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A B S T R A C T

The behavior of the flow through a straight square duct is examined using Large-Eddy Simulations. Both iso-
thermal and non-isothermal conditions were considered, the latter generated with either the wall temperature or
the wall heat flux held constant. Fully-developed conditions were attained by initializing the velocity field with
perturbed streamwise streaks, and by employing a method for efficiently applying cyclic boundary conditions to
the velocity field while minimizing aliasing errors. Results were obtained for two values of bulk Reynolds
numbers, =Re 6,000b and 10,000. The numerical accuracy was checked via several alternative methods that
included performing computations on grids with different resolutions, both with and without sub-grid scale
models. The results were used to test some of the assumption underlying the use of RANS approaches to predict
the flow and thermal fields. Of particular interest was the examination of the effects of the turbulence-driven
secondary motions on the near-wall processes, especially on existence and extent of the thermal logarithmic law
of the wall, and on departures from the Reynolds analogy. Their effect on the turbulent Prandtl number was
quantified, and the implications on the use of Fourier's law to relate the turbulent heat fluxes to the gradients on
mean temperature are discussed.

1. Introduction

The turbulent flow of a fluid in a square duct is of practical interest
for its frequent occurrence in engineering practice such as in high
performance heat exchangers and in the cooling passages in gas-turbine
blades [1]. It is also of fundamental interest due to the presence of
turbulence-driven secondary flows that impact the rates of transfer of
heat and momentum leading to distortion of the mean flow field, and to
non-uniform distributions of shear stresses and heat fluxes on the duct
walls. The prediction of these flows has exposed the limitations of many
of the most-widely used RANS approaches for the prediction of turbu-
lent flows. These approaches, being based on Boussinesq's assumption
of linear stress-strain relationship, predict, in fully-developed flow
conditions, isotropy of the normal stresses. Since it is the anisotropy of
these stresses that provides the sole mechanism for generating the
secondary flows, these are not obtained leading to significant errors in
the prediction of important parameters such as the pressure drop and
the overall heat-transfer rate [2]. Models that are based on non-linear
stress-strain relationships (e.g. Refs. [3] [4]), or that involve the solu-
tion of modeled differential transport equations for all six non-zero
components of the Reynolds-stress tensor ([5]) are more successful in
capturing the details of the secondary flows but uncertainties remain,

especially in predicting the consequences of these motions on the
thermal field.

In contrast to conventional turbulence closures, the use of Large-
Eddy Simulations (LES) to predict the behavior of turbulent flows in-
volves fewer modeling assumptions and can thus potentially provide
more reliable means for engineering predictions. Several studies of
flows in square ducts with LES have been reported in the literature. For
isothermal flows, these include the studies of Madabhushi and Vanka
[6] and Breuer and Rodi [7]. For non-isothermal flows, results have
been reported by Pallares and Davidson [8], Vázquez and Métais [9],
Qin and Pletcher [10] and Zhu et al. [11]. Recently, Direct Numerical
Simulations (DNS) have been used to study the fundamental flow
physics associated with turbulence-driven secondary motions in ducts
of increasing aspect ratio ([12]). The computations, which were per-
formed using a Spectral-Element Method with a number of nodes of up
to ×326 106, revealed a degree of complexity arising from the interac-
tion of bursting mechanisms from horizontal and vertical walls that
would be hard to capture with either LES or RANS. Within the con-
straints of computational resources, the LES approach will probably
remain the advanced design tool of choice for the foreseeable future.

In this paper, we make comparisons with some of the previously-
reported LES results and proceed further in investigating in far more
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detail the sensitivity of the predictions to some of the assumptions and
practices underlying the use of LES in the prediction of heat transfer in
square ducts. Amongst the issues examined is the intersection between
grid resolution and the models used to approximate the sub-grid scale
fluxes of momentum and thermal energy. We also examine the efficacy
of methods used to generate initial conditions that lead to the rapid
establishment of a sustainable turbulence field, and of methods for in-
corporating cyclic boundary conditions that minimize aliasing errors.
Thus one objective of this research was to contribute a reliable set of
results to the rather limited literature related to the use of LES in the
prediction of non-isothermal flows in non-circular ducts. Another ob-
jective stems from the recognition that the task of obtaining numeri-
cally-accurate LES results within reasonable turn-around times is not
trivial and in many cases precludes the use of this methodology for
routine engineering design. There is thus some benefit in using LES to
obtain descriptions of the flow details that are difficult to obtain via
measurements, and to use these to examine some of the assumptions
underlying the more practical RANS approaches. Amongst these is the
assumption of the existence of logarithmic laws of the wall for mo-
mentum and temperature to obtain wall boundary conditions for these
parameters (the ‘wall functions’ approach), and the assumption that the
Reynolds analogy connecting the rates of heat and momentum trans-
port via a constant Prandtl number holds even in the presence of ani-
sotropy-driven secondary motions. We use our results to test both of
these assumptions.

2. Mathematical formulation and computational details

The methodology underlying the Large-Eddy Simulations approach
to modeling turbulent flows is well know (see, for example [13,14]).
Briefly, the instantaneous equations governing the conservation of
mass, momentum and energy are filtered to yield:

=U
x

0i

i (1)

+ = +U
t x

U U p
x x

U
x x

( ) 1i

j
i j

i j

i

j

ij

i (2)

+ =
t

U
x x x x

( )j

j j j

j

j (3)

We use the Smagorinsky [15] model for the sub-grid scale stresses:

= S2ij sgs ij (4)

where sgs is the turbulent eddy viscosity and Sij is the resolved strain
rate tensor. The turbulent eddy viscosity is obtained from

= SC( )sgs S
2 (5)

where is a length scale obtained from

= ( )x y z
1
3 (6)

is used, where , ,x y z is the grid spacing in x y z, , , respectively.
Several different values for the Smagorinsky constant CS have pre-

viously been used in this and similar flows. In this work, CS was set
equal to 0.065 which is in line with the recommendations of [16,17] for
wall-bounded flows.

