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RESEARCH ARTICLE Open Access

Deep learning networks find unique
mammographic differences in previous
negative mammograms between interval
and screen-detected cancers: a case-case
study
Benjamin Hinton1,2* , Lin Ma3, Amir Pasha Mahmoudzadeh4, Serghei Malkov5, Bo Fan1, Heather Greenwood2,
Bonnie Joe2, Vivian Lee6, Karla Kerlikowske7 and John Shepherd8

Abstract

Background: To determine if mammographic features from deep learning networks can be applied in breast
cancer to identify groups at interval invasive cancer risk due to masking beyond using traditional breast density
measures.

Methods: Full-field digital screening mammograms acquired in our clinics between 2006 and 2015 were reviewed.
Transfer learning of a deep learning network with weights initialized from ImageNet was performed to classify
mammograms that were followed by an invasive interval or screen-detected cancer within 12 months of the
mammogram. Hyperparameter optimization was performed and the network was visualized through saliency maps.
Prediction loss and accuracy were calculated using this deep learning network. Receiver operating characteristic
(ROC) curves and area under the curve (AUC) values were generated with the outcome of interval cancer using the
deep learning network and compared to predictions from conditional logistic regression with errors quantified
through contingency tables.

Results: Pre-cancer mammograms of 182 interval and 173 screen-detected cancers were split into training/test
cases at an 80/20 ratio. Using Breast Imaging-Reporting and Data System (BI-RADS) density alone, the ability to
correctly classify interval cancers was moderate (AUC = 0.65). The optimized deep learning model achieved an AUC
of 0.82. Contingency table analysis showed the network was correctly classifying 75.2% of the mammograms and
that incorrect classifications were slightly more common for the interval cancer mammograms. Saliency maps of
each cancer case found that local information could highly drive classification of cases more than global image
information.

Conclusions: Pre-cancerous mammograms contain imaging information beyond breast density that can be identified
with deep learning networks to predict the probability of breast cancer detection.

Keywords: Breast Cancer, Masking, Mammography, Interval Cancer, Deep learning, Transfer learning, Neural network,
Breast density
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Background
Breast cancer is a common disease with 1 in 8 women
experiencing some form of malignant breast cancer in
their lifetime [1]. In 2013, this translated to approxi-
mately 230,000 new cases of invasive breast cancer and
40,000 deaths in the US alone [1]. Detecting and treating
breast cancer is extremely important for women’s health
and studies have shown that early detection of breast
cancer yields higher survival rates [2].
Mammography is the current gold standard in screen-

ing for breast cancer in average-risk women. However,
radiologically dense and complex tissue can reduce
screening detection sensitivity leading to obscured breast
lesions and cancers missed by screening mammography
[3, 4]. These cancers discovered within 12months after
normal screening mammograms are defined as interval
cancers, and the reduction of mammographic sensitivity
from breast density is commonly called masking.
Roughly 13% of breast cancers diagnosed in the U.S. are
interval cancers [5], and identifying women at high risk
of interval cancers could prove useful to inform discus-
sions on supplemental imaging.
Previous studies have shown that the Breast Imaging-

Reporting and Data System (BI-RADS) breast density
and other quantitative density measures are not only risk
factors for breast cancer, but also for interval breast can-
cer risk due to the masking effect of radiologically dense
breasts [4, 6]. While clinically measured BI-RADS breast
density is a risk factor for interval cancer such that fed-
eral and state legislation has been passed to notify
women of high BI-RADS breast density [7], the classifi-
cation is subjective and does not account for the texture
of dense tissue [8–10]. Because of this, the American
College of Radiology has asked for development of direct
measures of masking and interval risk [11].
Researchers have also leveraged imaging methods be-

yond conventional 2D digital mammography such as
tomosynthesis [12, 13], MRI [14], and diffusion weighted
(DW) MRI [15–17]. Within DW MR imaging, improve-
ments have been made in lymph node assessment and risk
of recurrence. Additionally, computer vision methods
have been applied to mammography to identify masking
risk. Previous studies have measured the ability of pre-
defined kernels and model observers to quantify masking
and interval cancer risk, indicating some promise in com-
puter vision to identify interval cancer risk [10]. Advanced
computer vision methods such as deep learning have
shown promise in many computer vision tasks and have
performed extremely well in the ImageNet competition
compared to traditional pre-defined kernel methods [18,
19]. Transfer learning [20, 21] of these networks has been
effective in medical applications including breast cancer,
where deep learning models were often able to equal or
improve current classification or diagnostic schemes

