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We are in the midst of a paradigm shift toward component-oriented software development, 
and significant progress has been made in understanding and harnessing this new 
paradigm. Somewhat strangely then, the new paradigm does not currently extend all 
the way down to how the components themselves are constructed. While we have 
composition architectures and languages that describe how systems are put together out of 
such atomic program parts, the parts themselves are still constructed based on a previous 
paradigm, object-oriented programming. We argue that this represents a mismatch that 
is holding back compositional software design: many of the assumptions that underly 
object-oriented systems simply do not apply in the open and dynamic contexts of 
component software environments. What, then, would a programming language look 
like that supported component-oriented programming at the smallest granularity? Our 
project to develop such a language, Lagoona, tries to provide an answer to this question. 
This paper motivates the new key concepts behind Lagoona and briefly describes their 
realization (using Lagoona itself as the implementation language) in the context of 
Microsoft's .NET environment. 
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1 · Introduction 

While the idea of a "software component" has been proposed as far back as the 
1960's [1], the arrival of the Internet has propelled us into an age where component­
oriented programming (COP) is becoming simultaneously viable and necessary. 
Viable, because an efficient component discovery and distribution mechanism is 
now available; necessary, because the complexity of Internet-enabled applications 
often exceeds the abstraction capabilities of existing programming paradigms. 

The very nature of a component-oriented system is its distributed extensibility: by 
creating new components, mutually unaware parties can evolve the system inde-
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pendently of each other, and in parallel. This decoupling of the individual com­
ponents keeps complexity under control; there is no single authority that requires 
absolute knowledge about the inner workings of all components. Strangely, how­
ever, the implementation medium of choice for the individual components at this 
time remains object-oriented programming (OOP). OOP is based on a fundamen­
tally different model, namely that of a common shared framework in which only the 
leaves of the object hierarchy are extended. Hence, OOP assumes the presence of a 
central coordinator. This collides with COP's notion of distributed extensibility. 

rhe idea of distributed extensibility has profound implications for programming 
languages, but it was apparently not considered when object-oriented languages 
such as Eiffel or Java were designed. For example, Eiffel's covariant argument 
types require a form of global analysis that implies a "closed system" view of 
the world. Similarly, evolving an existing object-oriented framework (base class 
library) can lead to "name clashes" in already developed extensions, causing them 
to fail. These are just examples that show the mismatch between current OOP prac­
tice and the ultimate requirements of COP. As a result of this misalignment, today's 
component-oriented systems fall short of their true potential. Rather than being 
truly "composed" from independently developed parts, they rnly on the presence 
of large, shared underlying frameworks that themselves cannot be evolved easily. 
Also, components that are based on different frameworks can often not interact. 

Our research, on which we report in this paper, has focused on developing an 
experimental programming language ("Lagoona") that supports COP expressly. 
Lagoona retains much of the flavor and benefits of OOP languages but discards 
those elements that contradict the COP paradigm. We focus on two novel language 
mechanisms, stand-alone messages and generic message fonvarding (Section 2). 
We then show how these allow us to eliminate or alleviate a number of (sometimes 
long-standing) design and implementation problems in OOP-based COP, such as 
issues of interface conflicts,fragile base classes, and component reentrance (Sec­
tion 3). Section 4 describes our implementation and shows how we address the 
major challenges for efficient execution. The final sections describe related and fu­
ture work and conclude our paper. 

2 Lagoona' 

Lagoona is designed around a standard imperative language core, a choice made 
more for reasons of familiarity than necessity. Lagoona's object model, however, 
is very different from those found in established object-oriented programming lan­
guages. It separates the many roles traditionally played by classes, turning them 
into individual language constructs [2][3]. Figure 1 provides a concise comparison 
of how design concerns are mapped onto the class construct in traditional object­
oriented languages and onto separate constructs in Lagoona. At the lowest level of 
Lagoona's object model are messages and methods. Messages are abstract opera­
tions that describe what effect they achieve, while methods are concrete operations 
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that describe how an effect is achieved. In other words, messages are specifications 
for methods, and methods are implementations of messages. At the next higher 
level, messages and methods are grouped into interj ace types and implementation 
types. An interface type is simply a set of messages, while an implementation type 
consists of a set of methods and associated storage definitions. Variables of these 
types are called interface references and implementation references respectively. 
Implementation types serve as generators for instances, which are first-class values 
that can be assigned to implementation or interface references. As with messages 
and methods, interface types and implementation types serve as specifications and 
implementations for each other. At the highest level of the object model are modules 
which encapsulate sets of messages, methods, interface types, and implementation 
types. Modules are unique in the sense that only a single copy of a certain module 
can exist in a given system. 

