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ARTICLE OPEN

Adaptively driven X-ray diffraction guided by machine
learning for autonomous phase identification
Nathan J. Szymanski 1,2, Christopher J. Bartel 1,2, Yan Zeng2, Mouhamad Diallo1,2, Haegyeom Kim2 and Gerbrand Ceder 1,2✉

Machine learning (ML) has become a valuable tool to assist and improve materials characterization, enabling automated
interpretation of experimental results with techniques such as X-ray diffraction (XRD) and electron microscopy. Because ML models
are fast once trained, there is a key opportunity to bring interpretation in-line with experiments and make on-the-fly decisions to
achieve optimal measurement effectiveness, which creates broad opportunities for rapid learning and information extraction from
experiments. Here, we demonstrate such a capability with the development of autonomous and adaptive XRD. By coupling an ML
algorithm with a physical diffractometer, this method integrates diffraction and analysis such that early experimental information is
leveraged to steer measurements toward features that improve the confidence of a model trained to identify crystalline phases. We
validate the effectiveness of an adaptive approach by showing that ML-driven XRD can accurately detect trace amounts of materials
in multi-phase mixtures with short measurement times. The improved speed of phase detection also enables in situ identification of
short-lived intermediate phases formed during solid-state reactions using a standard in-house diffractometer. Our findings
showcase the advantages of in-line ML for materials characterization and point to the possibility of more general approaches for
adaptive experimentation.

npj Computational Materials            (2023) 9:31 ; https://doi.org/10.1038/s41524-023-00984-y

INTRODUCTION
Efficient materials characterization is critical to the design of
improved technologies. Microscopic and spectroscopic techniques
produce large amounts of data that traditionally require time-
consuming analysis by an expert, which limits the rate of materials
development and precludes their use in automated workflows1–4.
Recently, machine learning (ML) has been applied to interpret
characterization data more rapidly5,6. For example, autoencoders
have been developed to segment images from electron micro-
scopy and identify distinct atoms7,8, defects9,10, and microstruc-
tures11,12. Deep learning has also found use in spectroscopy,
where convolutional neural networks can be trained to identify
crystalline phases from X-ray diffraction (XRD) patterns13–15 or
chemical species from Raman spectra16. While such methods
effectively automate the analysis step of materials characteriza-
tion, an opportunity exists to fundamentally rethink the measure-
ment step by leveraging in-line ML to interpret experimental
output as it becomes available and using this information to
modify measurements within a closed-loop process that we call
adaptive characterization. As will be demonstrated in this work,
adaptive characterization can be applied to steer an experiment
along the most efficient path toward precise decision making,
circumventing the need for iterative experimentation.
There are several notable examples of adaptive characterization

techniques developed in recent years. Bayesian optimization has
been applied to raster objects in scattering17,18 and electron/
probe microscopy19–21, leading to reduced measurement time
relative to grid-based sampling22. Such methods have also been
used to guide measurements toward the verification of scientific
hypotheses by designing surrogate models with built-in physical
constraints23–25. Alternatively, decisions can be made with
reinforcement learning, e.g., to regulate the time spent scanning
samples at a beamline depending on their scattering strength26.

While much of the past work has applied adaptive characteriza-
tion to fixed samples with unchanging properties, we show in this
paper that the use of in-line ML analysis can also enable improved
monitoring of dynamic processes where rapid measurements are
required to capture transient states.
For structural characterization, XRD is a prime example of a

technique that requires fast and precise measurements when
applied in-line with experiments. In situ XRD is widely used to
monitor reactions and detect the formation of short-lived
intermediate phases that often influence the final reaction
products27–29. Similarly, operando XRD is used to track phase
transformations in battery materials during cycling, thus providing
mechanistic insight into their performance30–32. For either
application, XRD scans must be performed quickly enough to
capture short-lived intermediate states while also producing high-
resolution data that can be analyzed reliably post hoc. These two
requirements compete with one another as short scans typically
lead to noisy XRD patterns, complicating phase identification.
High-brilliance radiation from a synchrotron light source may be
used to generate high-resolution patterns with short measure-
ment times28, though access to such facilities is limited to a select
number of users and experiments each year. Alternatively, we
propose that ML can be used to adaptively develop high
resolution around features that matter most for phase identifica-
tion, even on standard in-house diffractometers. Such highly
efficient data collection can be accomplished only by closing the
loop between experiments and ML-enabled analysis, such that
rapid and mathematically optimized decisions are made autono-
mously and on-the-fly to acquire signal in areas that provide
maximal information to confirm the presence (or absence) of
certain phases.
Here we formulate an adaptively steered XRD technique for