The Smagorinsky model with a constant CS tends to overpredict the
viscosity in close proximity to the wall [18]. Following the usual
practice, we use van Driest's damping function to bring about the cor-
rect behavior:

= + +( )SC e( ) 1sgs S
y A2 / (7)

where =+y u y is the non-dimensional wall distance and =+A 26.
The unresolved heat fluxes are modeled according to [13,17,19] as

=
xj sgs

j (8)

where

=
Prsgs

sgs

sgs (9)

is the thermal sub-grid scale diffusivity, sgs is the sub-grid scale eddy
viscosity in Eq. (7) and Prsgs is the sub-grid scale Prandtl number which
was set equal to 0.4 in line with the recommendations of [19,20].

The simulations were performed using the open source CFD soft-
ware OpenFOAM. Fluid properties for dry air at 293.15 K were assumed
to be constant for both isothermal and heated flow conditions thus the
temperature variations did not influence the flow field. Turning to de-
tails of the discretization schemes, a second-order accurate backward
differencing scheme is used for time integration. The time-step size was
restricted according to the Courant - Friedrichs - Lewy number

= + +CFL t U
x

V
y

W
z

max
(10)

To ensure stability,CFL was set equal to 0.6 to ensure time accurate
and stable results. Concerning the spatial discretization, second-order
linear schemes were used for both the diffusive and convective fluxes. It
should be noted that a detailed study of the fundamental physical
processes of turbulence-driven secondary flows would demand the use
of a higher-order accurate discretization scheme such as the Spectral
Element Method used by Marin et al. [2] to examine the nature of flows
in hexagonal ducts. Coupling of the continuity and momentum equa-
tions was done iteratively using the PISO algorithm.

The boundary conditions employed were as follows. At the walls,
the no-slip condition was applied for the velocities while the wall-
normal pressure gradient was set equal to zero. At the outlet, the
pressure and the streamwise gradients of the axial velocity were set to
zero. At inlet, the internal mapping procedure of de Villiers [18] was
used. An arbitrary plane close to the outlet was identified from where
the computed velocities were extracted at each time step to be inserted
at the inlet. Placing this arbitrary plane at some distance upstream of
the outlet prevents spurious errors due to reflections from the outlet
from being propagated back to the inlet. In the present work the
mapping plane was located at a distance of D6.0 h from the inlet plane;
the total length of the channel being D6.4 h. Subsequent tests confirmed
that the feedback effects were minimal. The mapping length of D6.0 h is
in-line with the recommendations of Pallares and Davidson [8] who
performed calculations in the same Reb regime. Other researchers (e.g.
Refs. [21,22]) recommended longer domains but preliminary tests
showed that this is not necessary.

Several methods for initializing the velocity field were considered.
The one which proved most effective in producing a realistic and sus-
tainable turbulence field was the method proposed by de Villiers [18]
which is based on the initialization of the velocity field with a transi-
tional-like state. A laminar mean profile (U0) was superimposed by ar-
tificially created streamwise streaks to yield an instantaneous velocity
(U) that defines parallel low- and high-speed streaks:

= +
+

+ +
+

+U U u U z y y C
2

cos( )
40

exp(0.5 ( ) ) as0
2

(11)

where =+U U u0.25 /b , = ×5.5 10 4 and = U /200b . The friction
velocity u was estimated using the formulation of Jones [23]. This
leads to =u DRe ( /2 )h of 196.5 for the case of =U DRe ( / )b b h of 6,000
and =Re 306 for the case of =Re 10,000b . The value =+ 2 /200 de-
termines the spanwise streak spacing. The constant =C 1.1as introduces
a small random deviation in order to break the symmetry. Then streak
waviness is introduced in order to perturb the streaks and produce
streamwise vortices

= + + + +W x y y Csin( ) exp( ( ) ) as
2 (12)
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where = U /200b and =+ 2 /500 represent the streamwise spacing.
Calculations were performed for two different Reynolds numbers

(based on the bulk velocity Ub) =Re 6,000, 10,000b for which other LES
results are available for comparison. The size of the computational
domain is taken to be × ×D D D6.4 h h h, in the streamwise and cross-
stream directions, respectively. Fig. (1) shows the computational do-
main and a representative grid. Results were obtained on several grids.
A detailed assessment of the numerical accuracy is presented in the
Appendix.

3. The isothermal flow

A measure of the departures of the instantaneous profiles from their
long-time averaged equivalents can be seen in Fig. (2a), where a cross-
stream distribution of streamwise velocity is plotted. The departures
from the mean values are quite large, and the instantaneous flow does
not exhibit the symmetry that is suggested by the averaged profiles.

Contours of the streamwise velocity for a section in the xy-plane are
presented in Fig. (2b). These too clearly show the patchy nature of the
instantaneous velocity.

Instantaneous snapshots of the secondary flow, taken at four points
in time, are shown in Fig. (3). The motions are irregular and the
maximum cross velocity occurs in the near-wall region where the tur-
bulence anisotropy is largest.