So far, our description of Lagoona's object model reads almost like the textbook 
definition of any object-oriented programming language. What sets Lagoona apart 
are the following additional relations between the concepts introduced above. Al­
though messages are "grouped into" interface types, they are not declared in the 
scope of a type but rather in the scope of a module. Since modules are unique, 
messages are unique as well. We use the term stand-alone messages. to express this 
independence of messages from types. In contrast to messages, methods are de­
clared in the scope of an implementation type. This asymmetry is intentional, since 
we want to support multiple implementations of identical specifications on the level 
of messages and methods as well as on the level of interface types and implement­
ation types [ 4]. To relate interface types and implementation types (including their 
instances), we need to define some notion of conformance. First, an interface type 
B denoting a set of messages lVIB conforms to an interface type A denoting a set 
of messages MA if and only if MB is a superset of JV! A: 

(1) 

In other words, we employ structural subtyping between interface types. Second, 
an implementation type C with a set of methods implementing a set of messages 
lVIc conforms to an interface type B denoting a set of messages lVIB if and only if 
]VJ c is a superset of MB: 

(2) 

We thus extend structural subtyping to implementation types, and if (1) and (2) 
hold, A ~ C will hold as well. This enables a form of inclusion polymorphism that 
we like to callimplementation polymorphism. Third, an interface type never con­
forms to an implementation type. Of course, Lagoona allows interface types to 
be cast to implementation types, guarded by a dynamic check. Fourth, two imple­
mentation types only conform if they are the same type. In other words, we employ 
occurrence equivalence between implementation types. This completes the defini­
tion of conformance, but the fourth case raises the question how implementation 
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types can be reused or adapted. At runtime, Lagoona's object model essentially 
reduces to a web of independent instances that communicate through messages. 
Assume we are sending a message m to a receiver r, which can be an interface or 
an implementation reference, whose type R denotes a message set NJR. We distin­
guish two message send operators with different semantics. The first operator --+is 
strict in the sense that the expression m --+ r is valid if and only if m is an element 
of NJR: 

(3) 

In other words, this operator statically ensures that the message m will be "handled" 
by the instance bound to r. The second operator =} is blind in the sense that the 
expression m =} r is always valid. Of course, we have to guard the application of 
this operator by a dynamic check, similar to the one for casts mentioned above. The 
blind message send operator is necessary to support reuse and adaptation by inter­
cepting and rerouting messages. Implementation types can define a default method 
which is triggered for messages that do not have an explicit method associated with 
them. Inside this default method, messages can be resent or forwarded to other 
instances. We use the term generic message forwarding to express that the actual 
message remains opaque during this process. Obviously, the strict message send 
operator alone would not be sufficient to support this. 

Lagoona's object model can be viewed as another step toward eliminating the dom­
inance of the class construct in object-oriented languages. Previous steps include 
the separation of interfaces and implementations [5] and the separation of modules 
and types [6], both of which are widely accepted by now. In the remainder of this 
section we explain each element of Lagoona's object model in more detail. 

Lagoona's top-level construct, the module, serves a variety of purposes. Modules 
are compilation units and result in object files which in turn are the units of de­
ployment [7]. Modules live in a fiat, global namespace and cannot be nested [8]. 
However, we employ a "hierarchical" naming convention based on Internet domain 
names, similar to the one originally proposed for Java packages.Modules are also 
sealed [9]: only explicitly exported declarations are visible to clients, and no new 
declarations can be added from the outside. Modules can import other modules 
and then refer to their exported declarations. These references are fully qualified, 
but to avoid "excessive" qualifications we allow the introduction of local aliases 
for imported modules. The module shown in Figure 2 exports all its declarations 
by marking them pub 1 i c. The module in Figure 3 imports the first one under 
the alias S and uses this alias to qualify further references, for example to the mes­
sage push. However, several declarations inside the second module are not marked 
public and are therefore hidden from its clients. 

