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A R T I C L E I N F O
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A B S T R A C T
We describe how to use several machine learning techniques organized in a learning pipeline to segment andidentify cell membrane structures from cryo electron tomograms. These tomograms are difficult to analyzewith traditional segmentation tools. The learning pipeline in our approach starts from supervised learningvia a special convolutional neural network trained with simulated data. It continues with semi-supervisedreinforcement learning and/or a region merging technique that tries to piece together disconnected componentsbelonging to the same membrane structure. A parametric or non-parametric fitting procedure is then usedto enhance the segmentation results and quantify uncertainties in the fitting. Domain knowledge is used ingenerating the training data for the neural network and in guiding the fitting procedure through the use ofappropriately chosen priors and constraints. We demonstrate that the approach proposed here works well forextracting membrane surfaces in two real tomogram datasets.
1. Introduction

Despite the tremendous progress made in biological imaging thathas yielded tomograms with ever-higher resolutions, the interpretationof data (e.g., the segmentation of cell tomograms into organelles andproteins) remains a challenging task. The difficulty is most extreme,in our experience, in the case of cryo-electron tomography (cryo-ET),where the samples exhibit inherently low contrast due to the limitedelectron dose that can be applied during imaging, before radiation dam-age occurs. The resulting tomograms thus have a low signal-to-noiseratio (SNR), as well as missing-wedge artifacts caused by the limitedsample tilt range that is accessible during imaging [1]. Fig. 1 showstwo cryo-EM tomogram slices from two different datasets. These tomo-gram slices show a number of circularly shaped membrane structureswith proteins (visible as small dots) inside and outside the membranesurfaces.Our objective is to identify and isolate from such tomograms mul-tiple cellular substructures such as membranes and protein complexesthat can be analyzed further. This objective is often achieved through
∗ Corresponding author.E-mail addresses: lzhou11@fudan.edu.cn (L. Zhou), CYang@lbl.gov (C. Yang), wggao@fudan.edu.cn (W. Gao), TPerciano@lbl.gov (T. Perciano),karen.davies@diamond.ac.uk (K.M. Davies), NKSauter@lbl.gov (N.K. Sauter).

an image segmentation procedure. Currently, such a procedure is per-formed, in most cases, by a human expert manually tracing or high-lighting specific features in a tomogram, which are then extractedand analyzed for length, curvature, volume, distance, etc. This is anextremely time-consuming and labor-intensive process.Although a number of automated segmentation algorithms and toolshave been developed in the last few decades for high contrast medical3D imaging [2–8], most of them perform poorly on cryo-ET datasetsdue to low SNR and missing wedge artifacts. SNR can be partiallyimproved by applying contrast enhancement and edge detection al-gorithms, such as nonlinear anisotropic diffusion, wavelet transforms,or Sobel filters. Nevertheless, these algorithms can also generate falseconnectivity and additional artifacts that degrade the results producedby automatic segmentation methods.A human scientist can do a much better job than a computerprogram at segmenting and extracting membrane structures becausethey have prior knowledge (size, shape, etc.) about the biologicalobject to be segmented. However, we could train a machine to learnsuch knowledge. In that case, it may be possible to develop a more
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(a) A cryo-EM tomogram slice of membrane-
bound ATP synthase proteins reconstituted 
into liposomes [21].

(b) A cryo-EM tomogram slice of in-tact 
P19 cells in Mus musculus [22].

Fig. 1. Slices from two different cryo-EM tomogram datasets.

reliable automated segmentation tool that can be used to improve thethroughput of the visualization and analysis and tie the structure tofunction, etc.In recent years, there has been tremendous progress in the develop-ment of machine learning tools for image analysis and segmentation. Inparticular, convolutional neural network (CNN) based models such asU-Net [9] have been developed for cryo-ET segmentation, where anyarbitrary feature may be selected from the tomogram to be used asCNN training data [10]. Although the output is promising, this auto-matic machine learning algorithm still suffers from problems similar topixel-based density thresholding algorithms used to assist manual seg-mentation. In addition, the success of this approach is hampered by thelimited number of existing segmented structures to be used for training.Even though the recent development of cryo-electron tomography hasproduced many tomograms, high-quality substructure segmentationsthat can be used to train a neural network are still scarce and willlikely continue to be so. CNN models are also applied to localize severalmacromolecular species in cellular cryo-electron tomograms [11,12]where these methods will output only the location of macromolecules,not a segmentation map. For these methods, high-quality labeled datais also needed for the training process.Given the complexity of the segmentation task and the inherentchallenge in obtaining high-quality tomograms, it is unlikely a singleimage processing or machine learning technique can produce satisfac-tory results. However, multiple machine learning techniques can becombined to enhance the segmentation results produced by a CNN-based procedure. Among these are (1) reinforcement learning algo-rithms that can be used to connect multiple segmented pieces thatbelong to the same membrane structure (2) classification algorithmsthat can separate different membrane structures and place fragmentsof the same structure into the same group (3) parametric and non-parametric fitting algorithms that produce a smooth and continuoussurface representation of membranes.In this paper, we will illustrate how these methods can be combinedin an image analysis and segmentation pipeline that can significantlyenhance the fidelity of segmentation of cryo-tomograms. Althoughsome of these methods can be directly applied to 3D tomograms [12],the large data volume of cellular cryo-tomograms makes direct 3Dsegmentation computationally costly in practice. Therefore, we chooseto perform 2D segmentations of tomogram slices first and refine thesegmentation results in 3D by taking into account the correlationamong images in adjacent slices of the tomogram.This paper is organized as follows. In the next section, we willprovide an overview of the main workflow of the overall segmentation
2

