (i),λ(i)

)
are the outputs to be

modeled. Let θ denote the collection of model parameters:

θ := {c} ∪ {W`, b`}L`=1.

In [21]–[23], the NN is trained by solving a supervised
learning problem in which one minimizes the mean square
regression loss,

loss
V

(θ) :=
1

|D|

|D|∑
i=1

[
V (i) − V NN

(
x(i);θ

)]2
, (16)

plus a gradient regularization term

loss
λ

(θ) :=
1

|D|

|D|∑
i=1

∥∥∥λ(i) − V NN
x

(
x(i);θ

)∥∥∥2 . (17)

This serves as a form of physics-informed regularization.
The term “physics-informed” is borrowed from [31] which
partially inspired the authors’ previous work [22], [23]. By
incorporating the prior knowledge that λ(t) = Vx(x(t)), we
maximize the information extracted from the available data
and obtain more optimal feedback laws [21]–[23].

In this work we impose an additional penalty on deviating
from the optimal control:

loss
u

(θ) :=
1

|D|

|D|∑
i=1

∥∥∥u∗ (x(i)
)
− uNN

(
x(i);θ

)∥∥∥2 . (18)

Minimizing this control penalty term contributes directly to-
ward the ultimate goal of using the NN for optimal feedback
by effectively enforcing the Hamiltonian minimization condi-
tion (6) on the learned feedback policy. We now arrive at the
following optimization problem which we solve to train the
NN:

minimize
θ

loss (θ) := loss
V

(θ) + µλloss
λ

(θ) + µuloss
u

(θ) ,

(19)
where µλ, µu ≥ 0 are scalar weights.

To quantify the accuracy of the model, we generate two
data sets from independently drawn initial conditions. During
training, the network observes only data points from the
training set Dtrain. The other data set, which we call the
validation set Dval, is reserved for evaluating the NN accuracy
after training. Good validation performance indicates that the
NN generalizes well, i.e. it did not overfit the training data.
The ability to empirically measure model accuracy in this way
is a key feature of causality-free methods.

IV. APPLICATION TO DISTRIBUTED PARAMETER SYSTEM

In this section we explore the effectiveness of the proposed
algorithm by solving a 64-dimensional OCP arising from a
Chebyshev pseudospectral (PS) discretization of a modified
Burgers’ equation with a destabilizing reaction term. Stabiliza-
tion of Burgers’ equation is a common benchmark problem
in distributed parameter systems and similar problems have
recently been considered in e.g. [5], [14], [22], [23].

Let X(t, ξ) : [0,∞) × [−1, 1] → R satisfy the following
one-dimensional controlled PDE with Dirichlet boundary con-
ditions:

Xt = − 1
2 (X2)ξ + νXξξ + α(ξ)Xe−βX + bT (ξ)u(t)

for t > 0, ξ ∈ (−1, 1),
X(t,−1) = X(t, 1) for t > 0,
X(0, ξ) = X0(ξ) for ξ ∈ (−1, 1).

(20)

Here ν, β > 0 are scalar parameters, α : (−1, 1) → R, and
b : (−1, 1)→ Rm. The control u : [0,∞)→ Rm is designed
to stabilize the open-loop unstable origin by solving the PDE-
constrained OCP min.

u(·)
J [u(·)] =

∫ ∞
0

(
‖X‖2L2

(−1,1)
+RuTu

)
dt,

s.t. Eq. (20),
(21)

where

‖X‖2L2
(−1,1)

:=

∫ 1

−1
X2(t, ξ)dξ.

We define

α(ξ) =

{
−κ
(
ξ + 1

5

) (
ξ − 1

5

)
, ξ ∈

[
− 1

5 ,
1
5

]
,

0, ξ 6∈
[
− 1

5 ,
1
5

]
.

and consider the case with m = 2 actuators active on compact
supports defined by

b(ξ) =

{
−κ
(
ξ + 4

5

) (
ξ + 2

5

)
, ξ ∈

[
− 4

5 ,−
2
5

]
,

0, ξ 6∈
[
− 4

5 ,−
2
5

]
,{

−κ
(
ξ − 2

5

) (
ξ − 4

5

)
, ξ ∈

[
2
5 ,

4
5

]
,

0, ξ 6∈
[
2
5 ,

4
5

]
.