performed [22–27]. Another useful property of deep
learning networks is their ability to highlight pixels con-
taining unique information relevant to that image’s classi-
fication called saliency maps, which can be used in
biological applications to develop hypothesis on the
underlying biology or features associated with the classifi-
cation of interest [26, 28].
Deep learning has consistently been applied to and im-

proved on current diagnostic methods in many medical
fields [21, 25, 29], from lung pathology diagnosis [26] to
identifying diabetic retinopathy [30, 31]. Deep learning
methods have also been applied to a wide variety of
areas of breast cancer research with promising results
[32]. Deep learning has been applied to improve lesion
detection in computer-aided detection [24], to identify
and segment soft tissue lesions [33, 34], to identify and
reduce potential false positives to reduce biopsies [35],
to effectively categorize the amount of dense tissue in
mammograms [36], and to improve lesion classification
systems on breast tomosynthesis images [27]. Our study
further aligns with these studies in their goals of using
deep learning to improve breast cancer outcomes.
The purpose of this study was to implement a deep

learning network to investigate if unique imaging char-
acteristics exist beyond breast density, to classify pre-
cancerous mammograms that later result in either an
interval or screen-detected invasive cancer within 12
months of the mammogram. We hypothesized that deep
learning networks can more effectively quantify risk of
interval cancer than BI-RADS breast density alone. If
successful, these methods could be expanded to improve
risk prediction models for interval cancer, develop auto-
mated methods or software that can aid radiologists in
risk prediction, or to further understand radiomic quan-
tities as they relate to underlying cancer biology.

Methods
Participants
Participants were selected from a screening population
that had received full-field digital mammograms ac-
quired from 2006 to 2015 from four radiology facilities,
University of California – San Francisco, California Pa-
cific Medical Center, Marin General Hospital, and No-
vato Community Hospital that participate in the San
Francisco Mammography Registry. Ethics approval was
obtained by the University of California – San Francisco
Institutional Review Board for this retrospective analysis
of mammograms. Invasive interval cancers from these
institutions were included, defined as invasive cancers
identified within 12months of a negative screening
examination. For interval cancers the negative mammo-
gram prior to the mammogram leading to the eventual
interval cancer diagnosis was chosen. An equal number
of screen-detected cancers were matched by age and
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race if such matching data existed, based on all screen-
detected cancers diagnosed at the four centers. Screen-
detected cancers were defined as invasive cancers
identified within 12 months of a positive screening
examination. All mammograms were interpreted pro-
spectively by radiologists during the course of routine
clinical care. Cancers were identified by annual linkage
to the state California Cancer Registry. Information was
unavailable pertaining to the size of the lesions, specific
cancer types, or whether the interval cancer was due to
missed lesions or true interval cancers.

Mammography
The de-identified raw, “For Processing” representation of
the standard four screening views (Mediolateral-oblique
(MLO) and Cranio-Caudal (CC) images of both sides)
were used for this study. All images were acquired on
Hologic Selenia full-field digital mammography systems.
These images were pre-processed in order to maximize
the information provided to the network in the following
ways. First, the skin edge of these images was identified
and excess background of the images was cropped out
using thresholding and in-house software [37]. The im-
ages were then normalized on a 0 to 255 scale. Various
methods exist to input images from multiple views, from
inputting images individually, to making separate net-
works for each view, to combining the images as a col-
lage [38]. We implemented a collage and the four views
were stacked as a 2 × 2 collage image for each case, with
one view in each quadrant. This allowed all four views
to be contained in a single image. This method has been
performed in applications such as brain MRI slices to

indicate Alzheimer’s risk [38]. These images were then
separated into a training and test set at an 80/20 split.

Deep learning model
An existing deep learning network architecture (ResNet50)
was implemented with ImageNet transfer learning weights
on all convolutional blocks [19]. A fully connected layer was
then added with 256 weights, a dropout layer, and a final
weight with sigmoid activation to classify between screen-
detected and interval cases. Figure 1 shows a diagram of the
deep learning architecture and the fully-connected layer
[19]. The weights of the fully-connected layer were ran-
domly initialized and pre-trained on the training set images.
During training, a binary cross entropy loss metric was opti-
mized with a stochastic gradient descent optimizer. During
model training, data augmentation was performed by intro-
ducing a random amount of shear, zoom, rotation, and hori-
zontal and vertical reflection within specific ranges in order
to increase the data variability and reduce overfitting. For
each epoch, training loss, test loss, and accuracy were re-
corded and network weights were saved if it improved the
test loss. The final network weights used were the weights
with the best test loss throughout training.
Model hyperparameters for data augmentation, train-

ing parameters, and optimization parameters were se-
lected through hyperparameter sweeps of a variety of
hyperparameters. The hyperparameters were swept
through a full realizable range of values for each param-
eter and loss and accuracy curves were examined to de-
termine the range for each hyperparameter that resulted
in a positive accuracy and loss trend as well as a small
generalization gap between training and test data. Data

