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The Set LCS Problem 

D.S. Hirschberg and L.L. Larmore 
University of California, Irvine 

Abstract 

An efficient algorithm is presented that solves a generalization of the 

Longest Common Subsequence problem, in which one of the two 

input strings contains sets of symbols which may be permuted. This 

problem arises from a music application. 

1. Introduction 

The Longest Common Subsequence (LCS) problem can be described as follows: 

Given two sequences A = { aih~i~m and B = { bj}i~j~n' find a longest sequence which 

is a subsequence of both A and B. The LCS problem has been solved in quadratic time 

and linear space [HJ, and there is known a subquadratic time algorithm [MP]. Some 

special cases of the LCS problem can be solved much faster [H2,M]. 

In this paper, we discuss a generalization of the LCS problem (suggested by 

Roger Dannenberg [DJ), which we call the Set LCS (SLCS) problem. One sequence (in 

some alphabet E) B = { bj}l~j~n is given, as before. Instead of a second sequence in E, 

we are given a sequence of subsets of E, namely a = {Ek}l~k~r' where the sum of the 

cardinalities of the Ek ism. We say that a sequence A= {ai}l<i<m is a flattening of a 

if A is the concatenation of strings, the kth of which is some per~~tation of Ek. 

We define the SLCS problem to be the problem of finding a longest common 

subsequence of A and B, where Bis fixed and A ranges over all possible flattenings of a 

given string of subsets a. 
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The SLCS problem has application to a problem in music [BD]. Computer

driven music accompaniment has been based on matching polyphonic performances 

(scores) against a solo score. Polyphonic music is a performance in which multiple notes 

can occur simultaneously, such as in a chord. A polyphonic score can be described as a 

sequence of sets of notes. The problem is to decide when notes of the solo score are to 

be played so as to accompany the performance in progress. The simultaneous notes may 

be matched in any order. In [BD], a heuristic is proposed for solving the SLCS problem. 

This heuristic obtains reasonable but not always optimal length common subsequences. 

It might not be possible to guaranteee an optimal solution for the real-time application. 

We consider the case of an off-line application. 

In the next section, we present an 0 ( mn) algorithm which solves the SLCS 

problem. The algorithm is reminiscent of the classic dynamic programming algorithm 

for the LCS problem. We refer the reader to [HJ for a discussion of that algorithm. 

Throughout this paper, we use the following substring notation: if X = x1x2 ... xN 

is a string (of elements or sets), xf..s:t) denotes the substring x
8 
... xt, and Xt denotes the 

(prefix) substring x1 ... xt' Given an instance (a,B) of the SLCS problem, we say that a 

sequence/ is a candidate(i,j) if/ is a common subsequence of both Bj and some 

flattening of ai. /is a solution(i,J) if/ is a candidate(i,j) having maximal length. 

2. The Algorithm 

Define £(i,J) as the length of the longest sequence which is a candidate(i,j). 

Thus, £(i,J) = 0 if either i = 0 or j = 0, and £(r,n) is the length of the desired final 

solution. 

The algorithm presented in this paper computes the values for a matrix best[*,*L 

which agree with the theoretical values of £( *,* ). We also indicate how to define a 

system of pointers which will allow recovery of a solution sequence, without increasing 

the asymptotic time complexity. 
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The zeroth row best[O,*] is identically zero. For each i > O, the algorithm 

computes the values in row i of best from the already computed values in row i-1. The 

output of the main algorithm is the array best[*,*]. 

Main Algorithm 

best[O,jJ +- 0 for all 0 ~ j ~ n 
for i +- 1 to r do 

begin 

end 

Findpeaks( i) 
Shadow( i) 

The main loop of the algorithm contains two steps: Findpeaks and Shadow. The 

input for Findpeaks(i) is the matrix row best[i-1,*], and its output is the array peak[*]. 

The input for Shadow(•) is the array peak[*], and its output is the matrix row best[i,*]. 

We give an intuitive explanation of Findpeaks as follows. Suppose that 8 is a 

subsequence of B(j+l:k) consisting of distinct elements, each of which is a member of Ei. 

