
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Proliferation and Polarity in Breast Cancer: Untying the Gordian Knot

Permalink
https://escholarship.org/uc/item/9sk560tq

Authors
Liu, Hong
Radisky, Derek C.
Bissell, Mina J.

Publication Date
2005-05-09
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sk560tq
https://escholarship.org
http://www.cdlib.org/


 1

Proliferation and Polarity in Breast Cancer: 

Untying the Gordian Knot 

 

Hong Liu, Derek C. Radisky, Mina J. Bissell 

Lawrence Berkeley National Laboratory, Berkeley, California 94720 

 

 

 

 

 

 

 

 

 

Correspondent author: Mina J. Bissell (mjbissell@lbl.gov) 



 2

Key word: proliferation, polarity, PI3 kinase, Akt, Rac1, tumorigenesis, 3 

dimension (3D).



 3

 

Abstract 

Epithelial cancers are associated with genomic instability and 

alterations in signaling pathways that affect proliferation, apoptosis, and 

integrity of tissue structure. Overexpression of a number of oncogenic 

protein kinases has been shown to malignantly transform cells in culture 

and to cause tumors in vivo, but the interconnected signaling events 

induced by transformation still awaits detailed dissection.  

We propose that the network of cellular signaling pathways can be 

classified into functionally distinct branches, and that these pathways are 

rewired in transformed cells and tissues after they lose tissue-specific 

architecture to favor tumor expansion and invasion. Using three-

dimensional (3D) culture systems, we recently demonstrated that polarity 

and proliferation of human mammary epithelial cancer cells were 

separable consequences of signaling pathways downstream of PI3 kinase. 

These, and results from a number of other laboratories are beginning to 

provide insight into how different signaling pathways may become 

interconnected in normal tissues to allow homeostasis, and how they are 

disrupted during malignant progression. 
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In the normal mammary gland, communication between the 

epithelium and the surrounding stromal cells generates and maintains 

cellular differentiation and epithelial polarity, and provides the organizing 

principle for complex tissue structures 1,2. These interactions are adaptive, 

and can attenuate the effects of tumorigenic alterations, as demonstrated 

by the fact that epithelial cells harboring oncogene-activating mutations 

can exist within normal tissue but be prevented by normal contextual cues 

from becoming malignant 3-7.  Accordingly, evolution of a tumor to 

malignancy requires persistent alterations in both the epithelium and the 

stroma. Consistent with this expectation, genetic alteration of signaling 

receptors in stroma can lead to tissue-specific epithelial tumors 8,9, and 

alterations in the microenvironment can release the suppression of 

context-inhibited malignant cells, allowing tumor growth 10. 

Polarity is a fundamental property of epithelium, allowing the 

surfaces of cells and tissues to divide into distinct apical and basolateral 

domains. The development and maintenance of this asymmetric 

architecture and polarity depends upon cell-cell contacts and cell-

extracellular matrix (ECM) interactions 11, as well as intrinsic cellular 

properties 12. Epithelial polarization gives directionality to protein 

localization processes necessary for appropriate organ function. Correct 

epithelial polarity also regulates intracellular and extracellular proliferative 

signaling inputs through spatial organization and segregation of signaling 
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effectors, restraining cell proliferation 13. Temporary loss of epithelial 

polarity that occurs during tissue repair and remodeling in wound healing 

processes stimulates mitogenic and migration pathways 14. However, 

normal wound healing is accompanied by restoration of polarity and 

suppression of proliferation, the permanent loss of polarity in tumors 

disrupts tissue structure, compromises the segregation of signaling 

effectors, and exacerbates the increased cell proliferation that is induced 

by other oncogenic signals.   

Increased proliferation is one of the most prominent features of 

tumors, but whether aberrant proliferation per se can cause loss of tissue 

structure and polarity remains an outstanding question. It is thus important 

to see whether dysregulated proliferation and loss of polarity are 

distinguishable mechanistic events during tumor progression. The 

combination of these effects can be observed in transgenic mouse models, 

where overexpression of a single oncogenic kinase such as ErbB2/NEU in 

the mammary gland can induce tumor development and metastasis 15.  

The downstream effectors of ErbB2/NEU regulate not only cell 

proliferation and apoptosis, but also probably polarity and tissue structure 

16. However, the precise role of oncogenic kinases in human cancers is 

obscured because the vast majority of human tumors are intrinsically 

genomically unstable, so that by the time cancer manifests, the numerous 

genetic lesions prevent strict definition of cause and effect 17. Genetic 

studies of Drosophila and mice in which up-regulated proliferation or 
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disruption of polarity alone is not sufficient to cause tumors suggest that 

activated oncogenes control distinct downstream pathways that affect 

proliferation and polarity separately 13,18-21. To dissect the oncogenic 

effects of polarity and proliferation, we used  a  genetically tractable model 

system of human breast cancer cells cultured in a physiologically relevant 

context, and found that two signaling pathways downstream of 

phosphatidylinositol 3-kinase regulate proliferation and tissue polarity 

separately 22. 

