
UC Irvine
ICS Technical Reports

Title
Supporting software composition at the programming-language level

Permalink
https://escholarship.org/uc/item/9sp972wm

Authors
Franz, Miuchael [sic]
Frohlich, Peter H.
Gal, Andreas

Publication Date
2003-11-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sp972wm
https://escholarship.org
http://www.cdlib.org/

Supporting Software Composition at the
Programming-Language Level

Miuchael Franz Peter H. FriJ'hlich Andreas Gal

Technical Report 03-22
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

·November 17, 2003

Abstract

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

We are in the midst of a paradigm shift toward component-oriented software development,
and significant progress has been made in understanding and harnessing this new
paradigm. Somewhat strangely then, the new paradigm does not currently extend all
the way down to how the components themselves are constructed. While we have
composition architectures and languages that describe how systems are put together out of
such atomic program parts, the parts themselves are still constructed based on a previous
paradigm, object-oriented programming. We argue that this represents a mismatch that
is holding back compositional software design: many of the assumptions that underly
object-oriented systems simply do not apply in the open and dynamic contexts of
component software environments. What, then, would a programming language look
like that supported component-oriented programming at the smallest granularity? Our
project to develop such a language, Lagoona, tries to provide an answer to this question.
This paper motivates the new key concepts behind Lagoona and briefly describes their
realization (using Lagoona itself as the implementation language) in the context of
Microsoft's .NET environment.

Supporting Software Composition at the
Programming-Language Level

Michael Franz a, Peter H. Frohlich b, and Andreas Gal a

Abstract

a School of Information & Computer Science
University of California, Irvine

b Department of Computer Science & Engineering
University of California, Riverside

We are in the midst of a paradigm shift toward component-oriented software development,
and significant progress has been made in understanding and harnessing this new paradigm.
Somewhat strangely then, the new paradigm does not currently extend all the way down to
how the components themselves are constructed. While we have composition architectures
and languages that describe how systems are put together out of such atomic program parts,
the parts themselves are still constructed based on a previous paradigm, object-oriented
programming. We argue that this represents a mismatch that is holding back compositional
software design: many of the assumptions that underly object-oriented systems simply do
not apply in the open and dynamic contexts of component software environments. What,
then, would a programming language look like that supported component-oriented pro­
gramming at the smallest granularity? Our project to develop such a language, Lagoona,
tries to provide an answer to this question. This paper motivates the new key concepts
behind Lagoona and briefly describes their realization (using Lagoona itself as the imple­
mentation language) in the context of Microsoft's .NET environment.

Key words: component-oriented software development, programming languages,
distributed extensibility, language paradigms beyond object-oriented programming

1 · Introduction

While the idea of a "software component" has been proposed as far back as the
1960's [1], the arrival of the Internet has propelled us into an age where component­
oriented programming (COP) is becoming simultaneously viable and necessary.
Viable, because an efficient component discovery and distribution mechanism is
now available; necessary, because the complexity of Internet-enabled applications
often exceeds the abstraction capabilities of existing programming paradigms.

The very nature of a component-oriented system is its distributed extensibility: by
creating new components, mutually unaware parties can evolve the system inde-

Preprint submitted to Elsevier Science 17 November 2003

{)0 0

pendently of each other, and in parallel. This decoupling of the individual com­
ponents keeps complexity under control; there is no single authority that requires
absolute knowledge about the inner workings of all components. Strangely, how­
ever, the implementation medium of choice for the individual components at this
time remains object-oriented programming (OOP). OOP is based on a fundamen­
tally different model, namely that of a common shared framework in which only the
leaves of the object hierarchy are extended. Hence, OOP assumes the presence of a
central coordinator. This collides with COP's notion of distributed extensibility.

rhe idea of distributed extensibility has profound implications for programming
languages, but it was apparently not considered when object-oriented languages
such as Eiffel or Java were designed. For example, Eiffel's covariant argument
types require a form of global analysis that implies a "closed system" view of
the world. Similarly, evolving an existing object-oriented framework (base class
library) can lead to "name clashes" in already developed extensions, causing them
to fail. These are just examples that show the mismatch between current OOP prac­
tice and the ultimate requirements of COP. As a result of this misalignment, today's
component-oriented systems fall short of their true potential. Rather than being
truly "composed" from independently developed parts, they rnly on the presence
of large, shared underlying frameworks that themselves cannot be evolved easily.
Also, components that are based on different frameworks can often not interact.

