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Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result 

in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF 

patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely 

restores channel activity and has shown substantial clinical benefit. However, most CF patients 

carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. 

Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the 

investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials 
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show limited but significant improvements in lung function. We show that VX-770, as well as 

most other potentiators, reduces the correction efficacy of VX-809 and another investigational 

corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, 

we examined its long-term effect in immortalized and primary human respiratory epithelia. 

VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the 

endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell 

surface ΔF508-CFTR density and function. VX-770–induced destabilization of ΔF508-CFTR was 

influenced by second-site suppressor mutations of the folding defect and was prevented by 

stabilization of the nucleotide-binding domain 1 (NBD1)–NBD2 interface. The reduced correction 

efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of 

VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit 

of corrector-potentiator combination therapy in CF.

INTRODUCTION

Cystic fibrosis (CF), one of the most common inherited diseases in the Caucasian 

population, is caused by mutations in the CF transmembrane regulator (CFTR) gene that 

lead to loss of CFTR channel function and impaired epithelial anion transport in the lung, 

intestine, pancreas, and other organs (1, 2). The nearly 2000 different mutations identified in 

the CFTR gene (http://www.genet.sickkids.on.ca) have been categorized into six different 

classes according to the resulting molecular aberration (3, 4). The most prevalent class II 

mutation, deletion of phenylalanine 508 (ΔF508), results in misfolded CFTR channels that 

are predominantly recognized and degraded by the endoplasmic reticulum (ER) quality 

control machinery (2, 5). ΔF508-CFTR molecules that escape from the ER are functionally 

impaired (class III mutation) and conformationally unstable, with rapid removal from the 

plasma membrane (PM) by the peripheral quality control and targeting for endolysosomal 

degradation (6). G551D, the third most common CF-causing mutation that affects ~4% of 

CF patients, belongs to class III and displays normal processing and cell surface expression 

but severe functional impairment (7).

The CFTR protein is an ATP (adenosine 5′-triphosphate)–binding cassette transporter family 

member that comprises two membrane-spanning domains (MSD1 and MSD2) and three 

cytosolic domains, two nucleotide-binding domains (NBD1 and NBD2) and a regulatory 

domain (8). The ΔF508 mutation in the NBD1 produces multiple structural defects in CFTR. 

At least two of those, NBD1 misfolding and NBD1-MSD1/2 interfacial instability, have to 

be reversed genetically and/or pharmacologically to achieve near wild type–like PM 

expression (9–13).

Mechanistically, the available investigational small-molecule CFTR modulators fall into 

three classes: (i) suppressor molecules that prevent premature termination of protein 

synthesis; (ii) correctors that partially revert the folding and processing defects; and (iii) 

potentiators that increase channel gating and conductance (14–16). The potentiator ivacaftor 

(VX-770, Kalydeco) has been approved for therapy of CF patients with one copy of G551D 

(17) or some other rare gating mutations (18, 19). VX-770 treatment of patients with G551D 

and other class III mutations demonstrated marked clinical benefit, including ~10 to 14% 
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increase in the forced expiratory volume in 1 s (FEV1), decrease in pulmonary 

exacerbations, and weight gain relative to placebo treatment (20–22).

Nasal potential difference and short-circuit current (Isc) measurements in rectal biopsies of 

CF patients as well as in primary human bronchial epithelial (HBE) cells indicate that a 

subset of homozygous ΔF508 patients have residual ΔF508-CFTR PM function (23–25). 

The PM expression and activity of ΔF508-CFTR inversely correlate with CF disease 

severity (23, 25, 26). Acute addition of VX-770 in HBE cell cultures from some patients 

homozygous for the ΔF508 mutation increased the residual forskolin-stimulated channel 

activity from ~4 to 16% of that in HBE cultures from non-CF individuals, whereas other 

cultures were not responsive (24). A phase 2 trial in ΔF508 homozygous patients, however, 

showed no improvement in FEV1, although a small reduction in sweat chloride 

concentration upon VX-770 treatment occurred (27).

Likewise, treatment with VX-809 (lumacaftor) alone, a promising investigational corrector 

drug that restores the ΔF508-CFTR PM expression and function to ~15% of wild-type 

CFTR activity in non-CF HBE cells (28), failed to show robust improvement in lung 

function of ΔF508/ΔF508 patients (29). In cell cultures, a combination of chronic VX-809 

and acute VX-770, together with a cAMP (cyclic adenosine 3′,5′-monophosphate) agonist, 

increased ΔF508-CFTR conductance to ~25% of that in non-CF HBE (28). These preclinical 

results motivated the ongoing phase 2–3 clinical trials of combination treatment with 

VX-770 and VX-809, or VX-661, another investigational corrector (14) (http://

www.clinicaltrials.gov NCT01225211 and NCT01531673). The results of a phase 2 trial in 

homozygous ΔF508 patients receiving VX-809 and VX-770 combination treatment 

suggested an improvement in FEV1 of 8.6% compared to placebo (P < 0.001) and amarginal 

decrease in sweat chloride concentration (30), although sustained clinical benefit awaits 

verification. The recent news release of the first phase 3 trials reported a mean absolute 

improvement in FEV1 compared to placebo in the range of 2.6 to 4.0% (P ≤0.0004) (31). 

The limited clinical efficacy of combination therapy based on these data may be accounted 

for by insufficient tissue concentration of the drugs, decreased susceptibility to correction in 

the inflamed lung, and/or conformational destabilization of the mutant upon chronic 

exposure to VX-770. To evaluate the latter possibility, we determined the effect of 

prolonged exposure to VX-770, and to other investigational potentiators, on the biochemical 

and functional expression of ΔF508-CFTR. The results indicate that VX-770 and some, but 

not all, other potentiators cause ΔF508-CFTR destabilization at multiple cellular sites in 

model systems and primary CF HBE, with consequent reduced functional expression of 

ΔF508-CFTR at the cell surface.

RESULTS

Prolonged exposure to VX-770 reduces the PM and cellular expression of ΔF508-CFTR

To investigate the effect of prolonged exposure to VX-770 on ΔF508-CFTR PM expression, 

we first used the human CF bronchial epithelial cell line CFBE41o− (referred to as CFBE), a 

widely validated model system with CFTRΔF508/ΔF508 genetic background but no detectable 

CFTR protein expression (32). CFBE cells were engineered for inducible expression of 

CFTR variants as described (10, 33). To facilitate the PM detection of ΔF508-CFTR, 
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horseradish peroxidase isoenzyme C (HRP-C) was genetically engineered into its fourth 

extracellular loop. The functional and biochemical properties of ΔF508-CFTR-HRP are 

similar to those of the 3HA-tagged variant (13, 34) (fig. S1, A to D).