As shown in Figure 2, messages are bound to (declared in) modules instead of 
types. Since modules are unique within a given system, and since no two mes­
sages can have the same name within a given module, our approach makes mes-
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Concern Traditional Lagoona 

Encapsulation Class (modifiers) Module 

Specification Class (abstract method) Message 

Class (abstract) Interface 

Implementation Class (concrete method) Method 

Class (concrete) Implementation 

Modification Class (inheritance) Forwarding 

Fig. 1. Design concerns and corresponding lan­
guage constructs in traditional languages and in 
Lagoona. 

module com.lagoona.stacks { 

} 

public message void push{any obj); 
public message void pop{); 
public message any top{); 
public message boolean empty{); 
public interface Stack { 

} 

push, pop, 
top, empty 

Fig. 2. A stack abstraction in 
Lagoona. Messages are bound to 
modules, not types. 

sages unique as well. If messages were bound to types, the approach taken in most 
conventional object-oriented languages, we could not guarantee this property in 
general. Surprisingly, many of the issues described in Section 3 stem from this 
seemingly trivial difference. We usually associate a semi-formal specification with 
each message. The push message, for example, would be characterized with the 
precondition "obj =f. null" and the postcondition "•empty". Finally, we assume that 
a message and it's specification are immutable once published, which is similar to 
the assumption made about interfaces in COM [10] and related technologies. 

Messages are the basis for interface types (interface in our concrete syntax) 
which represent references to objects that implement a certain set of messages. In 
Figure 2, the interface type Stack is declared as supporting the messages push, 
pop, top, and empty. If we declare a variable s of type Stack, we can only as­
sign objects that implement at least these four operations to s. As explained above, 
conformance to interface types is structural. The pervasive interface type any rep­
resents the empty message set and is the top element in the resulting type lattice. 

·Note that the name we give to an interface type is only a convenient abbreviation; 
instead of using this name, we could also repeatedly declare isomorphic interface 
types. Conceptually, interface types in Lagoona are used to decouple independent 
components, similar to the use of interfaces in both COM [10] and, to a certain 
extent, Java.Implementation types (class in our concrete syntax) host methods 
and declarations of instance variables. Consider the implementation of the Stack 
abstraction shown in Figure 3. Each method implements exactly one message im­
ported from the module S. The messages initialize and finalize have spe­
cial meaning in Lagoona: They are sent by the runtime system immediately after 
an instance has been created and immediately before it is garbage collected. The 
class Link is essentially used as a simple record type without any methods. 

Figure 4 illustrates how message forwarding between instances is used to "extend" 
an existing implementation type. In this example, we want to extend the stack ab­
straction (and it's implementation) with an operation that determines the number 
of elements currently on the stack. First we introduce a new message elements 
which does exactly that. Next we declare a class Stack that has an interface ref­
erence to another stack and an instance variable for the actual counter. The method 
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module com.lagoona.simple_stacks { 
import S = com.lagoona.stacks; 
class Link { 

} 

any object; Link next; 
} 
public class Stack { 

Link top; 

} 

method void initialize() 
this.top= null; 

} 
method void S.push(any obj) { 

Link x =new Link(); 
x. object = obj; 
x.next = this.top; 
this. top = x; 

} 
method void S.pop() { 

this.top= this.top.next; 
} 
method any S. top ( ) { 

return this.top.object; 
} 
method boolean S.empty() { 

return this.top== null; 
} 

Fig. 3. An implementation of the stack 
abstraction. Methods implementing 
messages are bound to types. 

module com.lagoona.counting_stacks { 
import S = com.lagoona .. stacks; 
public message int elements(); 
public class Stack { 

} 
} 

S.Stack stack; int count; 
method void initialize(S.Stack stack) { 

this.stack= stack; this.count= 0; 
} 
method int elements() { 

return this.count; 
} 
method void S.push(any obj) { 

this.count++; 
S.push(obj) -> this.stack; 

} 
. method void S .pop () { 

this.count--; S.pop() -> this.stack; 
} 
method any s.top() { 

return S.top() ->this.stack; 
} 
method boolean S.empty() { 

return this.count == O; 
} 
method void default() { 

current => this.stack; 
} 

Fig. 4. Adding counting to the stack abstraction 
and its implementation. 

elements simply returns the counter value. The methods S. push and S. pop 
update the counter and forward their messages to the "basic" stack instance. Al­
though not directly related to the extension we want to produce, we also have to 
implement the messages S. top and S. empty. The reason is that both of these 
messages return a value and can therefore not be handled by the generic message 
forwarding mechanism implemented in the default method. However, imple­
menting the default method as shown allows this extension to be composed 
with other, unrelated extensions. 