procedure and how they fit together to meet the ultimate structureanalysis goal. This is followed by detailed discussions of each individualcomponent of the methodology, including the initial segmentation byU-Net (Section 3), the refinement of the segmentation in 2D usingreinforcement learning, classification, and parametric/non-parametricfitting (Section 4), as well as 3D refinement (Section 5).
2. Main workflow

Fig. 2 depicts the overall workflow of the machine learning-basedtomogram segmentation strategy we propose to analyze cryo-ET im-ages. We first preprocess the tomogram slices to enhance the imagecontrast if needed. We then generate training data for a U-Net by takinginto account prior knowledge of the type of membrane structure weplan to segment and analyze. The training data generation combinessimple 2D geometric motifs with measured signal and noise features inthe tomogram.Next, we use this training data as input for a U-Net, a CNN-basedsegmentation tool that identifies membrane structures to match thegeometric motifs used in the training data from tomogram slices.The output from the U-Net is typically imperfect and may containfragmented components and artifacts. Consequently, a 2D refinementprocedure is used to correct this output by identifying components thatbelong to the same membrane structure using algorithms based eitheron reinforcement learning or region merging.A parametric or non-parametric nonlinear fitting procedure is thenused to create smooth and continuous boundaries for the membranestructures. Finally, the corrected 2D sections are combined in 3D andrefined through a non-parametric fitting procedure to produce the final3D segmentation.
3. Segmentation by U-Net

U-Net [9] is a convolutional neural network (CNN) [13] basedsegmentation tool that has enjoyed tremendous success in biomedicalimage segmentation. The letter U in the name characterizes the layoutof the CNN, which consists of a contracting path (the left half the U)and an expansion path (the right half of the U.) The contracting pathmaps the input image to a set of features through successive layers ofconvolution, rectified linear unit (ReLU) and max pooling operations.The expansion path upsamples the feature channels before convolvingthem with weighting matrices, concatenating them with feature mapsproduced in the contracting path, and feeding them into the ReLU layer.
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Fig. 2. The main workflow of a machine learning-based approach that combines a number of techniques for segmenting cryo-EM tomograms and improving the segmentation.
Fig. 3. The simulated membranes and protein particles (left) and their labels (right).

One of the algorithmic ingredients that make U-Net robust is theability to use excessive data augmentation generated by applying elasticdeformations to the available training images. This algorithmic featureallows us to use a few well-defined geometric motifs (such as circles andellipses) to generate training data without relying on manual segmenteddata that are difficult to obtain.We generate training data through simulation. Our simulated 2Dimages combined simple geometric motifs (such as ellipses and circles)with a simulated noisy background. The type of geometric motifs wegenerate will depend on the visible structural features in the observedtomogram. The intensity profiles of both the geometric motifs andthe background are chosen to match those in the tomogram to besegmented. (See Section 1 in the Supplementary Material.)In addition to the membranes, we also generate small solid circlesnear the membrane to mimic membrane proteins (e.g., ATP synthasein Fig. 1), with globular domains adjacent to the membrane. We labelthe membranes and proteins separately. The use of three distinct labels,i.e., 0 for background, 1 for the protein, and 2 for the membrane (seeFig. 3) improves the segmentation result.
4. Connecting broken segments

We should note that the use of a CNN-based deep learning methodto segment and annotate 2D or 3D images is not new. This type ofapproach has been used successfully in a number of cellular applica-tions [10,12]. However, its success depends largely on the quality of thetraining data as well as proper tuning of the hyperparameters (such asthe number of neurons and layers) of the network, which is non-trivial.Therefore, we believe it is not realistic to rely completely on a CNNbased approach to obtain a satisfactory segmentation. The CNN-based

3

approach can be used as a preliminary segmentation tool followed byother refinement procedures to be described below.Although the U-Net we use does a remarkable job at identifyingmembranes of subcellular structures, some of the identified membranesegments are disconnected. The gaps in the segmented membraneresult from (1) low contrast and signal to noise ratio in the tomogram(2) incomplete tomogram reconstruction due to the missing wedgeproblem.However, human vision can easily recognize how some of thedisconnected components should be joined. With some prior knowledgeof the possible shapes of the targeted membrane structure, we candeduce how the disconnected components should be connected andhow open boundaries can be closed. In this section, we discuss howto use other learning algorithms to join all disconnected membranesegments that should lie on the same subcellular membrane surface.Our goal is to perform this type of postprocessing in an automatedfashion with as little human intervention as possible. The challengeis that a tomogram may contain multiple membrane structures, eachenclosed by a membrane. If there were only one such structure, wecould possibly use a curve or model fitting procedure to connect themembrane segments identified by the U-Net. Other contour completionalgorithms may also be used [8].In the presence of multiple membrane structures, we need to deter-mine, in an automated fashion, which labeled pixels belong to the samemembrane segment, and which segments belong to the same membranesurface. While the first question is relatively easy to address by group-ing labeled pixels within an 𝜖-distance from each other, the secondquestion is much harder to address because the labeled membranesegments can have different shapes, lengths, and curvatures.We present two strategies for achieving this task. The first strategyis based on reinforcement learning. The second strategy is based onregion-based pixel merging.
4.1. Reinforcement learning