Acute addition of VX-770 to low temperature–rescued ΔF508-CFTR (rΔF508) in CFBE 

cells increased the cAMP-dependent protein kinase (PKA)–activated current by up to sixfold 

with EC50 of 12.8 ± 1.0 nM (fig. S2, A and B), similar to that reported in ΔF508/ΔF508 

HBE cells (22 ± 10 nM) (24). Prolonged exposure (24 hours) to VX-770, however, caused a 

concentration-dependent decrease in the PM density of ΔF508-CFTR, regardless of whether 

the preincubation with VX-770 was done at physiological temperature or at 26 to 30°C, 

which facilitated ΔF508 CFTR biosynthetic processing (Fig. 1, A and B). The maximal 

reduction in ΔF508-CFTR PM density was attained at ~30 nM VX-770, well below the 

plasma concentration of ~3.5 µM in VX-770–treated CF patients (35). Although increasing 

the concentration of human serum (0 to 100%) raised the EC50 of VX-770 from 2.5 ± 0.2 

nM to 23.1 ± 4.6 nM in the presence of VX-809, it did not affect the reduced PM density 

achieved by long-term treatment with ≥100 nM VX-770 (fig. S2, G and H). In contrast, the 

PM density of wild-type CFTR or G551D-CFTR was not reduced by prolonged VX-770 

exposure (Fig. 1, A and C).

VX-809 partially restored ΔF508-CFTR biogenesis, function, and PM expression by about 

three- to fourfold in CFBE and primary HBE monolayers (fig. S2C) (10, 13, 28). VX-809 

alone or in combination with low-temperature rescue, however, failed to prevent the 

VX-770–dependent reduction in ΔF508-CFTR PM density (Fig. 1, A and B, and fig. S2C). 

Similar results were obtained for ΔF508-CFTR rescued with the corrector VX-661 (fig. 

S2D). The VX-770–induced reduction in ΔF508-CFTR PM density was independent of 

channel gating because neither activation of adenyl cyclase by forskolin nor blocking the 

channel with BPO-27 (36) influenced the VX-770 effect (Fig. 1B and fig. S2C). Extended 

exposure to VX-770 did not affect cell viability (fig. S2E). PM down-regulation of 3HA-

tagged ΔF508-CFTR by VX-770 in low temperature–rescued CFBE, NCI-H441 (a lung 

adenocarcinoma cell line exhibiting some Clara cell features), and MDCK II (Madin-Darby 

canine kidney) epithelial cells suggested that the VX-770 effect is not CFBE-specific or 

related to the HRP-tag insertion (Fig. 1D and fig. S2F).

To evaluate whether VX-770 causes the redistribution of PM resident ΔF508-CFTR to 

intracellular pools or exerts a global down-regulation of mature ΔF508-CFTR in post-ER 

compartments, we determined the cellular expression of ΔF508-CFTR by immunoblot 

analysis. VX-770 treatment for 24 hours decreased the amount of the complex-glycosylated 

ΔF508-CFTR (C-band) in CFBE lysates in a dose-dependent manner (Fig. 1E). The VX-770 

effect was attenuated in VX-809– or VX-661–treated cells, probably due to partial 

stabilization of the mature ΔF508-CFTR pool by VX-809, as reported previously (Fig. 1, F 

and G) (10, 28, 37). In contrast, the complex-glycosylated form of wild-type CFTR and 

G551D-CFTR was not affected by prolonged VX-770 exposure (Fig. 1H). The modest, 

albeit significant (P = 0.02), decrease in the steady-state level of core-glycosylated ΔF508-

CFTR (B-band) may be due to reduced biogenesis and/or accelerated ER degradation upon 

exposure to 100 nM VX-770 (Fig. 1, E to G). These observations suggest that the VX-770 
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effect cannot be explained merely by accelerated internalization or impeded recycling of 

rΔF508-CFTR.

ΔF508-CFTR chloride conductance decreases after long-term VX-770 exposure in CFBE 
and primary respiratory epithelia

To assess the functional consequence of prolonged VX-770 exposure of CFBE and primary 

HBE cells, we performed short-circuit current (Isc) measurements after 24 hours of 

incubation with 100 nM VX-770. Forskolin-stimulated Isc was measured after inhibition of 

ENaC (epithelial sodium channel) by amiloride and maximal acute potentiation of cell 

surface ΔF508-CFTR function with 10 µM VX-770 (Fig. 2A). Forskolin-stimulated Isc (1.7 

± 0.3 µA/cm2) was reduced to 1.1 ± 0.2 µA/cm after incubation of ΔF508-CFTR–expressing 

CFBE cells with VX-770 for 24 hours. A comparable reduction in Isc was observed in 

VX-809– and VX-661–corrected cells (Fig. 2, A and B).

To confirm the relevance of these results to human tissues, we assessed the VX-770 effect in 

primary HBE cell cultures, isolated from the lungs of six CFTRΔF508/ΔF508 patients and four 

CFTRWT/WT donors. The HBE cells were differentiated on Snapwell filter inserts under air-

liquid interface (ALI) conditions for at least 4 weeks either in Ultroser G medium (i), which 

increases the ENaC- and CFTR-mediated currents (38), or in ALI medium (ii) (39) (Fig. 2, 

C and D). The residual CFTR-mediated Isc in the ΔF508-CFTR HBE was augmented by 

treatment with the correctors VX-809 or VX-661 (3 µM, 24 hours) (13). To further increase 

CFTR-mediated Isc and isolate the apical anion conductance, some cells were differentiated 

in Ultroser G medium and analyzed after basolateral permeabilization and in the presence of 

a basolateral-to-apical Cl− gradient. Independent of the differentiation method and presence 

of a chloride gradient, exposure to VX-770 for 24 hours decreased the VX-809– or VX-661–

corrected ΔF508-CFTR current by 33 ± 6% and 47 ± 8% (mean ± SEM, n = 6), respectively 

(Fig. 2, C and D, and Table 1). In contrast, VX-770 pretreatment did not affect the PKA-

activated wild-type CFTR current in HBE (Fig. 2E and table S1), in line with the absence of 

changes in PM and C-band density in wild-type CFTR (Fig. 1H).