The results shown here were obtained at =x D6 h. Simulations
were performed for a period of 5,000 s before starting the averaging
process. In terms of non-dimensional time units =+t tu D/a

h, this time
period corresponds to values of +t of 30 and 59, for =Re 6000b and

=Re 10000b , respectively. The averaging process itself is performed for
another 5,000 s. A convenient indicator of whether the flow has become
fully developed is the variation of the section-averaged pressure with
streamwise distance which should become linear. This was indeed ob-
tained within the averaging interval. The average wall shear stress ( w

a),
which can be obtained from a simple force balance, turns out to be
equal to ×3.963 10 kg m s5 1 2.

The variation of the mean streamwise velocity along the bisectors of
the four walls is shown in Fig. (4a). The velocity is non-dimensionalised
by the centerline valueU0. Also plotted there are the DNS results by Ref.
[24]. Some difference with the DNS results are evident, due in part to
the latter being at =Re 4,410. Fig. (4b) shows isolines of the normalized
mean streamwise velocity in a cross-section at =x D6 h. Five isolines are
evenly distributed from =U U/ 0.30 to 0.9. The slight deformation
towards the corners is due to the secondary flow being directed along
the corner bisectors.

Details of the secondary flow produced by the stress anisotropy can
be seen in Fig. (5a). The small departure from symmetry observed for
the mean streamwise velocity in Fig. (4) can also be seen here. Wall
tangential motion in the middle of each wall is not entirely zero. In Fig.
(5a), this effect is especially visible at the top wall. On average, fluid
with higher streamwise velocity is transported from the middle of the
duct towards the edges. For mass continuity reasons fluid in the corner
close to the wall is driven to the middle of the wall, where it ascends to
the duct center. In many papers quadrant averaged results are pre-
sented to improve statistics and obliterate a possible lack of symmetry.
Therefore, secondary velocity components are spatially averaged over
all octants and the results are shown in Fig. (6). The maximum sec-
ondary velocity is calculated as = =V U W U/ / 1.73%max b max b and
was found D0.19 h away from the corner at a wall distance of D0.03 h.
This location is assigned to the area where near-wall fluid travels from
the corners back to the mid of the wall. However, fluid particles with
the highest magnitude + =V W U( ) / 1.76%max b

2 2 0.5 are located on the
diagonal at D1.372 h wall distance. The streamwise vorticity is calculated
from the velocity-gradient field according to:

= W
y

V
z

.x (13)

Results for the x distribution normalized by the maximal value of
x are shown in Fig. (5b) where the solid isolines represent positive and
the dotted isolines negative values. Maximal vorticity of = 0.127 sx

1

occurs within the wall-closest grid cells. However, local maxima of up
to 0.057 s 1 can be detected at a wall distance of 0.053 to D0.073 h. De-
tailed analysis of the interconnection between the mean streamwise
vorticity, the wall streaks and the buffer layer coherent structures can
be found in Pinelli et al. [25].

The secondary motion described above distorts the mean stream-
wise velocity in vicinity of the wall. Therefore, wall shear stress dis-
tribution in spanwise direction is not uniform for flow in a square duct
but a function of y and z respectively. The local wall shear stress values
are calculated from

= µ U
nw

w (14)

where μ is the dynamic viscosity and n is the wall-normal direction. The

Fig. 1. Computational domain and coordinates system.

Fig. 2. Streamwise velocity component, (a) along a bisector at =x D6 h, mean
value (‒ ‒) and instantaneous (—) distribution, (b) velocity contours in a plane
normal to z in the middle of the duct.
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gradient is evaluated by first-order differencing which is acceptable
because of the linear velocity profile in the viscous sublayer. The flow
asymmetry has an even stronger impact on the distribution of w. The
variation of the ratio /w w

a is shown in Fig. (7a) where the peripheral
averaged wall shear stress = ×3.973 10 kg m sw

a 5 1 2 fits well with
the one calculated from the pressure drop.

The quadrant-averaged shear-stress distributions along the four
walls show some differences (Fig. (7a)) which suggests that a longer
time-averaging interval might have been appropriate. Vinuesa et al.
[21] reported that an averaging time of +t 400 was needed to achieve
statistical convergence but that was for Direct Numerical Simulations

(DNS) where flow features are captured in greater detail than in LES.
The peak in the center of the wall is lower in comparison to the DNS
results [24] but at the same level as the LES results of [9]. The local
variation is significantly weaker, though. In vicinity of the corner all
results coincide well. The outer peak is located D0.15 h away from the
corner. This suggests that it is connected to the area of highest cross-
flow velocity.

The wall-normal distance is non-dimensionalized according to
=+y u y( )/m

a
, and the non-dimensional mean streamwise velocity

reads =+U U U/ m
a
, . In immediate vicinity of the wall up to =+y 5 the

velocity profile exhibits linear behavior following

Fig. 3. Instantaneous cross-flow velocity distribution in slices normal to the main flow direction at different times.

