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Abstract Encounters with neurotropic viruses result in varied outcomes ranging from
encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign
infection. One of the principal factors that control the outcome of infection is the local-
ized tissue response and subsequent immune response directed against the invading
toxic agent. It is the role of the immune system to contain and control the spread of
virus infection in the central nervous system (CNS), and paradoxically, this response
may also be pathologic. Chemokines are potent proinflammatory molecules whose
expression within virally infected tissues is often associated with protection and/or
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pathology which correlates with migration and accumulation of immune cells. Indeed,
studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have
provided important insight into the functional roles of chemokines and chemokine
receptors in participating in various aspects of host defense as well as disease de-
velopment within the CNS. This chapter will highlight recent discoveries that have
provided insight into the diverse biologic roles of chemokines and their receptors in
coordinating immune responses following viral infection of the CNS.

1
Introduction

1.1
Biology and Biochemistry of Coronaviridae

Coronaviruses are classified on the basis of several fundamental characteris-
tics, including nucleic acid type, a lipid envelope, and their distinctive mor-
phology [42, 64, 79]. All members have characteristic petal-shaped proteins
extending from the virion surface. Coronaviruses infect numerous verte-
brate hosts including humans, chickens, pigs, and mice, causing a wide va-
riety of disorders involving a number of different organ systems; however,
there are specific tropisms for the CNS, lungs, gastrointestinal tract, and
liver [42, 64, 79]. Receptor use among the varied coronaviruses is restricted to
several well-defined proteins. Human coronavirus infections result in acute
enteritis as well as 15% of common colds indistinguishable from those caused
by other viruses [42, 64, 79]. More recently, a human coronavirus has been
indicated to be the etiologic agent for severe acute respiratory syndrome
(SARS). SARS is a potentially lethal disease and is recognized as a health
threat internationally [43].

The first murine coronavirus strain (mouse hepatitis virus, MHV), was
isolated in 1949 [12]. MHV is a pathogen of wild mice, and natural infection is
due tohorizontal transmission, resulting inacutehepatitiswithdeath inyoung
animals and a variable course of persistent gastrointestinal tract infection in
adults [79]. MHV is not an endemic mouse virus, but infects mouse colonies
sporadically. It is very closely related to some human coronaviruses both
at the genomic and protein levels. For example, human sera often contain
antibody reactive to MHV. Therefore, characterizing the immune response
to murine coronaviruses may provide important insight to mechanisms of
control and elimination which may have important implications with regards
to understanding the immune response to human coronaviruses such as the
SARS coronavirus.
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Coronavirus genomes are single-stranded positive-polarity RNA mole-
cules, larger than the size of any other known stable RNA, ranging from
27 kb for the avian infectious bronchitis virus, to 31 kb for murine coro-
naviruses [50]. Genomic RNA is infectious, contains a cap structure at the
5′-end and poly(A) at the 3′-end. The genome is organized into seven or eight
genes, each containing one or more open reading frames (ORF) separated
by intergenic sequences that contain the signals for the initiation of tran-
scription of the subgenomic viral messenger (m)RNA species. Upon entry,
the viral RNA encodes an RNA polymerase that transcribes the genome into
a negative-stranded RNA [50]. The latter serves as templates for positive-
sensed genomic RNA and subgenomic mRNAs. Important viral structural
proteins include the envelope glycoproteins (S) that bind to receptors on cell
membranes [42, 64, 79]. Analysis of monoclonal antibody neutralization es-
cape variants demonstrated that the viral S protein controls cellular tropism
in vivo and the role of the S protein in tropism has recently been confirmed
using stable recombinant viruses in which all genes except the S protein gene
were held constant [9, 82].

1.2
Immunity to MHV Infection

The protective immune response to MHV infection is characterized predomi-
nantly by cell-mediated immunity during acute infection. A number of unique
aspects of CNS viral infection have been described by analysis of the interac-
tions between MHV and the immune response. Antibody, although protective
if administered prior to infection, is not present in the serum of infected mice
until after the vast majority of virus has been cleared from the CNS [56, 84].
Following infection, neutrophils, macrophages, and NK cells are rapidly re-
cruited into the CNS, followed by T cells and B cells [104]. Inflammation is
accompanied by a progressive loss of blood–brain barrier (BBB) integrity that
is apparent as early as 4 days post-infection. The initial influx of innate effec-
tors is important in facilitating T cell infiltration, as well as regulating viral
replication [104]. However, the ability to survive MHV infection appears to
be predominantly due to an effective T cell-mediated response [103]. Recent
data have confirmed that cell-mediated immunity is critical during acute in-
fection [53, 55, 74, 76, 92]; however, the ability to prevent viral recrudescence
is associated with the continued presence of plasma cells in the CNS secreting
neutralizing antibody [56, 84].

The major effectors of anti-viral immunity are virus-specific CD8+ T cells.
Cytotoxic T lymphocyte (CTL) induction following MHV infection of the
CNS has been shown to require CD4+ T cell help [92]. Although the pre-
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cise mechanism or mechanisms by which CD4+ T cells assist CD8+ T cells
have yet to be completely determined, recent studies have demonstrated that
CD4+ T cells are important in preventing apoptosis of CTL entering the
CNS parenchyma [92]. In addition, the quality of the CTL response is CD4+

T cell-dependent [92]. An important concept derived from analysis of MHV
infection is that although CD8+ T cells are the most prominent effectors for vi-
ral clearance during the acute infection, the mechanisms which control virus
replication differ with the type of CNS cell infected. Cytolysis is important
for the control of viral replication in microglia/macrophages and astrocytes
while interferon (IFN)-γ is the critical effector responsible for control of virus
replication in oligodendroglia [73]. The demonstration that CD8+ CTL sup-
presses viral replication by two separate effector mechanisms, which function
within the CNS in a cell type-specific manner, is an important new concept.