Our first strategy is to train an agent to walk along segmentedcomponents and make connections with other segmented componentswith the goal of returning to the point it started from without crossingany segmented components that have already been traversed. Once theagent successfully returns to the starting point, the traversed segmentsare selected for further processing, and the agent can start again froma segmented component that has not been traversed. Otherwise, theagent is allowed to backtrack or start a new exploration trip (episode)if the existing journey is unlikely to be successful. The learning processis terminated when the number of attempts to traverse and return to the
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(a) Connected segments in a lipo-some tomogram slice identified bythe RL algorithm. Each segment islabeled by a distinct number andcolor.

(b) All connections made by the RL algorithm. Each connection ismarked by a black line in the fig-ure.
Fig. 4. Applying RL algorithm to a U-Net segmented tomogram slice.
starting point exceeds a preset number. This type of learning algorithmis often referred to as reinforcement learning (RL).The RL algorithm we use consists of two phases. In the first phase,an agent is trained to traverse through U-Net segmented pixels that aresufficiently close with the goal of creating ordered lists of pixels thatare connected. The walker starts at a labeled pixel on a segmented com-ponent that has not been included in any of the connected membranesurfaces. It moves around by taking one of the eight actions (moveup, down, left, right, up then left, down left, up right, down right byone pixel) until no action can be taken. Fig. 4(a) shows the outcomeof the first phase of the RL algorithm when applied to a 2D slice ofthe liposome tomogram that has already been segmented by a U-net.The RL algorithm identified 12 connected segments, each labeled by adistinct color and number in the figure.In the second phase of the RL algorithm, our goal is to connectsegmented components (ordered lists of pixels) identified in the firstphase if they belong to the membrane of the same membrane structure.The walker is initialized to exit from an endpoint of a segmentedcomponent. We train the walker to find another segmented componentto connect to in order to have the best chance to return to the samecomponent it starts from along a smooth path without revisiting anysegments that have already been traversed. Once the decision is made,it picks one of the endpoints of the next component to enter and exitfrom the other endpoint. Fig. 4(b) shows how disconnected segmentsbelonging to the same membrane in Fig. 4(a) are connected in secondphase of the RL algorithm.
4.2. Classification via region merging

The RL algorithm presented above classifies the U-Net segmentedcomponents into separate classes that represent membranes of distinctmembrane structures. Segmented components belonging to the sameclass can be connected via a number of geometric fitting procedures tobe discussed in Section 4.3.In this section, we consider another strategy to perform this classi-fication. Our classification scheme is a variant of the statistical regionmerging method originally developed in [14]. In this approach, eachpixel identified by U-Net to be part of the membrane initially forms itsown region. Regions that are sufficiently close to each other are thenmerged successively. The distance between two regions 𝑅1 and 𝑅2 isdefined by
𝑑(𝑅1, 𝑅2) = min

(1) (2)
‖𝑥(1)𝑖 − 𝑥(2)𝑗 ‖, (1)
4

𝑥𝑖 ∈𝑅1 ,𝑥𝑗 ∈𝑅2
where 𝑥(1)𝑖 and 𝑥(2)𝑗 are the coordinates of two points in regions 𝑅1 and
𝑅2 respectively. In addition to using 𝑑 as a metric to decide whether tomerge two adjacent regions, other visual cues such as curvature of theexisting region can be used to define a predicate for reaching a mergingdecision. Such a predicate may also take into account uncertainty in thedata (due to the presence of noise, artifacts and missing information) toallow merging decisions to be made on a statistical basis [15]. At theend of the merging process, each distinct region represents a distinct(membrane) class which is assigned a unique label.Suppose we perform region merging within each 2D tomogramslice. In that case, disconnected components with a relatively largegap will remain in different regions and thus could be disconnectedafter the merging process. However, suppose we allow merging to beperformed in 3D, i.e., allowing pixels in different slices to be mergedinto the same region. In that case, two disconnected segments on thesame membrane can be combined into the same region when eachof these segments contains separated pixels that can be connected toother pixels in an adjacent slice that have already been merged into acommon region. That is possible because segmented components thatbelong to the same membrance surface may be disconnected at differentlocations in different slices. By exploiting the continuity of a membranestructure among different tomogram slices, we can successfully placetwo disconnected segments in a single tomogram slice into the sameclass.Fig. 5 shows that even though segments 𝐴 and 𝐵 are disconnectedin slice 90 of the liposome tomogram, they contain pixels that can beconnected (via the path shown in the right subfigure) to other pixels inan adjacent slice that has been merged into a common region on slice105.Fig. 6 shows the final six regions created by the region mergingprocedure when it is applied to the initial 2D segmentations of dataset1 produced from U-Net. We assign a different color to each region,which corresponds to one membrane structure (except the sheet inthe upper left corner of the 3D rendering). Although these regionscan be viewed as a 3D segmentation of the tomogram, the segmentedstructures contain visible artifacts such as extra voxels protruding froma membrane surface and gaps in the membrane surface. We will show inSection 5 that this problem can be fixed by a 3D fitting and refinement
procedure.
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(a) The U-Net segmen-tation performed on slice90 of the liposome tomo-gram yields two discon-nected segments A and B.