Fig. 4. Mean streamwise velocity distribution, (a) normalized mean streamwise velocity, LES (—), DNS [24] ( ), (b) isolines of normalized mean streamwise velocity
U U/ 0 .
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=+ +U y . (15)

In the viscous sublayer, turbulent transport is negligible because
turbulent fluctuations are damped by the presence of the wall. A buffer-
layer is adjacent to the viscous sublayer from +y5 30. Here, mo-
lecular and turbulent transport occur at the same level. Further away
from the wall the fully turbulent region starts. Here, molecular prop-
erties play a minor role since the turbulent transport dominates. The

logarithmic law of the wall which is applicable in this region reads

= ++ +U y C1 ln( ) (16)

where = 0.41 and the integration constant is chosen to be =C 5.5 as it
is commonly used for a flat plate boundary layer. The non-dimensio-
nalized mean streamwise velocity +U is plotted against +y in Fig. (8a).
Data by Refs. [24] and [9] is shown for comparison. In the viscous
sublayer up to =+y 5 the velocity profile exhibits the expected linear
behavior. In this region data of the present LES coincides well with DNS
data. In the turbulent regime the LES results overshoot the values
predicted by the law of the wall and by Ref. [24]. A reason for the
overshoot of latter is the lower wall shear stress value at the mid-wall
(see Fig. (7b)). Note that the deviation is weaker for the friction velocity
as it is proportional to the root of the wall shear stress. When comparing
results to other works, it is important to keep in mind that different
normalization methods are used in literature. To point out this large
influence on the illustration, a second plot of the same issue is presented
in Fig. (8a). The friction velocity averaged over four walls is obtained as

=u .a w
a

(17)

In the turbulent, logarithmic region a closer agreement to
Gavrilakis' data [24] is found. An additional DNS data set by Ref. [26] is
added which is also well reproduced by LES calculations by Ref. [27].
Their data, obtained for higher Reynolds number flows, differ appre-
ciably. The overshoot from the law of the wall curve, is due to stronger
turbulence production close to the wall center compared to simpler
boundary layer or channel flows [26].

Fig. 5. Secondary flow, (a) cross-stream velocity, (b) streamwise vorticity /x x max, , positive isolines (—), evenly distributed from 0.1 to 0.9 in steps of 0.1, negative
counterpart ( ).

Fig. 6. Secondary velocity vectors, octant averaged.

Fig. 7. Non-dimensionalized wall shear stress, (a) separate distributions along each wall of present LES, (b) comparison to DNS [24] ( ), LES 9 ( ).
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In Figure (9a), the intensity of the quadrant-averaged streamwise
velocity fluctuation along the duct bisectors is illustrated. A distinct
maximum of streamwise fluctuations occurs in vicinity of the wall at

=n D0.04 h. Comparing the present LES results to DNS data [24], a
perfect agreement of streamwise intensities urms is apparent. The max-
imum value agrees well with experimental channel data [28] whereas
the deviation in the far-wall region is higher. LES data for vrms and wrms
deviates slightly stronger from DNS data especially towards the duct
center where the deviation is up to 9%. Experimental channel data [29]
gives a 15% higher peak in wrms, but agrees well with [24] in the duct
center. It should be mentioned that [24] used a local mid-wall friction
velocity to non-dimensionalize turbulent intensities. He calculates the

local friction velocity to u1.09 a. Therefore, data is rescaled in order to
provide an appropriate comparison to the present LES data. The var-
iation of Reynolds stress uv is plotted in Fig. (9d). The present LES
result agrees fairly well with DNS data except for an overshoot of the
maximum value at =y D0.1 h. It is also located a bit further away from
the wall. Experimental data by Ref. [29] exhibits no smooth behavior as
in numerical data and Reynolds stresses are in general at a lower level.

4. The heated flow

Computations were performed for two different thermal boundary
conditions. The first was that of constant wall temperature, hereafter

Fig. 8. Comparison of predicted mean streamwise velocity along the wall bisector with law of the wall (‒ ‒) and with the DNS results of [24] ( ) and [26] ( ); (a)
normalized by mid-wall friction velocity and (b) averaged friction velocity.

Fig. 9. Comparison of turbulence intensities with the DNS of [24] ( ), and the experimental data of [29] ( ) and [28] ( ). (a) urms, (b) vrms, (c) wrms, (d) uv .
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referred to as case h1. This corresponded to an initial temperature
difference of = 50 K between the wall temperature and the inlet
temperature. The thermal field does not become fully developed and
hence the cyclic boundary conditions were not applied. Instead, the
inlet temperature was fixed throughout the simulations, and the spa-
tially evolving thermal field was examined. The second was that of
constant wall heat flux, referred to as case h2. The heat flux was cal-
culated according to the previous constant wall temperature simula-
tion. The thermophysical fluid properties were constant for both cases.
Thus, the fully developed flow field that was generated by the mapping
method described above was decoupled from the thermal field.

Contours of instantaneous streamwise velocity fluctuations, tem-
perature fluctuations and wall-normal component heat flux are pre-
sented in Fig. (10). The contours were all obtained at the same time,

and on the same plane located at distance at =+y 4.8 from the bottom
wall. The strong coupling between the fluctuations in the velocity and
temperature fields is quite evident though these seem to be out of
phase. The appearance of maxima in the normalized wall-normal heat
flux + +v seems to be intermittent as can be seen in Fig. (10c). A si-
milarly intermittent behavior is also observed in the contours of + +u v
contours where the maxima also appear to be intermittent [30].

The distribution of wall heat flux qw is shown in Fig. (11). Note that
the heat flux through the surface is high in regions where high-speed
streaks in streamwise velocity appear (Fig. (10a)). This is to be expected
since high-speed streaks generate higher levels of wall shear stress and
hence, according to Reynolds analogy, higher levels of qw.