1.3
Viral Persistence and Immune-Mediated Demyelination

Viral persistence in white matter tracts results in a chronic demyelinating
disease in which foci of demyelination are associated with areas of viral
RNA/antigen [51]. Clinically, mice develop loss of tail tone and a partial
to complete hind-limb paralysis. As a result of the clinical and histologic
similarities between MHV-induced demyelination and the human demyeli-
nating disease multiple sclerosis (MS), the MHV system is considered a rel-
evant model for studying the underlying immunopathologic mechanisms
contributing to immune-mediated demyelinating diseases [51]. A variety of
different mechanisms have been postulated to contribute to MHV-induced
demyelination. Several studies suggest that MHV-induced demyelination in-
volves immunopathologic responses against viral antigens expressed in in-
fected tissues [30, 31, 37, 47]. Although virus-specific antibody is considered
important in suppressing viral recrudescence [84, 85], it may also have a role
in promoting demyelination [48]. MHV infection of immunosuppressed or
immunodeficient mice results in high titers of virus within the CNS and death
but not robust demyelination [53, 105]. Adoptive transfer of MHV-immune
splenocytes results in demyelination to the infected recipients, suggesting
a role for immune cells in amplifying demyelination [30, 31]. Additional
evidence for T cells in contributing to demyelination is provided by Wu et
al. [105] who demonstrated that both CD4+ and CD8+ T cells are important
in mediating myelin destruction. In support of this are studies derived from
our laboratory demonstrating that adoptive transfer of MHV-specific CD4+

or CD8+ T cells to MHV-infected RAG1−/− mice results in demyelination [30,
31]. However, demyelination was more severe in recipients of CD4+ T cell
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compared to CD8+ T cell recipients, and this supports a more important
role for CD4+ T cells in amplifying demyelination in this model. Indeed, we
have demonstrated that MHV-infected CD4−/− mice displayed a significant
reduction in the severity of demyelination compared to CD8−/− and immuno-
competent wildtype mice, suggesting an important role for CD4+ T cells in
amplifying the severity of white matter destruction [53].

While T cells are generally considered important in driving demyelination
in mice persistently infected with MHV, the mechanisms by which these cells
participate in disease may vary and depend upon various factors including
the ability to secrete interferon (IFN)-γ [80, 81]. While conventional CD4 and
CD8 αβ T cells are generally viewed as the primary T cell type important
in disease, γδ T cells have also been shown to participate in demyelination
in MHV-infected athymic mice [16]. In addition, we and others have found
that macrophages/microglia are also important in contributing to demyeli-
nation [29, 32, 53, 59, 105]. The collective evidence points to a role for in-
flammatory T cells in contributing to macrophage/microglial infiltration and
activation which ultimately results in myelin destruction. Current evidence
suggests that demyelination in MHV-infected mice is not the result of epitope
spreading and induction of an immune response against neuroantigens as
has recently been reported to occur during Theiler’s virus-induced demyeli-
nation [69]. However, adoptive transfer of T cells from MHV-infected rats to
naïve recipient’s results in demyelination [100]. Whether a similar response
occurs in MHV-infected mice and what the contributions are to demyelination
is not clear at this time.

1.4
Chemokines and Chemokine Receptors

Chemokines represent a familyof lowmolecularweight (7–17kDa)proinflam-
matory cytokines that are divided into four subfamilies based on structural
and functional criteria [14, 60, 94]. The two major subfamilies are the CXC
and CC chemokines. The CXC subfamily is structurally characterized by two
conserved cysteine residues that are separated by an amino acid, while the
CC subfamily is structurally characterized by conserved cysteine residues
adjacent to one another. Lymphotactin, the sole member of the C family, is
chemotactic for T cells [44]. The CX3C chemokine, fractalkine, is unique in
that it is expressed on the surface of cells as well as being secreted into the
surrounding environment [5].

Chemokines have been shown to selectively attract distinct leukocyte pop-
ulations during periods of inflammation in various disease models. The CXC
chemokines function primarily in attracting neutrophils, yet have a lim-
ited effect on T lymphocytes and monocytes [14, 60, 94]. However, there
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are exceptions to this rule in that CXC chemokines that lack the glutamic
acid-leucine-arginine (ELR) motif on the amino terminus are chemotac-
tic for T cells. For example, the non-ELR chemokine CXCL10 is a potent
chemoattractant for activated T cells and NK cells and functions by binding
to CXCR3 expressed on the surface of these cells [40, 83, 102, 106]. How-
ever, CXCL10 does not exert a chemotactic effect on neutrophils [19]. The
CC chemokines are thought to attract T cells, monocytes, and macrophages,
but not neutrophils [14, 60, 94]. The CC chemokine ligand 5 (CCL5) is able
to attract both T cells and macrophages by binding to one of several CC
chemokine receptors including CCR1 and CCR5 [14, 60, 94]. Furthermore,
there is increasing evidence that chemokines, such as CCL3, influence other
immune system activities including TH1/TH2 development and T cell prolif-
eration [46, 95]. Chemokines function by binding to seven-transmembrane-
spanning G protein-coupled receptors. The chemokine receptors are divided
into those that preferentially bind CXC and CC chemokines. In addition, CC
and CXC chemokine receptors are capable of binding more than one CC
or CXC chemokine, respectively. A variety of cell types including lympho-
cytes and macrophages, as well as resident cells of the CNS such as neurons,
astrocytes, and microglia, express chemokine receptors [60, 94].