Our research, on which we report in this paper, has focused on developing an
experimental programming language ("Lagoona") that supports COP expressly.
Lagoona retains much of the flavor and benefits of OOP languages but discards
those elements that contradict the COP paradigm. We focus on two novel language
mechanisms, stand-alone messages and generic message fonvarding (Section 2).
We then show how these allow us to eliminate or alleviate a number of (sometimes
long-standing) design and implementation problems in OOP-based COP, such as
issues of interface conflicts,fragile base classes, and component reentrance (Sec­
tion 3). Section 4 describes our implementation and shows how we address the
major challenges for efficient execution. The final sections describe related and fu­
ture work and conclude our paper.

2 Lagoona'

Lagoona is designed around a standard imperative language core, a choice made
more for reasons of familiarity than necessity. Lagoona's object model, however,
is very different from those found in established object-oriented programming lan­
guages. It separates the many roles traditionally played by classes, turning them
into individual language constructs [2][3]. Figure 1 provides a concise comparison
of how design concerns are mapped onto the class construct in traditional object­
oriented languages and onto separate constructs in Lagoona. At the lowest level of
Lagoona's object model are messages and methods. Messages are abstract opera­
tions that describe what effect they achieve, while methods are concrete operations

2

that describe how an effect is achieved. In other words, messages are specifications
for methods, and methods are implementations of messages. At the next higher
level, messages and methods are grouped into interj ace types and implementation
types. An interface type is simply a set of messages, while an implementation type
consists of a set of methods and associated storage definitions. Variables of these
types are called interface references and implementation references respectively.
Implementation types serve as generators for instances, which are first-class values
that can be assigned to implementation or interface references. As with messages
and methods, interface types and implementation types serve as specifications and
implementations for each other. At the highest level of the object model are modules
which encapsulate sets of messages, methods, interface types, and implementation
types. Modules are unique in the sense that only a single copy of a certain module
can exist in a given system.

So far, our description of Lagoona's object model reads almost like the textbook
definition of any object-oriented programming language. What sets Lagoona apart
are the following additional relations between the concepts introduced above. Al­
though messages are "grouped into" interface types, they are not declared in the
scope of a type but rather in the scope of a module. Since modules are unique,
messages are unique as well. We use the term stand-alone messages. to express this
independence of messages from types. In contrast to messages, methods are de­
clared in the scope of an implementation type. This asymmetry is intentional, since
we want to support multiple implementations of identical specifications on the level
of messages and methods as well as on the level of interface types and implement­
ation types [4]. To relate interface types and implementation types (including their
instances), we need to define some notion of conformance. First, an interface type
B denoting a set of messages lVIB conforms to an interface type A denoting a set
of messages MA if and only if MB is a superset of JV! A:

(1)

In other words, we employ structural subtyping between interface types. Second,
an implementation type C with a set of methods implementing a set of messages
lVIc conforms to an interface type B denoting a set of messages lVIB if and only if
]VJ c is a superset of MB:

(2)

We thus extend structural subtyping to implementation types, and if (1) and (2)
hold, A ~ C will hold as well. This enables a form of inclusion polymorphism that
we like to callimplementation polymorphism. Third, an interface type never con­
forms to an implementation type. Of course, Lagoona allows interface types to
be cast to implementation types, guarded by a dynamic check. Fourth, two imple­
mentation types only conform if they are the same type. In other words, we employ
occurrence equivalence between implementation types. This completes the defini­
tion of conformance, but the fourth case raises the question how implementation

3

types can be reused or adapted. At runtime, Lagoona's object model essentially
reduces to a web of independent instances that communicate through messages.
Assume we are sending a message m to a receiver r, which can be an interface or
an implementation reference, whose type R denotes a message set NJR. We distin­
guish two message send operators with different semantics. The first operator --+is
strict in the sense that the expression m --+ r is valid if and only if m is an element
of NJR:

(3)

In other words, this operator statically ensures that the message m will be "handled"
by the instance bound to r. The second operator =} is blind in the sense that the
expression m =} r is always valid. Of course, we have to guard the application of
this operator by a dynamic check, similar to the one for casts mentioned above. The
blind message send operator is necessary to support reuse and adaptation by inter­
cepting and rerouting messages. Implementation types can define a default method
which is triggered for messages that do not have an explicit method associated with
them. Inside this default method, messages can be resent or forwarded to other
instances. We use the term generic message forwarding to express that the actual
message remains opaque during this process. Obviously, the strict message send
operator alone would not be sufficient to support this.