The spatial evolution of the mean temperature profiles (quadrant
averaged) at three streamwise positions is plotted in Fig. (12). Note that

Fig. 10. Contours of instantaneous fields at +y 4.8 for case h1; positive contours are shown as solid, negative as dotted lines; (a) streamwise velocity fluctuations +u
from 2.5 to 5.5 by increments of 0.5, (b) temperature fluctuations + from 4.5 to 2 by increments of 0.5, (c) wall-normal heat flux + +v from 0.5 to 1 by
increments of 0.2.
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the wall temperature for case h2 (Fig. (12b)) increases linearly in x
while its gradient stays constant by definition. At =x D6 h the constant
wall temperature set in case h1 is almost reached, concomitant with a
similar mean temperature profile. The predicted development of the
thermal field shows that for a constant wall temperature, after a suffi-
ciently long development length, the temperature everywhere will
asymptotically aproach that at the wall.

It is instructive to plot the mean temperature in the form of a
thermal logarithmic law since the existence of this law often provides
the basis for specifying the boundary conditions at a solid wall. To
achieve this, the temperature is non-dimensionalized according to

=+ w

(18)

where

=
q
c u

w m
a

p m
a

,

, (19)

In the above, qw m
a

, and u m
a
, are the mid-wall heat flux and friction

velocity, respectively.
In the viscous sublayer, the mean temperature along the wall-

normal bisector is expected to follow the relation

Fig. 11. Contours of instantaneous wall heat flux qw at the bottom wall for case h1, contour levels are from 10 W m 2 to 60 W m 2 by increments of 6.25 W m 2.

Fig. 12. Mean temperature profiles at =x D6 h (—), =x D3 h (‒ ‒), =x D1 h (‒ ‒); (a) case h1 with constant wall temperature, (b) case h2 with constant wall heat flux,
(c) case h2 non-dimensionalized, (d) case h2 + +y( ).
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=+ +yPr . (20)

The results from both h1 and h2 simulations agree well with this
relation as well as literature data. In the logarithmic region, the ex-
pected relationship reads:

= ++ +y CPr ln( )t
(21)

Kong et al. [31] compare their results with = ++ +y2.075 ln( ) 4.03
while Qin and Pletcher [27] use = ++ +y2.78 ln( ) 2.09. The latter is
plotted in Fig. (13) where it is compared with the present predictions.
Differences between the two sets of results are due in part to slightly
different ratio of wall to bulk temperatures (1.23 in Ref. [27], 1.17
here), and in Reynolds number. Fig. (13b) presents the temperature
profile for the h2 case. These profiles are in good agreement with the
DNS data of [31] for a constant-flux heated flat plate boundary layer.

The heat flux distribution along the wall for the h1 case is shown in
Fig. (14a) where it is normalized by its circumferential average. As was
the case with the local wall shear stress distribution, two peaks in the
heat flux are apparent, one in the middle of the wall and another at

=y D0.15 h. Comparison with Fig. (7b) indicates a strong correlation
with the local wall shear stress. In the vicinity of the corner, and in the
region of the first peak, the present results agree quite well with those
of [27], whereas the LES results of [8] show a higher peak that is also
shifted away from the corner. The constant flux boundary condition in
case h2 produces an axial and peripheral variation of wall temperature

while =q q/ 1w w
a by definition everywhere. The ratio ( )/l

a is
shown in Fig. (14b) where l denotes the local wall temperature, a the
peripheral averaged wall temperature and the friction temperature,
defined by Eq. (19). The outer maximum is yet shifted more towards the
middle of the wall at =y D0.2 0.25 h. In comparison to Qin and
Pletcher's [27] LES data temperature in the corner is higher for the
present LES, but fits well with [8].

Both h1 and h2 cases have in common that either heat flux is very
low or temperature is very high in vicinity of the corner. In a practical
cooling application it has to be taken into account that sufficient
cooling capability may not be ensured close to the edge. The averaged
heat flux is only reached at =y D0.1 h and further away from the corner.
The strong increase of temperature or decrease of heat flux is mainly
due to the influence of both perpendicular no-slip walls resulting in a
lower streamwise velocity in comparison to a channel flow. The pre-
sence of strong secondary motion flow causes the variation of heat
transfer along the wall involving a second maximum.

Turning now to consideration of Nusselt number, the streamwise
variation of this parameter is shown in Fig. (15). The local Nusselt
number is defined as

=
( )D

Nu
h n w

l b (22)

where l is the local wall temperature and b is the bulk temperature:

Fig. 13. Non-dimensionalized mean temperature profiles of (a) case h1, (b) case h2; present LES (–––), LES by Ref. [27] ( ), DNS by Ref. [31] ( ).

Fig. 14. Predictedl distribution of (a) local wall heat flux in case h1, (b) local wall temperature in case h2; present LES (–––), LES by Ref. [27] ( ), LES by Ref. [8] ( ).
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=
y z U y z dydz

U y z dydz

( , ) ( , )

( , )
b

D D

D D
0 0

0 0

h h

h h

(23)

According to [32,33], b is calculated as a function of streamwise
distance since it increases along that direction due to contineous supply
of heat. An extension of the empirical Dittus-Boelter equation [27] was
used to calculate a reference, ’fully developed', Nusselt number:

=Nu 0.023 Re Prfd b
w

b

0.8 0.4
0.55

(24)

The predicted variation of section-averaged Nusselt number with
streamwise distance is presented in Fig. (15) where it is compared with
the experimental data of [33] and the LES results of [27]. The decrease
of Nusselt number of the isothermal case h1 agrees well with [27]. The
levels for case h2 are higher and the predictions fit well with the ex-
periments of [33]. This is not visible in Fig. (15) since it is compensated
by an also higher fully developed, reference Nusselt number. Sparrow
et al. [33] define =Nu 1.05Nufd as identifier for the thermal entrance
length. According to this definition the domain length of the present
study allows only to model part of the thermal development zone.
However, ratio values near by the outlet at =x D6 h are as low as

=Nu/Nu 1.085fd and 1.201 respectively.
The present results provide an opportunity to check the validity in

this flow of the Reynolds analogy which can be expressed as:

= =
c

St Nu
RePr 2

f
(25)

where St is the Stanton number. The results for case h1 are listed in
Table 1. The results indicate that fully-developed thermal conditions
were attained towards the end of the development length.