autonomous phase identification, driven by an ML algorithm
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based on a convolutional neural network. Uncertainty quantifica-
tion is used to decide when additional measurements are needed,
while class activation map analysis dictates where those
measurements are performed. This approach is validated it on
three test cases with increasing complexity based on materials
from the Li-La-Zr-O and Li-Ti-P-O chemical spaces. These tests
reveal that adaptive XRD consistently outperforms conventional
methods on both simulated and experimentally acquired patterns,
providing more precise detection of impurity phases while
requiring shorter measurement times. We further demonstrate
that our ML approach can effectively guide XRD measurements for
improved in situ characterization of solid-state reactions, with the
synthesis of Li7La3Zr2O12 (LLZO) considered as an example. The
use of adaptive scans to monitor LLZO synthesis led to the
successful identification of a short-lived intermediate phase that
would otherwise be missed by conventional measurements. These
findings provide a clear proof of concept for adaptive character-
ization of dynamic processes, highlighting the opportunity for
autonomous experiments driven by ML.

RESULTS
Adaptive XRD approach
Figure 1 shows the coupling between XRD and the ML algorithm
that performs phase identification and controls the diffractometer.
Each adaptive measurement begins with a rapid scan over a
narrow range of 2θ = [10°, 60°], which was optimized to conserve
scan time while still including enough peaks to make a preliminary
prediction regarding which phases are most likely present in the
sample. Supplementary Fig. 1 shows that starting from lower
angles (10–50°) leads to notably reduced accuracy, while starting
from higher angles (10–70°) requires longer scans but does not
lead to more accurate phase identification. After performing an
initial scan over 10–60°, the pattern is fed to our previously
developed deep learning algorithm, XRD-AutoAnalyzer13. This
algorithm not only predicts a set of phases for a given sample, but
also assesses its own level of certainty such that each phase has an
associated confidence ranging from 0 to 100%. Because higher

confidence is correlated with more reliable predictions, we use it
as a metric to decide when a pattern has sufficient resolution to
accurately identify all phases in a sample. A confidence cutoff of
50% is found to provide a good balance between measurement
speed and prediction accuracy (Supplementary Note 1 and
Supplementary Fig. 2). In cases where the prediction confidence
is less than 50%, the ML algorithm can request additional data
from the diffractometer in one of two ways:

1. Resampling a subset of 2θ ⊆ [10°, 60°] with increased
resolution (slower scan rate) to clarify specific peaks that
lead to maximal confidence improvement,

2. Expanding 2θmax > 60° with a fast scan rate to detect
additional peaks.

To select which 2θ should be scanned with increased resolution,
we make use of Class Activation Maps (CAMs) designed to
highlight features that contribute most to the classification(s)
made by a deep learning model33. The CAM for a given XRD
pattern is calculated as a function of 2θ and is expected to be
large in regions containing important peaks for phase identifica-
tion15. As a result, CAMs tend to be maximal around the most
intense peaks in each pattern (Supplementary Fig. 3). However,
sampling such features with increased resolution usually reveals
little new information (Supplementary Note 2) as the most
prominent peaks can already be detected with low-resolution
measurements. Therefore, we instead prioritize resampling in
areas of 2θ where the difference between the CAMs of the two
most probable phases (proposed by XRD-AutoAnalyzer) exceeds a
user-defined threshold. This approach ensures that high-
resolution scans are used to clarify peaks that distinguish phases
with similar XRD patterns.
In cases where there is significant peak overlap between

different phases at low 2θ, the scan range can be expanded to
reveal additional peaks that assist in disentangling them.
However, because measurements carried out at higher 2θ often
produce increasingly broad peaks with lower signal-to-noise
ratios, they may not always lead to more accurate phase
identification. To understand which parts of an XRD pattern

Fig. 1 A schematic for adaptively driven XRD with autonomous phase identification. After performing a fast initial, the resulting XRD
patten is fed to a pre-trained ML model which proposes likely phases. If the confidence associated with any of these phases low (< 50%), the
diffractometer is instructed to perform selective rescans around peaks that distinguish the suspected phases. If necessary, the scan range is
also expanded to detect additional peaks and boost the prediction confidence of the ML model.
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provide the most useful information, we use the prediction
confidence associated with each phase proposed by XRD-
AutoAnalyzer based on 2θ = [10°, 60° + n10°] for n between
zero (2θmax = 60°) and eight (2θmax = 140°). The predicted phases
from each subset of 2θ are aggregated into an ensemble (Pens),
where the prediction confidence is used to form a weighted
average as follows:

Pens ¼
P2θi

10 ciPi
nþ 1

(1)

In this equation, Pi represents each prediction over [10, 2θi], ci is
the confidence of that prediction, and n + 1 gives the total
number of 2θ-ranges included in the ensemble. In contrast to the
typical analysis technique whereby an individual prediction is
made based on a given XRD pattern, the ensemble approach
decomposes the pattern into several distinct but overlapping
regions (Supplementary Fig. 4) from which separate predictions
are made and subsequently aggregated using the confidence-
weighted sum described in Eq. 1.
The adaptive XRD approach presented here integrates resam-

pling and expansion of 2θ into one single workflow (Fig. 1). Based
on early data obtained from a rapid initial scan over 2θ = [10°,
60°], XRD-AutoAnalyzer makes a preliminary prediction regarding
which phases are most likely in the corresponding sample. If the
confidence associated with this prediction is less than 50%, a
selective rescan is performed over regions of 2θ where the
difference between the CAMs of the two most probable phases
exceeds a threshold of 25%. An updated prediction is made based
on the resampled pattern and the confidence is assessed. If it
remains less than 50%, higher angles are scanned (+10° at each
step) to detect additional peaks. This iterative process of phase
identification, resampling, and expansion is repeated until the
prediction confidence exceeds 50% or until a maximum angle of
140° is reached. The requirement of 50% confidence is applied to
all suspected phases in the mixture, not only the two most
probable. In cases where multiple phases have high uncertainty,
more than one round of resampling may be performed at each
iteration, thus ensuring that the algorithm remains robust on
multi-phase samples.

Evaluation of adaptive XRD on simulated patterns
We first evaluated the performance of the adaptive XRD approach
in a simulated environment. XRD-AutoAnalyzer was separately
trained in two chemical spaces, Li-La-Zr-O and Li-Ti-P-O, which
each contain a rich variety of compositions and structures with
applications in solid-state batteries34. The algorithm requires a list
of previously reported phases to be trained on, and as such, all
unique materials occupying these chemical spaces were extracted
from the ICSD. This included 28 and 45 stoichiometric phases in
the Li-La-Zr-O and Li-Ti-P-O spaces, respectively (Supplementary
Table 1), from which a total of 8000 patterns were simulated,
including 1400 single-phase, 2400 two-phase, and 4200 three-
phase samples. While XRD-AutoAnalyzer is trained only on single-
phase patterns, it readily interprets multi-phase samples by
iterating between phase identification and peak subtraction
following the procedure described in previous work13. In the
samples containing more than one phase, weight fractions were
randomly sampled between 20 and 80%. To mimic the limitations
of data acquired experimentally, all simulated patterns were
stochastically modified based on artifacts that include background
noise, strain, texture, and small particle size (Methods section).
These are commonly observed in real samples and can alter the
positions, intensities, and widths of the corresponding diffraction
peaks13,35. The signal-to-noise ratio (s/n) is related to the scan time
(t) as follows:36

s=n ¼ C
ffiffi
t

p
(2)

Where C is a scaling constant, which for this work was fit to
experimental data obtained from XRD scans on a sample of Li2CO3

(Sigma Aldrich) using a Bruker D8 Advance diffractometer
(Supplementary Fig. 6). The signal-to-noise ratio used in our
simulated tests, in addition to the sampling density of 2θ, dictates
the total effective scan time of each pattern. A shorter scan time is
more efficient but will generally lead to less accurate phase
analysis. To probe this relation, we duplicated all 8000 simulated
patterns into 10 distinct datasets with varied sampling density
(0.02°–0.04°) and signal-to-noise ratio (20–60), corresponding to
an effective scan time ranging from 5 to 30min.
The effectiveness of adaptive XRD in the simulated environment