Fig. 1 Schematic of the architecture of the deep learning network used in this study. YxY conv, M/N =M kernels of YxYx3 size and stride length
of N (N = 1 if only M is listed). Fully Connected (FC) Layer = Dense (256), Dropout, Dense (1)
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augmentation hyperparameters were rotation, zoom,
shear, horizontal reflection, and vertical reflection and
were applied to the training data. Training hyperpara-
meters were learning rate, batch size, number of epochs,
image input size, and number of convolutional layers to
allow to re-train weights. Model optimizer hyperpara-
meters were momentum, regularization, and decay. Loss
and accuracy were computed in the training and test set.
Saliency maps were produced along with a contingency
table enumerating the number of correct and incorrect
predictions with some sample images in order to under-
stand what factors contributed to incorrect and correct
predictions. Training was done on an NVIDIA K2200
GPU with 16 GB RAM. Image preprocessing was done
in Matlab r2015a (Mathworks, Natick, MA), ResNet50
was implemented with Keras and Tensorflow [39] using
Spyder 3.2.3 and Python 3.5.

Model statistical testing
After training was complete, conditional logistic regres-
sion was performed over the entire dataset in three
cases: one with BI-RADS density as a classifier, one with

the deep learning network predictions as a classifier, and
one with both. In all cases interval vs. screen-detected
breast cancer were the two outcomes. Receiver operating
characteristic (ROC) curves were produced with area
under the curve (AUC) values in all cases and compared.
Statistical analysis and figure generation was performed
via Spyder and R version 3.2.2.

Results
A total of 316,001 examinations on were performed in
the screening population, leading to a total of 245 inter-
val cancers of which 182 women were available for this
study. Table 1 shows the demographic information of
the women from each case-type. These were matched by
age and race to 173 women with screen-detected breast
cancers. There were no screen-detected cancers that
matched by age and race for 9 of the interval cancers.
These were included in the deep learning training to
maximize the dataset, but were excluded in the condi-
tional logistic regressions to ensure matching. The de-
scriptive statistics showed a lower body mass index
(BMI) and higher proportion of women with dense

Table 1 Descriptive statistics of the screen-detected and interval cancer groups. Percentage in each BI-RADS category are calculated
excluding the missing/unknown groups

Screen-Detected Group Interval Group P-Value

N 173 182

Age, years (Standard Deviation) 57.8 (10.9) 56.8 (11.8) 0.28

BMI, kg/m2 (Standard Deviation) 24.9 (4.7) 23.5 (4.3) < 0.0001

Time to Detection (Days) 56.3 (81.4) 239.8 (94.6) < 0.0001

Race: 0.88

White 127 129

African American 3 4

Chinese 25 27

Filipina 3 3

Hispanic 0 2

Japanese 5 8

Mixed 5 5

Other Asian 2 1

Other Non-Asian 3 3

Menopausal status 119 (69%) 123 (68%) 0.69

Family history of breast cancer 47 (23%) 60 (33%) 0.25

Previous history of breast biopsy 55 (32%) 68 (37%) 0.33

BI-RADS Frequency: 0.008

A: Almost Entirely Fatty 11 (7.8%) 3 (1.8%)

B: Scattered Fibroglandularities 50 (35.5%) 33 (19.7%)

C: Heterogeneously Dense 61 (43.3%) 78 (46.7%)

D: Extremely Dense 19 (13.5%) 53 (31.7%)

Missing Data 19 7

Unknown 13 8
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breasts in the interval compared to the screen-detected
breast cancer group. All other demographic and risk in-
formation was similar between groups.
Table 2 shows the end results of the hyperparameter

sweep and optimal hyperparameters that were used in
training our network. Of note we learned moderately ag-
gressive image augmentation hyperparameters controlled
overfitting while still allowing learning to take place. Add-
itionally, a large batch size improved training by introdu-
cing the optimizer to more data and a learning rate in the
range of 1e− 3 – 1e− 5 produced good learning results. High
dropout in the final fully-connected layers helped to con-
trol overfitting as well. Optimal parameters were selected
based on their ability to reduce overfitting based on the
training and test loss. Training time on this system under
these parameters was roughly 3 h per 500 epochs.
Figure 2 shows the loss and accuracy of the model

over time and compares the result of the training and
test set. We can see that the generalization gap between
train and test loss is small and that the curves in the test
and train set are similar. This indicates that classification
results were similar in both training and test sets. The
best test loss occurred in epoch 482, with a test loss of
0.499 and test accuracy of 75.2%.
Figure 3 compares the classification ROC analysis

and AUC of the deep learning network versus using
just BI-RADS density in a conditional logistic regres-
sion, and a final analysis combining both of these
methods. The deep learning network outperforms