Appending 8 to any candidate(i-1,j) produces a candidate(i,k). It follows that £(i,k) ~ 

£(i-1,J) + 181. The procedure Findpeaks(i) searches for such subsequences and, if one is 

found, sets the value of peak[k] to be the new candidate length for best[ i,k], provided it 

is larger than the largest previously found candidate length. 

Findpeaks makes use of an array first and a data structure U, which we call a 

unique stack. A unique stack is a stack with the condition that no member can occur 

twice in the stack. When Push(x, U) is executed for some item x, xis first deleted from 

U if it is already a member. In Find peaks( t), as j varies, U is a list of all members of E. 
i 

which are found in the substring B(j+l:n) in the order in which they first occur. For 

any x e U, first[ x] is the index of that first occurrence. 

Findpeaks( i) 

peak[jJ +- 0, for all 0 ~ j ~ n 
U +- empty stack 
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for j +-- n downto 0 do 

begin 
length+-- best[i-1,jJ 
peatjjJ +-- max{ length, peak(;'J } 
for x +-- elements of U, from Top( U) to Bottom( U), do 

begin 
length +-- length+ 1 

peak! first[zj J +--max{ length, peak[ first[zj J } 

end 

end 
x +-- b. 

J 
if x e E; then 

begin 

end 

Push(x, U) 
first[ zj +-- j 

The procedure Shadow(i) computes best[i,J] for all j, using the rule that, as a 

function of its second parameter alone, £ ( i,•) is the minimum monotone increasing 

function such that £( i,J) ~ peak[J] for all;'. 

Shadow(i) 

best[i,OJ +-- 0 
for j +-- 1 to n do 

best[i,jJ +-- max{ peak[i], best[i,j-lJ } 

Recovery of a solution sequence. A solution(i,J), for any i and j, can be recovered 

after the algorithm is finished if an array of backpointers is maintained. Each 

backpointer is an ( i,J) pair, and a new value of a backpointer is needed whenever a new 

(i.e., higher) value of peak is assigned, and also whenever best[i,J] is assigned the value of 

best[i,j-1] during Shadow(r). Inclusion of these backpointers does not increase the time 

complexity of the algorithm, and recovery of a solution(i,j) takes time 0(£(i,J)). The 

details, which we leave as an exercise to the reader, are straightforward. 

Time Complexity. There are a number of ways to implement the unique stack. 

We suggest representing U as a doubly linked list, simultaneously maintaining a doubly 

linked list of all elements of the alphabet E which are currently not in U. Thus, it will 
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take only 0 (1) time to push an element onto U (we can find where an element xis 

located in the linked lists by an array lookup, and delete x from its list and then insert x 

at the top of U) or to set U to an empty list. 

Each traversal of U requires 0 (jEil) time, and there are 0 ( n) such traversals 

during the ,th iteration of the main loop of the algorithm. Since the sum of the 

cardinalities of the Ei is m, the total time spent on traversing the unique stack is 

0 ( mn). All other parts of the algorithm combined require only 0 ( rn) time. 

Space complexity. The algorithm, as presented, requires 0( rn + m) space, most 

of which is for array best. The space complexity for the algorithm that recovers a 

solution sequence can be reduced to O(m+n) in a straightforward manner, by using a 

recursion technique developed for the LCS problem [HJ. 

3. Proof of Correctness 

Correctness of the algorithm follows immediately from the loop invariant below, 

which consists of two parts, F and S. 

Loop invariant. 

F( i): After Find peaks( i) has executed during the ,.th iteration of the main loop 

of the algorithm, the following two conditions hold for all 0 ~ j ~ n. 

Fl(i): peak[Jl ~ £(i,j) 

F2(i): There exists some j 0 ~ jsuch that peak[j0 ] ~ £(i,J) 

S(i): After i iterations of the main loop of the algorithm, 

best[ i,J] = £(i,J), for all 0 ~ j ~ n 

We first note that correctness of the algorithm follows immediately from S, since 

the values of row i of best are never reassigned after Shadow(i) has executed. 
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We prove the loop invariant inductively. S(O) obviously holds. We show that 

F( r) implies S ( r) for all 1 ~ i ~ r, and that S (i-1) implies F( 1) for for all 1 ~ i ~ r. 

