
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
FATE: A More Efficient and Flexible Approach to Data Interpretation Within Protocol Stacks

Permalink
https://escholarship.org/uc/item/9sq7t6rv

Author
Mathewson, James Lawrence

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sq7t6rv
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

FATE: A MORE EFFICIENT AND FLEXIBLE APPROACH TO
DATA INTERPRETATION WITHIN PROTOCOL STACKS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

James Mathewson

March 2021

The Dissertation of James Mathewson
is approved:

J.J. Garcia-Luna-Aceves, Chair

Brad Smith

Katia Obraczka

Quentin Williams
Interim Vice Provost and Dean of Graduate Studies

Copyright © by

James Mathewson

2021

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Acknowledgments xi

1 Introduction 1

2 Prior Work 8
2.1 ICEMAN-ENCODERS . 9
2.2 Protocol Engines . 10
2.3 ICN Architectures . 11

2.3.1 Content Centric Networking (CCN) 12
2.3.2 Named Data Networking (NDN) 13
2.3.3 NS3 . 15
2.3.4 Other ICN Architecture 15
2.3.5 ENCODERS . 16

2.4 Caching Algorithms . 17
2.4.1 Cache Placement . 18
2.4.2 Cache Eviction . 20

2.5 Mobile Ad Hoc Networks, Delay Tolerant Networking 21

3 FATE 22
3.1 FATE Architecture . 22
3.2 FATE TLV Packet Format . 26

3.2.1 TLV Packet Design . 27
3.3 FATE Implementation . 29

3.3.1 Functional Algebraic aTomic Evaluators 30
3.3.2 Normalizers . 35
3.3.3 FATE Packets . 36

iii

3.4 XML Configuration . 38
3.4.1 Packet Types . 38
3.4.2 XML And Binary Compact Serialization 40
3.4.3 Packet Name . 41
3.4.4 Metadata . 41
3.4.5 Packet Examples . 42
3.4.6 White-Black-Red Attribute List Packet Transformation . . 42
3.4.7 Metadata Name Registration 43

3.5 Life of A Packet . 44
3.5.1 Life of a Packet: Internode Communication 44
3.5.2 Life of a Packet: Intranode Communication 45

3.6 Modules . 50
3.6.1 Statistics . 52
3.6.2 Logging . 53
3.6.3 Node Overview . 53
3.6.4 Asynchronous Events . 53
3.6.5 Caching Module . 54
3.6.6 Forwarding Module . 55
3.6.7 Stores . 57

3.7 Licensing . 58
3.8 Intermediate-Directed Forwarding 58

4 Flexible Evaluation Caching Using FATE 61
4.1 Introduction . 61
4.2 Related Work . 62
4.3 FATE Cache Implementation . 63

4.3.1 Functional Algebraic aTomic Evaluators 64
4.3.2 Modules . 68

4.4 Results . 70

5 Extended Caching 75
5.1 Introduction . 75
5.2 Results . 76
5.3 Conclusion . 76

6 QoS Caching 79
6.1 Introduction . 79
6.2 Results . 81

6.2.1 FATE LRU effects . 81
6.2.2 FATE SIZE effect upon caching 84
6.2.3 FATE QOS effect upon caching 87
6.2.4 FATE REGEX effects upon caching 89
6.2.5 FATE Distance effects upon caching 91

iv

6.2.6 FATE SIZE*LRU effects upon caching 93
6.2.7 FATE MAX(SIZE*LRU,QoS) effects upon caching 94
6.2.8 FATE MAX(SIZE*LRU,QOS,REGEX) effects upon caching 97
6.2.9 FATEMAX(SIZE*LRU*distance,QOS,REGEX) effects upon

caching . 99
6.3 Conclusion . 101

7 Hashed Caching With Fate 102
7.1 Introduction . 102
7.2 Redirect to Off-Path Cache . 103
7.3 Partition-Hashed Cache . 107
7.4 Results . 107
7.5 Ubiquitous Hashed Caching . 110
7.6 Results . 110
7.7 Comparison of Fate vs Traditional Caching 112

7.7.1 Traditional Caching . 112
7.7.2 FATE Caching . 114

7.8 Conclusion . 115

8 Functional Algebraic aTomic Evaluators in Packet Forwarding 116
8.1 Introduction . 116
8.2 Related Work . 118

8.2.1 NS3 Network Simulator 118
8.2.2 ENCODERS . 118
8.2.3 Traditional Routing . 118

8.3 FATE Forwarding Implementation 119
8.3.1 Functional Algebraic aTomic Evaluators 120
8.3.2 Modules . 123

8.4 Example Forward Load Balancing 125
8.5 Sample Results . 126
8.6 Conclusion . 128

9 Conclusion 130

Bibliography 132

v

List of Figures

3.1 Overview of aggregation of multiple answered questions from vari-
ous expert systems . 24

3.2 Overview of aggregation of multiple answered questions from vari-
ous experts in forwarding . 25

3.3 Basic TLV format . 27
3.4 Normal vs step ranked values . 36
3.5 Inverted normal vs step ranked values 36
3.6 Freshness impulse vs linear values 37
3.7 FATE packet in network . 44
3.8 FATE packet ingress . 46
3.9 FATE packet internode information transfer 46
3.10 FATE packet internode information transfer: cache evaluation . . 47
3.11 FATE packet internode information transfer : forward evaluation 49
3.12 FATE packet egress . 50
3.13 Traditional FATE node setup . 51
3.14 Example of an expanded FATE node setup 51
3.15 Utility caching tree representation of MIN(.6*LRU+.4*SEC, FRESH) 54
3.16 Utility caching tree using HASH of an NDO attribute 55
3.17 Example forwarding utility evaluation, per egress port, with a pend-

ing Packet FIFO . 56
3.18 Example utility forwarding evaluation per PHY and connection . 57
3.19 Traditional routed traffic . 59

vi

3.20 Regular directed unidirectional traffic 59
3.21 Dual egress-ingress routed traffic 60

4.1 Temporal vs spatial LRU values 66
4.2 Weighted vs spatial LFU values 67
4.3 Utility caching tree representation of MIN(.6*HASH+.4*LRU, FRESH) 69
4.4 Simple single caching node . 70
4.5 Four Caching Node Network . 71

7.1 The original request path from consumer to producer 106
7.2 Simple redirected off-path cache hit 106
7.3 Simple redirected off-path server hit 106
7.4 Single cache . 107
7.5 Simple 3-cache hashed network 108
7.6 Complex redirected off-path server hit 111

8.1 Simple forwarding representation of MIN(0.8*HOPCNT+0.2*QoS,
PHYFREE, TTLVALID) . 123

8.2 Utility forwarding tree representation of physical ports 124
8.3 Example: FATE load balancing 125
8.4 Representation of FATE with PHY-neighbor pairs 127

vii

List of Tables

4.1 Single Cache Hit Results by Algorithm, q=0.7 71
4.2 Single Cache Hit Results by Algorithm, q=0.0 72
4.3 Network with four on-path caching nodes 73

5.1 LFU cache size x / (ethereal) record Y entries 77
5.2 Hit rate improvement of extended ethereal vs traditional caching . 78

7.1 Total Cache vs split hash distributed caching 108
7.2 Offpath vs On-path: 10 caches, 10 producers, 60 consumers, N=100k111
7.3 Offpath vs On-path: Ubiquitous (83) caches, 10 producers, 60 con-

sumers . 112

8.1 Sample PHY Table Setup for Node B 126
8.2 Sample PHY Table Setup for Node B 128
8.3 Sample Partial HOP Table Setup for Node B 128

viii

Abstract

FATE: A MORE EFFICIENT AND FLEXIBLE APPROACH TO DATA

INTERPRETATION WITHIN PROTOCOL STACKS

by

James Mathewson

FATE (Functional Algebraic aTomic Evaluators) is introduced as an alternative

to the traditional approach of communication protocols in which each protocol

implements its own simple data interpretation module to decide the next steps

to be taken by protocol agents executing the protocols. FATE uses algebraic

expressions to evaluate information in a packet, message or stored piece of content

and render a normalized scalar value that states the utility of the information

contained in the data according to rules defined by the protocols using the data.

This allows the aggregation of simple rules into very sophisticated expressions

used to define the utility of the data. The approach advocated in FATE consists

of aggregating the results of simple data evaluators (atomic evaluators) to obtain a

utility value that reflects how useful the data are to the communication protocol or

protocols using the data. This approach allows rapid development and simplifies

the evaluation of results.

Because FATE uses equations to assign utilities to data, it allows a modular

development and duplication of results by using the same formula to evaluate the

same type of utility. This consistent behavior reduces protocol development time

and effort when protocols have to be tested in simulators before being deployed

in actual software and or hardware platforms.

Examples based on caching systems and forwarding of data packets are used

to illustrate the advantages of using FATE as a plug-in data-evaluation engine of

any protocol stack.

ix

x

Acknowledgments

Much thanks to my advisor for his patience and support.

xi

Chapter 1

Introduction

The approach currently used for the implementation of protocol stacks in com-

puter networks dates back to the original development of the Internet more than

50 years ago. At the time the Internet was starting to evolve, computing and

storage resources were scarce and expensive, which put major constraints on the

amount of information that could be used by any given protocol agent, as well as

the type of actions that any protocol agent could take to provide its services. As

a result, communication protocols were organized into protocol stacks in which

most protocols were decoupled from the physical medium, each protocol layer op-

erated independently of other and communicated with the layer above and the

layer below, and processing and storage inside the network were kept to a mini-

mum. The resulting protocol designs and implementations attempted to minimize

the use of processing and storage resources at routers, proxies, servers and clients

while maximizing the utilization of network resources and ensuring that protocol

actions were executed properly.

Given the processing and storage limitations that characterized the times when

the basic Internet architecture was developed, it is not surprising that the algo-

rithms used as part of protocol stacks were very simple insofar as interpreting

1

data is concerned. However, the availability of affordable processing and storage

resources today has enabled the development of machine-learning algorithms ca-

pable of interpreting the same pieces of data in different n ways to derive useful

information from the data.

This thesis introduces Functional Algebraic aTomic Evaluators (FATE) as a

new approach for the implementation of protocols and protocol stacks that enables

far more flexible and effective use of data by means of data interpreters (called

“experts" in machine-learning approaches) that evaluate and rank pieces of data

according to predefined policies defined as part of a given protocol or mechanism

used in a protocol stack.

Multiple data interpreters can be used on the same piece of data with each

interpreter giving a ranking based on a normalized scalar from 0 to 1 to the

data, and a protocol-dependent policy module aggregates the rankings from the

interpreters to determine the action that a protocol agent should take based on

the result given by the policy module. Results provided by data interpreters need

not be confined within a protocol layer; they can be shared across the protocol

stack and among multiple hosts and routers by proper tagging of messages and

packets shared within a system or among systems.

FATE can be viewed as a plug-in data-interpreter engine that replaces the sim-

ple data-interpreter routines used in traditional protocol implementations. Each

such engine consists of one or multiple data interpreters and one or multiple ag-

gregators of rankings, with a final aggregator or rankings providing a signal to

protocol agents regarding the rewards or steps that the protocol agent should

take.