We next consider the intensity of the temperature fluctuations.
Quadrant averaged cross-stream distributions of rms values along the
wall bisector at =x D6 h are shown in Fig. (16). Also plotted there are
the DNS results of [30] for a heated channel and those of [27] for a

square duct. The temperature fluctuations are non-dimensionalized
with averaged . The root mean square value of the fluctuations rises
rapidly away from the wall to reach a maxima at +y 20. This location
coincides with the results of [30,31] though the peak value is slightly
underestimated. A similar behavior can be detected for case h2 (Fig.
(16b)). Note that the rms value at wall for this case is finite with

=+ 2rms . This value agrees well with the results of [31] and [27] but is
lower than the values given by Refs. [34] and [35]. The reason is in part
due to the fact that the thermal field here is not as developed as in the
previous studies. This is supported by the observation that the profiles
at the more upstream location of =x D3 h, also plotted in Fig. (16),
show a lower value at the wall.

The streamwise and wall-normal heat flux components are plotted
in Fig. (17) for case h1, and in Fig. (18) for case h2. Comparisons are
made with the DNS results for a heated channel [30] and the thermal
flat plate boundary layer results of [31]. Additional data by Ref. [34]
are used for the constant wall heat flux case. Non-dimensionalized
values for temperature fluctuations =+ / and velocity fluctuations

=+u u u/ a are used. The streamwise heat flux predictions for case h1
agree very well with both channel flow [30] and flat plate boundary
layer [31]. In the outer region, the streamwise heat flux of [30] is
slightly higher in comparison to the present results.

Since the plotted value represents the ratio of streamwise heat flux
to surface heat flux [30], the corresponding correlation coefficient (Fig.
(17b)) reveals a high correlation of up to 0.97 nearby the wall. Up to a
distance of D0.3 h from the wall, the slope is in accordance with [30].
Wall-normal turbulent heat flux is considerably smaller than its
streamwise counterpart and its maximum is shifted away from the wall
(Fig. (17c)). The results of [30] are matched well for +y 50, especially
with regards to the maximum value. The correlation coefficient in Fig.
(17d) overshoots, but the trend is otherwise correctly reproduced. The
maximum of the turbulent streamwise heat flux for the constant wall
heat flux is underestimated, as can be seen in Fig. (18a). Nevertheless, it
fits fairly well with the boundary layer data [31]. The correlation
coefficient looks similar to that of case h1 but is lower in vicinity of the
wall.

Finally, we consider the wall-normal distribution of the turbulent
Prandtl number, shown in Fig. (19). This parameter is calculated from:

= uv U y
v y

Pr /( / )
/( / )t (27)

The importance of Prt stems from its use in turbulence closures to
relate the thermal diffusivity to the eddy viscosity. Often, Prt is set to a
constant value in the range 0.85–1.0. The Prandtl number deduced
from the present results suggests a strong dependence on the wall-
normal distance. The results for case h1 (Fig. (19a)) show that this
parameter has a finite value at the wall, thereafter remaining fairly
constant before dropping quite rapidly close to the duct centerline. In
contrast, for case h2 (Fig. (19b)), Prt is zero at the wall thereafter rising
quite rapidly. This trend is supported by the DNS results of [31] and
[34].

5. Conclusions

The fully developed turbulent flow through an isothermal and a
heated square duct was investigated using Large-Eddy Simulations.
Among the computational aspects considered were the implementation
of appropriate cyclic boundary conditions that do not introduce aliasing
errors, the initialization of the velocity field to rapidly achieve a sus-
tainable turbulence field, and grid effects both in terms of overall
density and near-wall resolution. Two-point correlations were eval-
uated to confirm that the results obtained were independent of the duct
length - an incorrect specification of this parameter was found to pro-
duce incorrect shear-stress distributions, instabilities in the mean ve-
locity profiles, and erroneous predictions of the cross-flow turbulent
fluctuations.

Fig. 15. Local Nusselt number distribution in streamwise direction; comparison
of isothermal case h1 (–––), isoflux case h2 (– –), LES by Ref. [27] ( ), ex-
perimental data by Ref. [33] ( ).

Table 1
Reynolds analogy for case h1.

x D/ h Nul =St Nu
RePr

cf
2

6 21.4 ×5.00 10 3 ×5.10 10 3

5 21.8 ×5.09 10 3 ×5.10 10 3

4 22.59 ×5.28 10 3 ×5.10 10 3

3 23.65 ×5.53 10 3 ×5.10 10 3

2 25.41 ×5.59 10 3 ×5.10 10 3

1 29.26 ×6.84 10 3 ×5.10 10 3
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The isothermal flow results, which were obtained to check the ac-
curacy of the present approach, were in accordance with both experi-
mental findings as well as with results obtained using Direct Numerical
Simulations. Computations on the finest mesh with the Smagorinsky
constant set equal to zero produced no discernible differences com-
pared to results with this constant assigned its usual value. The practice

of establishing cyclic boundary conditions between the inlet to the
computational domain and a plane displaced upstream of the exit plane
ensured that aliasing errors were minimized as evidenced by the dis-
tribution of the two-point velocity correlations.