BI-RADS density alone in predicting interval versus
screen-detected cancer.
Table 3 shows a contingency table quantifying the

number and percent of correct and incorrect predictions
in each category. The algorithm performed similarly for
both cancer types - screen-detected and interval breast
cancers were classified into their correct categories 77
and 74% of the time, respectively. Seventy-five percent
of the total images (268/355) were correctly categorized.
Figure 4 shows the pseudo presentation mammograms

(produced using methods described by Malkov, et al.
[40], saliency maps, and then the superposition of the
two for representative screen-detected and interval
mammogram visits, both of which were correctly classi-
fied. The intensity of the saliency signal is shown from 0
to 255 color scale. A threshold was applied to highlight
the regions above the 50% activation level in the network
to improve image clarity. The side and quadrant (if
available) where the cancer was found in subsequent
mammograms is also shown. We observed that local-
ized regions could highly influence the classification,
but that broad regions of the breast could influence
decision making as well.

Discussion
We developed a deep learning algorithm that provided
better discrimination than BI-RADS breast density for
classifying interval cancer versus screen-detected cancer
with a 75% classification accuracy compared with 63%

Table 2 Chosen hyperparameters with brief description. Hyperparameter sweep went through a realizable range for each
hyperparameter and individual values were chosen to optimize training ability or to minimize overfitting, depending on the
parameter

Hyperparameter (Range) Hyperparameter
Type

Interpretation Chosen Value

Rotation (0–90) Data Augmentation Range for a random rotation 20

Zoom (0–1) Data Augmentation Range for a random zoom 0.5

Shear (0–1) Data Augmentation Range for a random shear 0.3

Vertical/Horizontal Flip (Yes/No) Data Augmentation Random chance of flip in respective direction Yes/Yes

Momentum (0–1) Optimizer
Parameter

Accelerates or dampens oscillations in given direction. 0.3

Regularization (0–1) Optimizer
Parameter

Penalty applied to large image weights 0

Decay (0–1) Optimizer
Parameter

Learning Rate decay over each update. 1e-5

Dropout (0–1) Fully-connected
Layer

Percent of weights dropped out between dense layers in the FC
layer.

0.95

Learning Rate (0–1) Training Parameter Importance attributed to weight updates. 1e-3

Epochs (Integer) Training Parameter Number of epochs performed 1000

Batch Size (2n any n) Training Parameter Number of samples per gradient update 16

Image Size (Minimum 224) Training Parameter Input image size in pixels 224

nLayersRetrain (Fully Connected only – All
Layers)

Training Parameter Number of layers allowed to have their weights altered. All Layers
(173)
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for BI-RADS density. Deep learning networks have been
applied in a variety of ways in breast cancer, but as of
yet they have not been leveraged to identify risk of inter-
val breast cancer. The results of our work indicate that a
deep learning network is able to identify information in
mammograms associated with interval breast cancer
diagnosis that is not captured in the BI-RADS density
classification alone.
Previous work by Kerlikowske et al. [4] showed that

breast density was associated with increased prevalence
of interval cancer in a screening population. Further-
more, Kerlikowske showed that using a combination of
breast density and 5-year breast cancer risk to identify

women for discussion about supplemental screening in
the fewest women counseled per interval cancer occur-
rence. Recently, automated methods to quantify breast
density have been shown to produce similar levels of
interval risk as subjective BI-RADS density scores [6].
Other researchers have investigated radiomic features

as a measure for interval risk. Strand et al. identified
mammographic image features significant for interval
breast cancer risk [9]. Holm et al. identified biological
risk factors significant for interval risk after controlling
for age and mammographic density [41]. Additionally,
Mainprize et al. developed a direct measure of detect-
ability that was significant for interval risk as well using
model observers [10].
This study has several strengths. First, the dataset con-

trols for age and race, helping to reduce possible con-
founding. Further, comparing our network to predictions
based on BI-RADS density provides comparisons against
current interval cancer risk factors [4, 7]. Additionally
the transfer learning methods, the data preprocessing
steps, data augmentation steps, and hyperparameter
sweeps performed helped to maximize test accuracy.
Seventy-five percent of images analyzed were correctly

classified, with slightly more actual interval images being
misclassified compared to actual screen-detected images.
This could be because the higher density of the interval
images made them more difficult to classify. The sali-
ency maps provided interesting information about the
images and which regions influenced the decisions to
classify the image as an interval or a screen-detected