Lagoona's object model can be viewed as another step toward eliminating the dom­
inance of the class construct in object-oriented languages. Previous steps include
the separation of interfaces and implementations [5] and the separation of modules
and types [6], both of which are widely accepted by now. In the remainder of this
section we explain each element of Lagoona's object model in more detail.

Lagoona's top-level construct, the module, serves a variety of purposes. Modules
are compilation units and result in object files which in turn are the units of de­
ployment [7]. Modules live in a fiat, global namespace and cannot be nested [8].
However, we employ a "hierarchical" naming convention based on Internet domain
names, similar to the one originally proposed for Java packages.Modules are also
sealed [9]: only explicitly exported declarations are visible to clients, and no new
declarations can be added from the outside. Modules can import other modules
and then refer to their exported declarations. These references are fully qualified,
but to avoid "excessive" qualifications we allow the introduction of local aliases
for imported modules. The module shown in Figure 2 exports all its declarations
by marking them pub 1 i c. The module in Figure 3 imports the first one under
the alias S and uses this alias to qualify further references, for example to the mes­
sage push. However, several declarations inside the second module are not marked
public and are therefore hidden from its clients.

As shown in Figure 2, messages are bound to (declared in) modules instead of
types. Since modules are unique within a given system, and since no two mes­
sages can have the same name within a given module, our approach makes mes-

4

Concern Traditional Lagoona

Encapsulation Class (modifiers) Module

Specification Class (abstract method) Message

Class (abstract) Interface

Implementation Class (concrete method) Method

Class (concrete) Implementation

Modification Class (inheritance) Forwarding

Fig. 1. Design concerns and corresponding lan­
guage constructs in traditional languages and in
Lagoona.

module com.lagoona.stacks {

}

public message void push{any obj);
public message void pop{);
public message any top{);
public message boolean empty{);
public interface Stack {

}

push, pop,
top, empty

Fig. 2. A stack abstraction in
Lagoona. Messages are bound to
modules, not types.

sages unique as well. If messages were bound to types, the approach taken in most
conventional object-oriented languages, we could not guarantee this property in
general. Surprisingly, many of the issues described in Section 3 stem from this
seemingly trivial difference. We usually associate a semi-formal specification with
each message. The push message, for example, would be characterized with the
precondition "obj =f. null" and the postcondition "•empty". Finally, we assume that
a message and it's specification are immutable once published, which is similar to
the assumption made about interfaces in COM [10] and related technologies.

Messages are the basis for interface types (interface in our concrete syntax)
which represent references to objects that implement a certain set of messages. In
Figure 2, the interface type Stack is declared as supporting the messages push,
pop, top, and empty. If we declare a variable s of type Stack, we can only as­
sign objects that implement at least these four operations to s. As explained above,
conformance to interface types is structural. The pervasive interface type any rep­
resents the empty message set and is the top element in the resulting type lattice.

·Note that the name we give to an interface type is only a convenient abbreviation;
instead of using this name, we could also repeatedly declare isomorphic interface
types. Conceptually, interface types in Lagoona are used to decouple independent
components, similar to the use of interfaces in both COM [10] and, to a certain
extent, Java.Implementation types (class in our concrete syntax) host methods
and declarations of instance variables. Consider the implementation of the Stack
abstraction shown in Figure 3. Each method implements exactly one message im­
ported from the module S. The messages initialize and finalize have spe­
cial meaning in Lagoona: They are sent by the runtime system immediately after
an instance has been created and immediately before it is garbage collected. The
class Link is essentially used as a simple record type without any methods.

Figure 4 illustrates how message forwarding between instances is used to "extend"
an existing implementation type. In this example, we want to extend the stack ab­
straction (and it's implementation) with an operation that determines the number
of elements currently on the stack. First we introduce a new message elements
which does exactly that. Next we declare a class Stack that has an interface ref­
erence to another stack and an instance variable for the actual counter. The method

5

module com.lagoona.simple_stacks {
import S = com.lagoona.stacks;
class Link {

}

any object; Link next;
}
public class Stack {

Link top;

}

method void initialize()
this.top= null;

}
method void S.push(any obj) {

Link x =new Link();
x. object = obj;
x.next = this.top;
this. top = x;

}
method void S.pop() {

this.top= this.top.next;
}
method any S. top () {

return this.top.object;
}
method boolean S.empty() {

return this.top== null;
}

Fig. 3. An implementation of the stack
abstraction. Methods implementing
messages are bound to types.