2
Orchestrated Expression of Chemokines and Chemokine Receptors
Within the CNS Following Infection with MHV

Instillation of MHV into the CNS of susceptible mice results in a well-
orchestrated expression of chemokine genes, and the expression pattern cor-
relates with the level of inflammation and disease [52]. Early (~1–3 days)
following infection, transcripts for CXCL10 and CCL3 are detected within the
CNS, suggesting an important role in initiation of immune responses (see
following section; Table 1). By day 6 post-infection (p.i.), virus has spread
throughout the brain parenchyma, and a robust inflammatory response, char-
acterized primarily by CD4+ and CD8+ T cells and macrophages, is established
within the brain. Chemokines expressed at this time include CXCL9, CXCL10,
CCL2, CCL3, CCL4, CCL5, and CCL7 (MIP-2) (Table 1). Analysis of chemokine
receptor expression by both RNAse protection assay (RPA), immunostaining,
and flow cytometry reveals that CCR1, CCR2, CCR5, and CXCR3 are the
prominent receptors expressed within the CNS at various stages of disease
(Table 2).

Chemokine transcripts are detected almost exclusively in areas in which
virus is present, indicating a localized response to infection and subsequent
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Table 1 Chemokine gene expression following MHV infection of the CNS

Days post infection Chemokine Function (cells attracted) Reference(s)

1–3 CXCL10 NK cells 97
CCL3 Dendritic cells 96

7 and 12 CCL2 Macrophage 39, 52
CCL3 Dendritic cells, T cells 95, 96
CCL4 52
CCL5 T cells, macrophage 52, 53
CXCL9 T cells 58
CXCL10 T cells 18, 57

≥21 CXCL10 CD4+ T cells 59
CCL5 T cells, macrophages 32

Table 2 Chemokine receptors expressed within the CNS of MHV-infected mice

Days post infection Receptor Chemokine receptor
expression

Reference(s)

1–3 CCR2 T cells, macrophages 13, 39

7 and 12 CCR2 T cells, macrophages 13, 39
CCR5 T cells, macrophages 29, 30
CXCR3 T cells 57

>21 CXCR3 T cells 59
CCR5 T cells, macrophage 29

spread of the virus throughout the parenchyma. In situ hybridization indi-
cates that astrocytes are the primary cellular source for many chemokines
during the acute stage of disease [52]. Infection of primary cultures of mouse
astrocytes with MHV and evaluating chemokine gene expression by RPA
provide additional support for astrocytes as an important cellular source of
chemokines in this model [52]. Moreover, viral replication appears to be a nec-
essary prerequisite for inducing chemokine expression, as infection of astro-
cytes with inactivated virus results in a muted chemokine expression profile.
Additional analysis revealed that both infected and noninfected astrocytes are
capable of secreting chemokines following instillation of virus into the brain,
indicating that viral infection is not required for chemokine gene synthesis by
target cells. These data indicate that a factor or factors (possibly type I interfer-
ons)derived frominfectedcells arecapableof functioning inbothanautocrine
and paracrine manner and regulate chemokine gene expression in response



8 T. E. Lane et al.

to viral infection. Other cell types that may also secrete chemokines following
MHV infection include resident microglia/inflammatory macrophages as well
as neurons [52, 75].

By day 12 p.i., MHV-infected mice that have survived the acute stage of dis-
ease develop an immune-mediated demyelinating disease. Mice have cleared
infectious virus (as determined by plaque assay) by 12 days, yet viral RNA
and protein can be detected within white matter tracts for months after in-
fection. As the level of CNS infiltration subsides following reduction of viral
burden there is a corollary reduction in the expression of chemokine tran-
scripts. Analysis of chemokine message expression within the brains and
spinal cords of MHV-infected mice during the demyelinating phase of disease
(days 12 and onward) indicates that CXCL10 and CCL5 are the two prominent
chemokines expressed [52]. In situ hybridization for chemokine transcripts
indicated expression was limited primarily to areas of viral persistence within
white matter tracts undergoing active demyelination [52]. Similar to what
was found during acute disease, astrocytes were determined to be the cel-
lular source of CXCL10 at this stage of disease whereas inflammatory cells,
presumably CD4+ T lymphocytes, expressed CCL5. More recent data now
indicate that MHV-infected astrocytes treated with IFN-γ can also express
CCL5 mRNA transcripts and protein (T.E. Lane, unpublished observations).
Chemokine receptors expressedduringchronicdemyelination includeCXCR3
and CCR5, which are capable of binding CXCL10 and CCL5, respectively. In-
deed, we have recently determined that the majority (~90%) of infiltrating
virus-specific CD4+ and CD8+ T cells express CXCR3 (T.E. Lane, unpublished
observations).