3 Applications 

In this section, we illustrate how stand-alone messages and generic message for­
warding address a number of recurring design and implementation problems that 
are practically apparent when COP is implemented using OOPL. 

COP often requires combining multiple interface types that were defined indepen­
dently, for example if they are to be implemented by a single implementation type. 
Since these combined interface types can again be defined independently, the con­
formance between interface types needs to fulfill certain requirements as well. In-
terface combination itself is already problematic in conventional object-oriented 
programming languages, since it can lead to syntactic and semantic conflicts. Often, 
these conflicts are referred to as "name clashes," and the problem is considered to 
be solved by providing language mechanisms to work around it. For example, Java 
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supports overloading of method names, which can be used to avoid a subset of 
these conflicts. More general solutions are provided in Eiffel, which supports re­
naming of methods in descendant classes, and in C++, which supports a form of 
explicit qualification of methods. However, these techniques fail to take distributed 
extensibility into account, because they are only applied to fix a "name clash" once 
it has occurred. In Lagoona, both kinds of conflicts are ruled out by design since 
messages always have a unique identity. Interface combination in Lagoona thus 
has the following two properties: (a) any combination of interface types results 
in an interface type (no syntactic conflicts), and (b) any combination of interface 
types preserves all constituent messages (no semantic conflicts). Solving this (long­
standing) problem in fact motivated the design of stand-alone messages to a certain 
degree. While the problem of interface combination has been known for a long 
time, the related problem of interface conformance has received attention only re­
cently. Consider two interface types A and B that were defined independently by 
vendors A and B. Vendors C and D define-again independently-combinations 
of A and B, for example C = A + B and D = B + A. While both C and D sup­
port exactly the same messages, they do not necessarily conform to each other. 
Most object-oriented languages rely on a declared form of conformance, i.e. types 
are equivalent by name (or by occurrence) instead of by structure (or by extent). 
The usual objection to structural conformance is that it can lead to "accidental" 
conformance relationships, with the archetypal example being a Cow boy and a 
Shape both understanding a message draw with different semantics. Lagoona's 
stand-alone messages provide a solution to this problem as well, as we can support 
structural conformance between interface types without the potential for accidental 
conformance. Recent proposals to extend Java with a form of structural confor­
mance [ 11] [ 12] result in a more complicated and less flexible design·. 

Another often encountered issue in the component-oriented programming domain 
is the Fragile Base Class paradox. The concept of inheritance was once hailed as 
the "golden way" toward extensible· software systems. However, the mechanism _is 
generally not suitable for achieving distributed extensibility. Assume a container 
class A that supports operations Add for adding an element, Rem for removing an 
element, as well as MulRem for removing several elements at once. We want to 
define a derived class B that also supports queries about the number of elements 
currently in the container. However, B cannot be implemented without knowing 
the implementation details of A as well: On the one hand, if the developer of A 

implements MulRem by calling Rem repeatedly, Rem (and only Rem!) must be 
overridden to maintain an accurate count. On the other hand, if MulRem does not 
call Rem, we have to override MulRem as well as Rem. This is known as the fragile 
base class problem, and it can be resolved by following an elaborate set of design 
conventions [ 13]. If we want to avoid it altogether, we have to restrict the use of 
inheritance or abolish the mechanism completely. In Lagoona, generic message 
forwarding takes the place traditionally occupied by inheritance. It is easy to see 
how to solve the example problem using this mechanism. Instead of deriving a new 
class B, we develop an implementation type B that has a reference to an instance 
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package com.lagoona.pubsub; 
public interface Publisher { 

void attach( Subscriber me); 
void detach(Subscriber me); 
Object get(); 
void set(Object data); 