module com.lagoona.counting_stacks {
import S = com.lagoona .. stacks;
public message int elements();
public class Stack {

}
}

S.Stack stack; int count;
method void initialize(S.Stack stack) {

this.stack= stack; this.count= 0;
}
method int elements() {

return this.count;
}
method void S.push(any obj) {

this.count++;
S.push(obj) -> this.stack;

}
. method void S .pop () {

this.count--; S.pop() -> this.stack;
}
method any s.top() {

return S.top() ->this.stack;
}
method boolean S.empty() {

return this.count == O;
}
method void default() {

current => this.stack;
}

Fig. 4. Adding counting to the stack abstraction
and its implementation.

elements simply returns the counter value. The methods S. push and S. pop
update the counter and forward their messages to the "basic" stack instance. Al­
though not directly related to the extension we want to produce, we also have to
implement the messages S. top and S. empty. The reason is that both of these
messages return a value and can therefore not be handled by the generic message
forwarding mechanism implemented in the default method. However, imple­
menting the default method as shown allows this extension to be composed
with other, unrelated extensions.

3 Applications

In this section, we illustrate how stand-alone messages and generic message for­
warding address a number of recurring design and implementation problems that
are practically apparent when COP is implemented using OOPL.

COP often requires combining multiple interface types that were defined indepen­
dently, for example if they are to be implemented by a single implementation type.
Since these combined interface types can again be defined independently, the con­
formance between interface types needs to fulfill certain requirements as well. In-
terface combination itself is already problematic in conventional object-oriented
programming languages, since it can lead to syntactic and semantic conflicts. Often,
these conflicts are referred to as "name clashes," and the problem is considered to
be solved by providing language mechanisms to work around it. For example, Java

6

supports overloading of method names, which can be used to avoid a subset of
these conflicts. More general solutions are provided in Eiffel, which supports re­
naming of methods in descendant classes, and in C++, which supports a form of
explicit qualification of methods. However, these techniques fail to take distributed
extensibility into account, because they are only applied to fix a "name clash" once
it has occurred. In Lagoona, both kinds of conflicts are ruled out by design since
messages always have a unique identity. Interface combination in Lagoona thus
has the following two properties: (a) any combination of interface types results
in an interface type (no syntactic conflicts), and (b) any combination of interface
types preserves all constituent messages (no semantic conflicts). Solving this (long­
standing) problem in fact motivated the design of stand-alone messages to a certain
degree. While the problem of interface combination has been known for a long
time, the related problem of interface conformance has received attention only re­
cently. Consider two interface types A and B that were defined independently by
vendors A and B. Vendors C and D define-again independently-combinations
of A and B, for example C = A + B and D = B + A. While both C and D sup­
port exactly the same messages, they do not necessarily conform to each other.
Most object-oriented languages rely on a declared form of conformance, i.e. types
are equivalent by name (or by occurrence) instead of by structure (or by extent).
The usual objection to structural conformance is that it can lead to "accidental"
conformance relationships, with the archetypal example being a Cow boy and a
Shape both understanding a message draw with different semantics. Lagoona's
stand-alone messages provide a solution to this problem as well, as we can support
structural conformance between interface types without the potential for accidental
conformance. Recent proposals to extend Java with a form of structural confor­
mance [11] [12] result in a more complicated and less flexible design·.

Another often encountered issue in the component-oriented programming domain
is the Fragile Base Class paradox. The concept of inheritance was once hailed as
the "golden way" toward extensible· software systems. However, the mechanism _is
generally not suitable for achieving distributed extensibility. Assume a container
class A that supports operations Add for adding an element, Rem for removing an
element, as well as MulRem for removing several elements at once. We want to
define a derived class B that also supports queries about the number of elements
currently in the container. However, B cannot be implemented without knowing
the implementation details of A as well: On the one hand, if the developer of A

implements MulRem by calling Rem repeatedly, Rem (and only Rem!) must be
overridden to maintain an accurate count. On the other hand, if MulRem does not
call Rem, we have to override MulRem as well as Rem. This is known as the fragile
base class problem, and it can be resolved by following an elaborate set of design
conventions [13]. If we want to avoid it altogether, we have to restrict the use of
inheritance or abolish the mechanism completely. In Lagoona, generic message
forwarding takes the place traditionally occupied by inheritance. It is easy to see
how to solve the example problem using this mechanism. Instead of deriving a new
class B, we develop an implementation type B that has a reference to an instance