Potentiator P5 does not impair the PM density and function of ΔF508-CFTR

To determine whether down-regulation of rΔF508-CFTR is a universal phenomenon of 

long-term potentiator exposure, we tested a panel of CFTR potentiators with distinct 

chemical structures. These investigational small molecules, abbreviated as P1 to P10, were 

made available by the Cystic Fibrosis Foundation Therapeutics Inc. (CFFT) for the research 

community (fig. S3A). The potency and efficacy of P1 to P10 on the activity of low-

temperature rΔF508-CFTR were demonstrated in CFBE cells using the halide-sensitive 

yellow fluorescent protein (YFP) quenching assay. Acute addition of P1 to P8 confirmed the 

potentiation of the rΔF508-CFTR activity, whereas P9 and P10 had only small effects (Fig. 

3, A to H, and fig. S3, B to D). The dose-response curve of genistein (P6), a flavone widely 

used for acute potentiation of CFTR activity, did not reach saturation activity at 100 µM, 

suggesting that rΔF508-CFTR has lower affinity for genistein than wild-type CFTR (40, 41) 

(Fig. 3F).
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Prolonged treatment (24 hours) with most potentiators produced a concentration-dependent 

decrease in ΔF508-CFTR PM density in CFBE partially rescued with low temperature alone 

or in combination with VX-809 (Fig. 3, A to H). This was especially prominent for genistein 

(P6), with ~60 and ~75% decrease in rΔF508-CFTR PM density and conductance, 

respectively (Fig. 3, F, I, and J). P5 did not reduce the ΔF508-CFTR PM density and 

potentiated the rΔF508-CFTR activity by up to about sevenfold in CFBE cells (Fig. 3E). 

This result was confirmed by immunoblot analysis of low-temperature and VX-809 rΔF508-

CFTR. Increasing concentrations of P5 did not alter the relative abundance of core- and 

complex-glycosylated ΔF508-CFTR, suggesting that P5 does not affect ΔF508-CFTR ER 

processing and stability (Fig. 4A).

Isc measurements in CFBE expressing ΔF508-CFTR and primary HBE cells isolated from 

four CFTRΔF508/ΔF508 patients also confirmed the lack of effect of prolonged P5 exposure 

on the maximal activation of ΔF508-CFTR current at physiological temperature (Fig. 4, B 

and C, and Table 1). P5 may thus be a useful investigational compound to potentiate ΔF508-

CFTR function without impairing its PM expression.

VX-770 impairs biogenesis, stability, and endocytic trafficking of the ΔF508-CFTR

Because VX-770 may impair both the biogenesis and the metabolic stability of mature 

ΔF508-CFTR, according to the immunoblot analysis, we measured conformational 

maturation of newly formed ΔF508 CFTR by the metabolic pulse-chase technique (11). 

Phosphorimage analysis was used to quantify the conversion efficiency of core-glycosylated 

ΔF508-CFTR (B-band), labeled with [35S]methionine and [35S]cysteine, into complex-

glycosylated ΔF508-CFTR (C-band) upon traversing the cis/medial Golgi in CFBE cells. 

The folding efficiency of ΔF508-CFTR in the presence of VX-809 decreased from 1.8 ± 

0.2% to 1.3 ± 0.1% after VX-770 treatment for 24 hours, representing a ~25% (P = 0.026) 

reduction (Fig. 5A, left panel). Similarly, the folding efficiency of VX-770–treated ΔF508-

CFTR-3S, carrying NBD1-stabilizing second-site mutations, decreased from 4.0 ± 0.2% to 

2.6 ± 0.6% (P = 0.049) (Fig. 5A, right panel). The reduced ER maturation efficiency cannot 

be attributed to decreased transcription or profoundly increased degradation of the core-

glycosylated ΔF508-CFTR because neither the mRNA level nor the B-band stability was 

affected by VX-770 (fig. S4, A to C). The decreased incorporation of radioactivity during 

the 30-min pulse is consistent with increased cotranslational degradation and/or partial 

translational inhibition (fig. S4D).

The peripheral stability of rΔF508-CFTR was determined both at the PM and in post-ER 

compartments in CFBE cells. After the accumulation of low temperature–rescued ΔF508-

CFTR at the PM, it was rapidly removed with a T1/2 ~2.5 hours at 37°C (Fig. 5B), probably 

as a result of accelerated internalization, lysosomal targeting, and attenuated recycling, as 

reported in HeLa cells (6). The T1/2 of rΔF508-CFTR at the PM was decreased by VX-770 

to ~1.75 hours, regardless of whether VX-770 was present for 24 or 3 hours (Fig. 5B). 

VX-770 also accelerated the PM turnover of rΔF508-CFTR that was modestly stabilized by 

VX-809 (28), as reflected by the reduction of T1/2 from ~3 to ~2.25 hours (Fig. 5C). In 

addition, VX-770 destabilized the complex-glycosylated rΔF508-CFTR pool both in the 

presence and in the absence of VX-809, as determined by cycloheximide (CHX) chase and 
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immunoblot (Fig. 5, D and E). Similar results were obtained by metabolic pulse-chase for 

rΔF508-CFTR containing the 3S NBD1 stabilizing mutation (fig. S4E). Together, these 

observations suggest that VX-770 interferes with both the biogenesis and the peripheral 

stability of mature ΔF508-CFTR in the presence or absence of VX-809, which likely 

accounts for reduced ΔF508-CFTR PM function. As found for VX-770, prolonged treatment 

with potentiators P1, P2, P4, P6, and P7 led to a destabilization of PM-localized rΔF508-

CFTR (Fig. 5F). Notably, destabilization was not seen in CFBE treated with P3 or P5 (Fig. 

5F).

The conformational destabilization of rΔF508-CFTR by VX-770 may be recognized by the 

peripheral quality control machinery that targets non-native PM proteins for lysosomal 

degradation (42). This possibility was assessed by determining the post-endocytic fate of 

rΔF508-CFTR by measuring the pH of CFTR-containing endocytic vesicles with 

fluorescence ratio image analysis (FRIA) (43). rΔF508-CFTR was accumulated in polarized, 

filter-grown CFBE at reduced temperature and exposed for 24 hours to 

DMSO,VX-809,VX-770, or VX-809 + VX-770. The rΔF508-CFTR-3HA was unfolded at 

37°C for 1.5 hours and then labeled with pH-sensitive FITC (fluorescein isothiocyanate) at 

0°C, using the antibody capture technique as described in Materials and Methods. 

Internalization of labeled PM ΔF508-CFTR was initiated by shifting the temperature to 

37°C.

Endocytosed rΔF508-CFTR was delivered after 30 min into multivesicular bodies (MVB)/

lysosomes (pH 5.25 ± 0.01), whereas wild-type CFTR largely remained in early endosomes 

(Fig. 5, G and H, and fig. S4F). MVB/lysosomal delivery was inhibited by VX-809, as seen 

by preferential confinement to early endosomes (pH 6.31 ± 0.1) during a 2-hour chase (Fig. 