We set ν = 0.02, β = 0.1, κ = 25, and R = 0.5.

A. Pseudospectral discretization
To solve (21) using our framework, we perform Chebyshev

PS collocation to transform (20) into a system of n ordinary
differential equations (ODEs). Following [32], let

ξj = cos(jπ/n), j = 0, 1, . . . n, n+ 1.

We collocate X(t, ξ) at the non-boundary nodes ξj , j =
1, 2, . . . , n, and set X(t, ξ0) = X(t, ξn+1) = 0 to account
for the boundary conditions. We then define

x(t) :=
(
X(t, ξ1), X(t, ξ2), . . . , X(t, ξn)

)T
and construct Chebyshev differentiation matrices D,D2 ∈
Rn×n. Hence the PDE (20) becomes

ẋ = −1

2
Dx2 + νD2x+α� x� e−βx +Bu, (22)

where x2 := x� x, “�” denotes elementwise multiplication,
and α ∈ Rn and B ∈ Rn×m are the collocated versions of
α(ξ) and bT (ξ).

The integral appearing in the cost function is conveniently
approximated by Clenshaw-Curtis quadrature [32]. Let wj ,
j = 1, 2, . . . , n be the non-boundary Clenshaw-Curtis quadra-
ture weights. Then‖X‖

2
L2

(−1,1)
=

∫ 1

−1
X2(t, ξ)dξ ≈ xTQx,

Q = diag
(
w1, w2, . . . , wn

)
.

Now the original OCP (21) can be reformulated as a quadratic
cost ODE-constrained problem, min.

u(·)
Jn [u(·)] =

∫ ∞
0

(
xTQx+RuTu

)
dt,

s.t. Eq. (22).
(23)

B. Numerical results
We now present results of our method for solving the OCP

(23) with n = 64 collocation points. The algorithm can handle
higher dimensions, but we find that n = 64 points are enough
to resolve the stiff dynamics for all initial conditions tested.
We compare the accuracy of QRnet with that of a standard NN
trained using supervised learning (comparable to [21]–[23]),
as well as with a straight LQR approximation.

We consider initial conditions which are sums of sine
functions with uniform random coefficients:

X0(ξ) =

10∑
k=1

ak sin (kπξ) , ak ∼ U (−1/k, 1/k) , (24)

and use the following hyperparameters for training:
• in the NN component WNN(·) we use L = 5 layers

each with 32 neurons, and apply the tanh(·) activation
function to all hidden layers ` = 1, . . . , 4;

• we set the weights in the loss function (19) to µλ = 0
and µu = 5, and optimize using L-BFGS-B [33];

• we implement the model in TensorFlow 1.11 [34] and
train it on an NVIDIA RTX 2080Ti GPU.

First we study the sensitivity of the method with respect
to variations in the data set and parameter initialization. This
is important as collecting data can be time-consuming and
NN training is a highly non-convex optimization problem. To
this end we vary the number of trajectories in the training set
Dtrain, and for each different data set size, conduct ten trials
with different randomly generated training trajectories and NN
weight initializations. For validation we build a data set of 400
trajectories totaling |Dval| = 66060 data points.

From the results shown in Fig. 1, it is clear that both the
plain NN and QRnet vastly outperform LQR for value function
reconstruction and optimal control prediction. Furthermore,
the distribution of validation errors skews lower for QRnet
than the plain NN. This suggests that QRnet is less sensitive
to variations in the data set and parameter initialization, and
thus enables the use of smaller data sets. The training time
for smaller data sets is also shorter. Together, these properties
facilitate rapid prototyping over an iterative design process,
and combine naturally with the progressive model refinement
strategy proposed in [22].

Next we select NN and QRnet models trained on the
same set of 64 trajectories with nearly identical validation
accuracy. We compare the performance of the LQR, NN, and
QRnet feedback controllers to the open-loop optimal control,
across 1200 simulations for initial conditions of different size,
‖X0‖L2

(−1,1)
= 0.1, 0.2, . . . , 1.2. Results are shown in Fig. 2.