The novelty of FATE is not the use of data interpreters as an integral part of a

communication-protocol implementation, because any such implementation must

2

have a data interpreter that informs a protocol agent of any rewards derived from

prior steps take by the agent, or steps required by the agent based on the data

that were evaluated. The novelty of FATE derives from introducing a systematic

approach for the use of a wide variety of data interpreters that can act on the

same or different pieces of data to inform protocol agents of rewards and needed

next steps based on protocol policies. By requiring that each data interpreter use

a function that ranks the fate of some piece of data with a normalized scalar,

FATE allows multiple interpreters based on very different functions to provide

valuable inputs regarding the fate of data. Furthermore, the normalized rankings

used in FATE enable the use of policies with which rankings can be aggregated to

take into account a wide variety of performance requirements and administrative

constraints.

FATE eliminates the complexity of designing data interpreters for different

protocols based on multiple criteria and constraints by using multiple evaluators

for well defined subsets of the criteria and constraints that must be taken into

account, and implementing each evaluator with a simple algebraic formula (con-

figurable via XML) that can be verified to reflect the intent of the design. As

a plug-in data-interpreter engine, FATE can supplement existing protocols or re-

place them, depending on the designers’ intent. As an example, FATE can be used

as the data-interpreter engine for packet forwarding of IPv4 to extend traditional

IPv4 forwarding with evaluators that allow a router to make forwarding decisions

based on the information carried for multiple protocol layers in each data packet

as well as the perceived conditions of different routes to the intended destination.

Parameters such as quality of service, hop count, remaining battery life of wireless

routers, link and path bandwidth, congestion, and others can be taken into ac-

count through multiple atomic evaluators and a policy-based aggregation of their

3

rankings.

FATE can provide more intelligence to the operation of a single protocol,

multiple protocols, or an entire protocol stack. Although the use of reinforcement

learning and other approaches to machine learning (ML) are outside the scope of

this thesis, the design of FATE can enable a more systematic use of ML techniques

in protocol stacks without the need to change the protocols themselves, which will

be apparent to the reader after our description of a few examples of how FATE

works in concrete communication protocols.

The use of algebraic equations to express the functions of data evaluators (e.g.,

(0.8*LRU+0.2*QoS)*FRESHNESS) means that the same outputs are attained

given the same inputs over any implementation platform. Consequently, FATE can

be implemented in exactly the same way in ns-3 or NSNSim simulators, or a linux

box. The only difference in results is due to the simulator or environment (e.g., ns-

3 may not simulate noise with sufficient accuracy) rather than the implementation

of data evaluators. FATE allows algebraic formulas to communicate the exact

method being used over heterogeneous platforms.

This dissertation focuses on the application of FATE to two key areas in com-

puter networks, namely: distributed caching and routing and forwarding. Caching

is currently a research area receiving considerable attention because of its impor-

tance in making content delivery over the Internet more efficient. There has been

considerable research on distributed caching systems over many years; however, all

prior and existing approaches to distributed caching assume very specific content

replacement policies and algorithms (e.g., least frequently used) simply because

they are well known or simple to implement., rather than the efficiency with which

they can adapt to user requirements or network constraints. Applying FATE in

caching systems can help address user interests and system requirements in an ef-

4

fective manner. Each individual FATE data evaluator (expert) provides a ranking

reflecting the utility of the content, and multiple evaluators may be weighted and

combined to provide the desired evaluation.

Applying FATE to forwarding functionality is also a timely example of its im-

portance in the implementation of modern protocol stacks. Routing with multiple

constraints has been addressed by many authors in the past. However, little at-

tention has been given on the use of similar statements of constraints or policies

applied to different types of networks, like ad-hoc networks, disruption-tolerant

networks, server-area networks, or the Internet. FATE allows simple, quick, and

safe changes to a routing system, without having to redesign a routing infrastruc-

ture from scratch. FATE can consider hops, power, bandwidth, buffer bloat, and

the like for the purposes of determining the cost of a path, and it can consider

constraints by changing an algebraic formula used as part of a route-computation

module. In addition, FATE is stateful, and uses packets to communicate informa-

tion, not only of the data, but the paths used for data delivery. This flexibility

allows congested nodes to communicate their state, and allow other forwarding

nodes to make adjustments as necessary.

Chapter 2 summarizes prior work on areas related to new network architectures

related to different aspects of FATE. The main difference between this prior work

and FATE is that FATE is designed to provide flexibility within the context of

an existing protocol stack, rather than defining a new one, and it uses the same

approach for the interpretation of data and extraction of their utility at all layers

of the stack.

Chapter 3 presents the basic architecture that defines FATE. FATE is written

in C++11, and adapted to the ns-3 simulator. Packet formats are based on

named-data (data type) format that allows easy creation of packet fields. Each

5

node is represented by multiple modules, each designed to be modular and fulfills

a specific action (e.g., caching or forwarding). FATE uses a shim layer to interface

from its environment to the current environment; as an example a timer can use

the simulation time when used with ns-3, or Linux timer when run on the linux

platform.

Chapter 4 describes a simple implementation of FATE aimed at improving

cache hit rate. The implementation uses two different cache-eviction algorithms,

LRU and LFU, and gives a weighted combination to give a more efficient cache

rate than either of them individually, but retains the temporal properties of LRU,

which plagues LFU (e.g, highest request content changes over time). This simple

example of two content ranking algorithms gives superior performance over either

individual component (LRU or LFU) and illustrates the advantages enabled by

the flexible data evaluation engine introduced in FATE.

Chapter 5 covers a method to increase LFU cache hit rate at the expense of

tracking a few more entries. Storage can be a costly resource in some edge systems

storing very large files consuming most of the storage space. Using ethereal LFU,

the requests are monitored beyond what is in storage, e.g., track 250 items, but

only have storage for 50 items. This example shows that a much higher hit

rate can be achieved by extending the state to track evicted data than by only

monitoring the content in storage. Ethereal LFU uses a significantly smaller

amount of memory to give a noticeably higher cache hit rate.

Chapter 6 gives greater insight on the flexibility of FATE by applying it to

non-traditional QoS caching. Each individual QoS property is cached and then

combined. Each evaluation is easily combined with other using FATE even though

they are normally not compatible with one another. This is attained thanks to the

use of algebraic formulas that provide data utilities as outputs. The constraints

6

chosen for this FATE example are file size, QoS (e.g., ranking), regex matching

(highly important messages), distance to producer, and LRU. These are considered

individually and then combined one at a time to show the power and ability to

take into account multiple, traditionally incompatible, constraints using FATE.

Chapter 7 handles the problem of cache locations in an information-centric

network (ICN) by using a distributed cache network. A content store may be

placed in the network, but not be available on-path. This results in lowered

content cache efficiency. Even if the ’cache everywhere’ principle is applied, most

of the on-path cache nodes have the same content, which is a waste of resources.

To resolve this, FATE combines forwarding and caching, to create a hashed-cache

topology. Even a single hash redirect to a cache node greatly improves network

performance over a missed on-path network. The network uses fewer hops by

routing content to a hashed cache (and producer if missed), over a non-cached

path, which is shorter. The increased hit rate reduces the total number of hops

taken, resulting in better content latency delivery to customers. The efficiency of

a large single cache is compared to multiple, smaller caches.

Chapter 8 shows that FATE can evaluate egress packets using various criteria,

By using these criteria, packets pending on a buffer are evaluated and transmitted

according to priority and best egress QoS qualifiers (e.g., requirements for hop

count, network bandwidth, etc).

7

Chapter 2

Prior Work

FATE is based upon ICN framework, keeping the information (data and meta-

data) with the packet. Information Centric Networking (ICN) is an architectural

solution to the perceived deficiencies in the current Internet architecture. In Infor-

mation Centric Networking (ICN), access to data is based by name (named-data),

not by an end point or machine addresses. ICN treats content as king, and recep-

tion of Content is what is important, not where the content is located. There are

several variants of ICN, but the common underline design philosophy is Informa-

tion should be accessed by name, not by a machine address.

Unfortunately, each of the ICN based architectures have their own naming con-

vention, various methods to implement security, caching-routing algorithms and

architectural dependencies. In addition, improvements to ICN are hampered by

the hard coded designs and official implementations, especially in various simula-

tors (e.g. NDN ref 2.3.2), which make a solution more difficult to derive. Others,

such as CCNX (ref 2.3.1) define packet fields, but lack discovery protocols. The

use of terms like NDO (Named Data Object), Content, Information, and Data

packet are equivalent and used interchangeably in this document.

Compounding the simulation process is the difficulty in implementing code

8

specific to each architecture and simulator. Simulator code for ns-3 (ref 8.2.1)

does not work with ccnSim [25], which uses omnet++ [101]. Algorithmically,

NDN and CCNX, which have a common base, have now diverged in the manner

of interest response, again, complicating comparisons. These problems do not

even consider different networking constraints, the actual algorithmic goal (for

caching/routing), nor the modifications necessary to modify a protocol to cover

corner cases.

Prior work includes ENCODERS (sec 8.2.2), which was the first implementa-

tion of FATE (called utility networking, at that time). ENCODERS implemented

utility caching, utility prefetch, and a limited (social cluster orientated) version

of utility forwarding. Most of the interesting work in this area came from using

social hierarchies for packet routing, Delay-Tolerant Networks, and caching within

pocket networks to avoid content extinction[52, 106]. The problem with encoders

was its implementation was tied to an Android architecture, and was based upon

HAGGLE[87], which limited its flexibility. Other related work includes ICN (2.3,

DTN (2.1, various caching placement architectures (some specific to their architec-

ture) (2.4.1, and various caching algorithms (2.4 for evicting low quality content.

2.1 ICEMAN-ENCODERS

FATE implements significant improvements and changes in architecture from

encoders (ref 8.2.2, adding Utility Security, improved utility forwarding, and

greatly improved interoperability within and between various nodes (lessons learned

from the prior work). But, at this time, Encoders still has many features, such

as Utility Forwarding (with node popularity identification and destination pre-

diction), Utility Caching support for Network Encoding, and a Utility Caching

Content Prefetch Predictor, as presented in ICEMAN[107, 105, 52]. Encoders,

9

using ICEMAN (via Utility Networking) originally supported the various DTN

cooperative caching models[23], but was extended to model social networks by

using the node popularity to effectively disseminate data[106]. Encoders was run

on a virtual platform, using CORE[14] and EMANE[51], and mobility models

supplied from BonnMotion[17].

2.2 Protocol Engines

FATE shares many similarities with CAPE (ref [44]). FATE and CAPE are

both context aware protocol engines, both are capable of sharing context infor-

mation via packets, share a similar TLV packet format (like NDN/CCNX), spans

all protocol stacks (non hierarchical) and FATE allows signaling/data packets to

be integrated (similar to CAPE). FATE extends upon context aware networking,

as it also includes caching, and its actions are user configurable. CAPE nodes

share context rich packets to other nodes, and make a forwarding decision based

upon them. FATE also shares context rich packets to other nodes, but the packet

metadata may be used in caching and/or forwarding decisions. CAPE is a new

layer 2 protocol, while FATE can reuse existing stack protocols (and their meta-

data). FATE is more flexible, it can be a new packet format, or be encapsulated

by MAC/IP/UDP/TCP packets. This allows rapid development, for work on the

network layer (or function, in the case of caching) that is desired. FATE uses an

algebraic formula of weighted algorithms, to make decisions. For caching, these

can be relegated to cache the content, evict content, or ignore the content. For for-

warding, FATE allows evaluation of packets to be transmitted, to properly weight

the priority. As an example, buffer bloat can be avoided, by sending the most

valuable packet (via predefined QoS parameters), and dropping expired packets

in the buffer (e.g. after ’x’ seconds). FATE forwarding is flexible, in that the

10

packets are evaluated by packet evaluation (QoS), cost of destination via each 1-

hop neighbor (e.g. hops), or consideration of transmitting for new constraint (e.g.

routing packets via node battery life, or based upon a valid time constraint for

satellite transmission). FATE can easily handle new constraints by adjustments

of its algebraic formula; distance, packet size, QoS value of packet, age of packet

(has it expired?), bandwidth, method of wireless connectivity (bluetooth, wifi, or

wired). FATE can be configured for a wide variety of conditions. FATE can eval-

uate and use the context rich content in the packets. Another difference, FATE

is configured via XML, and allows a large variety of decisions making based upon

algebra from weighted algorithms (e.g. LRU, size, battery power, or location);

while CAPE excels in layer 2 MANET routing (reducing network contention, and

increasing throughput). In short, CAPE is a scalpel for MANET routing, while

FATE is a generic toolbox to resolve a variety of problems in networking. FATE

is similar to greedy algorithms, which may not give the most optimal solution,

but it allows rapid testing and evaluation to give a very good solution.