5, G and H). VX-770 partially reversed the VX-809 trafficking effect by facilitating rΔF508-

CFTR transfer to late endosomes, as indicated by the pH (5.84 ± 0.1) of the rΔF508-CFTR–

containing vesicular compartment after a 2-hour chase (Fig. 5, G and H), suggesting that 

VX-770 increases ΔF508-CFTR susceptibility to recognition by the peripheral quality 

control machinery.

The effect of VX-770 at the single-molecule level was measured by determining the channel 

function of rΔF508-CFTR with or without second-site suppressor mutations in reconstituted 

planar phospholipid bilayer (Fig. 6, A to E). R29K and R555K mutations were introduced 

(ΔF508-CFTR-2RK) to increase channel reconstitution efficiency (44). The open probability 

(Po) of phosphorylated ΔF508-CFTR-2RK channel decreased from 0.19 to 0.09 upon 

increasing the temperature from 24 to 36°C (Fig. 6B). VX-770 enhanced ΔF508-CFTR-2RK 

function at low temperature (Po = 0.43 at 24°C), but accelerated its inactivation rate, as 

indicated by the ~3.5-fold faster loss of channel activity between 32 and 36°C (−18.1 ± 

1.4%/°C in the presence of VX-770 versus −4.9 ± 2.8%/°C inactivation rate in the control) 

(Fig. 6, A to C). These results suggest a direct interaction of VX-770 with ΔF508-

CFTR-2RK, resulting in its destabilization.
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Second-site mutations modulate ΔF508-CFTR susceptibility to VX-770–mediated down-
regulation

Second-site suppressor mutations in ΔF508-CFTR have been used to investigate 

mechanisms of small-molecule CFTR modulators (10) (fig. S5A). An increasing number of 

solubilizing mutations (1S, 2S, and 3S) progressively stabilize the isolated ΔF508-NBD1 

domain energetically (see table S2 for list of all mutants) (11, 45–47). Similarly, NBD1-

MSD2 interface–stabilizing mutants (for example, R1070W or V510D) (8, 48) enhance the 

PM expression of ΔF508-CFTR PM to ~5 to 10% of wild-type CFTR. Combining the two 

classes of mutations increased expression to ~50% of wild-type CFTR by aiding coupled 

domain folding (10, 11). Unexpectedly, neither solubilizing nor interface-stabilizing 

mutations alone or in combination prevented the reduction in ΔF508-CFTR expression after 

prolonged VX-770 exposure, regardless of the presence of VX-809 (Fig. 7, A and B, and 

fig. S5, B to F). Solubilizing mutations augmented the loss of ΔF508-CFTR PM expression 

by VX-770 from ~45 to ~80% and decreased the IC50 of VX-770 from ~10 nM to 1 to 2 nM 

(P = 0.0020 to 0.0153) (Fig. 7, A to C, and fig. S5, B and C). In contrast, the C-terminal 70–

amino acid truncation (Δ70 CFTR), which reduced the PM stability and expression by ~90% 

relative to wild-type CFTR (49), was resistant to prolonged VX-770 treatment (Fig. 7A and 

fig. S5G). The lack of apparent correlation between global down-regulation of ΔF508-CFTR 

PM density and the extent of VX-770–induced destabilization is further supported by the 

phenotype of revertant mutations [3R; G550E, R553Q, and R555K (50)] alone or in 

combination with 1S (R1S). These mutations energetically stabilize the ΔF508-NBD1 to an 

extent comparable to 3S, increase the PM density to ~40 to 50% of wild-type CFTR (11), 

and either directly or indirectly delay NBD1-NBD2 dimer dissociation (11, 51) and channel 

closing, manifesting in about twofold increased Po (Fig. 6D and fig. S6A). 3R or R1S 

mutations prevented the VX-770–induced down-regulation of ΔF508-CFTR from the PM 

(Fig. 7, A and D, and fig. S5H), and the R1S mutation eliminated the thermal inactivation in 

the bilayer and attenuated the potentiating effect of VX-770 (Fig. 6D and fig. S6A). 

Similarly, the ΔF508-E1371S (E1371S) mutation, which increases NBD1-NBD2 dimer 

stability by preventing the hydrolysis of bound ATP to the Walker A and B motifs in NBD2 

and thereby the dissociation of the NBD1-NBD2 dimer (52, 53), protected ΔF508-CFTR 

from thermal inactivation in reconstituted planar phospholipid bilayer experiments 

regardless of the presence of VX-770 (Fig. 6E and fig. S6B).

To offer a possible explanation for the VX-770 interaction with ΔF508-CFTR, we propose 

the formation of multiple binding pockets in the partially unfolded ΔF508-NBD1/2, based 

on molecular dynamics simulations and docking studies (fig. S7A). The putative binding 

sites of VX-770 are labeled in red in the ΔF508-CFTR structure (fig. S7B). High-

affinity/low binding energy (less than −6.5 kcal/mol) interactions of VX-770 with amino 

acids in the NBD1/2 interface and the coupling helix of CL1 in ΔF508-CFTR only partially 

overlap with those in wild-type CFTR (fig. S7C), consistent with the absence of the 

destabilizing effect of VX-770 in wild-type CFTR. The lack of VX-770 destabilizing effect 

on the revertant and NBD2 ATPase (adenosine triphosphatase) mutants is in line with the 

notion that prolonged NBD1-NBD2 dimerization (51, 54) either directly or allosterically 

hinders the VX-770 association with destabilizing sites. Although the dockings studies 
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suggest partially overlapping putative binding sites for P5 and VX-770, P5 also has unique 

interactions in NBD1 (amino acids 621 to 623) that are not observed for VX-770 (fig. S7D).

Rare CF mutations sensitize CFTR to VX-770–induced down-regulation

Gating potentiation of class III mutations by acute VX-770 exposure in preclinical settings 

rationalized the approval of ivacaftor in patients with eight rare CF mutations (19). To 

evaluate whether prolonged VX-770 exposure may interfere with the expression of other 

class III and class II mutations, we determined the PM density and function of R347H-, 

R170G-, and P67L-CFTR (fig. S8A) in CFBE. Whereas R347H-CFTR, a class III mutation 

(55), was resistant to VX-770, PM expression was reduced by 30 to 43% and forskolin-

stimulated Isc was reduced by 32 to 38% in VX-809–rescued R170G-CFTR and P67L-

CFTR by VX-770 (Fig. 7, E to H, and fig. S8, B and C), raising the possibility that multiple 

class II mutations are susceptible to VX-770–mediated destabilization.