3
Chemokines, Innate Immune Response, and MHV-Infection of the CNS

The presence of dendritic cells (DCs) within the CNS has been debated for
quite some time. However, a series of recent studies clearly indicates that
during induction of an autoimmune demyelinating disease, there exists the
presence of cell types within the brain that clearly have characteristics of
DCs [34, 65]. In addition, emerging evidence points to a previously unappre-
ciated role for chemokines in activating and inducing the migration of differ-
ing populations of DCs in response to microbial infection of the CNS [22, 23].
These cells may be important in initiation and/or maintenance of disease by
participating in the activation of T cells. Given the potential importance of
this population of cells with regards to linking innate and adaptive immune
responses following viral infection of the CNS, we investigated whether DC-
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like cells were present within the CNS in response to MHV infection. In brief,
our findings clearly indicate that a DC-like population of cells is detectable
within the CNS as early as day 2 p.i. with MHV [96]. The activation/maturation
of these cells as well as the ability to accumulate within the draining cervi-
cal lymph node (CLN) appeared to be dictated by localized expression of
CCL3 [96]. Moreover, the ability of cultured DCs to secrete cytokines asso-
ciated with the development of a TH1 response such as interleukin (IL)-12
was profoundly altered in the absence of CCL3 [96]. The importance of CCL3
signaling and the evolution of an effective T cell response was further con-
firmed by the demonstration that in the absence of CCL3 signaling, robust
anti-viral effector responses, e.g., cytokine production and CTL activity, were
dramatically compromised following MHV infection of CCL3−/− mice [95, 96].
Collectively, these studies highlight a previously unappreciated role for the
importance of chemokine signaling and DC maturation/activation following
MHV infection of the CNS. Moreover, these studies demonstrate that gener-
ation of effective T cell responses relies upon CCL3 signaling to successfully
combat MHV infection.

4
Chemokines and Chemokine Receptors
and Their Role in Acute Viral-Induced Encephalomyelitis

4.1
CCL3

CCL3 is a chemoattractant for both T cells and macrophages and has been
implicated in host defense following infection with a wide variety of microbial
pathogens. Mice deficient in CCL3 production exhibit increased susceptibility
to disease following infection with paramyxovirus [17], influenza virus [15],
and coxsackievirus, as well as other microbial pathogens [67, 72]. In all cases,
alterations in an effective host response correlated with a paucity in leukocyte
accumulation at sites of infection. Although originally thought to participate
in defense by attracting effector cells to infected tissue, recent reports also sug-
gest that CCL3 expression is important in coordinating a TH1 response [46].
Numerous studies now indicate that DCs are capable of expressing various
chemokines including CCL3 [21, 66, 77, 78]. Moreover, DC precursors express
the CCL3 receptors CCR1 and CCR5 and are capable of responding to CCL3
in vivo and in vitro resulting in both mobilization and maturation [24, 108].
Indeed, Flesch and colleagues have demonstrated an important role for CCL3
in DC-dependent priming of CTL to viral antigens [24].



10 T. E. Lane et al.

Using CCL3−/− mice, we have demonstrated a role for CCL3 in regulating
trafficking as well as antiviral effector functions following MHV infection of
the CNS [95]. Specifically, our experiments revealed an important role for
CCL3 signaling in tailoring T cell responses that allowed for egress out of
draining cervical lymph nodes and trafficking into the CNS. Although gen-
eration of antigen-specific CD8+ T cells was not impaired following MHV
infection of CCL3−/− mice, a significant percentage of CD8+ T cells retained
expression of lymph-node homing receptors CD62L (L-selectin) and the CC
chemokine receptor 7 (CCR7) and did not display a dramatic increase in
mRNA transcripts for either CXCR3 or CCR5, two receptors which are im-
portant in allowing MHV-specific T cells access to the CNS [95]. Moreover,
adoptive transfer of CCL3−/− CD8+ T cells into MHV-infected RAG1−/− mice
(which express CCL3 following MHV infection) resulted in homing back to
secondary lymphoid organs, suggesting that lack of CCL3 imprinted on these
cells carries an inability to remodulate surface tissue homing receptors. Anal-
ysis of antiviral effector functions also revealed that CCL3−/− CD8+ T cells
displayed overall muted cytolytic activity as well as expression of IFN-γ when
compared to CCL3+/+ CD8+ T cells [95]. Collectively, these studies highlight
that, in addition to chemotactic function, chemokines influence specific lym-
phocyte responses and ultimately effector functions that are required for
optimal host defense against microbial pathogens.

4.2
CXCL9 and CXCL10

CXCL9 and CXCL10 attract activated T lymphocytes following binding to
CXCR3. Analysis of CXCL9 and CXCL10 mRNA expression within the CNS
of MHV-infected mice revealed that CXCL10 was clearly detectable by day 1
p.i. and was prominently expressed at days 7, 12, and 35 p.i. [52]. In contrast,
CXCL9 transcripts were only detected at days 7 and 12 p.i. [58]. These data
suggested that both CXCL9 and CXCL10 might be important in host defense
by attracting antiviral T lymphocytes into the CNS. In support of this is
the observation that administration of neutralizing antibodies specific for
either CXCL9 or CXCL10 to MHV-infected mice during the acute stage of
disease results in a dramatic increase in mortality [57, 58]. Additionally, this
treatment also resulted in a significant decrease in numbers of CD4+ and
CD8+ T lymphocyte infiltrating into the CNS which correlated with decreased
expression of IFN-γ and increased levels of virus [57, 58]. MHV infection of
CXCL10−/− mice supported and extended our previous work on antibody-
mediated neutralization of CXCL10 in that MHV-infected CXCL10−/− mice
display reduced T cell infiltration into the CNS accompanied by reduced IFN-γ
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secretion and increased viral burden [18]. Therefore, the collective evidence
points to pivotal roles for both CXCL9 and CXCL10 as important sentinel
molecules in promoting a protective response following MHV infection of the
CNS by attracting T cells into the CNS that participate in elimination of virus.