As expected, the performance of LQR steadily degrades away
from the origin, while the NN and QRnet controllers do well
throughout the training domain. The latter two appear to be
largely equivalent, except for a few initial conditions where
the NN accumulates significant additional cost while LQR and
QRnet do not. This supports the idea that QRnet inherits some
local robustness from LQR, yielding a more reliable controller
than a plain NN.

We conclude with a simulation of the dynamics (22) with
QRnet feedback, for a typical random initial condition. Results

Fig. 1: Relative mean absolute error in estimating the value,
relative mean L2 error in predicting the optimal control, and
training time, depending on the number of trajectories seen
during training. The bar graph height shows the median over
ten trials and error bars indicate the 25th and 75th percentiles.

Fig. 2: Difference between controlled and optimal costs,
depending on the norm of the initial condition. Shaded areas
cover the 15th to 85th percentiles, lines show medians, and
symbols pick out the top three outliers for each group of initial
conditions.

are plotted in Fig. 3. There we can see that QRnet stabilizes
the system and closely approximates the optimal control, even
where LQR deviates from it.

V. CONCLUDING REMARKS

In this paper we have presented QRnet, an extension of
the causality-free physics-informed learning framework [22],
[23] to infinite-horizon OCPs. This extension is comprised
of two main features: efficient infinite-horizon data genera-
tion and a structurally-motivated NN architecture. By way
of the Burgers’ benchmark problem, we have illustrated the
potential for use in high-dimensional nonlinear systems and
the improved robustness and performance the LQR-augmented
model architecture.

Much remains to be explored in the development of deep
learning approaches for feedback design. For instance, we
are interested in applying the proposed method to problems

0 1 2 3 4 5 6

-0.4

-0.2

0

0 1 2 3 4 5 6

0

0.2

0.4

Fig. 3: Closed-loop dynamics and controls of the Burgers’
system (22) for a random initial condition. The full simulation
is over t ∈ [0, 30] but we show only t ∈ [0, 6].

with control constraints and non-quadratic costs with locally
quadratic approximations. It will also be useful to study
how beneficial the model architecture is, depending on how
well the original problem can be approximated by a linear
quadratic one. Finally, since the computational framework
depends crucially on data generation, in future work we plan
to study different strategies for improving the robustness and
efficiency of this step.

REFERENCES

[1] E. Al’brekht, “On the optimal stabilization of nonlinear systems,” J.
Appl. Math. Mech., vol. 25(5), pp. 1254–1266, 1961.

[2] D. Lukes, “Optimal regulation of nonlinear dynamical systems,” SIAM
J. Control, vol. 7, no. 1, pp. 75–100, 1969.

[3] W. Kang, P. De, and A. Isidori, “Flight control in a windshear via
nonlinear h∞ methods,” in Proceedings of the 31st IEEE Conference
on Decision and Control, vol. 1, 1992, pp. 1135–1142.

[4] C. Navasca and A. J. Krener, “Solution of Hamilton Jacobi Bellman
equations,” in Proceedings of the 39th IEEE Conference on Decision
and Control (CDC), vol. 1, 2000, pp. 570–574.

[5] J. Borggaard and L. Zietsman, “The quadratic-quadratic regulator prob-
lem: Approximating feedback controls for quadratic-in-state nonlinear
systems,” in American Control Conference (ACC), 2020, pp. 818–823.

[6] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.

[7] S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, “A patchy dy-
namic programming scheme for a class of Hamilton-Jacobi-Bellman
equations,” SIAM J. Sci. Comput., vol. 34, no. 5, pp. A2625–A2649,
2012.

[8] C. Navasca and A. J. Krener, “Patchy solutions of Hamilton-Jacobi-
Bellman partial differential equations,” in Modeling, Estimation and
Control, ser. Lecture Notes in Control and Information Sciences,
A. Chiuso, S. Pinzoni, and A. Ferrante, Eds. Springer-Verlag Berlin
Heidelberg, 2007, vol. 364, pp. 251–270.

[9] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker, “An adaptive
sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi
Bellman equations,” J. Sci. Comput., vol. 55, no. 3, pp. 575–605, 2013.

[10] M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes
for Linear and Hamilton-Jacobi Equations. Society for Industrial and
Applied Mathematics, 2013.