DISCUSSION

Here, we provide evidence that basal and VX-809– or VX-661–rescued PM densities of 

ΔF508-CFTR are reduced in parallel with the loss of chloride conductance upon prolonged 

exposure to VX-770. The reduction in channel density was not prevented by partial 

correction of the ΔF508-CFTR biogenesis defect by low temperature. In contrast, the PM 

expression of wild-type CFTR and G551D-CFTR was not reduced by prolonged VX-770 

treatment.

Although the cellular basis of the destabilizing action of VX-770 on ΔF508-CFTR is well 

documented both in this work and in an accompanying publication (56), its molecular details 

remain to be elucidated. Although indirect effect cannot be ruled out, we postulate that 

direct association of VX-770 with ΔF508-CFTR increases its unfolding propensity, an 

inference supported by the accelerated rate of functional inactivation of temperature-rescued 

ΔF508-CFTR-2RK in reconstituted planar lipid bilayers. The conformational destabilization 

of ΔF508-CFTR by VX-770 is also in line with its reduced ER folding efficiency, 

accelerated PM, and post-ER pool turnover, as well as lysosomal targeting from early 

endosomes, phenomena that have been described as hallmarks of the peripheral quality 

control of non-native membrane proteins (6, 42).

Conformational stabilization of NBD1 or the NBD1-MSD2 interface with second-site 

mutations (1S, 2S, or 3S and R1070W or V510D, respectively) sensitized ΔF508-CFTR to 

VX-770, as reflected by the increased fractional down-regulation and decreased IC50 (from 

~10 to ~2 nM) despite partial rescue of misprocessing of these mutant variants (11). Despite 

conferring similar energetic stabilization as NBD1-3S, the revertant mutations that are 

clustered at residues 550 to 555 (11) bestowed complete resistance to PM down-regulation 

and thermal functional inactivation in the bilayer by VX-770. Because the revertant 

mutations probably stabilize the NBD1-NBD2 dimer (51), this observation suggests that an 

unstable NBD1-NBD2 interface is a prerequisite for the VX-770 destabilizing action, an 

inference that is supported by the resistance of ΔF508-CFTR-E1371S to VX-770. The 

E1371S substitution retards channel closing by preventing the hydrolysis of bound ATP to 
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the Walker A and B motifs in NBD2 and thereby the dissociation of the NBD1-NBD2 dimer 

(52, 53).

Monotherapy with VX-809, which increased ΔF508-CFTR–mediated Isc to ~14% of that in 

wild-type CFTR in primary HBE (28), did not confer substantial clinical benefit (29). The 

maximally stimulated Isc in VX-809–rescued ΔF508/ΔF508-HBE in combination with acute 

VX-770 potentiation reached ~23% of that in non-CF HBE in our studies (Table 1 and table 

S1). These results are consistent with published data suggesting an Isc equivalent to ~25% of 

that in non-CFHBE (twofold increase over VX-809 alone) (28). Prolonged VX-770 

exposure reduced the ΔF508 Isc by 33 ± 6% (mean ± SEM, n = 6) in VX-809–corrected 

HBE, albeit with a considerable range of values in cells from different CF patients (12 to 

49%, Table 1), which is likely due to the influence of the genetic or epigenetic variability 

between individuals on the proteostasis network activity (57, 58). In VX-661–rescued 

ΔF508/ΔF508-HBE, the VX-770–induced functional attenuation ranged between 14 and 

65% with a mean of 47 ± 8% (± SEM, n = 6) (Table 1). If these results translate to the 

clinical setting, combination of corrector therapy with VX-770 could be beneficial for a 

subpopulation of ΔF508 CF patients, but may reduce the overall rescue efficiency below the 

threshold required for clinical benefit in poor VX-809 responders and/or individuals 

susceptible to VX-770–mediated channel destabilization. The negative action of VX-770 

would be more pronounced in patients having a single copy of ΔF508-CFTR.

A limitation of our study is that the concentration of free VX-770 in lung cells of CF 

patients treated with VX-770 is not known, and hence, the VX-770–induced down-

regulation of ΔF508-CFTR can only be extrapolated. VX-770 treatment with the 

recommended dose of 150 mg every 12 hours produced a peak plasma concentration of 3.5 

µM after 5 days (35). Because ~97% of VX-770 is bound to plasma protein (35, 59), the free 

drug concentration is estimated to be ~100 nM in vivo, which is in line with its clinical 

benefit in patients carrying at least one G551D allele (21, 22) despite its relatively high EC50 

for activation of G551D-CFTR (236 nM VX-770) in primary HBE (24). In our studies, 

maximal reduction of ΔF508-CFTR PM density and function was seen at ~30 nM VX-770 

in CFBE. The effective in vivo intracellular concentration of VX-770, however, could be 

even higher than predicted due to the accumulation of VX-770 in primary HBE cells (56) 

and its eightfold enrichment in the epithelial lining fluid of the rat lung relative to plasma 

(59).

Because CFTR-mediated transepithelial transport is closely correlated with CF disease 

severity (23, 25, 60), evaluation of sustained exposure to modulators should be valuable in 

identifying individuals who would benefit from corrector-potentiator combination therapy 

with, for example, patient-derived primary or conditionally reprogrammed respiratory cells 

(61), or intestinal organoids (62). As a complementary strategy, new potentiators might be 

identified that lack the ΔF508-CFTR destabilizing action, as exemplified by the P5 (63). P5 

efficiently stimulated the activity of phosphorylated rΔF508-CFTR, but not G551D (63). 

The latter suggests that the mechanism of action of P5 is distinct from that of VX-770 and 

therefore could be valuable to correct the gating defect of ΔF508-CFTR while preserving its 

PM density.
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In summary, our results suggest that VX-770, as well as most of the available investigational 

potentiators, impairs the biochemical stability of ΔF508-CFTR and other class II processing 

mutations (such as P67L and R170G). These findings in cell cultures may translate to 

reduced efficacy of corrector-potentiator combination therapy in the clinical setting. Further 

structure-activity studies of existing potentiators, as well as identification of potentiators that 

do not destabilize mutant CFTRs, are warranted to enhance the therapeutic benefit of 

corrector-potentiator combination therapy in CF.