4.3
CCL5

CCL5 is a T cell and macrophage chemoattractant that has been shown to
influence leukocyte migration during periods of inflammation. Upon MHV
infection of the CNS of mice, CCL5 transcripts and protein are readily detected
within the brain [52]. Initial studies in which CD4−/− or CD8−/− mice were
infected with MHV indicated an overall reduction in CCL5 mRNA transcripts
within the brains of CD4−/− mice, suggesting that CD4+ T cells were either
a primary cellular source for CCL5 and/or influenced the expression of CCL5
by resident and inflammatory cells [53]. We now know that both inflammatory
CD4+ T cells as well as astrocytes are capable of expressing CCL5 following
instillation of MHV into the CNS [32, 53]. Furthermore, treatment with neu-
tralizing anti-CCL5 antisera results in diminished T cell and macrophage
accumulation within the CNS, suggesting that in this model CCL5 is capable
of regulating trafficking of these two populations of cells [32].

4.4
CCR5

CCR5 is a member of the CC chemokine receptor family that is expressed on
various hematopoietic cells including lymphocytes and macrophages [86].
Chemokines that are capable of binding to CCR5 include CCL3, CCL4, and
CCL5 [7, 68, 86]. Recent studies have clearly indicated that CCR5 expression
correlates with leukocyte trafficking to sites of inflammation as well as
regulating the immune response following microbial infection. For example,
mice deficient in CCR5 (CCR5−/−) exhibit altered T cell activity and impaired
macrophage function [88, 109]. Furthermore, macrophage trafficking in
response to antigen is impaired in CCR5−/− mice, indicating that CCR5 is
required for migration of this population of cells [45]. Given that both T cells
and macrophages express CCR5 following MHV infection of the CNS and
these cells clearly influence outcome in response to infection, we have defined
the contributions of CCR5 to both host defense and disease in response to
MHV infection. Using an adoptive transfer model in which virus-expanded
T cells are transferred into MHV-infected RAG1−/− mice, we have been able to
examine how CCR5 expression influences trafficking of T cells into the CNS.
Transfer of CCR5+/+-derived CD4+ T cells to MHV-infected RAG1−/− mice
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resulted in CD4+ T cell entry into the CNS and a reduction in viral titers within
the brain [30]. These mice also displayed robust demyelination correlating
with macrophage accumulation within the CNS. Conversely, CD4+ T cells
from CCR5−/− mice displayed an impaired ability to traffic into the CNS
of MHV-infected RAG1−/− recipients, which correlated with increased viral
titers, diminished macrophage accumulation, and limited demyelination.
Analysis of chemokine receptor mRNA expression by M133–147-expanded
CCR5−/−-derived CD4+ T cells revealed reduced expression of CCR1, CCR2,
and CXCR3, indicating that CCR5 signaling is important in increased
expression of these receptors which aid in trafficking of CD4+ T cells into the
CNS. Collectively these results demonstrate that CCR5 signaling is important
to migration of CD4+ T cells to the CNS following MHV infection.

With regards to the role of CCR5 in CD8+ T cell trafficking, comparable
numbers of virus-specific CD8+ T cells derived from immunized CCR5+/+

or CCR5−/− mice were present within the CNS of MHV-infected RAG1−/−

mice following adoptive transfer, indicating that CCR5 is not required for
trafficking of these cells into the CNS [30]. RAG1−/− recipients of CCR5−/−-
derived CD8+ T cells exhibited a modest yet significant (p≤0.05) reduction
in viral burden within the brain that correlated with increased cytolytic
activity and IFN-γ expression. Histologic analysis of RAG1−/− recipients of
either CCR5+/+ or CCR5−/−-derived CD8+ T cells revealed only focal areas
of demyelination with no significant differences in white matter destruction.
These data indicate that CCR5 signaling on virus-specific CD8+ T cells
modulates antiviral activities but is not essential for entry into the CNS.

