
UC Irvine
ICS Technical Reports

Title
The set LCS problem

Permalink
https://escholarship.org/uc/item/9sm032cf

Authors
Hirschberg, D. S.
Larmore, L. L.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sm032cf
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.}

The Set LCS Probelm

D.S. Hirschberg and L.L. Larmore
University of California, Irvine

Technical Report No. 85-23

August, 1985

The Set LCS Problem

D.S. Hirschberg and L.L. Larmore
University of California, Irvine

Abstract

An efficient algorithm is presented that solves a generalization of the

Longest Common Subsequence problem, in which one of the two

input strings contains sets of symbols which may be permuted. This

problem arises from a music application.

1. Introduction

The Longest Common Subsequence (LCS) problem can be described as follows:

Given two sequences A = { aih~i~m and B = { bj}i~j~n' find a longest sequence which

is a subsequence of both A and B. The LCS problem has been solved in quadratic time

and linear space [HJ, and there is known a subquadratic time algorithm [MP]. Some

special cases of the LCS problem can be solved much faster [H2,M].

In this paper, we discuss a generalization of the LCS problem (suggested by

Roger Dannenberg [DJ), which we call the Set LCS (SLCS) problem. One sequence (in

some alphabet E) B = { bj}l~j~n is given, as before. Instead of a second sequence in E,

we are given a sequence of subsets of E, namely a = {Ek}l~k~r' where the sum of the

cardinalities of the Ek ism. We say that a sequence A= {ai}l<i<m is a flattening of a

if A is the concatenation of strings, the kth of which is some per~~tation of Ek.

We define the SLCS problem to be the problem of finding a longest common

subsequence of A and B, where Bis fixed and A ranges over all possible flattenings of a

given string of subsets a.

Authors' address: Department of Information and Computer Science, University of California, Irvine, CA
92717.

The SLCS problem has application to a problem in music [BD]. Computer

driven music accompaniment has been based on matching polyphonic performances

(scores) against a solo score. Polyphonic music is a performance in which multiple notes

can occur simultaneously, such as in a chord. A polyphonic score can be described as a

sequence of sets of notes. The problem is to decide when notes of the solo score are to

be played so as to accompany the performance in progress. The simultaneous notes may

be matched in any order. In [BD], a heuristic is proposed for solving the SLCS problem.

This heuristic obtains reasonable but not always optimal length common subsequences.

It might not be possible to guaranteee an optimal solution for the real-time application.

We consider the case of an off-line application.

In the next section, we present an 0 (mn) algorithm which solves the SLCS

problem. The algorithm is reminiscent of the classic dynamic programming algorithm

for the LCS problem. We refer the reader to [HJ for a discussion of that algorithm.

Throughout this paper, we use the following substring notation: if X = x1x2 ... xN

is a string (of elements or sets), xf..s:t) denotes the substring x
8
... xt, and Xt denotes the

(prefix) substring x1 ... xt' Given an instance (a,B) of the SLCS problem, we say that a

sequence/ is a candidate(i,j) if/ is a common subsequence of both Bj and some

flattening of ai. /is a solution(i,J) if/ is a candidate(i,j) having maximal length.

2. The Algorithm

Define £(i,J) as the length of the longest sequence which is a candidate(i,j).

Thus, £(i,J) = 0 if either i = 0 or j = 0, and £(r,n) is the length of the desired final

solution.

The algorithm presented in this paper computes the values for a matrix best[*,*L

which agree with the theoretical values of £(*,*). We also indicate how to define a

system of pointers which will allow recovery of a solution sequence, without increasing

the asymptotic time complexity.

- 2 -

The zeroth row best[O,*] is identically zero. For each i > O, the algorithm

computes the values in row i of best from the already computed values in row i-1. The

output of the main algorithm is the array best[*,*].

Main Algorithm

best[O,jJ +- 0 for all 0 ~ j ~ n
for i +- 1 to r do

begin

end

Findpeaks(i)
Shadow(i)

The main loop of the algorithm contains two steps: Findpeaks and Shadow. The

input for Findpeaks(i) is the matrix row best[i-1,*], and its output is the array peak[*].

The input for Shadow(•) is the array peak[*], and its output is the matrix row best[i,*].

We give an intuitive explanation of Findpeaks as follows. Suppose that 8 is a

subsequence of B(j+l:k) consisting of distinct elements, each of which is a member of Ei.