MATERIALS AND METHODS

Study design

The goal of the study was to measure the effect of long-term administration of VX-770 and 

other investigational potentiators, either alone or in combination with small-molecule 

correctors, on the biochemical and functional expression of ΔF508-CFTR in immortalized 

and primary human respiratory epithelia. CFBE heterologously expressing wild-type, 

G551D-, or ΔF508-CFTR and primary HBE with a CFTRWT/WT (from four donors) or a 

CFTRΔF508/ΔF508 (from six patients) genotype were subjected to chronic treatment with 

VX-770 (24 hours) in the presence or absence of the correctors VX-809 or VX-661, and 

CFTR function was determined by short-circuit current measurement or halide-sensitive 

YFP fluorescence quenching. The PM density, PM stability, cellular expression, 

conformational maturation, metabolic stability, and lysosomal targeting of ΔF508-CFTR 

were determined in CFBE to examine the cellular phenotype of the VX-770 destabilizing 

action. To elucidate the molecular mechanism of the VX-770 effect, we examined the 

functional destabilization of the mutant in a planar lipid bilayer and investigated the PM 

density and function of ΔF508-CFTR containing second-site mutations. Putative binding 

sites of potentiators were identified by molecular dynamic simulation and in silico docking. 

Finally, to assess the VX-770 effect specificity, the PM density and function of other class 

III and class II mutations (R347H-, R170G-, and P67L-CFTR) were determined in CFBE.

Antibodies and reagents

Mouse monoclonal anti–hemagglutinin (HA) anitbody was purchased from Covance 

Innovative Antibodies. VX-770, VX-809, and VX-661 were acquired from Selleckchem. 

The CFTR potentiators P1 to P10 were made available by R. J. Bridges (Rosalind Franklin 

University of Medicine and Science) and CFFT. All other chemicals were purchased from 

Sigma-Aldrich at the highest grade available.

Cell lines

Full-length human CFTR variants with the 3HA-tag in the fourth extracellular loop have 

been described before (10). The HRP-C was introduced into the fourth extracellular loop 

replacing the 3HA-tag by using the Eco RV/Avr II restriction sites with a 5′ linker 

(ctcgaatcaggaggtagtggtggcggaagt). The CFTR variants used in this study are listed in table 

S2. Maintenance of the human CF bronchial epithelial cell line CFBE41o− (32), with a 

CFTRΔF508/ΔF508 genotype [a gift from D. Gruenert, University of California, San Francisco 

(UCSF)], and stable cell line generation of CFTR-3HA variants under the control of a 
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tetracycline-responsive transactivator were described before (33). NCI-H441 and MDCK II 

cells expressing inducible ΔF508-CFTR have been described (10).

Primary HBE and short-circuit current measurements

Primary cultures of HBE cells from four CFTRΔF508/ΔF508 CF patients and four CFTRWT/WT 

donors were isolated and grown at ALI in ALI differentiation medium, as described (39, 64). 

Primary cultures differentiated in Ultorser G medium (38) from two CFTRΔF508/ΔF508 CF 

patients were purchased from ChanTest. Isc measurements of primary HBE and CFBE 

epithelia were performed as described (33, 65).

PM density measurement

The PM density of 3HA-tagged CFTR variants was determined by cell surface enzyme-

linked immunosorbent assay (ELISA) (6). HRP-tagged CFTR PM density was measured in 

a VICTOR Light Plate Reader (PerkinElmer) after addition of HRP-substrate (50 µl per 

well; SuperSignal West Pico, Thermo Fisher Scientific). PM density measurements were 

normalized with cell viability determined by alamarBlue Assay (Invitrogen).

Halide-sensitive YFP quenching assay

Assay of ΔF508-CFTR function by halide-sensitive YFP fluorescence quenching was 

performed as described (33). CFBE cells expressing inducible ΔF508-CFTR were 

transduced with lentiviral particles encoding the halide sensor YFP-F46L/H148Q/I152L (66) 

followed by isolation of double-expressing clones. YFP-expressing cells or controls were 

seeded onto 96-well microplates at a density of 2 × 104 cells per well, induced for ΔF508-

CFTR expression for 2 days at 37°C, and low temperature–rescued for an additional 48 

hours at 26°C. During the assay, cells were incubated in phosphate-buffered saline (PBS)–

chloride (50 µl per well) (140 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM 

KH2PO4, 1.1 mM MgCl2, 0.7 mM CaCl2, and 5 mM glucose, pH 7.4) containing the 

indicated potentiator concentrations, followed by well-wise injection of activator solution 

(50 µl per well) [20 µM forskolin, 0.5 mM 3-isobutyl-1-methyl-xanthine (IBMX), 0.5 mM 

8-(4-chlorophenylthio)-adenosine-3′,5′-cyclic monophosphate (cpt-cAMP)] and 100 µl of 

PBS-iodide, in which NaCl was replaced with NaI. The fluorescence was monitored for 36 s 

with a 5-Hz acquisition rate at 485-nm excitation and 520-nm emission wavelengths using a 

POLARstar OPTIMA (BMG LABTECH) fluorescence plate reader. After background 

subtraction and normalization to YFP signals before NaI injection, the I− influx rate was 

calculated by linear fitting to the initial slope.

Pulse-chase labeling

Experiments were performed as described (11). Briefly, CFBE cells expressing ΔF508-

CFTR were pretreated with 3 µM VX-809 for 24 hours followed by 1-hour exposure to 1 or 

0.1 µM VX-770. CFBE cells expressing ΔF508-CFTR-3S were exposed to 1 µM VX-770 

for 1 hour. CFTR variants were pulse-labeled with [35S]methionine and [35S]cysteine (0.2 

mCi/ml) (EasyTag EXPRESS Protein Labeling Mix, PerkinElmer) in cysteine- and 

methionine-free medium for 30 min and chased in full medium for 2.5 or 4.5 hours at 37°C 

in the presence of the indicated compounds. Radioactivity incorporated into the core- and 
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complex-glycosylated CFTR was visualized by fluorography and quantified by 

phosphorimage analysis with a Typhoon imaging platform (GE Healthcare).

Fluorescence ratiometric image analysis

The methodology for FRIA of endocytic vesicles containing CFTR as a cargo has been 

described in detail (43). Briefly, filter-grown CFBEi-ΔF508-3HA was allowed to polarize 

for 5 days and temperature-rescued for 48 hours at 30°C. VX-809 or VX-809 (3 µM) with 

0.1 µM VX-770 was added for the last 24 hours and kept during the experiment. Before 

labeling, the cells were shifted to 37°C for 1.5 hours. Subsequently, rΔF508-CFTR-3HA 

was labeled with anti-HA antibody and FITC-conjugated goat anti-mouse secondary Fab 

(Jackson ImmunoResearch) on ice. Synchronized internalization was performed at the 

indicated times at 37°C. FRIA was performed on a Zeiss AxioObserver Z1 inverted 

fluorescence microscope (Carl Zeiss MicroImaging) equipped with an X-Cite 120Q 

fluorescence illumination system (Lumen Dynamics Group Inc.) and Evolve 512 EMCCD 

(electron-multiplying charge-coupled device) camera (Photometrics Technology). The 

acquisition was carried out at 495 ± 5–nm and 440 ± 10–nm excitation wavelengths with a 

535 ± 25–nm emission filter and analyzed with MetaFluor software (Molecular Devices).