(b) Slice 105 of the li-posome tomogram shows that the A and B seg-ments on slice 90 are likely to be connected.

(c) A 3D path that con-nects pixels in A and B on slice 90 to pixelsin other slices that havebeen merged in to a com-mon region identified inslice 105.
Fig. 5. Placing two disconnected segments 𝐴 and 𝐵 in slice 90 into the same class through 3D region merging.
Fig. 6. 3D rendering of six regions obtained at the end of the region merging procedureapplied to the entire tomogram. Each region is labeled by a unique color.

4.3. Connecting segmented components via 2D parametric andnon-parametric fitting
Once the segmented components have been classified, the pixels be-longing to the same class can be connected in 2D via a parametric andnon-parametric fitting scheme by taking into account prior knowledgeof the membrane structure to be examined.

4.3.1. Parametric fittingIf the object to be segmented has a simple geometry, we can usea parametric fitting scheme to deduce the missing pieces betweendisconnected components that have already been segmented out byU-Net. If, for example, the horizontal slice of vesicle membranes inFig. 7(b) all have a elliptical shape, we can fit the visible points toa parameterized elliptic equation. Fig. 7(c) shows such a fitting resultin which the red curve represents the elliptic fitting, whereas the bluecurve represent the segmentation produced by U-Net.
4.3.2. Non-parametric fitting via Gaussian processWhen the membrane of the subcellar structures cannot be easilydescribed by simple geometric objects that admit an analytic param-eterization, we use a non-parametric fitting procedure based on the
5

Gaussian process (GP) formalism [16] and the implicit surface [17]formulation.The basic idea is to view the 2D curve that encloses a membranestructure as the zero level set of a smooth 2D scalar function 𝑓 (𝑥, 𝑦).Our goal is to construct this non-parametric function 𝑓 (𝑥, 𝑦) such that
𝑓 (𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ 𝑈 , where 𝑈 contains pixels in segmentedcomponents that have been identified and connected by the algorithmspresented in Sections 3, 4.1 and 4.2. In addition to the segmentedpixels, the set 𝑈 also includes the pixel coordinates of a number ofanchor points both inside and outside the expected membrane surfaceso that a smooth convex or concave function 𝑓 (𝑥, 𝑦) can be constructed.The choice of these anchor points represents our prior belief that certainparts of the image should belong to the exterior of the membrane.In contrast, the other parts should belong to the interior even thoughwe have yet to determine the precise location of the interior/exteriorseparation in the region of interest.We initially set the values of 𝑓 to negative and positive constants atthese anchor points as shown in the example given in Fig. 8. If 𝑓 (𝑥, 𝑦)is continuous and sufficiently smooth, the pixels in the zero level set of
𝑓 (𝑥, 𝑦) that have not been included in the set 𝑈 defined above will fillin the gaps of the partially segmented membrane components returnedfrom the algorithms described in Sections 4.1 and 4.2, thus forming acontinuous and smooth boundary (surface) as shown by the examplegiven in Fig. 10.A GP is a prior of the distribution of functions 𝑓 that is generallydefined by a multivariate Gaussian  (𝝁,𝐊), with a mean function 𝝁and covariance function 𝐊. Since we are only interested in functionvalues at the 𝑛 pixels of a 2D image, 𝝁 is a vector of length 𝑛, and 𝐊 isa 𝑛 × 𝑛 matrix. We denote the function values of 𝑓 on 𝑛 pixels by 𝐟 .The vectors 𝐟 and 𝝁, and the covariance matrix 𝐊 can be partitionedas
𝐟 =

(

𝐟1
𝐟2

)

, 𝝁 =
(

𝝁1
𝝁2

)

, 𝐊 =
(

𝐊11 𝐊12
𝐊21 𝐊22

)

, (2)
where 𝐟1 corresponds to random variables associated with values of
𝑓 defined on pixels contained in the set 𝑈 described above, whichincludes both the coordinates of the segmented components and the co-ordinates of the anchor points, and 𝐟2 corresponds to random variablesassociated with values of 𝑓 defined on the other pixels in the image.The vectors 𝝁𝑖 are the means of 𝐟𝑖, 𝑖 = 1, 2 respectively. The partitionof 𝐊 is conformal to that of 𝐟 and 𝝁.
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(a) Input images (b) Output of U-Net (c) Output of segments
Fig. 7. Fitting U-Net segmented components with ellipses for the 120th slice of the liposome tomogram. In (c), the blue curves are produced by the U-Net segmentation and thered parts are produced by parametric fitting.
Fig. 8. The anchor points added to a partially segmented membrane slice. The valueof 𝑓 (𝑥, 𝑦) is set to −1 for blue anchor points (outside the membrane), and to 1 for thered anchor points (inside the membrane).