Fig. 2 Loss and accuracy curves per epoch of the test and train set of the deep learning network. Best test loss occurred on epoch 482. At that
epoch training loss and accuracy were 0.58 and 67.4%, respectively, and test loss and accuracy were 0.499 and 75.2%, respectively

Fig. 3 ROC Curves interval vs screen-detected cancer classification
using BI-RADS density alone (Only BI-RADS) vs using the deep
learning predictions (Deep Learning) vs using both as predictors
(Combined). Prediction accuracy was 63% using BI-RADS density
alone and 75% using deep learning alone

Table 3 Contingency table of the number of correctly and
incorrectly classified images from the deep learning network

Number (Percent) Predicted Screened Predicted Interval Total

Actual Screened 134/173 (77.4%) 39/173 (22.5%) 173

Actual Interval 48/182 (26.4%) 134/182 (73.6%) 182

Total 182 173
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image. While it appears regions of interest in the interval
image were related to density, further work must be
done to examine how these regions in the saliency maps
relate to the underlying biological and radiomic features
of the image. The goal of saliency maps like this is to
help bridge the gap between the deep learning network
predictions and the radiologist or interpreter, helping to
identify regions at high risk of interval breast cancer or
identify regions to study further regarding why and how
they contribute to interval breast cancer risk.
There were several limitations to our study. First, the

computational limitations of our system required a large
amount of downsampling, which likely lost significant
imaging details and textures. Future work should utilize
more powerful systems capable of dealing with larger
image sizes. Additionally, because of the limited number
of cases available and our goal to use as much data as
possible in training, we were not able to employ a valid-
ation dataset and we included some interval images
without direct matches or images without BI-RADS
density values. We attempted to mitigate the risks from
having a smaller dataset through transfer learning, data
preprocessing and augmentation, and careful selection

of hyperparameters. Additionally, comparing results of
the test and train sets to ensure they had similar results
helped to identify hyperparameter sets that produced
good training and test results.
Another limitation in our dataset was that it did not

control for BMI or length of time between mammogram
or diagnosis, leading to potential bias between the mam-
mograms. Additionally, this initial study only compared
against the subjective BI-RADS density, and did not
compare against more quantitative measures of breast
density. Previous work has shown that BI-RADS density
and automated density measures were shown to be simi-
lar risk factors for interval cancer [7], but future work
should include comparisons against automated density
measures and other known masking features. Further,
we did not have information regarding cancer types or
lesion sizes, which would be useful information for fu-
ture analyses. An additional limitation was that this
study did not include a healthy control group that did
not develop cancer. Our hypothesis was that there were
fundamental differences in the mammograms of women
that develop interval versus screen-detected cancers. We
found a strong signal to confirm this hypothesis, guiding

Fig. 4 Saliency maps of sample screen-detected and interval images (both correctly classified). For each row, the pseudo-presentation images are
shown (left) along with the saliency map (middle) that highlights the pixels that had above a 50% weight in classifying the image in its
respective category (i.e. first row saliency map highlights weights that push towards decision of classifying as screen-detected decision). At right,
the images are overlaid
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the path to future studies that will compare interval and
screen detected cancers to women that do not develop
breast cancer. Lastly, we used a broad definition of inter-
val cancer and did not differentiate between interval
cancers from missed lesions and true interval cancers,
which may have led to the deep learning network
achieving some of its performance by detecting certain
visible features. While many interval cancers occur be-
cause the lesion is masked, some interval cancers occur
due to radiologist fatigue or error and others from fast
growing lesions that develop after the previous mammo-
gram [42]. Identifying and separating these subgroups
can be difficult. We did not separate these types of inter-
val cancers, which introduced additional noise into the
dataset and may have weakened our results compared to
using a dataset of only truly masked interval cancers.

Conclusions
We conclude that pre-cancerous mammograms contain
imaging information beyond breast density that can be
used to predict the probability of breast cancer detection,
and that deep learning models may be able to detect and
identify that imaging information. This work could be ex-
panded upon further to improve risk prediction models
for interval cancer, develop automated methods or soft-
ware that can aid radiologists in risk prediction, and
understand if these deep learning predictions relate to
underlying radiomic quantities or tissue biology.
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