7

package com.lagoona.pubsub;
public interface Publisher {

void attach(Subscriber me);
void detach(Subscriber me);
Object get();
void set(Object data);

}
public interface Subscriber {

void update(Publisher from);
}

Fig. 5. Naive publishers and sub­
scribers in Java.

module com.lagoona.pubsub {

}

interface Publisher {attach, detach, get, set}
message void attach(Subscriber me);
message void detach(Subscriber me);
message any get();
message void set(any data);

interface Subscriber {update}
message void update(interface {get} from);

Fig. 6. Smarter publishers and subscribers in Lagoona,
only get can be sent within update.

of A. We implement the methods corresponding to the messages Add, Rem, and
MulRem by first maintaining our count and then sending the message to the A
instance. We also implement a default method to forward all other messages to A.

The language concepts introduced by Lagoona also allow to resolve the Component
Reentrance problem in a more elegant fashion. When we use messages and inter­
face types to specify the functionality of certain instances, we often make the as­
sumption that each operation executes atomically. However, for certain design pat­
terns that rely on "callbacks" between instances this is not the case, leading to the
component reentrance problem [14].Consider the Observer (or Publish-Subscribe)
design pattern [15] for example, which is used to achieve loose coupling between
objects by implicit invocation. A publisher encapsulates some kind of data that is
of interest to subscribers. When this data changes, the publisher automatically noti­
fies all its current subscribers. Figure 5 illustrates how this design pattern could be
modeled in Java using two interfaces Publisher and Subscriber. Subscribers
attach themselves. to a publisher, and whenever set is invoked, the publisher
in tum invokes update on all registered subscribers. Subscribers then use get
to retrieve the current state of the publisher and update themselves accordingly.
While this sounds great, there are in fact several problems. For example, consider
subscribers that send attach or detach to the publisher within their update
method. Since the publisher is currently traversing some kind of data structure to
update all subscribers, the effect of these operations becomes highly dependent
on the implementation of this traversal. Even worse, subscribers might send· set
within their update method, resulting in infinite recursion. The component reen­
trance problem can be solved by implementing publishers very defensively, e.g. by
cloning the data structure before traversal and by protecting the set method using
some kind of flag. However, the problem really boils down to what messages can
be sent to the publisher from within the update method. If we restrict this set of
messages, we can statically ensure that the reentrance problem does not occur. Fig­
ure 6 shows how we would model the design pattern in Lagoona. Instead of typing
the from parameter of update with Publisher, we introduce an anonymous
interface type that only supports the get message. While subscribers can still send
other messages if they have another reference to the publisher, or if they cast the
from parameter accordingly, our description of the design pattern is still more ac­
curate and elegant. In Java, we would have to introduce an artificial base type, e.g.

8

module com.lagoona.iterator {

class ArrayForwarditerator {
any[] data;

}

method void default() {
int j == 0;

}

while (j < this.data.length) {
current=> this.data[j++];

}

class Array {
any[J data;

}

}

method ArrayForwarditerator forward() {
ArrayForwarditerator i ::::

}

new ArrayForwarditerator();
i.data :::: this.data;
return i;

class Lagoonaiterator {
Array array;

}

method void action() {
array.forward() .print();

}

Fig. 7. Implementing iterators in Lagoona by leveraging generic message forwarding for
broadcasting.

PublisherJustGet, that we derive Publisher from.

Finally, Lagoona's generic message forwarding mechanism reconciles the iterator
pattern with component-oriented programming. Certain programming languages,
for example CLU [16] and Sather [17], offer an iterator construct to traverse en­
capsulated data structures in a modular manner. In most object-oriented program­
ming languages, iterators are "emulated" at the library level [15][18] and the itera­
tion loop itself must be implemented manually every time an iteration is required.
Using Lagoona's mechanism for generic message forwarding, we can implement
iterators that are as powerful as library approaches, but often as convenient to use
as language approaches: Since the default method enables us to specify a strat­
egy for forwarding messages in the imperative core language, we are by no means
limited to just a single receiver. Instead, we can implement a generic broadcast
mechanism for messages. Figure 7 shows how we can use this idea to implement it­
erators in Lagoona. The container Array implements a message forward, which
returns an iterator instance. The iterator contains a reference to the elements to be
traversed and fully encapsulates the iteration strategy. For this example, we have
limited ourselves to forward iteration, but a backward message could easily be
added, returning an iterator instance for backward iteration. The actual iteration is
performed by simply sending a message to the iterator instance. The iterator itself
does not implement any message but instead broadcasts all received messages to
the elements in the container. The actual action to be performed on each element
is located in a method of the container elements. Message parameters can be used
to pass additional context information from the current control flow to this iterator
method. This approach to iterators offers a much cleaner separation between the
iteration code and the application code then traditional iterator schemes. All code
related to the iteration is located in the module containing the container and its it­
erator functionality.