2.3 ICN Architectures

There are several variants of the ICN architectures[20, 100, 109], but the focus

will be on CCNX and NDN. Initially, CCNX (version 0.73) and NDN (version 0.1)

were the same except for a few minor naming differences. Continuous development

after creative differences have resulted in the current versions, CCNX 1.0 (active

at PARC) and NDN 0.3.2 (led by UCLA).

11

2.3.1 Content Centric Networking (CCN)

CCNX[75], with the latest version of 1.0, substantially changes the message

format from the prior version. Instead of two messages (Interest and Data), this

model has three message types (Data, Interest, and InterestResponse). The con-

sumer will request a named-data-objects (NDO), referred to as Content in CCNX,

via an Interest message. The message will travel to the network, until a match to

cached/stored data is found. Typically, any node may have the requested Con-

tent, and send back a Content message, containing the requested content. If the

content is not cached, it will be forwarded to the Producer of the content, and, if

the Producer has the content, it will deliver the Data message. If the Producer

does not have the content, or is unable to deliver content (e.g. Server busy or

off-line), then an InterestResponse message is transmitted.

CCNX models each message type (Content, Interest, InterestResponse) as a hier-

archical TLV packet, with a fixed Header. CCNX uses a PIT (Pending Interest

Table) to record interests and the associated ingress port. When a Content packet

or InterestResponse packet is received, it matches (via name) which interface re-

quested the Content, and transmits it, via the PIT, to the correct interface. CCNX

also uses a FIB (Forwarding Information Base), to egress Interest packets to the

appropriate destination. A Content Store (CS) is an alias for a caching module.

CCNX relies on securing Content, not end points. As such, unsolicited content

is not stored in the CS, to avoid cache poisoning[45], which removes support for

opportunistic caching.

Some of the deficiencies of CCNX lie in the lack of optimizing caching algorithms

and a lack of discovery protocols (used in the FIB). In addition, there is no ac-

tual CCNX specific simulator (but there is CCNX implementation code), with the

exception of NDNSim v1 (using CCNX 0.73)[11] and SCoNet[73].

12

SCoNet stands for Simulator COntent NETwork[73] was a heavily modified

NdnSim (sec 2.3.2), which supported CCNX 1.0. Amongst its features was full

TLV typed support and Interest-Content-InterestResponse packet support.

2.3.2 Named Data Networking (NDN)

NDN[112, 98, 11, 67] is an Send-Receive based architecture, where a request

(Interest) packet is sent, and a corresponding response (Data) packet is sent back.

NDN calls ’information’ as Named-Data-Object (NDO), as each chunk of data

literally has a unique name. Unlike CCNX, which has an InterestResponse packet

for undeliverable data, NDN sends back a Data packet with a return code. The

current code base is at version 0.3.2, which corresponds to NdnSim v2.1. Similar

to CCNX, it supports a PIT, FIB, and Content Store.

NDN development is in parallel with NdnSim, discussed below.

NdnSim NDNSim (version 1) [11] was released in June 2012. It covered both

NDN version 0.1 and ccnx version 0.7.3, being written in c++, python, and using

ns-3 simulator. It had partial NDN feature support (packet attributes), but a

full implementation of the NDN architecture, with fully functional Content Store,

Pending Interest Table, and Forwarding Information Base. It had a very simplis-

tic native caching system which resolved to a dual inheritance scheme of either

(freshness, probability) with an (lru, lfu, fifo, random) caching scheme. Caching

is based upon a trie structure, resulting in returning the closest match, not exact

match. Unfortunately, it did not have a full packet implementation, with many

features not enabled.

Version 2 [67] was released on January 27, 2015, and is a substantial upgrade.

NDNSim v2 uses the NDN-cxx library, which allows the same code to be used in

the simulator, as well real applications. This gives it a more realistic simulation.

13

It also supports caching from version 1, as its own caching code was being devel-

oped. The problem with both versions, is the tight coupling and implementation,

making algorithmic changes difficult.

Version 2.1 was released on September 4, 2015, with the most notable change

being caching, and supporting NFD’s RIB manager. It is fully NDN 0.3.2 com-

pliant. The caching architecture was updated to a skip list, and natively evicts

first unsolicited packets, then stale packets, and finally packets in a fifo basis.

The most recent versions of NDN and NdnSim have the latest architectural

changes, which differs significantly from CCNX v1.0, these are:

1. Caching-Selectors : Hits to an interest packet are not to an exact match,

as in CCNX. NDN will return the closest NDO match. The interest packet

defines ’selectors’, which include several fields to further refine how to match

data.

2. SuffixComponents are a range of valid numeric appendage matching (e.g.

name match with a ’0’ to infinite, will match the request) at the end of the

name.

3. Exclude to exclude all specified matches. Multiple Excludes are allowed,

and many times, required, for the correct NDO.

4. ChildSelector to limit child matches. If ’/NDN’ is requested, all NDO’s with

the prefix of ’/NDN’ are matched (e.g. ’/NDN/pics/’ or ’/NDN/logs/’). By

using selectors, you limit the response.

5. TLV format - NDN uses a variable length TLV scheme, which can be from

1 to 8 bytes. Each TLV is typed to a specific TLV, unlike CCNX which uses

a relative hierarchical TLV type.

6. Repository - Caching support similar to Content Delivery Networks (CDN).

It differs from the CS by having larger storage and being more persistent.

14

7. Sync - This architectural component, SYNC, derived from the need to have

peer-to-peer NDN applications. Specifically, Chronochat is a peer to peer

Ndn client for video conferencing.

8. Data Muling - Support for Data Muling allows Vehicular MANET support,

to cache (opportunistically) data from other nodes.

9. Forwarding Strategy module - Another architectural addition, to decide

when, and where, to forward packets. This is the Named Forwarding Dae-

mon (NFD) used in NdnSim.

10. NLSR - NDN Linked State Routing. NDN routing is done via NLSR, which

populates FIB for forwarding.

2.3.3 NS3

NS-3[31] is an event driven simulator, using C++ and python code to schedule

events. It is one of the largest supported simulators, with over thousand papers

published on its platform, and the platform NdnSim uses for its base simulation.

The strength of NS3 is it is event driven, and allows multiple processes to be run

on the correct platform, thus giving results in a significantly faster time frame.

2.3.4 Other ICN Architecture

There are various examples of other ICN architectures[59, 38] , such as: Psirp-

Pursuit[42, 7, 6], Comet[1], Haggle[87], PAL[5] and Sail[8]; all of which are Euro-

pean funded forays into ICN. All of these were funded under the FP7 European

Union grant for Future Internet Assembly (FIA), and seem to be defunct with

their main sites not updating since 2013. The funding for XIA[2] was under NSF

grants CNS-1040757, CNS-1040800, and CNS-104080, with published research

into 2014.

15

ICARUS [83] is a python based caching simulator for ICN based architectures

(focused on CCNX and NDN), using named-content, request-response model (e.g.

Interest, Content requests), supporting various protocols for evaluation. Icarus

supports both cache placement strategies (where to place copies of content) and

eviction strategies.

CAKA [80] is a PUB-SUB ICN architecture which exploits path diversity and

cache awareness to deliver content.

ccnSim [25] is a ccn packet level simulator based upon OMNET++[101].

NETINF [13, 34, 61, 35] (NETwork of INFormation) is an ICN model support-

ing both peer caching, on-path and off-path caching. It supports both consumer-

subscriber and DHT (PUB-SUB) distributed models.

GreenICN [3, 61] focuses on disaster scenarios using low power devices. and

large scale video, and summarization (e.g. you do not need 10000 of the same

reports).

CASCADE [61, 58] was a competitor to ENCODERS in the DARPA CBMEN

(Content-Based Mobile Edge Networking) program. It uses a standard PUT-GET

methodology, built over TCP and UDP, assuming groups of nodes (community)

are stable.

2.3.5 ENCODERS

ENCODERS[61, 95] (Edge Networking with Content-Oriented Declarative En-

hanced Routing and Storage) is an SRI implementation of the PSIRP ICN models,

16

based upon Haggle[87]. PSIRP and Encoders both use a bloom filter based Pub-

Sub model, disseminating interests to neighbor nodes, and those neighbors return

matches to the data. Even more generic than NDN’s selectors, the interest request

represents matches to desired attributes of a file (e.g. pic=cats, format=jpg),

with each attribute weighted for matching. The bloom filter was also dissemi-

nated throughout the network, to match requested content, and identify which

nodes may have the content. Matches were then shared (pushing content to the

requesting node), unless the receiving node explicitly denies the packet.

Encoders was created to support the Darpa CBMEN program. Encoders tar-

get platform are android devices, and it is capable of disseminating and caching

packets and entire files. Encoders used a heavily modified Haggle core[87], but

more importantly, it used a prior iteration of Utility Networking (Utility Caching-

Prefetch, and Utility Forwarding). Due to an early cancellation of the program,

work was transferred to the simulation environment (as opposed to a real hard-

ware system) for better scale of testing. Forwarding was configurable, and was

done via Prophet[66], Direct[89], or Epidemic[99].

2.4 Caching Algorithms

The primary focus of this research is on caching, but caching is now intertwined

with routing (prefetching or distributed cooperative caching)[82] and security. For

the purpose of focusing on ICN, it is about the named content, which puts focus

on where to cache, and what content to evict. Currently, most popular Internet

traffic can be modeled by a zipf distribution, with cache effectiveness increasing

with a corresponding logarithmic increase in cache size[19].

17

2.4.1 Cache Placement

[12] Cache placement assumes more than one node is capable of caching (which

ICN does), and optimizes where the content is placed for optimal access.

1. ProbCache[78] - Probabilistic In-Network Caching recognizes the problems

with on-path caching, which creates unnecessary redundancy. ProbCache

records cache capacity along the data path, giving each node weight. It also

records a TimesIn factor (derived from the distance of the caching node),

and multiplies both together, giving the cache a probability of caching the

content. From a Utility stand point, this will be broken down into two

separate utilities (Cache Capacity and HOP Distance From Consumer).

2. LCD[62, 63] (Leave Copy Down). LCD caches Content at the (l − 1) level

cache, or one cacheable level closer to the requesting client, from where the

hit occurs. It requires multiple hits to bring the Content to the leaf cache.

3. NRR[26, 53] (Nearest Replica Routing) is the technique to access cached

content, possibly off path. Typically, a PUB-SUB type methodology would

use NRR.