was first tested by limiting the algorithm to only perform

Fig. 2 F1-scores achieved by XRD-AutoAnalyzer when applied to simulated patterns in the (top) Li-La-Zr-O and (bottom) Li-Ti-P-O spaces.
a Conventional results (black squares) were obtained on patterns with incrementally improved resolution over 2θ = [10°, 60°], whereas
adaptive results (blue circles) were found by resampling a subset of 2θ ⊆ [10°, 60°] with high resolution. b Individual results (black squares)
were calculated by analyzing patterns with distinct maxima (2θmax), which were aggregated in a confidence-weighted sum to form the
ensemble predictions (green circles). Adaptive results (blue star) were obtained by halting expansion of 2θmax when the prediction confidence
exceeded 50%.
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resampling in a fixed range of 2θ = [10°, 60°]. Starting from
patterns with minimal resolution (effective scan time of 5 min),
XRD-AutoAnalyzer made initial predictions regarding which
phases were present in each sample. When the prediction
confidence was less than 50%, high-resolution data (effective
scan time of 30 min) was added in regions of 2θ where the CAM
differences between suspected phases exceeded 25% (Supple-
mentary Fig. 7), and the total effective scan time was proportion-
ally increased. Figure 2a shows (in blue) the F1-score as a function
of scan time for phase identification performed by the adaptive
algorithm in the Li-La-Zr-O (top panel) and Li-Ti-P-O (bottom
panel) spaces. For comparison, we also show the F1-score
associated with phase identification based on conventional scans
with uniform resolution and iteratively longer measurement time
(in black). With either sampling technique, more phases are
accurately identified from patterns with higher resolution (longer
effective scan time); however, adaptive XRD reaches convergence
more rapidly than its conventional counterpart. The F1-score
achieved with adaptive sampling exceeds 0.88 in 10–15min of
effective scan time for each pattern, whereas conventional
sampling requires 25–30min per pattern to reach the same level
of accuracy. The rapid convergence of adaptive XRD demonstrates
that it leverages low-resolution measurement data to effectively
build a probability density for the likely phases in each sample,
from which it identifies the optimal regions of 2θ that should be
prioritized to distinguish these phases. The upper limit of the F1-
score observed for both adaptive and conventional sampling can
be attributed to the presence of simulated artifacts (e.g, strain and
texture) as well as peak overlap between different phases over the
current range of 2θ ∈ [10°, 60°]. Since these issues are not resolved
by reducing background noise, the use of longer scan times
(>30min) leads to only marginal improvement in the F1-scores of
conventional and adaptive analyses (Supplementary Fig. 8).
We used the simulated XRD dataset to quantify the extent to

which the F1-score can be improved by including information
from higher 2θ in the analysis. Only high-resolution patterns
(effective scan time of 30 min) were considered to isolate the
effects of the scan range. XRD-AutoAnalyzer was applied to each
individual range of 2θ = [10°, 60°+n10°] for n between zero
(2θmax= 60°) and eight (2θmax = 140°). These are treated
separately and referred to as individual predictions hereafter. In
comparison, ensemble predictions were formulated by

aggregating the phases identified from all patterns available up
to 2θmax, as described in the previous section (Eq. 1).
Figure 2b illustrates how the F1-score varies with increasing

scan range for patterns in the Li-La-Zr-O (top panel) and Li-Ti-P-O
(bottom panel) spaces. Black (green) datapoints represent
individual (ensemble) predictions on patterns with 2θmax denoted
by the x-axis. The ensemble predictions show a monotonic
increase in the F1-score as higher angles are included, consistently
outperforming the individual predictions. By aggregating all
phases identified up to 2θmax = 140°, exceptionally high F1-scores
of 0.98 and 0.95 are achieved. In contrast, scanning higher 2θ does
not necessarily lead to better performance for individual predic-
tions, which show a maximal F1-score of 0.91 at 2θmax = 120°,
followed by a decreasing score from 120° to 140°. This trend arises
from two effects: (1) signal-to-noise ratios decrease at higher 2θ as
peaks become less intense, and (2) artifacts related to strain and
small particle size cause larger changes to the positions and
widths of peaks at higher 2θ. Because the ensemble approach
weights each prediction by its associated confidence, it effectively
ignores regions where background noise and/or artifacts mask the
diffraction peaks, instead giving greater weight to regions where
such peaks are more clearly distinguishable.
To keep the total measurement time minimal, higher 2θ should

be scanned only when the prediction confidence from XRD-
AutoAnalyzer is low. We demonstrate this policy by iteratively
expanding 2θ = [10°, 60° + n10°] until the prediction confidence
exceeds 50% or until 2θmax reaches 140°. The corresponding
results are shown as blue stars in Fig. 2b. With adaptive expansion
of 2θ, high F1-scores of 0.98 and 0.95 were obtained on patterns
from the Li-La-Zr-O and Li-Ti-P-O datasets, respectively. These
match the best F1-scores obtained on a full scan range (2θmax =
140°), while also conserving measurement time as only angles up
to 106° were sampled on average, therefore showing that the
adaptive algorithm can effectively decide when higher angles are
needed distinguish suspected phases.