4 Implementation

To demonstrate the viability of our language design, we decided to implement the
Lagoona compiler and runtime libraries themselves in Lagoona. Moreover, instead

9

of emitting some machine-specific native code, we wanted the Lagoona compiler
to generate portable, type-safe, and verifiable code for a virtual machine.

The first obstacle we had to overcome when implementing the Lagoona compiler
was to find a way to bootstrap the compiler. For this, we first implemented a simpli­
fied Lagoona compiler in Java, using C as intermediate language. To obtain an exe­
cutable, the C code generated by this bootstrap compiler is translated to executable
machine code by any ANSI C compiler. The bootstrap compiler was intended to be
used only during the early stages of the compiler development. As soon the com­
piler was complete enough to translate itself, we abandoned the bootstrap compiler
and Lagoona became self-hosted.

Lagoona's object model and message dispatch mechanism differ significantly from
those found in traditional object-oriented languages such as Java, Smalltalk and
C++. In Lagoona, any. message can be sent to any object, and if no matching
method exists, a default method has to be executed. This radical reinterpretation
of the terms message and method requires some extra effort for executing Lagoona
on existing virtual machine architectures. Most existing virtual machines like the
Java Virtual Machine (JVM) [19] are intended to execute programs written in one
particular language and offer little support for mechanisms not available in that par­
ticular language. In contrast to the JVM, the Microsoft .NET framework is a vir­
tual machine architecture, implementing the ECMA Common Language Runtime
(CLR) standard, that targets a wide range of source languages including Java, C++,
Visual Basic, and C#. Thus, the .NET framework seems to be the ideal target ar­
chitecture for a novel language like Lagoona. Unfortunately, while offering a great
deal of flexibility as far as the instruction set is concerned, the .NET framework
offers far less freedom when it comes to the type system. To allow interoperability
between programs written in different languages, type-safe ("managed") code has
to use the rigid Common Type System (CTS). To be able to execute Lagoona code
on the .NET virtual machine, we either had to abandon verifiability or overlay our
object model onto the Common Type System. Surprisingly, the latter is possible
with surprisingly little runtime overhead as we describe in the remainder of this
section.

Each message m in Lagoona is represented by a pair of types at the Common Type
System level. The first type, inter f acem is a CTS interface type containing am
as the single abstract method. The second type, stubm is a class that implements
inter f acem and contains marshaling code. Objects of this type are instantiated if
a message m cannot be directly delivered to an object and has to be handled by
the generic forwarding method. Lagoona types are represented as CTS classes. Im­
plementation types correspond to a regular class and interface types to an abstract
class. For every method method(m) that a Lagoona type provides, the ability to
directly receive the underlying message m is indicated at the CTS level by imple­
menting the corresponding inter f acem interface. Thus, at the CTS level the gen­
erated code can use the isinst (is instance) instruction to check whether a message

10

can be delivered directly or has to be handled by the default methods. Message sent
to implementation types are directly resolved to plain method invocations at the
CTS level and are thus are not more expensive than simple method calls in other
languages. Delivering a message to an interface types requires a isinst check first. If
no immediate delivery is possible, an object of the message stub type stubm will be
instantiated and passed on to the default method. The Lag oona compiler performs
aggressive type inference to resolve as many message send operations to interfaces
to message send operations to implementation types as possible. For this, among
others, the default methods of each implementation type are analyzed. Often default
methods contain very simple forwarding code, i.e. just forwarding the message on
to another object. In this case analyzing the procedural forwarding code allows to
deduct static type information and the message send operations are optimized ac­
cordingly. However, for more complex forwarding statements, for example loop
statements used for broadcasting message to all objects in a container, this analysis
does not yield any useful results and the runtime check remains in place.