Planar lipid bilayer studies

Isolated CFTR-containing microsomes (containing 20 to 40 µg of total protein) were fused 

to planar lipid bilayers, and currents were analyzed as described previously (10, 11). Briefly, 

voltage was clamped at −60 mV, and currents were measured with a BC-535 amplifier 

(Warner Instrument) and pCLAMP 9 or 10 software (Axon Instruments), filtered at 200 Hz, 

and sampled at 10 kHz with an eight-pole Bessel filter and Digidata 1320 or 1440 digitizer 

(Axon Instruments). The chamber was gradually warmed from 23 to 37°C, reaching the 

maximum temperature within 8 to 9 min. Open probability (Po) values were calculated for 

2°C temperature intervals between 23 and 37°C, and the midpoints are depicted on the x 

axis.

Statistical analysis

Results are presented as means ± SEM, with the number of experiments indicated. Statistical 

analysis was performed by two-tailed Student’s t test with the means of at least three 

independent experiments. The 95% confidence level was considered significant. For Isc 

measurements, we performed paired t test analysis of patient/donor cells measured under 

different conditions. We used the Hill equation to calculate IC50 values in the GraphPad 

Prism software package. Original data and exact P values are provided in table S3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Prolonged VX-770 exposure reduces the PM expression of ΔF508-CFTR but not wild-type 
(WT) or G551D-CFTR in human CFBE
(A and C) PM density of ΔF508-CFTR-HRP (ΔF508) (A), G551D-CFTR-3HA (G551D) 

(A), and WT-CFTR-3HA (C). Cells were treated with VX-770 for 24 hours in the presence 

or absence of 3 µM VX-809 at 37°C, and the values are expressed as percentage of non–

VX-770-treated controls (n = 3). (B and D) PM density of low temperature (48 hours, 

26°C)–rescued ΔF508-CFTR-HRP (rΔF508-HRP) (B) or ΔF508-CFTR-3HA (rΔF508-3HA) 

(D). Cells were treated with VX-770 in the presence or absence of VX-809 (3 µM), BPO-27 
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(25 µM), or forskolin (1 µM) for 24 hours at 26°C followed by a 1-hour chase at 37°C (n = 

3). (E to G) Effect of VX-770 on the expression pattern of low temperature–rescued ΔF508-

CFTR-3HA determined by immunoblot. Cells were treated with VX-770 alone (E) or in 

combination with VX-809 (3 µM) (F) or VX-661 (3 µM) (G) for 24 hours at 26°C. CFTR 

was visualized with anti-HA antibody, and anti–Na+/K+-ATPase antibody served as loading 

control. Densitometric analysis of the core-glycosylated (B-band, filled arrowhead) or 

complex-glycosylated (C-band, empty arrow-head) ΔF508-CFTR is expressed as percentage 

of control (lower panels, n = 3 to 4). (H) Effect of VX-770 on WT- and G551D-CFTR 

expression measured by immunoblot (left panel) and quantification of the C-band density 

(right panel, n = 3). Error bars indicate SEM of three or four independent experiments.
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Fig. 2. Prolonged incubation with VX-770 reduces the maximal CFTR-mediated anion current in 
CFBE and primary cultures of ΔF508-CFTR but not WT-CFTR HBE
(A and B) Representative Isc recordings (A) and quantification of the changes in Isc (n = 3) 

(B) in CFBE monolayer expressing ΔF508-CFTR with or without 24-hour VX-770 (100 

nM), VX-809 (3 µM), or VX-661 (3 µM) pretreatment. CFTR-mediated currents were 

induced by sequential acute addition of VX-770 (770, 10 µM) and forskolin (frk, 20 µM) 

followed by CFTR inhibition with Inh172 (172, 20 µM) in the presence of a basolateral-to-

apical chloride gradient after basolateral permeabilization with amphotericin B. (C to E) 

Representative Isc traces (upper panels) and quantification of the Inh172 inhibited current 

(ΔIsc Inh172, lower panels) in HBE isolated from six different homozygous ΔF508 CF 

patients (C and D) or four WT-CFTR donors (E) with or without VX-770 treatment (24 

hours, 100 nM) alone (E) or in combination with VX-809 (3 µM) (C) and VX-661 (3 µM) 
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(D). The HBE cells were either polarized in Ultroser G medium (i) followed by 

measurement in the presence of a basolateral-to-apical chloride gradient and basolateral 

permeabilization with amphotericin B, or polarized in ALI medium (ii) and measured as an 

intact monolayer with equimolar chloride concentrations in both chambers. Error bars 

indicate SEM of three independent experiments (B) or SD of triplicate measurements (C to 

E). *P < 0.05, ***P < 0.001 (exact P values are listed in table S3).
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Fig. 3. Prolonged treatment with most potentiators reduces the PM density of rescued ΔF508-
CFTR
(A to H) Effect of potentiators P1 (A), P2 (B), P3 (C), P4 (D), P5 (E), P6 (F), P7 (G), and P8 

(H) on rΔF508-CFTR PM density in the presence or absence of 3 µM VX-809 (24-hour 

exposure, 26°C + 1-hour chase at 37°C, left axis, blue and red circles, n = 3) and function 

(acute addition, 32°C, right axis, gray circles, n = 3) in CFBE cells. (I and J) Representative 

Isc recordings (I) and quantification of the changes in Isc (n = 3) (J) in CFBE monolayer 

expressing rΔF508 with or without 24-hour P6 (genistein, 10 to 100 µM) pretreatment. 
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CFTR was activated by sequential acute addition of forskolin (20 µM) and genistein (10 to 