4. Opportunistic[53, 27] - Caching from opportunity, when content is available.

Certain methods, such as WAVE[27] have the server send extra chunks along

with the requested content, marking the content as ’suggest to cache’. As

opposed to prefetching, where a cache asks for extra chunks, the server

provides the extra chunks, so it may be opportunistically cached. Another

form of opportunistic caching algorithm is DITTO[36], which uses on-path

caching, and content ’overheard’ by the node (though the content was not

directly routed through the node itself).

18

5. CDN[85, 65, 22] (Content Delivery Network) are dedicated commercial servers

to host high demand content. Typically, a CDN will host static content (such

as ads), and the host company may provide dynamic content to be served by

the CDN. According to Chai[22] and Li[65], the proper placement of caching

nodes (like CDN placement) offers the most benefit for the least cost.

6. Cooperative[71, 79, 22] - Caches cooperate by calling each other for requested

Content, as opposed to immediately passing the request to the server. Based

upon a paper by Wolman[104], cooperative caching is more effective on low

edge populations than larger edge populations.

7. DHT[28, 96, 88] (Distributed Hash Table) use a hash key to locate or access

the content. Typically used in peer-to-peer systems. An example of this is

bit torrent[30] and CHOORD[96, 108].

8. Edge Caching[32, 46, 82, 41] The most efficient and effective caching is at the

edge, and on-path opportunistic caching offers little improvement. Primar-

ily, the edge cache will provide sufficient caching and more cache hits, due

to the zipf characteristic of Internet traffic, while out-lying caching nodes

will have significantly less hits.

9. Popularity[49, 106, 18] Popularity, not in content (which traditionally follows

a zipf distribution), but popularity of nodes in a DTN. It is believed more

popular nodes (by virtue of meeting more nodes), is the ideal location for

content caching. Usually, popularity deals with social communities, as a

few nodes tend to be members in multiple communities, making them prime

candidates for content ferrying and caching.

19

2.4.2 Cache Eviction

When a cache becomes full, it is necessary to evict content, to make room for

new content. A partial list of eviction strategies:

1. FIFO - First In, First Out. Content is sorted per cache entry time.

2. RAND - Content is randomly chosen and discarded.

3. LRU - Least Recently Used Content is evicted first.

4. LFU - Least Frequently Used Content is evicted first. Typically has an

associated counter.

5. LRFU[64] - Least Recently Frequently Used. A mathematical implementa-

tion which can act as either LRU, LFU or both, based upon parameters λ.

It strength comes from needing only a single past access time and is based

upon the weighted function F (x) =
(

1
2

)xλ
equation, where λ represents a

weight towards spatial (LFU at 0) and temporal (LRU at 1), or a combina-

tion if weighted between (0,1). The actual LRFU calculation is based upon

Ctk(b) = Ctk−1(b) × F (tk − tk−1) + F (0), where tk is the current time and

tk−1 is the last reference time.

6. FRESHNESS - Some content may be labeled with a ’freshness’ value[75],

whereby, after a period of time, the content is no longer valid, and becomes

’stale’.

7. COST[16] - Hit-miss ratios may not be the determining factor of a cache, but

the cost of a CDN to host the content. In summary, it is more cost effective

to host many popular files, than fewer higher-popularity files (especially with

respect to size of hosted files).

20

2.5 Mobile Ad Hoc Networks, Delay Tolerant

Networking

An Ad Hoc network is a collection of nodes, which communicate over a de-

centralized network. There is no pre-existing configuration or infrastructure for

communication. Ad Hoc networks are noted to be self configuring, with devices

joining/leaving the network at any time. Ad Hoc networks may be further con-

strained by mobility (MANETs) and range. VANETs (Vehicular Ad Hoc Network)

use communication between various vehicles and possibly, roadside equipment.

They are categorized by having high mobility (ranging from vehicles to jets), and

may be used for traditional data communications, military, and intelligent self

driving vehicles. SPAN (Smart Phone Ad Hoc Network) are typically used in

cellular phones, where the end point is mobile, but the infrastructure is static.

All MANET variants are very susceptible to links being established, broken, and

re-established to varying nodes in the network. Delay Tolerant Networking (DTN)

is characterized by intermittent network connectivity, possible asymmetric con-

nectivity (one node can hear the other node, but not vice versa), poor reliability,

and potentially large delays. Opposed to MANET, which form their own network,

DTN have additional constraints on connectivity to deliver data, such as a need

to connect to a sporadically available external network (eg communicating via a

drone, satellite, with a small time frame). DTN has a more unique set of prob-

lems, such as which content to transmit in a short period of time, which content

should be stored in the meantime, etc. Some DTN architectures use bloom filters

to summarize their cached content, as done by haggle-encoders (ref 8.2.2) and

DiPIT[110]. Other DTN architectures exist[57, 92, 94, 93, 86]

21

Chapter 3

FATE

3.1 FATE Architecture

The key objective in the design of FATE is to make the necessary step of

interpreting data more efficient and flexible than is possible today in traditional

protocol stacks. In the context of a protocol stack or a communication protocol,

data can be obtained from the environment, local storage or processes executing

in the same host, or other protocol agents running in remote systems.

To serve the above purpose, FATE is organized as a plug-in data-interpreter

engine that can be easily integrated into the normal operation of existing protocols

or in the design of new protocols. Each instance of FATE is composed of inter-

linked modules, with each module having a specific purpose intended to either

evaluate data according to a particular formula or aggregate multiple evaluations

according to a predefined policy. Communication among FATE nodes is handled

by a TLV packet format to be defined in a subsequent subsection and which can

be standalone or appended to an existing protocol, such as UDP/TCP packets.

Each module is specific to a task and evaluates the utility of the information con-

tained in the data carried in a packet, message or stored piece of content. Based

22

on this utility the module may pass the evaluation to another module or act on

the information.

Each module that evaluates the utility of data is called a data evaluator or

expert. Such an expert has as its input a piece of data and its output consists of

a normalized scalar value between 0 and 1 that states the utility of the data it

received as input. The mapping of the input data to the utility value is defined

by a specific function defined for a given a protocol to work correctly. To make

the deployment of FATE instances simpler, each expert is defined using simple

functions that need not capture the entire utility of a piece of data but are simple

to implement, verify and reuse. However, the outputs of multiple experts can be

combined with one another to implement more complex functions in much the

same way as simple propositions can be combined into more complex propositions

describing complex statements.

As shown in the example of Figure 3.1, multiple experts (data interpreters) may

exist for the same purpose. In the Figure, determining if a content object may be

reused has two experts (e.g., LRU or LFU). FATE allows multiple expert systems

for the same evaluation or for different purposes to be combined by aggregators

into a single evaluation.

In the case of caching, the main actions taken over a piece of content is to evict

or to keep it. However, the utility of the cached content is dependent on what is

the desired result. The following outcomes are a small example of desired caching

outcomes:

1. Maximize Availability of Important Content: Important content may belong

to a commercial customer, who pays for the privilege of higher availability.

2. Minimize delay for the consumer: Most ’valuable’ content closer to edge

3. Minimize content fetched from producer

23

Will the Content be reused
soon (expert system 2)?

How important is the Content?

Is the Content expired?

Is the Content too big, and
preventing other content?

How Expensive to refetch
Content?

Multiple Content Questions to be answered
by Expert Systems

Aggregate Decision from Multiple
Expert Systems to Evict/Keep
Content

Should the Content
be Kept or
Discarded?

Will the Content be reused
soon (expert system 1)?

Final
Aggregator

Aggregator 1

Aggregator 2

Figure 3.1: Overview of aggregation of multiple answered questions from various
expert systems

4. Maximize content availability

5. Maximize high-priority content for distribution in a network.

Traditional Internet caching uses a single algorithm, typically least-frequently

used (LRU), to decide which content piece stays or goes. But this methodology is

only good when all content, all customers, are considered equal, which is hardly

the case in reality. For the military, it may be important to have availability of

content, in case their infrastructure is damaged. For organizations like CERT

(Community Emergency Response Team), limited communications may require

long term caching of critical requests (e.g. medicine, medical attention, notifica-

tion of family, over movie streaming). Using FATE in the context of caching, some

experts for caching can operate to maximize hit rate; others can consider QoS set-

tings, the size of packets, freshness of content, the cost of retrieving content from

the producer, and the like.

In the example shown in Figure 3.2, three egress ports in a packet switch or

24

How Far to Consumer
(Delay or Hops)?

How Safe is this Path?

How Congested is this
Path?

How Congested is this
Path?

How Reliable is this
Path?

Probability to delivHow
Reliable is this Path?
er Content?

Routing Constraints per
Egress

EGRESS
Packet
Evaluation
(EPE)

How much Power to
deliver Packet?

EPE1

EPE2

EPE3

The EPE which has the
highest evaluation is used
to transmit the packet

How much bandwidth did
the source use?

Figure 3.2: Overview of aggregation of multiple answered questions from various
experts in forwarding

router evaluate a packet against various criteria, and the port with the highest

evaluation is selected. The same principals can be used to minimize buffer bloat,

congested paths, or minimize (shaping-sharing) a network port from a consumer

IP to minimize excessive bandwidth use. Since there is no layered stack, no

information is lost; FATE can use a source IP address to determine bandwidth

usage, MAC address, port numbers, TOS fields, and FATE specific fields.

FATEmodules can share state among them within the same host or across links

or a network, and uses dedicated network discovery packets to share information

among nodes. In general, discovery packets are network wide, and using non

discovery packets to share information relates to specific events well defined within

existing protocols.

25

3.2 FATE TLV Packet Format

FATE uses a type-length-value (TLV) packet format because of its flexibility

and malleability of packet content. We chose to adopt a superset of the CCNX

model [91] with non-predefined types and extended packet purposes and unique

name support. FATE TLV packets do not have a fixed header, like CCNX, but

the same information is encoded in a pure TLV packet format, adding the fixed

header fields as additional TLVs contained in the packet. Another implementation

difference is that CCNX uses relative type values to dictate which TLV it is, e.g.,

a CCNX TLV type of ’1’ may be Name TLV or Data TLV, depending on what the

identity of the parent is. FATE does not have a hierarchical structure, and uses a

flat format that is used to identify the field using absolute types. FATE supports

both a binary encoded TLV packet format, or an ASCII XML format used in the

packet. The packet format can be stand alone, or encapsulated in another format

(e.g., TCP or UDP) packets. FATE operates on TLV’s by matching either an

enumerated value or a name. Each module may evaluate a packet, and mark the

results of the evaluation by creating a temporary attribute on the packet. This

is useful to allow other modules to use the same packet, and pass evaluations.

As an example, for a cache-hit (or miss), a field is added “CACHEHIT" with a

value of ‘1.0’ for cache hit, and ‘0.0’ for a cache miss. Other modules may use the

temporary attribute fields for evaluation (e.g., IPv4 TTL or TOS field) or perform

an action.

FATE can use its own TTL field, but it is just as easy to use the TTL field

built into IPv4. All Layer 2/3/4 fields are translated into temporary FATE field

attributes. This is to allow reuse for pre-existing packet attributes (e.g., IPv4 TOS

field), but you are free to create new attributes. In addition, NS3 uses a socket

method to send/receive packets. All the Layer 3 (and layer 4) information is

26

TYPE (16bit) LENGTH (16bit)

...VALUE (DATA of LENGTH bytes)...