} 
public interface Subscriber { 

void update(Publisher from); 
} 

Fig. 5. Naive publishers and sub­
scribers in Java. 

module com.lagoona.pubsub { 

} 

interface Publisher {attach, detach, get, set} 
message void attach(Subscriber me); 
message void detach(Subscriber me); 
message any get(); 
message void set(any data); 

interface Subscriber {update} 
message void update(interface {get} from); 

Fig. 6. Smarter publishers and subscribers in Lagoona, 
only get can be sent within update. 

of A. We implement the methods corresponding to the messages Add, Rem, and 
MulRem by first maintaining our count and then sending the message to the A 
instance. We also implement a default method to forward all other messages to A. 

The language concepts introduced by Lagoona also allow to resolve the Component 
Reentrance problem in a more elegant fashion. When we use messages and inter­
face types to specify the functionality of certain instances, we often make the as­
sumption that each operation executes atomically. However, for certain design pat­
terns that rely on "callbacks" between instances this is not the case, leading to the 
component reentrance problem [14].Consider the Observer (or Publish-Subscribe) 
design pattern [15] for example, which is used to achieve loose coupling between 
objects by implicit invocation. A publisher encapsulates some kind of data that is 
of interest to subscribers. When this data changes, the publisher automatically noti­
fies all its current subscribers. Figure 5 illustrates how this design pattern could be 
modeled in Java using two interfaces Publisher and Subscriber. Subscribers 
attach themselves. to a publisher, and whenever set is invoked, the publisher 
in tum invokes update on all registered subscribers. Subscribers then use get 
to retrieve the current state of the publisher and update themselves accordingly. 
While this sounds great, there are in fact several problems. For example, consider 
subscribers that send attach or detach to the publisher within their update 
method. Since the publisher is currently traversing some kind of data structure to 
update all subscribers, the effect of these operations becomes highly dependent 
on the implementation of this traversal. Even worse, subscribers might send· set 
within their update method, resulting in infinite recursion. The component reen­
trance problem can be solved by implementing publishers very defensively, e.g. by 
cloning the data structure before traversal and by protecting the set method using 
some kind of flag. However, the problem really boils down to what messages can 
be sent to the publisher from within the update method. If we restrict this set of 
messages, we can statically ensure that the reentrance problem does not occur. Fig­
ure 6 shows how we would model the design pattern in Lagoona. Instead of typing 
the from parameter of update with Publisher, we introduce an anonymous 
interface type that only supports the get message. While subscribers can still send 
other messages if they have another reference to the publisher, or if they cast the 
from parameter accordingly, our description of the design pattern is still more ac­
curate and elegant. In Java, we would have to introduce an artificial base type, e.g. 
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module com.lagoona.iterator { 

class ArrayForwarditerator { 
any[] data; 

} 

method void default() { 
int j == 0; 

} 

while (j < this.data.length) { 
current=> this.data[j++]; 

} 

class Array { 
any[ J data; 

} 

} 

method ArrayForwarditerator forward() { 
ArrayForwarditerator i :::: 

} 

new ArrayForwarditerator(); 
i.data :::: this.data; 
return i; 

class Lagoonaiterator { 
Array array; 

} 

method void action() { 
array.forward() .print(); 

} 

Fig. 7. Implementing iterators in Lagoona by leveraging generic message forwarding for 
broadcasting. 

PublisherJustGet, that we derive Publisher from. 

Finally, Lagoona's generic message forwarding mechanism reconciles the iterator 
pattern with component-oriented programming. Certain programming languages, 
for example CLU [16] and Sather [17], offer an iterator construct to traverse en­
capsulated data structures in a modular manner. In most object-oriented program­
ming languages, iterators are "emulated" at the library level [15][18] and the itera­
tion loop itself must be implemented manually every time an iteration is required. 
Using Lagoona's mechanism for generic message forwarding, we can implement 
iterators that are as powerful as library approaches, but often as convenient to use 
as language approaches: Since the default method enables us to specify a strat­
egy for forwarding messages in the imperative core language, we are by no means 
limited to just a single receiver. Instead, we can implement a generic broadcast 
mechanism for messages. Figure 7 shows how we can use this idea to implement it­
erators in Lagoona. The container Array implements a message forward, which 
returns an iterator instance. The iterator contains a reference to the elements to be 
traversed and fully encapsulates the iteration strategy. For this example, we have 
limited ourselves to forward iteration, but a backward message could easily be 
added, returning an iterator instance for backward iteration. The actual iteration is 
performed by simply sending a message to the iterator instance. The iterator itself 
does not implement any message but instead broadcasts all received messages to 
the elements in the container. The actual action to be performed on each element 
is located in a method of the container elements. Message parameters can be used 
to pass additional context information from the current control flow to this iterator 
method. This approach to iterators offers a much cleaner separation between the 
iteration code and the application code then traditional iterator schemes. All code 
related to the iteration is located in the module containing the container and its it­
erator functionality. 