The conditional probability density function (PDF) of 𝐟2 given 𝐟1yields the posterior PDF of 𝐟2 given 𝐟1. It is well known [18] that thisPDF is a multivariate Gaussian also with the mean
𝝁̂2 = 𝝁2 +𝐊21𝐊−1

11 (𝐟1 − 𝝁1), (3)
and covariance matrix
𝐊̂22 = 𝐊22 −𝐊𝑇

21𝐊
−1
11𝐊21. (4)

The mean 𝝁̂2 yields a good estimate of the values of 𝑓 on pixelsoutside of 𝑈 . It allows us to reconstruct the missing components onthe membrane surface by finding pixels (𝑥, 𝑦) ∉ 𝑈 that satisfy |𝝁̂2| < 𝜖for some small constant 𝜖. In practice, 𝝁1 and 𝝁2 are often set to 0.Therefore, (3) and (4) can be computed explicitly through the solutionof a linear system, matrix–vector and matrix–matrix multiplications.Regularization may be needed when 𝐊11 is ill-conditioned.In addition to providing a mean estimate of where the missingcomponents of the segmented surface (curve) should lie, we can alsoquantify the uncertainty associated with the reconstructed surface byevaluating the marginal likelihood of a pixel being on the zero levelset of 𝑓 , i.e.
𝑝(𝐟2(𝑖) = 0|𝐟1) =

1
√

2𝜎2𝑖

exp

[

−
(0 − 𝝁̂2(𝑖))2

2𝜎2𝑖

]

, (5)
where 𝐟2(𝑖) and 𝝁̂2(𝑖) denote the 𝑖th component of 𝐟2 and 𝝁̂2 respec-tively, and 𝜎𝑖 is the 𝑖th diagonal element of 𝐊̂22. This marginal PDFquantifies the uncertainty of a particular pixel being on the surface ofthe membrane. Fig. 9 shows the marginal PDF associated with the 𝝁̂2as a grayscale image. The darker the pixel, the higher the likelihood ofthe value of 𝝁̂2 being zero (hence on the membrane) at that pixel. Weexclude the previously segmented pixels by setting the color of thesepixels to red.
6

Note that the GP prior on the distribution of 𝐟 is largely determinedby the covariance 𝐊. The mean 𝝁 does not play an essential role and isusually set to 0. The covariance describes how function values 𝑓 (𝑥, 𝑦)are correlated for different (𝑥, 𝑦)’s. It is often expressed in terms of thedistance between different (𝑥, 𝑦)’s. A commonly used covariance kernelis the Gaussian kernel.However, this particular kernel does not work well in sufficientlyconstraining the zero level set of 𝝁2 by that of 𝝁1 through the smooth-ness of 𝑓 . A more effective covariance kernel proposed in [19] has theform
𝐊(𝑖, 𝑗) = 2𝑟2𝑖𝑗 log 𝑟𝑖𝑗 − (1 + 2 log𝑅)𝑟2𝑖𝑗 + 𝑅2, (6)
where 𝑟𝑖𝑗 =

√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 and 𝑅 is the maximum distancebetween any two pixels in the 2D image. Note that 𝐾(𝑖, 𝑖) = 𝑅2 for all 𝑖.This kernel function is the Green’s function of a 4th order differentialoperator. It is related to smoothing splines interpolation [20] and thethin-plate spline regularizer [19].Fig. 10 (left) shows the mean function defined on pixels outside ofthe segmented surface (curve) shown in Fig. 8. The segmented surfaceis shown in black. The zero level set that fills in the opening on thesegmented surface is shown in blue. The figure on the right shows moreclearly the reconstructed surface (curve) as a 2D contour.The GP framework is flexible in allowing us to construct the mean of
𝑓 (and the implicit surface associated with its zero level set) to matchprior knowledge about certain biological structures. For example, byplacing one anchor point within the inner ring of the double membranestructure present in, for example, Fig. 7(b), some anchor points betweenthe inner and outer rings and some outside of the outer ring, and settingthe values of anchor points to −1, 1 and −1, we can reconstruct themissing segments in both the inner and outer membrane as shown inFig. 11.
5. Refinement in 3D

Although 2D parametric and non-parametric fittings allow us to fillin the missing pixels in the segmented component in each slice of thetomogram and produce smooth 2D curves in each slice, stacking these2D curves together may produce a nonsmooth 3D surface with gapsor bumps along the vertical direction as shown in Fig. 12(a). This isto some extent inevitable when the segmentation is performed in 2D.Even a manual segmentation produces a nonsmooth 3D surface shownin Fig. 12(b).The nonsmoothness of the surfaces can also be quantified by themaximum of distances between each membrane pixel and its nearestneighboring pixel on an adjacent slice. We plot in Fig. 13 a histogramof such maxima for all slices shown in Fig. 12(a). We can see from thehistogram that most of the maximum distances are within 2 pixels, butthere are quite a few between 2 and 5 pixels. There is even one that is8 pixels long.
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Fig. 9. The marginal likelihood of each pixel being on the zero level set of 𝑓 , i.e. on the surface/boundary of the membrane (left). The marginal likelihood of pixels along theline segment 𝐴𝐵 (shown in the left figure) being on the zero level set of 𝑓 (right).
Fig. 10. The mean function produced by GP (left) and its zero-level set (right).
Fig. 11. The mean function produced by GP and the zero-level set for inner and outer surfaces.