[11] Y. T. Chow, J. Darbon, S. Osher, and W. Yin, “Algorithm for overcoming
the curse of dimensionality for state-dependent Hamilton-Jacobi equa-
tions,” J. Comput. Phys., vol. 387, pp. 376–409, 2019.

[12] I. Yegorov and P. M. Dower, “Perspectives on characteristics
based curse-of-dimensionality-free numerical approaches for solving
Hamilton-Jacobi equations,” Appl. Math. Optim., 2018.

[13] S. Dolgov, D. Kalise, and K. Kunisch, “Tensor decompositions for high-
dimensional Hamilton-Jacobi-Bellman equations,” arXiv:1908.01533
[math.OC], 2019.

[14] D. Kalise and K. Kunisch, “Polynomial approximation of high-
dimensional Hamilton-Jacobi-Bellman equations and applications to
feedback control of semilinear parabolic PDEs,” SIAM J. Sci. Comput.,
vol. 40, no. 2, pp. A629–A652, 2018.

[15] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.

[16] Y. Tassa and T. Erez, “Least squares solutions of the HJB equation
with neural network value-function approximators,” IEEE Trans. Neural
Netw., vol. 18, no. 4, pp. 1031–1041, 2007.

[17] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for
solving partial differential equations,” J. Comput. Phys., vol. 375, pp.
1339–1364, 2018.

[18] F. Jiang, G. Chou, M. Chen, and C. J. Tomlin, “Using neural networks to
compute approximate and guaranteed feasible Hamilton-Jacobi-Bellman
PDE solutions,” arXiv:1611.03158 [cs.LG], 2016.

[19] W. Kang and L. C. Wilcox, “A causality free computational method
for HJB equations with application to rigid body satellites,” in AIAA
Guidance, Navigations, and Control Conference, 2015.

[20] ——, “Mitigating the curse of dimensionality: Sparse grid characteristics
method for optimal feedback control and HJB equations,” Comput.
Optim. Appl., vol. 68, no. 2, pp. 289–315, 2017.

[21] D. Izzo, E. Öztürk, and M. Märtens, “Interplanetary transfers via deep
representations of the optimal policy and/or of the value function,” in
Genetic and Evolutionary Computation Conference, 2019, pp. 1971—
1979.

[22] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, “Adaptive deep
learning for high-dimensional Hamilton-Jacobi-Bellman equations,”
arXiv:1907.05317 [math.OC], 2019.

[23] ——, “A causality-free neural network method for high-dimensional
Hamilton-Jacobi-Bellman equations,” in American Control Conference
(ACC), 2020, pp. 787–793.

[24] B. Azmi, D. Kalise, and K. Kunisch, “Data-driven recovery of optimal
feedback laws through optimality conditions and sparse polynomial
regression,” arXiv:2007.09753 [math.OC], 2020.

[25] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differ-
ential equations using deep learning,” Proc. Natl. Acad. Sci. USA, vol.
115, no. 34, pp. 8505–8510, 2018.

[26] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi
equations,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1–42, 1983.

[27] L. S. Pontryagin, Mathematical Theory of Optimal Processes, ser. L.S.
Pontryagin selected works. Taylor and Francis, 1987, vol. 4.

[28] O. L. Mangasarian, “Sufficient conditions for the optimal control of
nonlinear systems,” SIAM J. Control, vol. 4, no. 1, pp. 139–152, 1966.

[29] P. Virtanen, R. Gommers, T. E. Oliphant, and et. al., “SciPy 1.0: Fun-
damental algorithms for scientific computing in Python,” Nat. Methods,
vol. 17, pp. 261–272, 2020.

[30] J. Kierzenka and L. F. Shampine, “A BVP solver based on residual
control and the MATLAB PSE,” ACM Trans. Math. Softw., vol. 27,
no. 3, pp. 299–316, 2001.

[31] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” J. Comput.
Phys., vol. 378, pp. 686–707, 2019.

[32] L. N. Trefethen, Spectral Methods in MATLAB. Society for Industrial
and Applied Mathematics, 2000.

[33] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. Sci. Comput., vol. 16,
no. 5, pp. 1190–1208, 1995.

[34] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems,” arXiv:1603.04467 [cs.DC],
2016.