Figure 3.3: Basic TLV format

lost, which makes cache implementation impossible. To do otherwise will require

extensive modifications to NS3, and is not a viable solution. Allows multiple

intermediate destinations (consumer->cache-> producer), to allow cache hashing.

FATE is agnostic over any protocol. To ensure independence over any protocol

constraints, the protocol format is saved as temporary attributes (MAC, IPv4/6,

TCP/UDP, or token ring). This allows FATE to work independent of any protocol.

3.2.1 TLV Packet Design

TLV packets are packets with a field for type, a field for length (of data),

then a value (or data/content) field of the specified range. NDN defines type

and length to be 1-8 byte variable length fields, using their values to encode the

exact length[67]. CCNX [90] and FATE define both fields to be a fixed 16 bit

format (Fig 3.3). The format is determined by the type. Unlike CCNX and NDN,

FATE does not use any header format. In general, there are three categories of

data types: Packet Name (which may contain heirarchy of other TLV’s), Raw

Data (string or serial byte format), and Endian Data (the value depends on the

architecture). Each are discussed below, with implementation details.

FATE [73] is based upon the CCNX TLV format, and breaks it down into

three generic types, with the following methodology and implementations.

27

String/Name TLV Name TLV is a one of the three main TLV primitives.

Typically, string terminated TLV are used in the full name of the packet, which

is parsed (internally) to allow content name matching.

Endian Data TLV Endian data TLV supports endian formatted data in sizes

of 8 bytes. All data is written in network format, and read back in native host

format. Eight bytes is chosen as the default, as it can easily values of 1,2,4 bytes.

Raw Data TLV RawData TLV is the last of the three main TLV primitives.

Its value field is a byte vector. It supports raw byte pointer, string object, and

vector STL formats. In addition to these types, it contains a template function to

SetData and GetData, for any object specified. These template methods support

both shallow copy methods, and the c++ redirect (string formatted) methods,

allowing any object, using these methods, to be copied into the Value field. As a

simple example, a double data type can be set into the TLV. A shallow copy will

copy the entire variable (as long as all nodes use the same architectural endian

format, this is acceptable), but the c++ string formatted redirect uses an object’s

overloaded << and >> to preserve its value.

Sample Packet Implementation Fate handles the details of converting names

to more efficient values. In NS3, FATE automatically registers the name, to

produce a unique numeric value. In real world purposes, the values are saved and

converted, and must be applied to each node. Standard C++ calls, as shown in

listing 3.1, are all that is necessary to populate a packet from a programming

direction.

PktType Pkt; //Create packet
//Add any packet named−attribute (name, value, field−type)
//e.g. (stringname, any−value, bool temporary−field)
Pkt.SetUnsignedNamedAttribute ("uint64_t", 5555ULL, false);

28

Pkt.SetNamedAttribute ("double", 55.55555, false);
Pkt.SetNamedAttribute ("string", "jim:55.55555", false);
Pkt.SetSignedNamedAttribute ("int64_t", −5556LL, true);
//What kind of packet is it?
Pkt.SetPacketPurpose (PktType::DATAPKT);
testSt_t testStruct;
testStruct.a = 5;
testStruct.b = −3.14;
testStruct.c = ’c’;
//memcopy is a shallow copy example
Pkt.SetObjectCpyNamedAttribute ("memcopy", testStruct, true);
//printcopy is uses C++ overloaded "<<" and ">>" operators
Pkt.SetPrintedNamedAttribute ("printcopy", 12.3456, false);
//remove fields or all fields
Pkt.DeleteNamedAttribute("memcopy", true); //remove memcopy temp attrib
Pkt.DeleteAllAttributes(false); //remove all permanent attributes
//ICN is named−packet, so add a unique name
IcnName < std::string > nextName = "/test1/test2/PacketName1";
//add an extra qualify, now its /test1/test2/PacketName1/part=2
nextName.SetUniqAttribute ("part", 2);
Pkt.SetName (nextName); //Put packet in name

Listing 3.1: Packet Implementation

3.3 FATE Implementation

FATE introduces several concepts to assist rapid development and testing of

network protocols and algorithms. First, the code is written in C++11 that is

agnostic of the platform (ns-3, Qualnet, linux, and others). To resolve system

dependencies The code is written to use various resources, such as a timers, which

are wrapped around the model; in other words, on a linux platform, the linux

timer is called; on an ns-3 simulator platform, its native timer is called. Second,

a flexible packet framework, which uses a type-name-value tuple in the packet,

discussed in section 3.3.3 is used. FATE does use uniquely named information, or

named data, to identify each unique chunk of data.

29

3.3.1 Functional Algebraic aTomic Evaluators

The concept of FATE is to evaluate information (typically via named packets

of information), and perform an action, based upon the result. In order to evaluate

a result, atomic algebraic functions are used. Each function can be an aggregate

(such as minimum or addition), or an atomic evaluator. An atomic evaluator

can evaluate based upon a content (such as a meta-data attribute like hop count,

or type of service), context (such as the purpose of the packet, e.g., interest or

data), or by name (use a function, such as Least Recently Used, evaluates upon).

Each function (atomic or combinational) returns a normalized scalar [0,1], which

allows each function, no matter how dissimilar in evaluation, will always return

a normalized value, which can be compared or evaluated with each other. Since

all functions return a normalized scalar, actions are based upon matching an

expected range. Some content may be cached, but only high-value content should

be cached. In this example, and arbitrary value of (0.3, 1] (exclusive of 0.3, up to,

and including 1.0), is eligible for caching. In other cases, the highest value is used.

In this document, one or more functional algebraic atomic evaluators are used for

a purpose (e.g. caching decision), or called ’Utilities’ (such as utility caching).

Aggregation Functions

FATE supports several aggregation methods, all take one or more inputs, and

returns an appropriate result. Below is a partial listing of available aggregation

functions:

1. MIN : MINIMUM(a,b,..,z) returns the minimum value of its inputs.

2. MAX : MAXIMUM(a,b,..,z) returns the maximum value of its inputs.

3. SUM : ADDITION(a,b,..,z) returns the sum of all its input. The sum may

30

be greater than 1.0, and may require scaling.

4. MULT : MULTIPLICATION(a,b,..,z) returns the product of its inputs.

5. IF..THEN..ELSE : IF (function, range) THEN (function2) ELSE (func-

tion3). The ’function’ is evaluated, and if within the specified ’range’, the

value of ’function2’ is returned. If ’function’ is not within the specified

range, return the value ’function3’.

6. StepFn : StepFunction(function,range) if ’function’ has a value with the

specified range, return a value of 1.0, otherwise return a value of 0.0.

Atomic Functions

FATE supports several atomic methods. For some functions, they have an op-

tion to rank information based upon configuration settings (such as LRU, which

may be evaluated temporally or spatially). Each atomic function may be stateful,

but the state is exclusive to each instance of the function. Atomic functions eval-

uate a specific attribute, functionality, algorithm response, or statistical method,

with a specific purpose, to provide an evaluation based upon its functionality (as

an example, certain algorithms are based upon several or multiple parameters;

whereas FATE is based upon the principal to have many singular functions do the

evaluation, then weighted based upon the appropriate aggregate function).

The following is a subset of atomic algebraic functions, currently available in

our FATE implementation:

1. LRU : LRU, or Least Recently Used, Ranks the most recent information,

with the highest value (1.0), and progressively lower ranked information has

a lower value. LRU uses Normalizers (3.3.2) to dictate how different LRU

times will be parsed in relation to each other. As shown in Figure 3.4, which

31

shows values from 0, 1, 3, 8, and 10 seconds earlier, the different evaluations

between Normal and Step Ranked values is shown.

2. LFU : LFU, or Least Frequently Used, ranks the highest occurrence of in-

formation with the highest value (1.0), and lower occurrence information,

progressively less. LFU, like LRU, can be evaluated by different normalizer

methods. As shown in Figure 3.5), and like LRU, normal or step ranking

will have a constant differential value between Information evaluations. The

other method of evaluating is Weighted (based upon actual number of oc-

currences). In the graph, based upon the number of occurrences (or hits in

a cache system), of 1,4,5,6, and 10 occurrences, weighted LRU will evaluate

the Information as 0, 0.4, 0.6, and 1.0, respectively.

3. CONSTANT A constant value, typically used with multiplication, e.g., 0.5

* LRU.

4. HASH : HASH(rawdata, modulus) uses a modulus type function, based

upon a hash value of either the name, name attribute, data, or an attribute.

If the modulus of the hash matches a configured value, it returns a 1.0, else

it returns a 0.0.

5. COUNT has several options to increment, decrement, or no change. Typ-

ically, increment is used to measure hop counts, decrement is used for a

traditional packet TTL field, and ’no change’ mimics a TOS (type of ser-

vice) field.

6. ATTRIBUTE returns a match based upon the name field. At configuration,

the match can be an exact match, a partial match (for string based data)

or a range match (for numeric data).

32

7. FRESH returns an evaluation for fresh, or non-stale cache content. Since the

data is temporal (how many milliseconds it is fresh), when it is transmitted,

the FRESHNESS field is decremented by how long it has been in the node.

Content which is fresh for ten seconds, and gets a cache hit four seconds

later, will send out a FRESHNESS field valid for six seconds (10-4=6). The

value returned is dependent on the normalizer, but typically will be of the

impulse or linear degradation (see Figure 3.6) form.

8. NAME does an exact name match, typically used in producer-consumer end

nodes. It returns a ’1’ on a match, otherwise ’0’.

9. NameAttrMatch looks at a field in the name of the packet, and checks if

the integer value is within a specified range. Helpful to match segments to

a specific range.

10. U64Eval takes an integer value and returns a normalized value, based upon

all integer values recorded.

11. PLE protect last element. This returns a value of ’1’ for the last element

inserted. Useful for functions, such as LFU, to keep the last inserted item

safe from purging.

12. NormEval is a normalized scalar value, and evaluated at the same valua-

tion. Typically, another evaluator in another module evaluates the named-

content, and writes it as a temporary attribute in the packet. This allows

other modules to use the same evaluation. Examples include a normalized

security evaluation, used in caching and forwarding modules.

13. RegexMatch uses a regex match of a specific packet field on the value.

33

14. NAMECHAIN does not evaluate, per se, but appends current node name

to the data. Useful in path tracing of a packet, or discovering caching nodes

along a path. When used in an algebraic formula, it returns a predefined

(at configuration) constant value (with the exception of how it updates a

packet, acts effectively as a constant).

Since all rankings occur within the [0,1] range, some values are calculated

based upon a secondary metric (as mentioned above). The metric is defined by

the function itself. Both LRU and LFU algorithms may use different Normaliz-

ers, based upon how the algorithm is defined, to use approximate a temporal or

weighted implementation metric.

Some of the choice on which implementation of an algorithm depends on pos-

sible memory or computation intensity for said algorithm. Normal ranked, which

is temporally based, can quickly calculate the values; whereas Step ranked con-

tent (spatially biased), requires a calculation of order complexity O(n) to find the

desired value, biased from the lowers/highest values.

Functions such as FRESHNESS are always evaluated, as it is a comparison of

when the content was first received, and how long the content will remain fresh.

In contrast, RANDOM also has a secondary evaluation method: Upon receipt

and upon evaluation. Upon receipt, the NDO is given, via a random number

generator, a value which will not change. Upon evaluation, each time the content

is evaluated, a new random number is provided. The first implementation requires

state, while the second method does not require any state.