Appending 8 to any candidate(i-1,j) produces a candidate(i,k). It follows that £(i,k) ~

£(i-1,J) + 181. The procedure Findpeaks(i) searches for such subsequences and, if one is

found, sets the value of peak[k] to be the new candidate length for best[i,k], provided it

is larger than the largest previously found candidate length.

Findpeaks makes use of an array first and a data structure U, which we call a

unique stack. A unique stack is a stack with the condition that no member can occur

twice in the stack. When Push(x, U) is executed for some item x, xis first deleted from

U if it is already a member. In Find peaks(t), as j varies, U is a list of all members of E.
i

which are found in the substring B(j+l:n) in the order in which they first occur. For

any x e U, first[x] is the index of that first occurrence.

Findpeaks(i)

peak[jJ +- 0, for all 0 ~ j ~ n
U +- empty stack

- 3 -

for j +-- n downto 0 do

begin
length+-- best[i-1,jJ
peatjjJ +-- max{ length, peak(;'J }
for x +-- elements of U, from Top(U) to Bottom(U), do

begin
length +-- length+ 1

peak! first[zj J +--max{ length, peak[first[zj J }

end

end
x +-- b.

J
if x e E; then

begin

end

Push(x, U)
first[zj +-- j

The procedure Shadow(i) computes best[i,J] for all j, using the rule that, as a

function of its second parameter alone, £ (i,•) is the minimum monotone increasing

function such that £(i,J) ~ peak[J] for all;'.

Shadow(i)

best[i,OJ +-- 0
for j +-- 1 to n do

best[i,jJ +-- max{ peak[i], best[i,j-lJ }

Recovery of a solution sequence. A solution(i,J), for any i and j, can be recovered

after the algorithm is finished if an array of backpointers is maintained. Each

backpointer is an (i,J) pair, and a new value of a backpointer is needed whenever a new

(i.e., higher) value of peak is assigned, and also whenever best[i,J] is assigned the value of

best[i,j-1] during Shadow(r). Inclusion of these backpointers does not increase the time

complexity of the algorithm, and recovery of a solution(i,j) takes time 0(£(i,J)). The

details, which we leave as an exercise to the reader, are straightforward.

Time Complexity. There are a number of ways to implement the unique stack.

We suggest representing U as a doubly linked list, simultaneously maintaining a doubly

linked list of all elements of the alphabet E which are currently not in U. Thus, it will

- 4 -

take only 0 (1) time to push an element onto U (we can find where an element xis

located in the linked lists by an array lookup, and delete x from its list and then insert x

at the top of U) or to set U to an empty list.

Each traversal of U requires 0 (jEil) time, and there are 0 (n) such traversals

during the ,th iteration of the main loop of the algorithm. Since the sum of the

cardinalities of the Ei is m, the total time spent on traversing the unique stack is

0 (mn). All other parts of the algorithm combined require only 0 (rn) time.

Space complexity. The algorithm, as presented, requires 0(rn + m) space, most

of which is for array best. The space complexity for the algorithm that recovers a

solution sequence can be reduced to O(m+n) in a straightforward manner, by using a

recursion technique developed for the LCS problem [HJ.

3. Proof of Correctness

Correctness of the algorithm follows immediately from the loop invariant below,

which consists of two parts, F and S.

Loop invariant.

F(i): After Find peaks(i) has executed during the ,.th iteration of the main loop

of the algorithm, the following two conditions hold for all 0 ~ j ~ n.

Fl(i): peak[Jl ~ £(i,j)

F2(i): There exists some j 0 ~ jsuch that peak[j0] ~ £(i,J)

S(i): After i iterations of the main loop of the algorithm,

best[i,J] = £(i,J), for all 0 ~ j ~ n

We first note that correctness of the algorithm follows immediately from S, since

the values of row i of best are never reassigned after Shadow(i) has executed.

- .5 -

We prove the loop invariant inductively. S(O) obviously holds. We show that

F(r) implies S (r) for all 1 ~ i ~ r, and that S (i-1) implies F(1) for for all 1 ~ i ~ r.