Finally, MHV infection of CCR5−/− mice resulted in a dramatic reduction
in macrophage (defined as CD45highF4/80+ dual-positive cells) accumulation
within the brains, and this correlated with a significant reduction in the
severity of demyelination compared to CCR5+/+ mice. Collectively, these data
suggest that ligand binding, e.g., CCL5 and/or CCL3, and signaling via CCR5
results in macrophage migration and infiltration into the CNS. However, we
have previously demonstrated that CCL3 is expressed only at low levels during
acute disease and is not detectable during chronic demyelination, whereas
robust expression of CCL5 is detected during both phases of disease, and this
suggests that CCL5 is the primary CCR5 signaling chemokine in this model.
This is supported by earlier studies that showed an important role for CCL5 in
attracting macrophages into the CNS following MHV infection [53]. There-
fore, the data presented in this study suggest that one mechanism by which
CCL5 contributes to demyelination is via attracting macrophages into the CNS
through CCR5-mediated signaling pathways. Additional evidence supporting
this is provided by the observation that even in the presence of increased
CCL5 expression at day 12 p.i., demyelination is reduced in CCR5−/− mice.
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4.5
CCL2 and CCR2

CCL2 is capable of regulating the pathobiology of various inflammatory
diseases including MS and atherosclerosis [1, 8, 28, 33, 35, 61]. In addi-
tion to its potent chemoattractant effect on monocytes and macrophages,
CCL2 also influences TH2 polarization in response to certain antigenic chal-
lenge [36, 41, 46, 99]. The influence of CCL2 on T cell polarization may be due
to the fact that CCL2 is constitutively expressed within secondary lymphoid
tissue and would be capable of affecting cellular responses following exposure
to antigen [36]. Thus, available evidence indicates that expression of CCL2 is
capable of influencing both innate as well as adaptive immune responses by
regulating monocyte and T cell responses, respectively.

Analysis of chemokine receptor expression following MHV infection re-
veals that CCR2 is expressed by endogenous cells of the CNS as well as by
inflammatory T cells and macrophages, indicating a role for these receptors
in regulating both the immune response and disease development [13, 31].
Indeed, MHV-infection of CCR2−/− mice resulted in a dramatic increase in
mortality and enhanced viral recovery from the brain that correlated with re-
duced T cell and macrophage entry into the CNS compared to viral infection
of CCR2+/+ mice [13].

MHV infection of CCL2−/− mice does not result in a similar disease pheno-
type as observed in CCR2−/− mice. This was somewhat surprising as CCR2 is
currently the only known functional receptor for CCL2. Specifically, CCL2−/−

mice were able to clear virus from the brain in a similar time frame as wild-
type mice, and this correlated with the ability to generate antigen-specific
T cells [39]. The deficiency in CCR2−/− mice to clear virus from the brain is
not the result of an inherent inability to generate an effective adaptive im-
mune response to virus, as CCR2−/− mice had a similar frequency of antigen-
presenting cells (APC) and virus-specific T cells present within draining CLN
compared to either CCL2−/− or wildtype mice. Our findings from MHV in-
fection of CCL2−/− mice indicated that while CCL2 does influence leukocyte
migration into the CNS in response to viral infection, CCR2 is clearly more
influential in directing T cell trafficking into the CNS. In support of the role
for CCL2 in promoting leukocyte migration into the CNS of MHV-infected
mice are recent studies by Perlman and colleagues demonstrating that local-
ized CCL2 expression within the CNS promotes macrophage infiltration [47].
These data highlight the possibility that ligand(s) other than CCL2 are impor-
tant in signaling through the CCR2 receptor. Alternatively, it is possible that
CCR2 signaling by either endothelial cells and/or astrocytes regulates the per-
meability of the BBB, as recently suggested by Stamatovic and colleagues [91].
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5
Chemokines and Chronic Viral-Induced Demyelination

Expression of chemokines has been associated with demyelinating plaque
lesions present in MS patients [3, 4, 26, 27]. Elevated levels of chemokines,
notably CXCL10, were found in the cerebral spinal fluid (CSF) of MS pa-
tients during periods of clinical attack [25, 89]. Indeed, the concentration
of CXCL10 within the CSF of MS patients correlated with numbers of in-
flammatory cells and the severity of clinical disease [2, 89, 90]. Moreover,
when CXCL10 levels decreased, there was a corresponding decrease in in-
flammation and disease severity [89]. Astrocyte expression of CXCL10 has
been reported in active plaque lesions present in MS patients, and the ma-
jority of T cells infiltrating into the CNS of MS patients express the CXCL10
receptor, CXCR3. Collectively, these studies highlight a potentially important
role for CXCL10 in the pathogenesis of demyelinating diseases such as MS
by attracting CXCR3-expressing T cells into the CNS and support targeting
chemokines and their receptors for therapeutic intervention in the treatment
of MS [10, 54, 70, 90].

Studies from animal models of MS support this notion by demonstrating
that blocking of CXCL10 often results in diminished disease severity accom-
panied by a marked reduction in neuroinflammation. For example, several
recent reports indicate that treatment with anti-CXCL10 neutralizing antibod-
ies resulted in delayed disease onset and diminished neuroinflammation in
mice with the autoimmune demyelinating disease experimental autoimmune
encephalomyelitis (EAE) [20]. These studies support the idea that localized
expression of CXCL10 within the CNS amplifies disease severity by attracting
CXCR3-expressing T cells into the CNS. Once present, these cells enhance
neuroinflammation by secreting additional chemokines as well as cytokines
that can activate resident glia cells. Importantly, these studies also impli-
cate CXCL10 as a potential therapeutic target and suggest that alternative
CXCR3 ligands, e.g., CXCL9 and CXCL11, do not exert a prominent effect on
T cell infiltration into the CNS. However, the role of CXCL10 in contribut-
ing to neurologic disease in EAE has been questioned by results indicating
that CXCL10 may actually exert a protective effect in mice with EAE [49, 71].
Antibody-mediated neutralization following induction of EAE in rats resulted
in increased disease severity, and this was associated with smaller draining
lymph nodes and increased numbers of CD4+ T cells infiltrating into the
CNS [71]. In addition, CXCL10−/− mice exhibited increased clinical disease
severity following immunization with myelin peptides, and this correlated
with diminished lymph node sizes although T cell infiltration into the CNS
was not dramatically altered when compared to wildtype mice [49]. In these
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particular EAE models in which mice are immunized peripherally with anti-
gen, CXCL10 expression within secondary lymphoid tissue is considered im-
portant in dictating disease outcome by serving to retain lymphocytes and
tailoring T cell responses. Moreover, these findings highlight the different
roles of CXCL10 in regulating cellular immune responses in different models
of neuroinflammation and emphasize the need for a better understanding of
how signaling by this chemokine regulates inflammation and disease.