Utility Block Function

A single evaluator, Utility Block, has a unique function. Every chain of func-

tions, in each module (8.3.2), cumulates, or passes its value to the Utility Block

34

function. The Utility Block function receives the evaluation from the Utility func-

tions, and tags the packet with a temporary attribute (3.4.4), which is the result

of the evaluation of said module. Using this methodology, a security evaluation

may be tagged to a packet, which can be used in caching or forwarding module

evaluations.

3.3.2 Normalizers

Many utilities will take a whole number (such as integers, timestamps, or hop

counts), and evaluate all in relation to each other to produce a normalized scalar.

This allows any utility to standardize on normalization. Many times, the value is

desired to be inverted (or (1− val)), depending on what is being evaluated (e.g.

distance vs size), and is shown on abbreviated evaluations as "i{value}" .

1. NormalMatch will match a range of values, and if true will return ’1’ other-

wise it will return 0. Abbreviated with "_Nm[lowMatch,highMatch]"

2. GeometricRanked values as 1/n. There is a ’biaseLowVal’ option, to bias the

return value from the lowest rank (e.g. 5,19,24 become 1/(5-5+1), 1/(19-

5+1), 1/(24-5+1). Abbreviated formula is "_Ngb{bias}"

3. NormalRanked values are taken as a difference. The options are ’ceil-

ing’ (val-min)/(max-min) (option ’c’), ’fullRange’ (val/max) (option ’r’),

and ’floor’ (val-min)/(max-min) (option ’f’). The abbreviated formula is

"_Nro{option}". Normal Ranked content is typical of temporal parsing.

The information is evaluated when it was received, in relation to other in-

formation. As depicted in the graph 3.4, information received 0,1,3,8, and

10 seconds prior, the information is evaluated at: 1.0, 0.9, 0.7, 0.2 and 0.

35

4. StepRanked return equal stepped values (e.g. 1,2,4 return as 1, 2/4, 1/4).

The abbreviated formula is "_Ns".

Figure 3.4: Normal vs step ranked values

Figure 3.5: Inverted normal vs step ranked values

3.3.3 FATE Packets

Fate packet format resembles CCNX, in its implementation, using the TLV

(Type-Length-Value) format. FATE is not a layered protocol. It can be encapsu-

lated into IP packets, or be a standalone protocol.

Packet Fields

Fate is very flexible in the types of information embedded into the packet.

Each attribute name can be a custom name based upon a TLV (type-length-value)

36

Figure 3.6: Freshness impulse vs linear values

packet format, unlike CCNX or NDN, which has most of the packet attributes

predefined. In addition, FATE allows various means of embedding data:

1. String: Utf-8 character array.

2. Unsigned Integer: Unsigned Integer from 8 to 64 bits

3. Signed Integer: Signed Integer from 8 to 64 bits

4. Raw/Binary Data: Array of raw/binary data.

5. Floating Point: Double/floating point value. Not network endian safe.

6. Shallow Copy: Shallow copy of any object/structure. Pointer values are not

copied.

7. Stream-String Conversion: Convert an object/structure to its equivalent

string stream format (e.g. cout << myObject), transmit it as a string, then

convert back into a valid object (e.g. cin >> myObject).

The data can be acted upon by a function, evaluated by a utility, or meant

solely for an end user.

37

3.4 XML Configuration

An example node configuration is presented in listing 3.2. In the example,

an XML file configures three modules (caching, security, and forwarding). The

caching module is associated with the ’CacheStore’, and stores up to 16 packets.

The caching module uses a ’LRU*LFU’ utility to evict low value content.

The security module, arbitrarily, evaluates the security of the information. As

an example, the utility security evaluates a traditional TTL (using COUNT) im-

plementation, and the utility block tags, with a temporary attribute, the results

to the packet under evaluation. If a packet does not have a ’TtlHop’ field, this

module is configured to add the field, with a default value of ’10’. This allows

FATE networks to ensure a packet meets its expectations for evaluations.

Finally, the forwarding module, which uses IPv4 tags to route, adds its name to

the packet, to track its progress. Finally, a store configuration (used with cache).

It should be noted the caching module has its own ’size’, and the store has its

own ’size’; they are not required to be equal. This allows us to make decisions on

more Information, even if the store is unable to hold all the content desired.

3.4.1 Packet Types

Each module only acts on specified packet types. A Caching (or Content Store)

module will use both Interest and Data packets for evaluation; with Data packets

updating the Utilities (new content), and an Interest packet may refresh or change

the value of content (e.g. LRU or LFU). Since FATE packets are flat, a Discovery

Module may use all packet types to refresh the status of its nearest neighbors,

such as an interest or control packet refreshing a timeout in a next-neighbor hop

table, while a Discovery or DiscoveryResponse packet may add new entries in said

38

<NodeModule>
<UtilityModule moduleName="CacheBasicManager"

associatedStore="CacheStore" cacheSize="16" >
<Utility name="UTILITYBLOCK" >

<Utility name="MULT">
<Utility name="LRU" />
<Utility name="LFU" />

</Utility>
</Utility>

</UtilityModule>
<UtilityModule moduleName="SecurityBasicManager" >
<Utility name="UTILITYBLOCK" proxyName="SecurityBlock" >

<Utility name="COUNT" missing_count_value="10"
matching_lower_bound="0"

matching_upper_bound="1" count_condition="decrement"
match_criteria="LeftRightInclusive" attribName="TtlHop"

/>
</Utility>

</UtilityModule>
<UtilityModule moduleName="ForwardNs3Ipv4Manager" >
<Utility name="UTILITYBLOCK" >

<Utility name="NAMECHAIN" appendNodeName="true"
m_defaultAttribute="Path:" nodeNamePartition=" ; "

appendIfnExist="true" appendInFront="false"
nodeNameUnique="false"/>

</Utility>
</UtilityModule>
<Store storeName="CacheBasicStore" name="CacheStore" size="16"
storageMethod="MemMap"/>

</NodeModule>
Listing 3.2: Sample Node Configuration

39

table. A potential list of packet types are:

1. Interest : Packets request information, based upon their name field.

2. Data : Packets contain named data.

3. DataResponse : If an Interest packet can not be satisfied, the DataResponse

packet returns any relevant error codes or additional information to the

correct location (e.g. Data is moved or been renamed).

4. Control : Packets are used to control the Node or it’s modules. Configuration

can be done through Control packets

5. ControlResponse : Response to control packets, if it is expected.

6. Discovery : Packets used for network discovery, defined by a users algorithm

(e.g. HELLO packets)

7. DiscoveryResponse : Response to Discovery packets, if expected.

8. Debug : Packets used to ferry debug commands, either through the network,

or an explicit command for the node to log specific events or data.

9. DebugResponse : Packet response from the network version of Debug pack-

ets. Contains response to desired Debug commands.

3.4.2 XML And Binary Compact Serialization

FATE packets can be represented in three simple formats: Native, XML, and

Compact Binary Serialization. The native format is used within the C++ envi-

ronment, with easy access to each packet metadata attribute. XML representation

40

is a simple XML format, used in both ascii display of a packet, and can be used

to represent a packet, add fields, or remove fields, based upon a white-black-red

list. The XML representation is typical of control-configuration packets. Each

node can be configured by a configuration file, XML or native Control packet,

to change basic functionality. Binary Compact Serialization is used to send the

packet on a wire, with a known network endianness.

3.4.3 Packet Name

FATE, based upon an ICN architecture does require each NDO to have a

unique name to identify the corresponding unique content. Fate, like CCNX,

allows a flat or named heirarchy, to help identify the location of the NDO. In ad-

dition, qualifiers are allowed, with support to act upon name, qualifier or both. No

specific qualifiers are reserved, but matches are setup at the consumer/producer

level. An example name, with qualifiers can be /fate/sample.jpg/seg=5/vers=3/res=320x200

or sample.jpg_seg5_vers3_res=320x200. By allowing qualifiers, different func-

tions can act on the path, the name, or any of the qualifiers (e.g. Hash).

3.4.4 Metadata

Two types of meta-data are supported in a fate packet: Temporary and Native.

Native meta-data is an intra-attribute of the packet itself. As the packet is passed,

Native meta-data follows the packet.

Temporary meta-data is only valid inside a node, and is used to record results from

one Utility, to be evaluated by another Utility. This is done to minimize expensive

computation, especially of the same function throughout a node. Temporary can

also be information and attributes for other protocols. As an example, FATE

can be delivered by IPv4, but transitional meta-data for layer 2/3/4 is added for

41

<FATEPKT purpose="20" name="/test1/fileNum=2/segment=0">
<Attribute name="CacheHit" nameType="16" dataType="4" data="1" />
<Attribute name="CacheHitNodeName" nameType="19" dataType="1"
data="Node2" />

<Attribute name="NAMECHAIN" nameType="15" dataType="1"
data="Node2 ; " />

<Attribute name="ServerHitNodeName" nameType="18" dataType="4"
data="0" />

<Attribute name="Timestamp" nameType="2" dataType="2"
data="94357700000000" />

<Attribute name="TtlHop" nameType="1" dataType="4" data="127" />
<TempAttribute name="SecurityEval" nameType="4" dataType="4"
data="0.667" />

</FATEPKT>
Listing 3.3: Sample of Packet XML format

evaluation. When the packet is transmitted from a node, transitional meta-data

is removed (like temporary data) and used to create the correct carrier packet.

An example of all the meta-attributes is shown in listing 3.3.

3.4.5 Packet Examples

To help facilitate understanding of a FATE packet, the XML representation

of it shown below. It shows all three attribute types being used (e.g. A security

module gives the packet a value of .667, and attached a temporary attribute to

the packet, for further evaluation).

3.4.6 White-Black-Red Attribute List Packet Transforma-

tion

Typically, when a Data packet is stored in the Information Store, or when a

server replies to an Interest packet, the attributes of a packet may change. As an

example a hop count (TTL) field is meaningless to a cache store (it should add

a new hop count, instead of using a reduced count from the server). Likewise, a

hop count may be useful to measure distance between consumers and producers.

42

When a a data packet is stored in the information store, or when a server returns

an interest packet as a data packet, both are cases of the attribute fields being

removed, changed, or added (beyond what the consumer expects).

White lists are the attribute names to keep as packet attributes; all other at-

tributes are removed. Black lists are the attribute names to remove as packet

attributes; all other attributes are retained. Red lists are new attributes to add

(or overwrite) in a packet. By using this methodology, the user can define his pro-

tocol, which attributes to keep, and which to remove. Typically, this only applies

to data objects upon caching, and interest (transformed into data) objects at the

producer.

3.4.7 Metadata Name Registration

During serialization, only the name type and data is used. The name type

associates both the name and data type being used. In order to keep the types and

numeric equivalent representations in synchronization for each node, the string

names are registered to a unique integer value. In ns-3, this is accomplished

in a global function, where a named attribute or field is registered, with the

correct integer representation returned. For a non global system (such as actual

network nodes), this is accomplished with a predefined synchronized attribute

file. Typically, the global registration is easiest and used in simulation. Once the

named attributes are known, they are saved in a configuration file and configured

into each node, to ensure correct attribute interpretation.

43

Figure 3.7: FATE packet in network

<Attribute name="Distance" nameType="4" dataType="5" data="0" />
Listing 3.4: Ingress Initial Packet Format

3.5 Life of A Packet

3.5.1 Life of a Packet: Internode Communication

It is desired to evaluate content based upon distance from producer. Farther

content is more valuable. The consumer sends an interest packet (path marked in

red). Producer receives an interest packet, and replies with a data packet (path

marked in black). FATE uses a TLV format, so the packet may contain very

few to many packet attribute fields. The producer adds a new packet attribute,

distance, to the data packet in listing 3.4.