Proof that F(i) ~ S(1). Execution of Shadow(r) causes

best[i,JJ ~ peak[JJ, for all j (1)

and best[i,JJ ~ best[i,j-1], for all j > 0 (2)

Suppose

best[i,;J < £(i,;), for some j (3)

By F2 (i), there exists some j0 ~ j such that

peak[j0] ~ £(i,j) (4)

Then,

£(i,J) ~ peak[j0], by (4)

~ best[i,j0], by (1)

~ best[i,;], by (2)

< £(i,j), by (3)

which is a contradiction. On the other hand, let j be the minimum index such that

best[i,;J > £(i,;). Since best[i,j-I] = £(i,j-I) and £(i,•) is monotone increasing (and

thus £(i,J) ~ £(i,j-I)), best[i,J] > best[i,j-1]. Shadow(i) thus assigns the value of

peak[J] to best[i,J], which contradicts Fl(r).

Proof that S(i-1} ~ F1{1). We show that Fl(i) is a loop invariant of the loop

(indexed by;) of Findpeaks(t). Fl(i) holds before the first iteration, since peak is

initialized to zero. Suppose that during the iteration indexed by j, peak[j0] is increased.

The new, higher, value must be length. Let /be a longest candidate(i-1,j), and let 8 be

the string of all symbols in U from the top down to x = B[10]. (Note that first[x] = j0.)

The concatenation 18 is a candidate(i,J0). The value of length, when peak[J] is

reassigned, is the length of 18, which cannot exceed £ (i,j0).

Proof that S(i-1) ~ F2{r). We will show that, for arbitrary j, there exists some

Jo~ j for which peak[j0] ~ £(i,J), assuming S(i-1). Let ~be the longest candidate(i,j),

and thus kl = £(i,J). We can write~= /Osuch that/ is a candidate(i-1,J) and 8

consists of distinct members of Ei. Let j 1 (~ J) be the index in B of the last item of /.

- 6 -

(If 1 is empty, we default j1 to~.) Note that o is a subsequence of B(j1+l:Ji. The

length of 1 must equal £(i-1,j1), for if 1' were a candidate(i-1,j1) longer than 1, 1' o
would be a candidate(i,J) longer than ~· If o is empty, we are done, since then peak[J]

will be assigned a value such that

peak[J] ~ best[i-1,J1, since length is initialized to this

~ best[i-1,j1], since best is non-decreasing

= £(i-1,j1), by S(i-1)

= hi = kl, since o is empty

= .t(i,J).

Suppose, on the other hand, that o is non-empty. Write d = 181. Let ()be the

subsequence of B<j1+1:n> consisting of the first instance of every item of B<j1+1:n>

which is also a member of Ei. Let j0 be the position of the /'h item of 0. By definition

of 0, B<j1+1:j0-1> contains only d-1 distinct members of Ei. It follows that j0 ~ j,

since the items in the string o are d distinct items of B<j+l:j> which are members of

Ei. During the iteration of the main loop of Find peaks(1) indexed by j 1, U = 0. During

the <fh iteration of the inner (descent) loop, x will be the l'h item of 0, first[x] will be j0 ,

and the value of length will be hi + d = hi + lbl = kl = .t(i,J). It follows that the

value of peak[j0] will be at least .£(i,j) after that iteration.

4. Some Open Questions

I. Since there is an algorithm [MP] to solve the LCS problem in time 0 (n2 /log

n), where n is the length of each string, we suggest that the time for the SLCS problem

could also be reduced by a logarithmic factor.

2. Consider a generalization of the SLCS problem, the Set-Set LCS problem, in

which two sequences of sets are given and the problem is to find the longest sequence

which is a common subsequence of flattenings of the two sequences of sets. Is this

problem even in the class P?

3. Can any bounds be placed on the performance of real-time algorithms for the

- 7 -

SLCS and Set-Set LCS problems?

References

[BD] J.J. Bloch and R.B. Dannenberg, "Real-time computer accompaniment of

keyboard performances," Proc. 1985 Int 'I Computer Music Conf. (Aug. 1985).

[DJ R.B. Dannenberg, personal communication to D.S. Hirschberg, June 1985.

[HJ D.S. Hirschberg, "A linear space algorithm for computing maximal common

subsequences," Comm. ACM 18,6 (June 1975), 341-343.

[H2] D.S. Hirschberg, "Algorithms for the longest common subsequence problem,"

Journal ACM 24,4 (Oct. 1977), 664-675.

[M] E.W. Myers, "An O(ND) difference algorithm and its variations," unpublished

manuscript, Dept. of Computer Science, U. of Arizona, 1985.

[MP] W.J. Masek and M.S. Paterson, "A faster algorithm for computing string-edit

distances," Jour. of Computer and System Sciences 20,1 (1980), 18-31.

- 8 -