Performance of adaptive XRD on experimental mixtures
As a more challenging test, the effectiveness of adaptive XRD as
applied to impurity detection was evaluated on 240 two-phase
mixtures prepared using different physical combinations of eight
compounds from the Li-Ti-P-O and Li-La-Zr-O chemical spaces. All
compounds were purchased in the form of solid powders and

Fig. 3 Detection rates and measurement times required for impurity detection. a, b The percentage of minority phases that were correctly
identified by XRD-AutoAnalyzer when applied to mixtures from the Li-La-Zr-O and Li-Ti-P-O chemical spaces, respectively. Results are plotted
separately for predictions based on conventional and adaptive measurements. c The distributions of scan times required by adaptive
measurements in each space. Each violin plot illustrates the density of scan times and spans the range of the data. In contrast, the embedded
boxes extend only from the lower to upper quartiles. Black dots represent the average scan time required in each case. For comparison, the
conventional scan time (10min) is represented by the black dashed line.
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manually mixed such that the weight fraction of the minority
phase was varied between 2 and 20% (“Methods”). For each
compound, a reference phase from the ICSD was included during
the training of XRD-AutoAnalyzer. We compare the effectiveness
of determining these minority phases by using: (1) conventional
measurements that sampled 2θ = [10°, 80°] in 10 min, followed by
automated phase identification with XRD-AutoAnalyzer applied
post hoc; or (2) adaptive measurements with in-line phase
identification and guided sampling, following the workflow
outlined in Fig. 1. Both scan techniques were applied with an
Aeris X-ray diffractometer from Panalytical. Their relative perfor-
mance is assessed using the impurity detection rate, defined as
the percentage of phases correctly identified at a given weight
fraction.
Figure 3 displays the detection rates for minority phases in the

Li-La-Zr-O (Fig. 3a) and Li-Ti-P-O (Fig. 3b) spaces. When XRD-
AutoAnalyzer is applied in-line with adaptive measurements, it
successfully identifies ≥75% of the minority phases at weight
fractions ≥6%, even at short scan rates. In contrast, a much greater
weight fraction of 15% is required to reach a detection rate of 75%
using a conventional approach. The increased sensitivity of
adaptive XRD holds true for all mixtures tested here (Supplemen-
tary Fig. 9), as it consistently detects smaller amounts of the
minority phases when compared to conventional scans. Further-
more, it does so while using less scan time. As shown by the
distributions of scan times in Fig. 3c, adaptive measurements are
completed more rapidly than conventional (10 min) ones,

requiring an average scan time of only 6 min per pattern. The
improved speed and accuracy of in-line, adaptive XRD is derived
from two key advantages: (1) It automatically decides whether
additional measurements are needed after a rapid initial scan, and
if so, focuses high-resolution scans on regions of 2θ that are most
likely to contain peaks associated with the suspected minority
phases; and (2) it determines when higher 2θ should be scanned
to detect additional peaks that help distinguish phases with
similar patterns at 2θ < 60°. Two examples demonstrating these
capabilities are displayed in Supplementary Fig. 10, which further
confirm the benefits of in-line analysis and decision making for
optimizing the acquisition of experimental data.

Adaptive XRD for in situ characterization
We demonstrate below that the optimized effectiveness by which
adaptive XRD collects data can lead to new experimental
capabilities. To this end, a solid-state synthesis procedure
targeting Li7La3Zr2O12 (LLZO) was designed and carried out37.
During the corresponding synthesis experiments, in situ measure-
ments on a Bruker D8 Advance diffractometer were integrated
with XRD-AutoAnalyzer to characterize the reaction pathway via
the identification of precursors, intermediate phases, and final
products. Such in situ measurements are particularly demanding
with respect to the tradeoff between acquisition time and data
resolution, as fast reactions and transient intermediate phases can
easily be missed when a long acquisition time is used. A precursor
powder mixture of La(OH)3, Li2CO3, and ZrO2 was placed in an

Fig. 4 In situ identification of phases formed during LLZO synthesis. The weight fractions are plotted separately for all phases detected
from a fast 1 min scans, b slow 10min scans, and c adaptive scans. A short-lived intermediate phase, LaOOH, is detected only with adaptive
measurements. Panels d–f illustrate XRD patterns obtained from the blue highlighted regions in panels a–c, which each should contain
LaOOH. d A fast scan misses low-2θ peaks from this phase owing to a poor signal-to-noise ratio. e A slow scan misses high-2θ peaks as LaOOH
transforms before the measurement is complete. f An adaptive scan successfully detects all peaks from this phase by performing a rapid scan
over [10°, 60°], followed by resampling of [14°, 27°] to clarify the smaller peaks.
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Anton Paar HTK 1200 N oven chamber and heated to 1100 °C at a
rate of 20 °C/min, followed by a 1 h hold at this final temperature.
During heating, XRD scans were performed at the onset of a
10min hold every 100 °C. Three syntheses were separately carried
out using distinct measurement techniques (“Methods”):

1. Fast, non-adaptive scans that sampled 10–80° in 1 min.
2. Slow, non-adaptive scans that sampled 10–80° in 10min.
3. Adaptive scans with varied 2θmax and measurement times.