Proof that F(i) ~ S(1). Execution of Shadow( r) causes 

best[ i,JJ ~ peak[JJ, for all j (1) 

and best[i,JJ ~ best[i,j-1], for all j > 0 (2) 

Suppose 

best[ i,;J < £(i,;), for some j (3) 

By F2 ( i), there exists some j0 ~ j such that 

peak[j0] ~ £(i,j) (4) 

Then, 

£(i,J) ~ peak[j0], by (4) 

~ best[ i,j0], by (1) 

~ best[i,;], by (2) 

< £( i,j), by (3) 

which is a contradiction. On the other hand, let j be the minimum index such that 

best[i,;J > £(i,;). Since best[i,j-I] = £(i,j-I) and £(i,•) is monotone increasing (and 

thus £(i,J) ~ £(i,j-I)), best[i,J] > best[i,j-1]. Shadow(i) thus assigns the value of 

peak[J] to best[i,J], which contradicts Fl(r). 

Proof that S(i-1} ~ F1{1). We show that Fl(i) is a loop invariant of the loop 

(indexed by;) of Findpeaks( t). Fl(i) holds before the first iteration, since peak is 

initialized to zero. Suppose that during the iteration indexed by j, peak[j0] is increased. 

The new, higher, value must be length. Let /be a longest candidate(i-1,j), and let 8 be 

the string of all symbols in U from the top down to x = B[10]. (Note that first[x] = j0.) 

The concatenation 18 is a candidate(i,J0). The value of length, when peak[J] is 

reassigned, is the length of 18, which cannot exceed £ (i,j0). 

Proof that S(i-1) ~ F2{r). We will show that, for arbitrary j, there exists some 

Jo~ j for which peak[j0 ] ~ £(i,J), assuming S(i-1). Let ~be the longest candidate(i,j), 

and thus kl = £(i,J). We can write~= /Osuch that/ is a candidate(i-1,J) and 8 

consists of distinct members of Ei. Let j 1 (~ J) be the index in B of the last item of /. 
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(If 1 is empty, we default j1 to~.) Note that o is a subsequence of B(j1+l:Ji. The 

length of 1 must equal £(i-1,j1), for if 1' were a candidate(i-1,j1) longer than 1, 1' o 
would be a candidate( i,J) longer than ~· If o is empty, we are done, since then peak[J] 

will be assigned a value such that 

peak[J] ~ best[i-1,J1, since length is initialized to this 

~ best[ i-1,j1], since best is non-decreasing 

= £(i-1,j1), by S(i-1) 

= hi = kl, since o is empty 

= .t(i,J). 

Suppose, on the other hand, that o is non-empty. Write d = 181. Let ()be the 

subsequence of B<j1+1:n> consisting of the first instance of every item of B<j1+1:n> 

which is also a member of Ei. Let j0 be the position of the /'h item of 0. By definition 

of 0, B<j1+1:j0-1> contains only d-1 distinct members of Ei. It follows that j0 ~ j, 

since the items in the string o are d distinct items of B<j+l:j> which are members of 

Ei. During the iteration of the main loop of Find peaks( 1) indexed by j 1, U = 0. During 

the <fh iteration of the inner (descent) loop, x will be the l'h item of 0, first[x] will be j0 , 

and the value of length will be hi + d = hi + lbl = kl = .t(i,J). It follows that the 

value of peak[j0 ] will be at least .£( i,j) after that iteration. 

4. Some Open Questions 

I. Since there is an algorithm [MP] to solve the LCS problem in time 0 ( n2 /log 

n), where n is the length of each string, we suggest that the time for the SLCS problem 

could also be reduced by a logarithmic factor. 

2. Consider a generalization of the SLCS problem, the Set-Set LCS problem, in 

which two sequences of sets are given and the problem is to find the longest sequence 

which is a common subsequence of flattenings of the two sequences of sets. Is this 

problem even in the class P? 

3. Can any bounds be placed on the performance of real-time algorithms for the 
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SLCS and Set-Set LCS problems? 
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