For the heated flows, computations were performed for a devel-
oping thermal field in conditions of fully-developed flow. Two thermal

Fig. 16. Profiles of rms temperature fluctuations of (a) constant wall temperature case h1, (b) constant heat flux case h2; present LES at =x D6 h (–––) and at =x D3 h
(– –), LES by Ref. [27] ( ), DNS by Ref. [30] ( ), DNS by Ref. [31] ( ).

Fig. 17. Case h1: profiles of (a) streamwise heat flux and (b) its correlation coefficient, (c) the normal heat flux and (d) its correlation coefficient; present LES (–––),
DNS by Ref. [30] ( ), DNS by Ref. [31] ( ).
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boundary conditions were examined: constant wall temperature, and
uniform constant wall heat flux. It was found that the fluctuating ve-
locity and temperature fields were strongly correlated with high levels
of wall heat flux occurring in regions where high-speed streaks in the
streamwise velocity appear. It was also found that the distribution of

averaged temperature for both cases of constant wall temperature and
constant wall heat flux followed an appropriately-defined logarithmic
law of the wall - an important finding in the context of RANS closures
where this assumption forms the basis of the ‘wall functions’ approach
to specifying the boundary conditions at the wall. Another finding that

Fig. 18. Case h2: profiles of (a) streamwise heat flux and (b) its correlation coefficient, (c) the normal heat flux and (d) its correlation coefficient; present LES (–––),
DNS by Ref. [31] ( ), DNS by Ref. [34] ( ).

= =+ +u u
u

u c
q

,p

w (26)

Fig. 19. Profiles of turbulent Prandtl number of (a) case h1, (b) case h2; present LES (–––), DNS by Ref. [31] ( ), DNS by Ref. [34] ( ), DNS by Ref. [30] ( ).
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is relevant to RANS closures is that the turbulent Prandtl number, while
not constant across the entire width of the duct, varies only very mar-
ginally in the fully-turbulent region of the flow and thus the assumption
of constant value for this parameter that is frequently involved may not
be too wide off the mark. What is clear, however, is that the use of
Fourier's law in RANS is not supported by the present findings which, in
agreement with DNS results, show that the streamwise component of
heat flux is 4–5 times greater than the cross-stream component i.e. the
heat flux in the direction of the temperature gradient. In this flow,

Fourier's law would obtain the streamwise component as being van-
ishingly small.
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Notation

Latin Symbols
cp J kg-1K-1 Specific heat capacity at constant pressure
cf − Friction coefficient
Dh m Hydraulic diameter
k W m-1K-1 Thermal conductivity
Lm m Mapping position
Nu − Nusselt number
n m Wall-normal distance
Pw − Wetted perimeter
P kg m-1 s-2 Pressure
Pr − Prandtl number
q W m-2 Heat flux
Ruu − Correlation coefficient
Reb − Bulk Reynolds number
r − Grid stretching factor
Sij s-1 Strain tensor
St − Stanton number
t s Time

=U U V W, ,i m s-1 Grid-scale velocity components
=u u v w, ,i m s-1 Grid-scale velocity fluctuations

Ub m s-1 Bulk velocity
u m s-1 Friction velocity

=x x y z, ,i m Cartesian coordinates
Greek Symbols

+ +, − Constants for streak spacing
β K-1 Thermal expansion coefficient

m2 s-1 Thermal diffusivity
x y z, , m Cell size

K Temperature
K Friction temperature

w K Wall temperature
θ K Temperature fluctuation
κ Von Kármán constant
μ kg m-1 s-1 Dynamic viscosity
ν m2 s-1 Kinematic viscosity
ω s-1 Vorticity
ρ kg m-3 Density

w kg m-1 s-2 Wall shear stress

Appendix. Numerical accuracy

Grid resolution and sub-grid scale modeling

The effects of grid resolution were quantified by performing computations on three different grids whose properties are given in Table 2. The
table also gives the near-wall grid sizes, presented in non-dimensional form (e.g. =+ u /x x ), and the value of the ratio r of adjacent cells in the
normal and tangential directions. For cases 1 to 3, the grid resolution in x-direction was unchanged with refinement being applied in the two
spanwise directions. For case 4, the refinement is applied in the x-direction. Cases 6 and 7 designate simulations that were performed without using a
sub-grid scale model. Note that +

x n t, , in Table 2 are calculated for each case with the actual maximum wall shear stress. For each case considered, the
simulations were started separately from a clear initial field in order to exclude any possible ’memory' effects. The time step was limited by the CFL
stability condition. For cases 1 and 2, it is set to =t 0.125 s. For cases 3 and 4 the time step is =t 0.0625 s to meet this requirement. To exclude
time-step size effects, case 1 was repeated with the time step halved with no discernible differences being observed.
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Table 2
Details of the computational grids.

Case Grid No. of cells +
x

+
n

+
t r

Case 1 × ×128 60 60 460800 20.76 1.83 11.60 1.09
Case 2 × ×128 100 100 1280000 22.06 1.94 5.22 1.05
Case 3 × ×128 128 128 2097152 22.23 1.96 3.82 1.025
Case 4 × ×256 60 60 921600 10.28 1.80 11.48 1.09
Case 6 × ×128 100 100 1280000 21.93 1.93 5.19 1.05
Case 7 × ×128 60 60 460800 20.70 1.82 11.56 1.09

The outcome of these tests is summarized in Table 3.