Whereas ten patterns can be obtained at each hold when using
fast scans (case 1), only one slow scan is performed (case 2). The
number of patterns measured with adaptive scans (case 3) varied
with temperature, as longer scan times were automatically
allocated to samples where phase identification was complicated
by a poor signal-to-noise ratio.
Fig 4 shows the weight fractions for all phases identified by

XRD-AutoAnalyzer during the synthesis of LLZO when using
different scan techniques. These results show several limitations of
conventional XRD. With fast scans, Li2CO3 is not detected as its
peaks are difficult to resolve from the background noise
(Supplementary Fig. 11). The low resolution from fast scanning
also precludes the identification of LaOOH, which appears as an
intermediate phase between La(OH)3 and La2O3

38. As shown in
Fig. 4d, the poor signal-to-noise ratio resulting from a short scan
obscures several peaks associated with LaOOH, making it difficult
to resolve this phase from others (e.g., La2O3). While a longer scan
time of 10 min enables the detection of Li2CO3 by reducing noise
in the corresponding pattern (Fig. 4b), LaOOH is still missed.
Interestingly, the 10min scans do clarify several low-2θ peaks
associated with LaOOH but fail to detect many of its peaks at
higher 2θ (Fig. 4e), suggesting that LaOOH transformed before the
full range of 2θ was sampled. These findings highlight two
competing factors that dictate the accuracy of in situ XRD
measurements: (1) fast scans yield patterns with low signal-to-
noise ratios, complicating the identification of small peaks that
blend in with the background noise; (2) slows scans suffer from
pattern changes as the measurements are performed, making it
difficult to identify short-lived intermediate phases that transform
before all their peaks can be detected.
Adaptive XRD overcomes the challenges described in the

previous paragraph by achieving an optimal balance between
speed and accuracy. As shown in Fig. 4c, Li2CO3 is successfully
identified with a short scan time of ~3min as the adaptive
algorithm leverages early data to focus high-resolution measure-
ments on a subset of 2θ = [18°, 32°] that contains the major peaks
associated with this phase (Supplementary Fig. 11). Note that the
algorithm is given no prior information regarding the presence of
Li2CO3, but it quickly detects some signal above the noise in the
relevant area and accordingly requests additional scanning to
better resolve that signal. Adaptive XRD also leads to the
successful detection of LaOOH, appearing briefly as an inter-
mediate phase at 400 °C. In Fig. 4f, we show how the
diffractometer was steered toward 2θ = [14°, 27°] at this
temperature, revealing several LaOOH peaks that would otherwise
be difficult to resolve from the background noise. Furthermore,
because the total measurement time was kept short (~4min), the
full range of 2θ = [10°, 60°] was sampled before LaOOH
transformed into La2O3. We stress that no human intervention
was needed to redirect the diffractometer as the ML algorithm
autonomously decides which parts of a pattern are most
important for phase identification and, accordingly steers
measurements toward those regions. In doing so, adaptive XRD
enables the identification of short-lived intermediate phases that
otherwise would be missed by conventional XRD scans. Knowl-
edge regarding such intermediate phases is often key to
understanding and tailoring reaction pathways for inorganic
materials synthesis29.

DISCUSSION
We believe that the integration of ML-assisted analysis tools can
rapidly transform how experimental research is done. In contrast
to traditional experimentation, where data is only analyzed after
the fact, adaptive methods leverage all available data in real time
to make optimal decisions regarding where the experimental
measurements should be steered, and as such minimize the time
required to obtain all relevant information. These autonomous
and adaptive methods require (a) the development of rapid
analysis tools that can make predictions, quantify uncertainty, and
identify high-value measurement regimes, all on the timescale of
the experiment; and (b) the ability to bring this analysis in-line
with experiments and control the instruments needed for
characterization. Modern ML techniques, while often requiring
significant time for training performed off-line, can usually be
evaluated within seconds and are therefore ideal decision-making
agents to be integrated with experimental hardware.
We demonstrate in this work specifically, that ML-driven