100 µM) followed by CFTR inhibition with Inh172 (20 µM) in the presence of a basolateral-

to-apical chloride gradient after basolateral permeabilization with amphotericin B. Error bars 

indicate SEM of three independent experiments.
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Fig. 4. Prolonged exposure to potentiator P5 does not impair the expression and function of 
ΔF508-CFTR
(A) Effect of P5 on the expression pattern of rΔF508, determined by immunoblot. Cells 

were treated with P5 in combination with VX-809, and CFTR was visualized using anti-HA 

antibody. Anti–Na+/K+-ATPase antibody served as loading control. Densitometric analysis 

of the core-glycosylated (B-band, filled arrowhead) or complex-glycosylated (C-band, 

empty arrowhead) rΔF508 is expressed as percentage of non–P5-treated controls (right 

panel, n = 3). (B) Representative Isc recordings (left panel) and quantification of the changes 
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in Isc (n = 3, right panel) in CFBE monolayer expressing ΔF508-CFTR with or without 24-

hour P5 (3 µM) pretreatment. Measurements were performed in the presence of a 

basolateral-to-apical chloride gradient after basolateral permeabilization. (C) Representative 

Isc traces (left panel) and quantification of the Inh172 inhibited current (ΔIsc Inh172, right 

panel) in HBE isolated from four different homozygous ΔF508 CF patients with or without 

P5 treatment (3 µM, 24 hours, 37°C) in combination with VX-809 (3 µM). The HBE cells 

were polarized in ALI medium and measured without permeabilization with symmetrical 

chloride-containing solutions. Error bars indicate SEM of three independent experiments (A 

and B) or SD of triplicate measurements (C).
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Fig. 5. VX-770 attenuates the maturation and accelerates the PM removal of ΔF508-CFTR
(A) Determination of ER folding efficiency of ΔF508-CFTR in the presence of VX-809 (3 

µM, 24 hours, left panel, n = 5) or of ΔF508-3S in the absence of VX-809 (right panel, n = 

3) by metabolic pulse-chase in CFBE cells with or without VX-770 (1.0 or 0.1 µM, 1-hour 

pretreatment). The folding efficiency was calculated as the percentage of pulse-labeled, 

immature core-glycosylated ΔF508-CFTR (B-band, filled arrowhead) conversion into the 

mature complex-glycosylated form (C-band, open arrowhead). Labeling was performed for 

30 min followed by chase for 2.5 hours at 37°C. (B and C) Effect of VX-770 on the PM 
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stability of low temperature– rescued (48 hours, 26°C) ΔF508-CFTR (rΔF508). CFBE 

monolayer was treated with VX-770 (1 µM, 3 or 24 hours, 26°C) alone (B) or in 

combination with VX-809 (3 µM) (C) followed by chase at 37°C for 1.5 or 3 hours (n = 4). 

(D) Stability of rΔF508 in CFBE cells treated with VX-770 (100 nM, 24 hours) and VX-809 

(3 µM, 24 hours) was determined by immunoblot with CHX chase. (E) Complex-

glycosylated CFTR [open arrowhead in (D)] disappearance was quantified by densitometry 

and is expressed as percentage of initial amount (n = 3). (F) Effect of each potentiator (P1, 

P4, P7, and P8, 30 µM; P2 and P3, 3 µM; P5, 10 µM; and P6, 100 µM; 24 hours, 26°C) on 

the PM stability of rΔF508 (n = 3). (G) Representative histogram of rΔF508-containing 

vesicular pH measured by FRIA. The cells were treated with dimethyl sulfoxide (DMSO), 

VX-809 (3 µM), or VX-809 and 0.1 µM VX-770 for 24 hours and during the 120-min chase. 

The Gaussian distribution of the vesicular pH of 280 vesicles is indicated for each condition. 

(H) Influence of VX-770 on the endolysosomal transfer kinetics of rΔF508. The graph 

shows the mean vesicular pH at each chase point (n = 3). Error bars indicate SEM of three to 

five independent experiments. *P < 0.05, **P < 0.01 (exact P values are listed in table S3).
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Fig. 6. VX-770 directly interacts with and destabilizes the ΔF508-CFTR-2RK channel
(A) Representative records show ΔF508-R29K-R555K-CFTR (ΔF-2RK) channel function in 

the presence of 1 µM VX-770 from two separate experiments at ~25°C (two channels 

incorporated), ~30°C, and ~35°C (one channel incorporated). The closed (c) and open (o) 

states of the channels are indicated. (B) Single-channel open probabilities (Po) of protein 

kinase A–activated ΔF508-CFTR-2RK in the presence or absence of VX-770 (1 µM) (n = 7 

to 46). The cumulative duration of single-channel measurements for any given temperature 

exceeded 8.5 min. (C) Temperature-dependent inactivation of ΔF508-2RK in the presence 
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or absence of VX-770 (1 µM) derived by normalization with 24°C values of the results 

depicted in (B). (D and E) Single-channel open probabilities (Po) of protein kinase A–

activated ΔF508-CFTR-R1S (ΔF508-R1S, n = 4 to 13) (D) or ΔF508-CFTR-E1371S (ΔF-

E1371S, n = 4 to 6) (E) determined by artificial phospholipid bilayer measurements in the 

presence or absence of VX-770 [1 µM in (D), 0.1 µM in (E)]. The cumulative measurement 

time for any given temperature was >4.5 min for ΔF508-R1S and >3 min for ΔF508-

E1371S. Error bars indicate SEM of 4 to 46 independent experiments. *P < 0.05, **P < 0.01 

(exact P values are listed in table S3).
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Fig. 7. Suppressor mutations of ΔF508-CFTR and other CF-causing CFTR mutations modulate 
the susceptibility to VX-770– mediated PM down-regulation
(A) PM density of ΔF508-CFTR with or without second-site suppressor mutations and of 

non–ΔF508-CFTR variants was measured after VX-770 (100 nM, 24 hours) incubation (n = 

3). (B and D) PM density of ΔF508-3S (B) (n = 3) and ΔF508-R1S (D) (n = 3) after 24 

hours of treatment with increasing concentrations of VX-770 in the presence or absence of 

VX-809 (3 µM). (C) 50% inhibitory concentration (IC50) of VX-770 on CFTR variants’ PM 

expression, calculated on the basis of the measurements shown in (B), (D), and fig. S5 (B to 
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F). (E and F) PM density of R347H-CFTR (E) and R170G-CFTR (F) after 24 hours of 

treatment with increasing concentrations of VX-770 in the presence of DMSO or VX-809 (3 

µM). (G) CFTR PM density after VX-770 (100 nM, 24 hours) incubation, measured for CF-

causing mutants G551D-, R347H-, R170G-, and P67L-CFTR (n = 3). The values for ΔF508- 

and WT-CFTR are shown for comparison. (H) Quantification of the changes in Isc (n = 3) 

(B) in CFBE monolayers expressing R347H-, R170G-, or P67L-CFTR with or without 24-

hour VX-770 (100 nM) and VX-809 (3 µM) pretreatment (n = 3 to 4). Error bars indicate 

SEM of three to four independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 (exact 

P values are listed in table S3).
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