Class I phosphatidylinositol 3-kinase (PI3K) is activated by growth 

factor-responsive tyrosine kinases such as epidermal growth factor 

receptors (EGFR) 23 and integrin-responsive kinases such as focal 

adhesion kinase (FAK) 24.  Activated PI3K leads to the production of 

membrane-associated phosphatidylinositol 3,4,5-trisphosphate (PIP3), 

which in turn causes the recruitment to the cell membrane and 

subsequent activation of a number of signaling molecules such as Akt and 

SGK, which regulate cell proliferation and apoptosis 25. PI3K regulates 

Rac1, a small GTPase that has numerous functions including polarity 

control 26, that is one of the key mediators in processes that regulate cell 

orientation and directionality of chemotaxis for both Dictyostelium and 

cultured human leukocytes 27-29.  Its pleiotropic effects make PI3K an ideal 

candidate signaling mediator to explore whether cellular proliferation and 

polarity can be uncoupled in bifurcating downstream signaling pathways. 
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PI3K is one of the major oncogenic kinases and is constitutively 

upregulated in a substantial fraction of human cancers 25. Genetic studies 

in transgenic mice revealed that PI3K was essential for polyomavirus 

middle T-mediated mammary tumorigenesis 30 and upregulated PI3K 

signaling by overexpression of a constitutively active subunit of PI3K or by 

inactivation of the PIP3 phosphatase PTEN led to tumor formation in 

various tissues 25,31. Moreover, overexpression of PI3K in cultured 

nonmalignant human mammary epithelial cells is sufficient to confer a 

malignant phenotype 32.   

To address the question of whether proliferation and polarity are 

distinct phenotypes downstream of PI3K, we took advantage of a three 

dimensional (3D) laminin-rich basement membrane (lrBM) culture model 

developed in collaboration with Ole Petersen 33.  In this system, cells are 

embedded in 3D lrBM, a context that mimics the physiological 

environment and that provides cells with structural scaffolding and 

contextual information necessary for cell differentiation and polarity.  

Under these conditions, nonmalignant human mammary epithelial cells 

undergo growth arrest and differentiate into structures that resemble acini 

found in the mammary gland (well-organized spheres with correct 

apicobasal polarity); in contrast, malignant cells fail to respond properly to 

lrBM and proliferate into amorphous, disorganized structures 33.  Using 

this system and HMT-3522 T4-2 malignant human mammary epithelial 

cells, we have shown that inhibition of either EGFR or β1 integrin can 
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“revert” the cancer cells to a nonmalignant phenotype creating 

phenotypically normal acinar structures that nevertheless retain all of the 

mutations present in the parental breast cancer cells 34,35. 

Our analysis showed that down-modulating PI3K signaling by 

treating with specific PI3K inhibitors LY294002 or wortmannin was 

sufficient to reduce both cellular proliferation and anchorage-independent 

growth, and to restore apicobasal tissue polarity in the context of 3D lrBM. 

Significantly, PI3K and its phospholipid product PIP3 were localized to the 

basal pole in the reverted spheres (Figure 1) 22. These findings 

demonstrate that dysregulated PI3K activity can directly affect proliferation 

and polarity, and that these effects are reversible in the lrBM model 

system. 

  Akt is one of the central effectors of PI3K that mediate cellular 

proliferation and survival 25,36. In contrast to the tumorigenetic effects of 

activated PI3K signaling 37, and targeted deletion of PTEN 31, ectopic 

expression of active Akt is not sufficient to disrupt tissue structure or 

stimulate tumor development, although it can enhance the potential for 

development of more massive 20,38-42. Consistent with these findings, we 

observed that active Akt caused increased proliferation in the 3D lrBM 

reversion assay, but did not prevent the re-establishment of basal tissue 

polarity upon PI3 kinase inhibition 22 (Figure 2); similar effects were 

observed by treating cells with rapamycin (unpublished data), a specific 

inhibitor of mTOR (mammalian target of rapamycin), a major downstream 
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effector of Akt and a regulator of cell proliferation and growth 43. 