adaptive control over XRD measurements enables rapid and
autonomous identification of crystalline materials in multi-phase
samples, consistently detecting and categorizing phases more
quickly and with higher accuracy than conventional XRD scans. By
reducing the measurement time while maintaining high precision,
adaptive XRD provides an effective method to monitor solid-state
reactions in situ and identify short-lived intermediate phases using
an in-house diffractometer. Although such instrumentation
provides reduced intensity relative to a synchrotron light source,
adaptive measurements make efficient use of the available
radiation by rationally allocating scan time to resolve peaks with
the highest leverage for phase identification. This approach is
generalizable and may be extended to alternative diffraction
techniques based on neutron or electron scattering. With future
developments, we envision that many spectroscopic and micro-
scopic techniques are likely to benefit from ML guidance and
interpretation, enabling optimized selection and refinement of
critical features in spectra and images. Increased automation of
experimental measurements will not only reduce time and labor
spent by human researchers3, but also give unprecedented access
to the characterization of short-lived processes in materials
science and chemistry.

METHODS
Automated phase identification
To automatically identify phases from XRD patterns, we used the
XRD-AutoAnalyzer algorithm developed in previous work13 and
made available online (https://github.com/njszym/XRD-
AutoAnalyzer). This approach is based on a convolutional neural
network (CNN) with six convolutional layers, six pooling layers, and
three fully connected layers. A dropout rate of 60% was used
between the fully connected layers. As input to the CNN, each XRD
pattern is treated as a one-dimensional vector with 4501
intensities distributed uniformly over 2θ. The output layer contains
N neurons, where N is equal to the number of phases in the
training set. Here we trained two separate models to analyze data
from the Li-La-Zr-O and Li-Ti-P-O chemical spaces, which included
28 and 45 unique phases, respectively (Supplementary Table 1).
For each phase, 150 XRD patterns with stochastically varied peak
positions, widths, and intensities were simulated and used to train
the CNN. Training was carried out for 50 epochs. At inference, we
divided the trained CNN into an ensemble of 1000 individual
models whereby each utilized different connections between its
fully connected layers (i.e., with 60% dropout). The result is a
probabilistic distribution of predicted phases for a given pattern,
where the confidence of each phase is defined as the fraction (%)
of models in the ensemble that identify it as the most likely phase.
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Additional details on the phase identification algorithm are given
in our previous work13.

Class activation maps
Class Activation Maps (CAMs) were originally designed to high-
light areas in an image that have the greatest influence on a CNN’s
output33. This can be accomplished by mapping the trained
weights of a global average pooling layer, placed after all the
convolutional layers in a CNN, onto the final image such that
important convolution features have high values in the CAM. Here
we use a generalized version known as Grad-CAM39, which has
capabilities similar to the traditional CAM approach but does not
require a global average pooling layer in the CNN. Using this
technique, we calculated the CAM associated with the classifica-
tion of an ideal (simulated) XRD pattern for each reference phase
in the training sets. All CAMs were normalized between 0 and 100
to ensure consistent comparison between different phases. In
cases where XRD-AutoAnalyzer failed to identify a phase with a
confidence greater than 50%, the absolute difference between the
CAMs of the two most probable phases was calculated and
resampling was proposed in areas where the difference exceeds
some threshold defined by the user. A threshold of 25% was used
during all experimental tests described in the main text, where the
% is calculated relative to the maximum value of the CAM
(i.e., 100).

Simulated test patterns
A total of 1400 single-phase, 2400 two-phase, and 4200 three-
phase patterns were simulated to test the adaptive XRD approach
in high-throughput. These patterns were based on 28 and 45
unique crystalline phases from the Li-La-Zr-O and Li-Ti-P-O spaces,
respectively (Supplementary Table 1). All structures were extracted
from the Inorganic Crystal Structure Database (ICSD). Multi-phase
patterns were constructed via linear combinations of single-phase
peaks, where the weight fraction of each individual phase was
randomly sampled between 20 and 80%. To mimic data acquired
experimentally, all patterns were stochastically augmented with
three different artifacts. Peak shifts caused by strain were
implemented with up to ±3% changes in the lattice parameters
of each phase. Peak intensities were varied by as much as ±50%
according to preferred crystallographic orientation (texture) along
randomly sampled Miller indices ([hkl] where 0 ≤ h k l ≤ 2).
Different peak widths were sampled using the Scherrer equation
based on grain sizes ranging from 5 nm (broad) to 50 nm (narrow).
A gaussian shape was assumed for all peaks.
All 8000 simulated patterns were duplicated to form 10