As indicated, we have determined that MHV infection of the CNS results
in an orchestrated expression of chemokine and chemokine receptor genes
that are regulated, in large part, by the viral burden. Similar to MS patients,
CXCL10 is expressed primarily by astrocytes in areas undergoing demyeli-
nation, suggesting an important role in the pathogenesis of demyelination
by attracting CXCR3-expressing T cells into the CNS [52, 59]. Indeed, our
laboratory was the first to demonstrate that treatment of mice with estab-
lished demyelination and paralysis with anti-CXCL10 neutralizing antibody
resulted in a significant reduction in CD4+—but not CD8+—T cells present
within the CNS, and this correlated with improved motor skills and a re-
duction in the severity of demyelination [59]. Moreover, the dramatic regain
of movement in anti-CXCL10-treated mice corresponded with more than
80% of previously demyelinated axons undergoing remyelination, indicat-
ing that removal of CXCL10 promoted an environment capable of remyeli-
nation. In addition to reduced numbers of CD4+ T cells within the CNS,
there was a paucity of macrophage infiltration into the CNS of anti-CXCL10-
treated mice that correlated with a dramatic reduction in the levels of the
macrophage-chemoattractant CCL5. These data were consistent with previ-
ous studies indicating that CD4+ T cells were the major source for CCL5
in MHV-infected mice undergoing demyelination [53, 59]. The influence of
CXCL10 in contributing to T cell responses was also examined. T cells isolated
from secondary lymphoid tissue of mice treated with anti-CXCL10 displayed
muted expression of IFN-γ in response to viral antigen when compared to T
cells isolated from control mice, suggesting that CXCL10 also serves to influ-
ence T cell effector functions during chronic disease (T.E. Lane, unpublished
observations).

We have previously determined that CCL5 mRNA transcripts and protein
are present within the CNS of MHV-infected mice during chronic demyelina-
tion, indicating a potentially important role for this chemokine in promoting
inflammation [52, 53]. In order to assess the functional role of CCL5 in par-
ticipating in viral-induced immune-mediated demyelination, MHV-infected
mice were treated via intraperitoneal (i.p.) injection with anti-CCL5 mono-
clonal antibody (mAb) following onset of clinical disease and demyelination.
Such treatment resulted in a significant (p≤0.05) reduction in the severity of
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clinical disease compared to mice treated with an isotype (IgG1)-matched an-
tibody [32]. Upon removal of anti-CCL5 treatment, clinical disease returned
to mice such that there was no difference between the two experimental
groups of mice. Immunophenotyping the cellular infiltrate of mice treated
with anti-CCL5 revealed reduced T cell and macrophage infiltration into the
CNS that is consistent with our earlier studies that CCL5 attracts these cells
into the CNS of mice with chronic demyelination. Further, analysis of the
severity of demyelination in experimental groups of mice indicated that anti-
CCL5 treatment resulted in a significant (p<0.05) reduction in the severity of
demyelination compared to control-treated mice.

Apicture is slowly evolving fromour experimentsdesigned to test the func-
tional contributions of CXCL10 and CCL5 to chronic demyelination within
MHV-infected mice. Antibody targeting of the T cell chemoattractant CXCL10
in MHV-infected mice selectively affects CD4+ T cell accumulation within the
CNS accompanied by improved motor skills and a reduction in the severity
of demyelination [59]. In contrast, CCL5 is capable of attracting both CD4+

and CD8+ T cells into the CNS. It is also important to emphasize that our
data on CCL5 and CXCL10 inhibition with regards to T cell and macrophage
trafficking are corollary and it is possible that alternative scenarios exist.
For example, studies by Bergmann and colleagues suggest that during per-
sistent MHV infection there is limited to no trafficking of T cells from the
periphery into the CNS. Rather, upon entry during acute encephalomyelitis
a certain percentage of CD4+ and CD8+ T cells is retained and participate in
disease [62, 93]. In this instance, CXCL10 expression would not be functioning
as a T cell chemoattractant but rather to influence specific biologic functions
of T cells as well as potentiating the retention of T cells within the CNS. In
support of this, it is possible that CXCL10 serves to enhance CD4+ T cell
proliferation, as several recent studies indicate that CXCL10 is important in
contributing to T cell proliferation [18, 71, 101].