At each NODE, the data packet attribute ‘Distance’ is incremented (this is

done by an evaluator similar to TTL) At Node 4, Distance is incremented to ‘1’

At Node 3, Distance is incremented to ‘2’ At Node 2, Distance is incremented to

‘3’ At Node 1, Distance is incremented to ‘4’ by a module, then evaluated by the

cache module. The cache module takes the value ‘4’ runs a normalizer function

44

<FATEPKT purpose="4" name="/fileNum=2" >
<TempAttribute name="IPSRC" nameType="2" dataType="2"

data="10.1.2.1" />
<Other Layer3 (Temp) Attributes />
<Original FATE packet Attributes />

</FATEPKT>
Listing 3.5: Initial IntraPacket Format

to rank it. Distances of less than 3 are less valuable, and distance greater than 4

are more valuable.

3.5.2 Life of a Packet: Intranode Communication

FATE uses a TLV packet, which supports two types of packet attributes: Na-

tive attributes, which always exist in the packet, and Temporary attributes, which

only exist in the same Node. In NS3, FATE automatically registers new packet

attributes, serialization and deserialization. No code changes! Native attributes

are attributes which will exist outside a node. Attributes, such as a TTL field

or Timestamps, are examples of this attribute. It may also be used for intra-

node communication (e.g., congestion may be relayed or hop count) Temporary

attributes allow one module to pass information to other modules. This allows

sharing of same evaluations for single/multiple modules. Examples: Security eval-

uation: Suspicious content should be less likely to be cached or forwarded than

known safe content. Content Valuation (How valuable is the content): Cache may

use this evaluation with other evaluators; such as Freshness, LRU (Least Recently

Used), or HASH (hash value of a packet). Forwarding may use this evaluation

to determine packet forwarding priority (against a packet buffer). Additional for-

warding evaluators may include lifetime (e.g. expire packets over x milliseconds

old), power cost to transmit a packet, or congestion on a specific path.

As shown in Figure 3.8 and represented in packet listing 3.5:

45

Figure 3.8: FATE packet ingress

Stage 1: Ipv4 packet is turned into a useable FATE format. Since NS3 sockets

hide IPv4 information, we do not know the source destination in case of a cache

hit. FATE includes the entirety of L3 information, such as source/destination IP

addresses, ports, and other L2/L3/L4 field information.

Figure 3.9: FATE packet internode information transfer

<FATEPKT purpose="4" name="/fileNum=2" >
<TempAttribute name="CACHEHIT" nameType="3" dataType="4"

data="1.0" />
<TempAttribute name="IPSRC" nameType="2" dataType="2"

46

< FATEPKT purpose="8" name="/fileNum=2" >
<TempAttribute name="CACHEHIT" nameType="3" dataType="4"

data="1.0" />
<TempAttribute name="IPDST: nameType="2" dataType="2"

data="10.1.2.1" />
<Attribute name="DATA" data="ff3e1411..." />

</FATEPKT>
Listing 3.7: Packet at forwarder, to determine forward interest packet or respond
with data packet

data="10.1.2.1" />
</FATEPKT>

Listing 3.6: Marking interest packet with cache hit

Stage 2 (Figure 3.9, Packet Listing 3.6): Assume this is a cache HIT. The

Cache module marks (evaluates) the packet as a hit. This allows other modules

to operate on the interest packet, and the forwarder to make changes. The cache

tracks objects (internal eviction evaluation), and marks the packet as a cache hit.

Figure 3.10: FATE packet internode information transfer: cache evaluation

47

Stage 3 (Figure 3.10, Packet Listing 3.6): FORWARDER evaluates the packets

as a cache hit, based upon the ‘CACHEHIT’ field. The FORWARDER changes

the packet type from interest to data, adds the correct data attribute and reverses

the IP SRC/DST fields. If the packet was a miss, it would forward the packet to

the next node towards the destination.

48

<FATEPKT purpose="8" name="/fileNum=2" >
<TempAttribute name="CACHEHIT" nameType="3" dataType="4"

data="1.0" />
<TempAttribute name="IPDST: nameType="2" dataType="2"

data="10.1.2.1" />
<Attribute name="DATA" data="ff3e1411..." />

</FATEPKT>
Listing 3.8: Data packet to be egress

Stage 4 (Figure 3.11, Packet Listing 3.7): FORWARDER evaluates the packets

as a cache hit, based upon the ‘CACHEHIT’ field. The FORWARDER changes

the packet type from interest to data, adds the correct data attribute and reverses

the IP SRC/DST fields.

Figure 3.11: FATE packet internode information transfer : forward evaluation

Stage 5 (Figure 3.12, Packet Listing 3.8): FATE to IPv4 Packet, using the

TempAttribute fields to recreate the necessary layer2/3/4 fields to transmit the

packet. The data field of L4 (UDP) carries the serialized FATE packet. Before

this field is added, all temporary attributes are removed. Valid IPv4 data packet

is transmitted to IP 10.1.2.1 (the original source IP for the interest packet).

49

Figure 3.12: FATE packet egress

3.6 Modules

FATE, itself, is composed of several modules. The central or root node is

called a ’Node’. The Node may have several other modules assigned to it. At a

minimum, a Node has a Forwarding Module, but may have many more. Each

module has a specific function. A module has unique logic and actions, based

upon evaluations. Each module is charged with tracking, storing, or removing

Information based upon any internal algorithms. Typically, Each module has a

single Combinational Function Utility assigned to it. This is, simply, a combina-

tional logical organization of the atomic evaluators, typically connected together

to be called a Utility. Each module has a unique name assigned to it, which is

used for control packets, configuration, and logging functions (described below).

Every module has a single evaluation method for packets, but the purpose of each

module is up to individual design. Some nodes may have a cache module, while

others may have a cache and prefetch module.

Figure 3.13 shows a traditional architectural model. Each module, indepen-

dently, processes packets or creates new packets. Discovery module will send out

50

Figure 3.13: Traditional FATE node setup

and process Discovery packets (e.g. Hello packets), updating results in a store.

The Forwarding module will use the same table, in conjunction with a decision

from a Utility Forwarding block, to decide if, and where, the packet should be

forwarded in the Egress Interface.

Utility
PKT

Valuation

Utility
Validation

Packet
Ingress

Packet
Egress

Ingress
Interface

(Deserializer)

Egress
Interface

(Serializer)

Utility Processor
(Classify Packets,
Events)1

3
4 7?

9

Multiple Stores
(Cache, PIT/FIB)

Event Driven
Storage

Utility
Security

2

Utility
Prefetch

Utility
Discovery

Utility
Forwarding

8

Utility
Caching

65

Figure 3.14: Example of an expanded FATE node setup

Figure 3.14 shows a variant node, with additional modules. This expanded

capability node shows how easy it is to add features to FATE. In this example,

packets are processed and evaluated in Utility Security (with a temporary meta-

data tag, to gauge authenticity of the packet) and Utility Validation (to measure

51

how valid is the packet). A packet corrupted by noise can be measured here,

using the ingress port and (if uncorrupted) L2 next neighbor address. It is useful

for storing the noisiness of an interface in a table (to allow Forwarding Utility to

avoid higher bit-rate error connections).

Next, the packet is given a temporary meta-data result tag from valuation (to

be used in caching and forwarding), which is the evaluation of the importance

of the packet (e.g. TOS or COS features). Utility Caching will evaluate Interest

Packets on their cacheability, and store valid Data packets. Utility Prefetch will

measure the likelihood of a related packet being requested soon (such as the next

’n’ sequences of a file, or prefetch files in a manifest).

Utility Discovery will attempt to find new neighbors and process results from

other nodes. Utility Forwarding, using the prior temporary meta-data tags from

Utility Security, Utility PKT Evaluation to egress the packet out a port (after

being evaluated against each egress port, with respect to the BER table, updated

by the Utility Validation module). As shown in Figures 3.13 and 3.14, each

module performs a specific function, either to update stores (tables), in support of

evaluating in other modules (Utility Security, Utility PKT Evaluation), or perform

an action (Utility Caching/Prefetch/Forwarding).

3.6.1 Statistics

Statistics are handled in a very different way than most simulators. Statistics

are logged by name-value pairs. The name is node_name/module_name/statistic_name

hierarchical format, and the value can be any value, typically integer or double.

This allows statistics to be retrieved or updated, by node name, module, statis-

tical name, or any combination thereof. Since FATE is overly flexible, and new

modules can be created, it is up to each unique module to define, specific to itself,

52

which statistics are used, and when/where to update them.

The following methods are support in statistics: GetStats, SetStats, IncrementStats,

DumpStats.

3.6.2 Logging

Logging is initialized from the configuration file, and is set up on a per node

basis, with the exemption of a simulator, which has the option of individual or

a single global logging function. FATE logging, like statistics, can be done at

the node, module, or event level. For the event level, it is similar to most logging

schemes, such as ALWAYS, DEBUG, WARNING, and other criteria to log. FATE

can use the native logging capabilities of a simulator (such as NS-3), but it is the

responsibility of the logger itself to convert between FATE and simulator specific

events, for logging purposes. Internally, FATE uses a similar output stream as

C++ redirection (e.g. std::out command).

3.6.3 Node Overview

The Node is the container of modules, with each module having a specific job.

3.6.4 Asynchronous Events

FATE supports asynchronous events, including timer expirations (which are set

per module), or node events (e.g. tx fifo empty or packet received). This allows

watchdog timers, if desired, to remove stale store contents, or create necessary

discovery packets.

FATE can be imagined as a tree (Figure 3.15, with atomic functions being the

leaf, and algebraic aggregate functions being branches. The information packet

is passed down and evaluated at each leaf. The results then move along the

53

MIN
MIN(0.6*LRU+0.4*Sec, FRESH)

SUM
(0.6*LRU+0.4*SEC)

MULT
0.6 * LRU

MULT
0.4 * Sec

CONST
(0.6)

FRESH

CONST
(0.4)LRU

(Security Eval)
SEC

Figure 3.15: Utility caching tree representation of MIN(.6*LRU+.4*SEC,
FRESH)

aggregated branches, towards the root, to give an evaluated result. As a simple

example, imagine a system which desires content to be distributed throughout

a system (either a cache prefetch, or a MANET which shares commonly used

content), but is subject to cache poisoning. To easily model this, we need two

main (atomic) functions: One to authenticate content (to avoid cache poisoning)

and the other is a traditional caching algorithm (LRU). In Figure 3.15, shows a

cache which is weighted 60% LRU, and 40% SECURITY (a value from a prior

module, evaluating the authenticity of the content). FRESH represents if the

content is not stale (no need to cache obsolete or stale content). This can be

represented (as shown by the tree) or by the algebraic formula MIN(.6*LRU +

.4*SEC, FRESH).

3.6.5 Caching Module

FATE, in contrast, uses an algebraic formula to evaluate each piece of infor-

mation in the module’s local store, and evicts the content with the lowest value.

Depending on the functions used, this can is a trade off between flexibility and

54

MIN
MIN(0.6*HASH+0.4*LRU, FRESH)

SUM
(0.6*HASH+0.4*LRU)

MULT
0.6 * HASH

MULT
0.4 * LRU

CONST
(0.6)

FRESH

CONST
(0.4)HASH LRU

Figure 3.16: Utility caching tree using HASH of an NDO attribute

rapid development, against speed of simulation. A slight modification for FATE,

enables caching on a hash of the content’s name, data itself, or any attribute,

as shown in Figure 3.16. This allows on-path caching, where each node on the

path will (mostly) cache name or content matching the hash declaration (e.g.