different datasets with varied sampling density and signal-to-
noise ratio. The former was set by the number of datapoints
contained in each pattern while the former was treated by adding
Gaussian noise with a standard deviation reflecting the effective
measurement time (see Eq. 2). The patterns with minimal
resolution contained 3250 datapoints spanning 10°–140° (Δ2θ =
0.04°), and Gaussian noise was added with a standard deviation of
5% (in terms of the maximum peak intensity). In contrast, the
highest resolution patterns contained 6500 datapoints (Δ2θ =
0.02°) spanning the same range, in addition to Gaussian noise with
a standard deviation of only 2%. To mimic experimental
resampling with increased resolution, which would be performed
by adaptive XRD, we start from the low-resolution pattern and
splice in data from the corresponding high-resolution pattern in
regions of 2θ where artificial resampling is performed.
XRD-AutoAnalyzer was used to perform phase identification on

the simulated XRD patterns described in the previous paragraph.
To quantify the performance of this algorithm when applied

autonomously to each dataset, we used the F1-score:

F1 ¼ TP
TPþ 1

2 FPþ FNð Þ (3)

Where TP is the number of true positives (correctly identified
phases), FP is the number of false positives (phases incorrectly
identified), and FN is the number of false negatives (missed
phases). A high F1-score (close to 1) is desired to successfully
identify all phases in a sample without incorrectly identifying
phases that are not present.

Two-phase mixture preparation
Mixtures were prepared based on materials in two chemical
spaces: Li-La-Zr-O and Li-Ti-P-O. These included Li2CO3 (Sigma-
Aldrich, 99.9%), LiOH (Sigma-Aldrich, 98%), La(OH)3 (Sigma-
Aldrich, 99.9%), ZrO2 (Sigma-Aldrich, 99.6%), TiO2 (Alfa Aesar,
99.9%), Li2TiO3 (Sigma-Aldrich, 99.9%), and Li3PO4 (Sigma-Aldrich,
99.9%). There are 12 possible two-phase majority|minority
permutations of the materials in each chemical space (e.g., TiO2|
Li2CO3 and Li2CO3|TiO2), where the first phase to appear is the
majority phase and the second is the minority phase. For each of
these two-phase pairs, 10 mixtures were prepared with iteratively
larger amounts of the minority phase. This included weight
fractions of 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20% for the minority
phase in each permutation. All mixtures were shaker-milled for
10min with a SPEX 800 mixer, followed by characterization with
an Aeris X-ray diffractometer from Panalytical.

In situ characterization of Li7La3Zr2O12 synthesis
To synthesize Li7La3Zr2O12 (LLZO), we used a precursor powder
mixture containing Li2CO3 (Sigma-Aldrich, 99.9%), La(OH)3 (Sigma-
Aldrich, 99.9%), ZrO2 (Sigma-Aldrich, 99.6%). In addition to the
stoichiometric amounts of these precursors needed to make LLZO,
10% excess weight of Li2CO3 was included to compensate for
suspected volatility at high temperature. These precursors were
mixed with ethanol and milled for 10 min using a SPEX 800 mixer,
followed by drying at 70 °C in an oven for one hour. The dried
sample was loaded into the Anton Paar HTK 1200 N oven chamber
of a Bruker D8 Advance X-ray diffractometer, which was heated to
1000 °C at a rate of 20 °C/min in air. A hold time of one hour was
used at 1000 °C, followed by a natural cool to room temperature.
During the heating ramp, a 10 min temperature hold was imposed
every 100 °C such that XRD scans could be performed on the
sample.
Three different syntheses were carried out, each with a distinct

measurement type. First, slow and non-adaptive measurements
were employed whereby a single 10 min scan was performed at
each 100 °C hold. Second, fast and non-adaptive measurement
were applied such that 10 one min scans were performed at each
100 °C hold. Third, adaptive measurements were used with varied
scan time and number of scans applied to each 100 °C hold. On
average, adaptive scans required ~3min per pattern. For both
types of non-adaptive measurements, the scan range was kept
fixed at 2θ = [10°, 80°]. In contrast, adaptive scans kept a fixed
minimum angle of 10°, but varied the maximum angle between
60° and 140° following the workflow described in the main text
and illustrated in Fig. 1. All patterns were analyzed in an
automated fashion using XRD-AutoAnalyzer. The corresponding
model was trained on 28 phases in the Li-La-Zr-O chemical space
(Supplementary Table 1).

DATA AVAILABILITY
All data reported in this work is available at https://doi.org/10.6084/
m9.figshare.20029745.v1.
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All code developed and implemented in this work can be found in a public repository
located at https://github.com/njszym/AdaptiveXRD.
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