The lack of smoothness along the vertical direction results par-tially from missing data in the tomogram, and partially from artifactsproduced by the U-Net segmentation which picks up some spuriouspixels that do not belong to the surface of the membrane. It mayalso be caused by either an ill-posed 2D fitting (due to the presenceof only a few pixels grouped into the same class) or overfitting thattries to connect pixels on the membrane with spurious pixels. Neitherprocedure is properly constrained by the continuity and smoothness ofthe membrane surface across tomogram slices.To address this problem, we develop a refinement procedure to firstcollect segmented pixels in different tomogram slices that belong to thesame membrane surface. Spurious pixels are pruned. We then use the3D Gaussian process formalism to construct 3D membrane surfaces that
7

are zero level sets of a continuous function defined on a 3D volumeand anchored by a few voxels both inside and outside the membranesurfaces to be reconstructed.
5.1. Voxel selection

In order to make effective use of the Gaussian process techniquein 3D to construct the desired membrane surfaces, we need to identifyas many voxels that lie on the same surface as possible. These voxelsare collected from segmented pixels within each tomogram slice. Pixelsthat belong to the same class produced from the classification schemesdiscussed in Sections 4.1 and 4.2 are grouped together. However, insome tomogram slices, only a few pixels belonging to the surface are
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(a) The isosurface of the 3D segmen-tation obtained by stacking the seg-mented slices (70 through 160) of the liposome tomogram.

(b) The isosurface of the 3D segmen-tation obtained by manual segmenta-tions of slices 70 through 160 of the liposome tomogram.
Fig. 12. The isosurface of the 3D segmentation of the liposome tomogram.
Fig. 13. Histogram of the maximum distance between a membrane pixel and its nearestneighboring membrane pixel on an adjacent slice for all slices shown in Fig. 12(a).

visible. Even fewer can be identified by the U-Net. Although parametricor non-parametric fitting can be used to reconstruct some of the pixels,the lack of visible pixels in these slices makes the fitting procedure ill-posed. For example, Fig. 14 shows that U-Net picked up a few pixels onthe membrane of the inner vesicle in the upper left corner of the 100thslice of the liposome tomogram. Some of these pixels were filteredout during the classification procedure because they are isolated andnot connected to other pixels. Only a small number of pixels at thetop of the inner membrane are retained. When an elliptic parametricfitting procedure is applied, a small ellipse is produced, which does notcorrectly characterize the shape of the inner membrane.However, the correct shape of the inner membrane is obtained whenthe parametric fitting procedure is applied to the 120th tomogram sliceshown in Fig. 7. For that tomogram slice, many pixels can be seento lie on the inner membrane. They are correctly identified by theU-Net segmentation. The parameters associated with the ellipse thatcloses the gap in the U-Net segmented inner membrane can be used totrain the parameters to be optimized when a nonlinear least squaresfitting is applied to the 100th tomogram slice. Specifically, we canuse the parameters obtained from the least squares fit of the innermembrane for the 120th tomogram slice as the starting guesses to theparameters associated with the ellipse that fits the selected pixels intomogram slice 100. The constrained optimization with a good startingguess yields an ellipse shown as the green curve in Fig. 14(c). Once thisellipse is constructed, all segmented pixels produced by U-Net that aresufficiently close to the ellipse are selected as voxels to be used in the3D Gaussian process fit.
5.2. 3D fitting via Gaussian process

Once all valid voxels for each one of the membrane structures inthe tomogram have been identified, we use the technique of Gaussian

8

process discussed in Section 4.3.2 to construct an isosurface that con-nects all these voxels. This isosurface is defined as the zero level set ofa 3D function 𝑓 (𝑥, 𝑦, 𝑧) that is smooth. For each membrane, we choosean anchor point interior to membrane and set the function value ofthat point to 0. This point can typically be chosen as the centroid of allvalidated voxels that are considered to be on the membrane. A numberof anchor points (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in the exterior region of the membrane mustalso be chosen. The value of 𝑓 is set to 1 at these anchor points. Thereare a few ways to choose these anchor points. These choices representour prior knowledge of the shape of the membrane. For example, if themembrane is believed to have an ellipsoidal shape, we can enclose thevalidated voxels associated with this membrane by an ellipsoid withan appropriate size and orientation estimated from the selected voxels,and sample quasi-uniformly on the surface of the ellipsoid. Anotherpossible way is to simply choose a few validated voxels that are wellseparated, and extend the ray connecting the centroid with the selectedvoxel proportionally to the distance between the selected voxel and thecentroid (See Fig. 15). For example, point 𝐴 is obtained by connectingthe centroid at 𝐶 with a validated voxel 𝐵 and extending the ray so that
|𝐴𝐶| = 𝛼|𝐴𝐵| for some 1 < 𝛼 < 2. We chose 𝛼 = 1.2 in our selection ofanchor points.For 3D fitting, each element of the covariance matrix associatedwith the joint Gaussian distribution is chosen as
𝐾(𝑖, 𝑗) = 2(𝑟𝑖𝑗 )3 + 3𝑅𝑟2𝑖𝑗 + 𝑅3, (7)
where 𝑟𝑖𝑗 =