S Related Work

Stand-alone messages can be related to the concept of multimethods [20]. In a lan­
guage supporting multimethods, such as Cecil [21], stand-alone messages could be
"emulated" by introducing an additional dispatch parameter modeling the originat­
ing module. Despite recent progress regarding type-safety and modularity of mul­
timethods [22], the concept is not yet supported in mainstream langlJ.ages. Stand­
alone messages are conceptually simpler than multimethods because they only rely
on the established notion of modules and add no additional concerns for sepa­
rate compilation. They also maintain the established object-oriented programming
style.

Recent work on units and mixins [23] is related to Lagoona in a more interesting
way. With Lagoona, we have argued that programming languages for component­
oriented programming need to combine traits from modular languages with traits
from object-orientedlanguages in a certain way. Namely, we have to distinguish
explicitly between messages and methods and we have to separate messages from
types, binding them to modules instead. Units and mixins also aim at the combina­
tion of modular and object-oriented language constructs. Units provide a module
concept that is more flexiple than ours: Instead of fixing the import relations of a
set of modules once and for all, units allow the composition of modules through
separate linking specifications. This has several important applications, e.g. for the
flexible creation of extended objects. Mixins provide a variation of inheritance (in
the sense of subclassing) that allows derived classes to be parameterized by dif­
ferent base classes. However, Lagoona's approach to forwarding and composition
already subsumes mixins: while for mixins the base class relation is determined
when units are linked, in Lagoona we can actually defer this relation until objects
are instantiated. In summary, the units idea is very valuable and we hope to explore
the integration of a more flexible module system (with a distinct "units" flavor) into

11

Lagoona in the future.

Component models, such as COM [10], COREA [24], and JavaBeans [25], are in­
dustry standards that claim to support component-oriented programming. However,
the main emphasis of these models lies on defining int~roperability and packaging
conventions in the form of design patterns, rather than on providing comprehen­
sive support. Many component models also address aspects that are essentially un­
related to component-oriented programming-such as distribution, concurrency,
cross-platform portability, and cross-language integration-but that nevertheless
increase their complexity significantly. Component models seem to be a temporary
solution that will survive only until better, more comprehensive ways to practice
component-oriented programming become available. We do not want to imply that
component models are completely useless, but rather that they only serve a tempo­
rary purpose as far as the component-oriented paradigm is concerned.

The paradigm of generative programming (GP) [26] is based on a number of ideas:
domain specific languages, aspect-oriented programming (AOP), and generic pro­
gramming. In GP, software systems are described in terms of domain specific lan­
guages that are used to encode domain know ledge on a high level. These descrip­
tions are used to drive AOP [27] tools that integrate various reusable and basically
unrelated "components" and aspects to produce customized applications automat­
ically. The functional "components" are implemented using generic programming
techniques (i.e. parametric polymorphism). While GP provides an interesting ap­
proach to source-level reuse and maintenance, its "components" are not compo­
nents in the sense of component-oriented programming [7]. In GP (and AOP),
"components" are reusable and parameterized abstractions that only exist on the
programming language level, but not in the deployed application. Thus, once an
application has been produced using GP, the "components" it consists of can not be
reused or updated separately from the application they were compiled into.

6 Conclusions

The paradigm shift towards component-oriented programming is not yet reflected
in programming languages. In the absence of dedicated COP languages, current
COP practice often employs OOP languages developed before the notion of dis­
tributed extensibility was recognized as being important. This paradigm mismatch
results in unnecessary design complexity and increased maintenance overhead.

We have been researching programming languages that expressly support COP.
In this paper, we presented Lagoona, an experimental COP language that provides
several new constructs in direct support of distributed extensibility while attempting
to appear "familiar" to OOP practitioners. We were able to implement Lagoona
using Lagoona itself, in the context of Microsoft's .NET framework.

12

References

[1] M. D. Mcilrby, Mass produced software components, in: P. Naur, B. Randell
(Eds.), Software Engineering: Report on a Conference Sponsored by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October, 1968, Scientific Affairs
Division, NATO, Brussels, Belgium, 1969, pp. 138-155.

[2] M. Franz, .The programming language Lagoona: A fresh look at object-orientation,
Software: Concepts and Tools 18 (1) (1997) 14-26.

[3] P.H. Frohlich, Component-oriented programming: Why, what, and how?, Ph.D. thesis,
Department of Information and Computer Science, University of California, Irvine,
CA 92697-3425, USA (Mar. 2003).

[4] P. H. Frohlich, M. Franz, Stand-alone messages: A step towards component-oriented
programming languages, in: J. Gutknecht, W. Weck (Eds.), Proceedings of the Joint
Modular Languages Conference, Vol. 1897 of Lecture Notes in Computer Science,
Springer-Verlag, Zurich, Switzerland, 2000, pp. 90-103.