It is unlikely that CXCL10 contributes to T cell survival, as CXCL10−/− mice
do not display any abnormalities with regards to T cell half-life nor do we see
any increase in numbers of apoptotic T cells following anti-CXCL10 treatment.
In addition, Narumi et al. [71] speculate that CXCL10 actually serves to retain
CXCR3+ T cells within tissues and this influences disease severity. Therefore,
the selective reduction in CD4+ T cells within the CNS of MHV-infected mice
may not be the result of impaired trafficking. Rather, either CD4+ T cells are
not undergoing a steady-state turnover or are actually migrating out of the
CNS in the absence of signals specifying their retention.

In addition, recent studies indicate an important role for CXCL10 in im-
parting effector functions to T cells. For example, Salomon and colleagues
demonstrated that anti-CXCL10 treatment improved joint swelling in a rodent
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model of arthritis and this correlated in part with an altered TH1/TH2 balance,
suggesting that CXCL10 expression promotes and maintains a TH1 state in
T cells in this model [87].

Similarly, we have shown that MHV-infection of CXCL10−/− mice results
in diminished IFN-γ expression by virus-specific T cells, supporting the idea
that CXCL10 expression serves to maintain a TH1-like state in T cells [18]
(T.E. Lane, unpublished observations). CCL5 signaling also modulates cy-
tokine production by T cells following antigenic challenge. In support of this
is our demonstration that inhibition of CCL5 signaling results in enhanced
IFN-γ expression by virus-specific T cells, supporting the idea that CCL5 ex-
pression serves to regulate a TH1-like state in T cells [32]. Moreover, ablation
of CCL5 signaling also modifies the cytolytic activity of MHV-specific CD8+

T cells [30].

6
Perspectives

This chapter highlights mechanisms by which chemokines participate in
both host defense and disease progression in response to MHV infection of
the CNS. An overview of the potential functional role for select chemokines in
linking innate and adaptive immune responses in response to viral infection
of the CNS is provided in Fig. 1. In brief, following MHV infection there
is robust expression of chemokines by infected astrocytes including CCL3
that contribute to the maturation/activation of local DCs, which ultimately
enables migration to draining cervical lymph nodes. Activated DCs present
antigen to T cells as well as secrete chemokines such as CCL3 and CXCL10
that enhance polarization to a TH1 response. In turn, MHV-specific T cells
express chemokine receptors including CXCR3 and CCR5 that enable them to
traffic into the CNS as a result of localized expression of ligands CXCL9 and
CXCL10 (ligands for CXCR3) as well as CCL5 (ligand for CCR5). In addition,
our contention is that expression of CCR2 by endothelial cells of the BBB is
also important in increasing the permeability of this structure.

With regards to chronic disease, MHV persistence within the CNS results
in chronic expression of CXCL10 and CCL5 which together contribute to the
maintenance of a chronic inflammatory disease by attracting both T cells
and macrophages (Fig. 2). Local secretion of CXCL10 and CCL5 may also
contribute to demyelination by enhancing specific T cell effector functions
including (1) secretion of IFN-γ that activates local inflammatory macrophage
and resident microglia, as well as directly damaging oligodendrocytes and (2)
increasing CTL activity by CD8+ T cells.
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Fig. 1A–H Chemokines and innate/adaptive immune response following MHV in-
fection of the CNS. Instillation of MHV into the CNS of susceptible mice results in
infection of astrocytes that are an important source of chemokines including CXCL10,
CCL5, and CCL3 (A). In addition, immature DC-like cells may also be susceptible to
infection and secrete CCL3 (B) that functions in a paracrine and autocrine manner
to bind to CCR1 expressed on immature DC-like cells. As a result of CCL3 signaling
and MHV infection, the DC-like cells undergo maturation and activation (C) resulting
in a remodulation of the plasma membrane characterized by decreased expression of
CCR1 accompanied by increased expression of CCR7 as well as major histocompat-
ibility complex (MHC) class I and II. CCR7-expressing, activated DCs home to the
draining cervical lymph node (D). Upon entry, activated DCs express a variety of sol-
uble factors including CCL3 and CXCL10 (E) that activate and enhance polarization of
virus-specific T cells to a TH1 phenotype (F). Activated T cells exit the lymph node via
the efferent lymph (G), enter the blood stream, and migrate to the CNS via expression
of the chemokine receptors CXCR3 and CCR5 (H)
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Fig. 2A–F Chemokines and MHV-induced demyelination. Persistent MHV infection
within astrocytes leads to chronic CXCL10 and CCL5 expression (A) that serves to
recruit CXCR3+ and CCR5+ T cells into the CNS (B). In addition, activated CD4+ T cells
secrete CCL5 that enhances macrophage migration into the CNS (C). We believe that
CXCL10 may also influence T cell effector functions within the CNS, including CTL
activity (D) and IFN-γ secretion (E), leading to macrophage activation. Both IFN-γ
production and CTL activity may enhance tissue destruction as well as macrophage
activation that amplifies myelin destruction (F)

Clearly, these observations indicate that chemokine signaling is an integral
component involved in eliciting protective immunity in response to viral in-
fection of the CNS. Conversely, our studies also indicate that chronic localized
secretion of select chemokines ultimately amplifies disease severity through
maintaining inflammation within the CNS. Importantly, studies derived from
the MHV system demonstrate that antibody targeting of select chemokines
offers a powerful approach towards delineating the functional contributions
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of these molecules in a model of immune-mediated demyelination. Further,
these studies highlight the relevancy of such an approach in treating human
neuroinflammatory and demyelinating diseases such as MS.
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