Table 3
Summary of results obtained with different grids.

Case U U/max b V U/max b [kg m s ]w
a 1 2

w
a m, / w

a

Case 1 1.295 1.73% ×4.470 10 5 1.13
Case 2 +1.296 ( 0.1%) 2.00% × +4.495 10 ( 0.6%)5 1.16
Case 3 1.289 ( 0.5%) 2.11% × +4.593 10 ( 2.7%)5 1.14
Case 4 +1.302 ( 0.5%) 1.71% ×3.887 10 ( 13%)5 1.15
Case 6 +1.297 ( 0.2%) 2.07% × +4.552 10 ( 1.8%)5 1.13
Case 7 +1.297 ( 0.2%) 1.76% ×4.078 10 ( 8.8%)5 1.09

The quadrant-averaged non-dimensional velocity +U is plotted along the bisector in Fig. (20a). The results for cases 1 and 4 are indistinguishable
which indicates that refining the cells in x-direction further than + 20x does not improve the results. The variation of wall shear stress averaged
over all four walls is illustrated in Fig. (20)b. As expected, cases 1 and 4 yield essentially identical results. Both finer grids depart from the coarser
grids such that their outer maxima are shifted towards the corner and exhibit a lower level. Cases 2 and 3 agree fairly well with minor deviations
showing a trend that the outer maximum shifts the further to the corner the finer the grid is. Mid-wall values are all at a comparable level.

Fig. 20. Comparison of different grid resolutions, case 1 (–––), case 2 (– –), case 3 (– –), case 4 ( )), (a) + +U y( ), (b) /w w
a.

A closer examination of the grid effects can be seen in Fig. (21) where the turbulent stresses are compared. It is evident that the streamwise
turbulence intensity urms decreases with increasing grid resolution. A similar behavior was identified by Ref. [26] in their DNS results. In contrast,
vrms and wrms increase with increasing grid resolution. It should be noted that the size of the cells in contact with the walls remained unchanged for all
cases. Only stretching and therefore tangential extent as well as resolution in the duct center differ because of a different cell number.
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Fig. 21. Turbulent stresses as obtained on different grid resolutions, case 1 (–––), case 2 (– –), case 3 (– –), case 4 ( )), (a) urms, (b) vrms, (c) wrms, (d) uv .
The resolution of the fine grids is comparable to and in some cases finer than of some previous DNS studies. [26], for example, uses

× ×96 100 100 and × ×64 81 81 grid points at higher Reynolds numbers of =Re 10,320b and =Re 10,620b respectively [24]. uses × ×1000 127 127
grid intervals for a longer duct at =Re 4,410b . This corresponds to a non-dimensional grid spacing of =+ 9.4x and +0.45 4.6y z, [13]. mentions
that there is no need for the wall-closest cell to be smaller than + 2y . Therefore, especially the highly resolved cases 2 and 3 can be seen as a kind of
DNS since all turbulent motions are supposed to be resolved. If this is the case, sub-grid scale influences should be vanishing. For this purpose two
additional simulations were performed. Case 6 has the same settings as case 2, but the Smagorinsky constant CS is set to zero. This will be referred to
below as the no sub-grid scale model. Analogously case 7 is the no SGS counterpart to case 1.

Plotting +U over +y shows no noticeable difference. Deviation of cases 7 and 1 is always smaller than 2%, deviation of cases 6 and 2 always smaller
than 1.1%. Distribution of wall shear stress along the wall differs significantly though. Fig. (22a) unveils that results for the coarser grid differ severely
when no sub-grid scale model is used. Moreover, the simulation without sub-grid scale model produces another maximum at y D0.35 h while a local
minimum occurs at the middle of the wall. The finer cases 2 and 6 agree clearly better.

Fig. 22. Comparison of simulations with sub-grid scale (–––,– –) and without sub-grid scale model ( , ); (a) cases 1 (––) and 7 ( ), (b) cases 2 (– –) and 6 ( ).
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Two-point correlations

Two-point velocity correlations were evaluated in order to verify that the duct is sufficiently long for the flow field to develop in the central
portion of the channel in a way that is not influenced by numerical artifacts associated with the use of cyclic boundary conditions. The correlation
coefficients are defined by

= +
+

R r u x u x r
u x u x r

( ) ( ) ( )
( ( ) ( ) )

.ii
i i

i i
2 2 0.5 (28)

Although the correlation coefficients were evaluated at several locations within the flow field, the results at only two such locations with the
coordinates = =y z D0.514 h and = =y z D0.053 h are presented here. These coefficients are plotted in Fig. (23a) where it can be seen that all the
three velocity components in the duct center become effectively de-correlated within a streamwise distance equivalent to one hydraulic diameter
from the inlet and outlet planes. Closer to the corner, the streamwise velocity component is stronger correlated as depicted in Fig. (23b). This
emphasizes the necessity of a cycling length L D6m h. Since the velocity field is extracted from the plane at =x D6 h and is directly mapped back to
the inlet, the correlation coefficients at these two planes are unity by definition.

Fig. 23. Two-point velocity correlation coefficients, u (–––), v(– –), w(– –); (a) = =y z D0.514 h, (b) = =y z D0.053 h.
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