[5] A. Snyder, Encapsulation and inheritance in object-oriented programming languages,
in: N. Meyrowitz (Ed.), Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Portland, OR,
1986,pp.38-45.

[6] C. Szyperski, Import is not inheritance-why we need both: Modules and classes, in:
Proceedings of, the European Conference on Object-Oriented Programming (ECOOP),
Vol. 615 of Lecture Notes in Computer Science, Springer-Verlag, Utrecht, The
Netherlands, 1992, pp. 19-32.

[7] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison­
Wesley I ACM Press, 1998.

[8] P. H. Frohlich, M. Franz, On certain basic properties of component-oriented
programming languages, in: D. H. Lorenz, V. C. Sreedhar (Eds.), Proceedings of
the Workshop on Language Mechanisms for Programming Software Components
(at OOPSLA), Technical Report NU-CCS-01-06, College of Computer Science,
Northeastern University, Boston, MA 02115, Tampa Bay, FL, 2001, pp. 15-18.

[9] L. Cardelli, Typeful programming, SRC Research Report 45, Digital Systems
Research Center,130 Lytton Avenue, Palo Alto, CA 94301(May24, 1989).

[10] Microsoft Corporation, The Component Object Model (Version 0.9) (Oct. 1995).

[11] M. Biichi, W. Weck, Compound types for Java, in: Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Vancouver, British Columbia, 1998, pp. 362-373.

[12] K. Laufer, G. Baumgartner, V. F. Russo, Safe structural conformance for Java, Tech.
Rep. OSU-CISRC-6/98-TR20, Department of Computer and Information Science,
Ohio State University, Columbus, OH 43210-1277 (Jun. 1998).

13

[13] L. Mikhajlov, E. Sekerinski, A study of the fragile base class problem, in: E. Jul (Ed.),
Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
Vol. 1445 of Lecture Notes in Computer Science, Springer-Verlag, Brussels, Belgium,
1998, pp. 355-382.

[14] L. Mikhajlov, E. Sekerinski, L. Laibinis, Developing components in presence of
re-entrance, in: Proceedings of the World Congress on Formal Methods in the
Development of Computing Systems (FM), Vol. 1709 of Lecture Notes in Computer
Science, Springer-Verlag, Toulouse, France, 1999, pp. 1301-1320.

[15] E. Gamma, J. Vlissides, R. Johnson, R. Helm, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[16] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, A. Snyder,
CLU Reference Manual, Tech. Rep. MIT/LCS/TR-225, MIT Laboratory for Computer
Science (Oct. 1979).

[17] S. Murer, S. Omohundro, D. Stoutamire; C. Szyperski, Iteration abstraction in Sather,
ACM Transactions on Programming Languages and Systems 18 (1) (1996) 1-15.

[18] A. A. Stepanov, M. Lee, The Standard Template Library, Tech. Rep. X3J16/94-0095,
WG21/N0482, Silicon Graphics Inc. (1994).

[19] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd Edition, Addison­
Wesley, 1999.

[20] D. G. Bobrow, K. Kahn, G. Kiczafos, L. Masinter, M. Stefik, F. Zdybel,
CommonLoops: Merging Lisp and object-oriented programming, in: N. Meyrowitz
(Ed.), Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Portland, OR, 1986, pp. 17-29.

[21] C. Chambers, The Cecil language: Specification and rationale, Tech. rep., Department
of Computer Science and Engineering, University of Washington, Box 352350,
Seattle, WA 98195-2350, USA (Mar. 1997).

[22] T. Millstein, C. Chambers, Modular statically typed multimethods, in: Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), Vol. 1628 of
Lecture Notes in Computer Science, Springer-Verlag, 1999, pp. 279-303.

[23] R. B. Findler, M. Flatt, Modular object-oriented programming with units and mixins,
in: Proceedings of the International Conference on Functional Programming (ICFP),
Baltimore, MD, 1998, pp. 94-104.

[24] Object Manag~ment Group, The Common Object Request Broker: Architecture and
Specification (Version 2.3.1) (Oct. 1999).

[25] Sun Microsystems, The JavaBeans Specification (Version 1.01) (Jul. 1997).

[26] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[27] G. Kiczales, J. Lamping, C. Maeda, C. Videira Lopes, J.-M. Loingtier, J. Irwin,
Aspect-oriented programming, in: Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), 1997.

14