Proliferation was significantly reduced by rapamycin, but tissue polarity 

could not be restored. A separate study showed that expression of active 

Akt in nonmalignant human mammary epithelial MCF-10A cells cultured 

on 3D lrBM increased the size and cell number of the acinar structures but 

did not disrupt basal polarity 44.  These results show that while active Akt 

can stimulate proliferation, it does not affect cell polarity, implying that 

additional pathway(s) downstream of PI3K and parallel to Akt must exist to 

control polarity. 

The Rho family of GTPases have been extensively investigated for 

their function in cell organization and function 45. Rac1 is a RhoGTPase 

that is a component of an evolutionarily conserved protein complex 

(PAR3/PAR3/aPKC) that is key for regulation of cell polarity 46. 

Dysregulation of Rac1 activity in kidney epithelial cells cultured in 3D 

compromises cellular polarity 47. It has been shown that PI3K affects Rac1 

activity through control of its activators Tiam1 and Vav1 48.  We found that 

Rac1 activity was decreased in T4-2 cells treated with PI3K inhibitors, and 

that while cell proliferation was unaffected, basal tissue polarity could not 

be restored in cells expressing constitutively active Rac1 (Figure 2)22, 

showing that Rac1 acts downstream of activated PI3K to mediate the loss 

of tissue polarity without significant effect on cell proliferation.  That Rac1-

induced polarity disruption and Akt-induced proliferation enhancement 

were the principal downstream effects of activated PI3K in T4-2 cells was 
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demonstrated by the fact that cells coexpressing both active Akt and Rac1 

were immune to reversion by PI3K inhibitors 22 (Figure 2). These results 

show that increased proliferation (by activated Akt) and loss of polarity (via 

up-regulated Rac1 activity) constitute the minimal signaling inputs required 

from PI3K to cause the tumor phenotype, and that disruption of polarity is 

a requirement for the malignant phenotype even if cell proliferation is 

highly enhanced.  

Our results provide insight into the mechanisms of PI3K-induced 

tumorigenesis in breast cancers. In our model, signals from PI3K bifurcate 

into function-specific and independent pathways for control of proliferation 

and polarity. Activation of cell cycle-promoting or anti-apoptotic pathway(s) 

such as Akt or SGK increase tissue mass, while dysregulation of the 

cytoskeleton by Rac1 disrupts tissue polarity and architecture. The 

convergence of the two effects synergistically leads to tumor development 

22. We have shown that dysregulated cell proliferation and polarity defects 

are separable effects downstream of PI3K in mammary epithelial cells, but 

this principle might have general implications for other cell types and 

signaling pathways, as suggested by elegant analyses in Drosophila 

showing that the synergy of both defects is required for the development 

of the malignant phenotype 20,21,42.  Accordingly, it may be that separation 

of regulation of proliferation and polarity represents an evolutionarily 

conserved anticancer mechanism. Nevertheless, fundamental questions 

remain: how the defects in polarity and proliferation are coupled, to what 
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extent loss of polarity is sufficient to initiate cancer formation, and at which 

step the merge of the two defects is sufficient to lead to transformation 

during this progressive process. Unraveling the specific contributions of 

proliferation and polarity to tumor development through the use of 3D 

model systems and genetically tractable organisms will have a profound 

effect on our understanding of the nature of cancer development. 
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Figure legends 

 

Figure 1. Down-modulation of PI3 kinase activity results in phenotypic 

reversion, re-establishment of tissue polarity, and repolarization of PI3-

kinase, and its lipid product, phosphatidylinositol (3,4,5) trisphosphate 

(PIP3) in the acini.  (A) Phase contrast micrographs of phenotypically normal 

(S-1), malignant (T4-2), and T4-2 cells treated with 8 µM PI3 kinase inhibitor, 

LY 294002 (T4-2+LY) cultured in 3D lrBM for 10 days; (B) tissue polarity is re-

established in “reverted” T4-2 cells. Tight junction protein ZO-1 and the basal 

ECM receptor, α6 integrin, were used as apical and basal markers; (C) the 

basolateral localization of PI3-kinase and PIP3 in S-1 cells is lost in their T4-2 

progeny, but attenuation of PI3-kinase leads to repolarization.  Scale bar: 10 

µm (Adapted from Liu et al., 2004, J Cell Biol. 164:603-12,). 

 

Figure 2. Proliferation and tissue polarity are controlled separately by 

Akt and Rac1 downstream of PI3 kinase. Malignant T4-2 cells stably 

expressing constitutively active Akt, Rac1, or both were grown in 3D lrBM in 

the absence or presence of PI3 kinase inhibitor for 10 days. Scale bar: 10 µm 

(Adapted from Liu et al., 2004, J Cell Biol. 164:603-12,). 
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