√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 + (𝑧𝑖 − 𝑧𝑗 )2, and 𝑅 is the maximumdistance between any two validated voxels that are considered to be onthe same membrane surface.
6. Results

In this section, we demonstrate the effectiveness of the segmen-tation pipeline by applying it to two real datasets. One of them isthe tomographic reconstruction of lipid vesicles reconstituted withmonomeric mitochondrial F-type ATP synthase [21] and the other isthe tomogram of an intact P19 embryonic carcinoma cells availableat EMDataResource (EMD-10439) [22]. One slice of each tomogram isshown in Fig. 1.
6.1. U-Net output

For both datasets, we trained a U-Net using simulated images shownin Section 3. We generated a total 2000 simulated images. During thetraining process, 200 images are reserved for testing. We generated 10additional simulated images for validation after the training process iscompleted.



Journal of Computational Science 66 (2023) 101904L. Zhou et al.
(a) The 100th slice of the liposome tomogram. (b) The U-Net segmenta-tion output. (c) A failed parametric fitand the correction.
Fig. 14. An elliptic fitting of the U-Net segmented the inner membrane in the 100th slice of the liposome tomogram and the correction made by constraining the fitting parametersusing bounds obtained from the 120th tomogram slice (green).
Fig. 15. The anchor point (𝐶) is chosen by connection a validated voxel 𝐵 with thecentroid of all validated voxels 𝐶 and extending the ray away from the centroid sothat |𝐴𝐶| = 1.2 × |𝐵𝐶|.

Fig. 16(a) shows that the average loss function for the trainingimages decreases rapidly as the number of training epochs increases.Fig. 16(b) shows that the loss function associated with the testingimages decreases in general also, but the change of 𝐸 is not mono-tonic, and it is less smooth also. On average, 99% of the pixels in 10validation images are correctly classified. We also provide the Dice–Sorensen coefficients [23,24] for each pixel class in the validationimages. More details are provided in the supplementary material. Dice–Sorensen coefficients are used to measure the accuracy for each pixelclass (membrane, background and protein).Figs. 17 and 18 show the initial 2D segmentation output producedfrom the U-Net for the corresponding tomogram slices shown in Fig. 1.We show the membranes surfaces and proteins separately in (a) and (b)respectively. These two types of structures are combined in (c).
6.2. The final segmented 3D membranes and proteins

In this section, we show the final output produced at the end ofthe segmentation pipeline. Figs. 19(a) and 20(a) show the lower halfof the reconstructed membranes within the tomogram as well as thevalidated voxels selected for fitting in the upper half of the tomogram,for both datasets. Because GP produces a different 3D density map cor-responding to the mean of a Gaussian probability distribution for eachof the substructures in the figure, using a single isosurface renderingthreshold produces a variation in thickness. We apply thinning anddilation operations [25] to the images generated by GP to create theresults with the same thickness.The entire exterior membrane surfaces as well as some of theATP synthase proteins obtained from liposome dataset are shown in
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Figs. 19(b). For the P19 (EMD10439) dataset, we only show segmentedmembranes with well defined shapes in Fig. 20(a). These are a subsetof all the membranes structures identified by the RL algorithm shownin Figs. 20(b). Many of the membrane structures segmented by the RLalgorithm cannot be easily fitted by GP.In Fig. 19(b), all membrane surfaces shown are closed surfaces eventhough no visible membrane structure can be detected in the top andbottom slices of the liposome tomograms shown in Figs. 19. Indeed,the top and bottom parts of the reconstructed membrane surfaces arededuced by the GP from the segmented membranes as those shownin Figs. 6 and 12(a) using the constraints implicitly defined by thecorrelation among neighboring voxels in a joint Gaussian probabilitydistribution. The presence of ATP synthase proteins near the top andbottom part of the membrane surfaces serves as an indirect validation ofthe surface reconstruction in these regions because we know that ATPsynthases proteins are often attached to the surfaces of the liposomemembranes.
6.3. Validation

To demonstrate the performance of our segmentation pipeline, wecompare the segmented structures presented in Fig. 19(a) with manualsegmentation results presented in Fig. 12(b). We use Dice–Sorensen co-efficients [23,24] to measure the similarity of the segmented structure.The Dice–Sorensen coefficient between two sets of voxels 𝑋 and 𝑌 isdefined as:
𝑠 =