4 Implementation 

To demonstrate the viability of our language design, we decided to implement the 
Lagoona compiler and runtime libraries themselves in Lagoona. Moreover, instead 
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of emitting some machine-specific native code, we wanted the Lagoona compiler 
to generate portable, type-safe, and verifiable code for a virtual machine. 

The first obstacle we had to overcome when implementing the Lagoona compiler 
was to find a way to bootstrap the compiler. For this, we first implemented a simpli­
fied Lagoona compiler in Java, using C as intermediate language. To obtain an exe­
cutable, the C code generated by this bootstrap compiler is translated to executable 
machine code by any ANSI C compiler. The bootstrap compiler was intended to be 
used only during the early stages of the compiler development. As soon the com­
piler was complete enough to translate itself, we abandoned the bootstrap compiler 
and Lagoona became self-hosted. 

Lagoona's object model and message dispatch mechanism differ significantly from 
those found in traditional object-oriented languages such as Java, Smalltalk and 
C++. In Lagoona, any. message can be sent to any object, and if no matching 
method exists, a default method has to be executed. This radical reinterpretation 
of the terms message and method requires some extra effort for executing Lagoona 
on existing virtual machine architectures. Most existing virtual machines like the 
Java Virtual Machine (JVM) [19] are intended to execute programs written in one 
particular language and offer little support for mechanisms not available in that par­
ticular language. In contrast to the JVM, the Microsoft .NET framework is a vir­
tual machine architecture, implementing the ECMA Common Language Runtime 
(CLR) standard, that targets a wide range of source languages including Java, C++, 
Visual Basic, and C#. Thus, the .NET framework seems to be the ideal target ar­
chitecture for a novel language like Lagoona. Unfortunately, while offering a great 
deal of flexibility as far as the instruction set is concerned, the .NET framework 
offers far less freedom when it comes to the type system. To allow interoperability 
between programs written in different languages, type-safe ("managed") code has 
to use the rigid Common Type System (CTS). To be able to execute Lagoona code 
on the .NET virtual machine, we either had to abandon verifiability or overlay our 
object model onto the Common Type System. Surprisingly, the latter is possible 
with surprisingly little runtime overhead as we describe in the remainder of this 
section. 

Each message m in Lagoona is represented by a pair of types at the Common Type 
System level. The first type, inter f acem is a CTS interface type containing am 
as the single abstract method. The second type, stubm is a class that implements 
inter f acem and contains marshaling code. Objects of this type are instantiated if 
a message m cannot be directly delivered to an object and has to be handled by 
the generic forwarding method. Lagoona types are represented as CTS classes. Im­
plementation types correspond to a regular class and interface types to an abstract 
class. For every method method( m) that a Lagoona type provides, the ability to 
directly receive the underlying message m is indicated at the CTS level by imple­
menting the corresponding inter f acem interface. Thus, at the CTS level the gen­
erated code can use the isinst (is instance) instruction to check whether a message 
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can be delivered directly or has to be handled by the default methods. Message sent 
to implementation types are directly resolved to plain method invocations at the 
CTS level and are thus are not more expensive than simple method calls in other 
languages. Delivering a message to an interface types requires a isinst check first. If 
no immediate delivery is possible, an object of the message stub type stubm will be 
instantiated and passed on to the default method. The Lag oona compiler performs 
aggressive type inference to resolve as many message send operations to interfaces 
to message send operations to implementation types as possible. For this, among 
others, the default methods of each implementation type are analyzed. Often default 
methods contain very simple forwarding code, i.e. just forwarding the message on 
to another object. In this case analyzing the procedural forwarding code allows to 
deduct static type information and the message send operations are optimized ac­
cordingly. However, for more complex forwarding statements, for example loop 
statements used for broadcasting message to all objects in a container, this analysis 
does not yield any useful results and the runtime check remains in place. 

S Related Work 

Stand-alone messages can be related to the concept of multimethods [20]. In a lan­
guage supporting multimethods, such as Cecil [21], stand-alone messages could be 
"emulated" by introducing an additional dispatch parameter modeling the originat­
ing module. Despite recent progress regarding type-safety and modularity of mul­
timethods [22], the concept is not yet supported in mainstream langlJ.ages. Stand­
alone messages are conceptually simpler than multimethods because they only rely 
on the established notion of modules and add no additional concerns for sepa­
rate compilation. They also maintain the established object-oriented programming 
style. 

Recent work on units and mixins [23] is related to Lagoona in a more interesting 
way. With Lagoona, we have argued that programming languages for component­
oriented programming need to combine traits from modular languages with traits 
from object-orientedlanguages in a certain way. Namely, we have to distinguish 
explicitly between messages and methods and we have to separate messages from 
types, binding them to modules instead. Units and mixins also aim at the combina­
tion of modular and object-oriented language constructs. Units provide a module 
concept that is more flexiple than ours: Instead of fixing the import relations of a 
set of modules once and for all, units allow the composition of modules through 
separate linking specifications. This has several important applications, e.g. for the 
flexible creation of extended objects. Mixins provide a variation of inheritance (in 
the sense of subclassing) that allows derived classes to be parameterized by dif­
ferent base classes. However, Lagoona's approach to forwarding and composition 
already subsumes mixins: while for mixins the base class relation is determined 
when units are linked, in Lagoona we can actually defer this relation until objects 
are instantiated. In summary, the units idea is very valuable and we hope to explore 
the integration of a more flexible module system (with a distinct "units" flavor) into 
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Lagoona in the future. 

Component models, such as COM [10], COREA [24], and JavaBeans [25], are in­
dustry standards that claim to support component-oriented programming. However, 
the main emphasis of these models lies on defining int~roperability and packaging 
conventions in the form of design patterns, rather than on providing comprehen­
sive support. Many component models also address aspects that are essentially un­
related to component-oriented programming-such as distribution, concurrency, 
cross-platform portability, and cross-language integration-but that nevertheless 
increase their complexity significantly. Component models seem to be a temporary 
solution that will survive only until better, more comprehensive ways to practice 
component-oriented programming become available. We do not want to imply that 
component models are completely useless, but rather that they only serve a tempo­
rary purpose as far as the component-oriented paradigm is concerned. 

The paradigm of generative programming (GP) [26] is based on a number of ideas: 
domain specific languages, aspect-oriented programming (AOP), and generic pro­
gramming. In GP, software systems are described in terms of domain specific lan­
guages that are used to encode domain know ledge on a high level. These descrip­
tions are used to drive AOP [27] tools that integrate various reusable and basically 
unrelated "components" and aspects to produce customized applications automat­
ically. The functional "components" are implemented using generic programming 
techniques (i.e. parametric polymorphism). While GP provides an interesting ap­
proach to source-level reuse and maintenance, its "components" are not compo­
nents in the sense of component-oriented programming [7]. In GP (and AOP), 
"components" are reusable and parameterized abstractions that only exist on the 
programming language level, but not in the deployed application. Thus, once an 
application has been produced using GP, the "components" it consists of can not be 
reused or updated separately from the application they were compiled into. 

6 Conclusions 

The paradigm shift towards component-oriented programming is not yet reflected 
in programming languages. In the absence of dedicated COP languages, current 
COP practice often employs OOP languages developed before the notion of dis­
tributed extensibility was recognized as being important. This paradigm mismatch 
results in unnecessary design complexity and increased maintenance overhead. 

We have been researching programming languages that expressly support COP. 
In this paper, we presented Lagoona, an experimental COP language that provides 
several new constructs in direct support of distributed extensibility while attempting 
to appear "familiar" to OOP practitioners. We were able to implement Lagoona 
using Lagoona itself, in the context of Microsoft's .NET framework. 
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