2|𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

, (8)
where |𝑋| is the number of voxels in set 𝑋 and 𝑋∩𝑌 is the intersectionbetween 𝑋 and 𝑌 . Here 𝑋 is the set of voxels identified by the machinelearning segmentation pipeline as voxels that lie on membranes and
𝑌 is the set of membrane voxels obtained by manual segmentation.Although we treat 𝑌 as the ground truth here, it should be noted thatmanual segmentation is not completely accurate due to low SNR inthe tomogram, missing information and noise in the data. We computeDice–Sorensen coefficients slice by slice. The Dice–Sorensen coefficientsfor different segmented slides of the liposome tomogram are plotted inFig. 21. The mean Dice–Sorensen coefficients over all slices is 0.6065,which is above the 0.5 threshold. However, Fig. 21 shows that Dice–Sorensen coefficients are much higher for middle slices that containmore information than top and bottom slices that suffer from themissing wedge problem. We also plot the Dice–Sorensen coefficientsassociated with the segmentation of the liposome tomograph produceddirectly from the U-Net in blue in Fig. 21. We can clearly see that thesecoefficients are much lower than those associated with the segmenta-tion produced by our machine learning based pipeline indicating thatour machine learning pipeline can significantly improve the quality ofthe segmentation.
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(a) The change of the loss func-tion on the training images with respect to training epochs.
(b) The change of the loss function on the testing images with respect to the training epochs.

Fig. 16. The convergence of the training process.
(a) Segmented me-mbrane (b) Segmented pr-oteins (c) Membranes and pro-teins combined.
Fig. 17. The U-Net segmentation output for the tomogram slice shown in Fig. 1(a).
(a) Segmented me-mbrane (b) Segmented pr-oteins (c) Membranes and pro-teins combined.
Fig. 18. The U-Net segmentation output for the tomogram slice shown in Fig. 1(b).
In Fig. 22, we plot the Dice–Sorensen coefficients associated withsegmentations of the liposome tomogram obtained from different val-ues of the 𝛼 parameter used to place the outer anchor points for 3DGaussian process fitting, discussed in Section 5.2. We can see that thechoice of 𝛼 = 1.2 seems to yield the highest Dice–Sorensen coefficientsfor most tomogram slices. Although setting 𝛼 = 1.1 or 𝛼 = 1.3 pro-duces slightly worse results, most of the slices still have Dice–Sorensencoefficients that are significantly above 0.5.
7. Discussion and conclusion

The extreme low contrast of cryo-electron tomograms and artifactsintroduced by the limited sample tilt range that is accessible duringimaging (the missing wedge problem) makes it difficult to use existing
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segmentation tools developed in the last few decades mainly for highcontrast 3D medical imaging, to analyze the tomogram and identifyimportant biological structures.We presented a machine learning-based segmentation approach toovercome this difficulty. Our approach uses a variety of techniquesorganized in a learning pipeline to automate the segmentation process.The learning pipeline starts from supervised learning via a U-Nettrained with simulated data. Although augmenting the simulated datawith a few manual segmentation slices is likely to improve the qualityof the initial segmentation, our final results show that this is notnecessary. We should note that the U-Net step can be performed withother neural network based approaches, such as the mixed-scale denseconvolutional neural network presented in [26], and other autoencoderbased approaches [27]. The preliminary segmentation is followed by
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(a) Lower half of the GP fitted mem-brane surfaces as well as validated voxels selected for the GP procedure.
(b) The exterior surfaces of the mem-branes tomogram as well as the membrane-bound ATP synthase pro-teins (blue).

Fig. 19. Final segmented 3D membrane surfaces and proteins for dataset 1.
(a) Lower half of the GP fitted mem-brane surfaces as well as validated voxels selected for the GP procedure.
(b) All segments identified by RL algo-rithm.

Fig. 20. Final segmented 3D membrane surfaces and proteins for dataset 2.

semi-supervised RL and/or the use of a region merging techniquesto piece together disconnected components that belong to the samemembrane structure. A parametric or non-parametric fitting procedureis then used to enhance the segmentation results and quantify uncer-tainties in the fitting. Domain knowledge is used in generating thetraining data for U-Net and in guiding the fitting procedure throughthe use of appropriately chosen priors and constraints (e.g., anchorpoints for GP). The generation of training data and the choice ofpriors and constraints can be problem dependent. We demonstratedthat the approach proposed here worked well for extracting membranesurfaces of protein-reconstituted liposomes in a cellular environmentthat contains other artifacts, and in an additional dataset that containsa tomogram of intact P19 embryonic carcinoma cells. Although we haveonly demonstrated the effectiveness of our approach on two datasets,the approach itself is quite flexible and can be applied to differentdatasets with minimal modification. New domain knowledge for adifferent data can be incorporated by using a different set of simulatedtraining data for U-Net, and new priors through the choice of differentanchor points in GP fitting.
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Fig. 21. The Dice–Sorensen coefficients between segmented results and manual segmented tomogram slices (70 to 160) of the liposome. We compare the ML segmented (red) andthe U-Net output (blue).
Fig. 22. The sensitivity of parameter 𝛼 in 5.2. The Dice–Sorensen coefficients between the ML segmented and manual segmented tomogram slices (70 to 160) of the liposome.
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