HASH(data) modulus N = [x,y] is true). Since the utility cache configuration is

done via XML, no recompiling or formulating new code for simple changes. Only

if a new module or new function is necessary, will compilation be necessary. Alge-

braic representation of Information evaluation greatly increases new algorithmic

development, as it is only necessary to identify which functional evaluations will

be done, and how they will be weighted.

3.6.6 Forwarding Module

Forwarding is accomplished by evaluating each tuple of Information with the

available egress ports and 1-hop neighbors. The highest evaluation, per egress

port, is chosen, using the corresponding 1-hop neighbor address. Evaluation, per

port, is configurable, and typically is an evaluation of the port characteristics

combined with a NDO evaluation with the next-hop neighbor evaluation.

55

Figure 3.17: Example forwarding utility evaluation, per egress port, with a
pending Packet FIFO

Each egress port is evaluated for suitability of packets (figure 3.17). Port eval-

uations, typically, include (if it has) collision detection, to return zero, until a

specified timer expires. Bit error rate, per port, can be configured between [0,1],

depending on the noise of the line.

Packet Evaluation can be done by TOS/COS, to give certain QoS packets higher

priority, or even packet size (easier to send smaller packets than single large

packet). While the next neighbor evaluation (per egress port) can be done by

Hops, latency, and/or bandwidth.

Figure 3.18 shows the evaluation, from a physical implementation view point.

Node 1 has two ways to communicate with Node 2 (bluetooth and wifi), while

the wifi physical port has two neighbors (Node 2 and 3). In addition, Node 4

and 5 have separate wired connections. Each outgoing packet is evaluated against

these criteria. A packet, outgoing to Node 2 may use either bluetooth or wifi,

but another packet may only use wifi (Node 3). Fate has an option to evaluate

outgoing content by block ranges. As an example, content evaluated below 0.2

may not be sent (a better egress path may not be immediately available), while

content between between [0.2,0.6] may be considered the same, and subject to a

56

Figure 3.18: Example utility forwarding evaluation per PHY and connection

knapsack solution.

The forwarding module can be implemented in many different ways. It can be

implemented to create a custom forwarding scheme, or use an existing protocol,

and evaluate the forwarding methodology for it. Both native (soley by Utility

evaluation) and protocol (using a known protocol, such as IPv4 and UDP/TCP)

are supported.

3.6.7 Stores

Stores are the globally persistent repositories. Content Stores will cache Data

packets, save persistent data, such as link-state information for forwarding, secu-

rity information, bit-error rates, and other needs.

57

3.7 Licensing

Fate uses pugixml([54]), which is authored under the freebsd license. Pugixml

is a simple, easy to use, and convenient implementation of XML, which is used in

configuration. FATE ([68]) itself uses a modified freebsd license, which allows the

code to be as desired, with the exception of crediting the source, or permission

from the owner.

3.8 Intermediate-Directed Forwarding

FATE can also be used to conditionally control intermediate routing points.

FATE can have a chain of intermediate points, allowing the routing protocol to

route between specific points. The Figure 3.19 shows a traditional IP/ICN path.

The same path is followed, to/from the consumer and producer. The protocol is

limited by its own algorithmic restrictions on what is a best path. If part of the

path is suspected of having a man-in-the-middle, intercepting information between

end points, or if a section of the network is known to be having intermittent

problems, it can be bypassed with FATE. As shown in Figure 3.20, the traditional

path is bypassed. FATE specifies a specific intermediate gateway, from which

the final destination is used. In fact, if more security is desired, by having the

ingress/egress path from the consumer to the producer to be different, FATE

easily allows that accomodation. In Figure 3.21, both the request packet path,

and the response packet path, take different intermediate node points. This allows

denying a man-in-the-middle both ends of the communication path. Normally,

HTTP allows a single intermediate node (TCP packet source, destination (CDN),

and the HTTP ’Host:’ header, for the actual sourced content. This allows HTTP

to have end point connection with a CDN, but retain the expected/original end

58

point if content is missing from the CDN cache. While FATE redirect routing is

similar, it has no limitations to the number of intermediate nodes. This allows a

greater control, from the source, to direct to the correct cache, a specific gateway,

or alternate route (which would not be possible with IPv4 routing).

150

100

50

0

150100500-50-100-150

← 7.68 kbit/s

← 50.32 kbit/s

← 9.04 kbit/s

50.32 kbit/s →

9.04 kbit/s →

← 9.04 kbit/s

← 50.32 kbit/s

← 50.32 kbit/s

9.04 kbit/s →

50.32 kbit/s →

9.04 kbit/s →

9.04 kbit/s →

50.32 kbit/s →

← 9.04 kbit/s

← 50.32 kbit/s

50.32 kbit/s →

Figure 3.19: Traditional routed traffic

150

100

50

0

150100500-50-100-150

12.96 kbit/s →

← 12.96 kbit/s

← 54.40 kbit/s

← 54.40 kbit/s

← 12.96 kbit/s

54.40 kbit/s →

12.96 kbit/s →

12.96 kbit/s →

← 12.96 kbit/s

54.40 kbit/s →

← 53.52 kbit/s

← 12.24 kbit/s

54.40 kbit/s →

← 54.40 kbit/s

54.40 kbit/s →

12.96 kbit/s →

Figure 3.20: Regular directed unidirectional traffic

As shown in Figure 3.19, the traditional IPv4 path is chosen. In Figure 3.20,

FATE sets an intermediate node point at node 5, then to node 8, node 23 and the

final destination of node 24. The return path, in this instance, is chosen to be the

59

150

100

50

0

3002001000-100

12.96 kbit/s →

← 12.96 kbit/s

← 51.12 kbit/s

← 12.96 kbit/s

52.00 kbit/s →

12.96 kbit/s →

12.96 kbit/s →

52.00 kbit/s →

← 12.96 kbit/s

← 51.12 kbit/s

← 12.24 kbit/s

52.00 kbit/s →

← 51.12 kbit/s

← 51.12 kbit/s

12.96 kbit/s →

52.00 kbit/s →

Figure 3.21: Dual egress-ingress routed traffic

same. In this instance, it may be useful to have an alternate path chosen, which

does not reflect IPv4 shortest destination criteria. The nodes may reflect a higher

security connection, suspect content which needs additional on path analysis, or

other criteria. The producer will use the same path, in reverse order, to return to

the originating source node. Figure 3.21 shows both the ingress and egress paths

may be different. This is extremely useful against man-in-the-middle attacks, as

the attacker can only see either the requests or the responses, but not both, due to

the packet path variation. The return path is set by the producer. In all cases, if

desired content is found in an intermediate caching node, the content is returned,

without progressing the entire network.

FATE allows intermediate routing, where the traditional routing algorithm is

used between each end-point, until the destination is reached. Each route taken

by the interest, data or other packet types may have a unique pattern. Control-

ling intermediate destinations allows other options, such as hashed-caching, or

centralized locations for pub-sub networks.

60

Chapter 4

Flexible Evaluation Caching

Using FATE

4.1 Introduction

Developing a new caching protocol for the Internet can be an arduous process.

During or after its design, simulation analysis is typically needed to understand

its performance. This step is complex due to the difficulty in implementing code

specific to each architecture and simulator. One example of this is the simulator

code for ns-3, which does not work with ccnSim [25]), which uses omnet++ [101]

as a base environment. These problems do not even consider different networking

or environmental constraints, nor the modifications necessary to modify a protocol

to cover corner cases.

For academia, simulations are compared over various protocols, given a set

of constraints. This is complicated by the availability of other protocols, for

comparison, on the host platform; which may require reimplementation on another

platform, or a reimplementation of the competing algorithm, which may be prone

61

to interpretation or other errors.

FATE can minimize or negate these problems by allowing its modular nature to

enable quick evaluation of potential algorithms, and use the algebraic expression

to, consistently, be used for evaluation and comparison to other algorithms.

4.2 Related Work

When a cache becomes full, it is necessary to evict content, to make room for

new content. While FATE uses a ranking function, and based upon the evaluation,

it will evict stale content. The most popular eviction strategies are to evict the

least recently used content first (LRU) or to evict the least frequently used content

first (LFU).

Many alternative caching algorithms have been published, each having some

performance benefit under various network constraints. The problem is to identify

which properties of an algorithm perform best and under which conditions.

Probabilistic Caching [78] attempts to solve the problems associated with the

inefficiency of multiple on-path caching nodes. ProbeCache resolves this problem

by using a Cache Weight system to determine, probabilistically, if content should

be cached at the node.

Laoutaris [63] approached the problem from a different angle, and showed

moving cached content closer, on an on-path network, per node, improved results

over probabilistic caching. The two algorithms, LCD (Leave Copy Down) and

MCD (Move copy down), where each ’hit’ moves the content one (cached) hop

closer to the content.

Another algorithm, proposed by Lee [64], suggested LRFU (Least Recently

Frequently Used) as a cache eviction algorithm. LRFU, mathematically, can be

modeled as LRU, LFU, or a value in between, with a complexity similar to LFU.

62

NS-3 [31] is an event driven simulator, using C++ and python code to schedule

events. It is one of the largest supported simulators, with thousands of papers

published on its platform. The strength of NS3 is that it is event driven and

allows multiple processes to be run on the correct platform, thus giving results in

a significantly faster time frame. FATE does not replace a network simulator, but

offers an alternative Node (switch) implementation. NDN [11], [67] is built over

NS3, and is used as the base platform for our presented results, due to its maturity

and support for caching algorithms (natively, NS3 does not support caching). We

note that FATE does not require NS3/NDN as a platform, but was chosen as a

mature open source networking simulator (NS3) with caching support (NDNSim).

4.3 FATE Cache Implementation

FATE introduces several concepts to assist in rapid development and testing of

network protocols and algorithms. First, the code, is written in C++11, is agnostic

of the platform (ns-3, qualnet, or Linux), and can be used in an information-centric

networking (ICN) architecture or the IP Internet architecture. To resolve system

dependencies, the code is written to use various resources, such as timers, which

are wrapped around the model. For example, on a Linux platform, the Linux

timer is called, on an ns-3 simulator platform, its native timer is called, to be

independent of any external resource.

FATE is organized in a top-down format. Specific-purpose modules can be

defined for any purpose, with the intent to have the specific module do its own job

for easier maintenance, verification, and testing. Some modules are forwarding,

caching, discovery, and security. In this paper, a modified NDN ContentStore was

used to work within the existing architecture.

Each utility is an atomic algebraic function that evaluates the content, or

63

returned value, and returns a normalized scalar ([0, 1]). This allows a very flexi-

ble and powerful method to evaluate information. The module takes a valuation

of the content, and performs an action on it (e.g., caching stores or evicts con-

tent, forwarding decides which packet for which egress port, security evaluates the

packet for trust-worthiness). In this paper, we concentrate on the caching aspects

of FATE.

Most networking nodes evaluate content (or packets) based upon attributes of

that content (e.g., when it was received for LRU caching, freshness lifetime for

html content, TTL field in IP), and make an algorithmic decision based upon a

specified criteria. In FATE, each component (e.g., LRU, TTL, FRESH) are atomic

functional evaluators. Based upon the algebraic formulation provided, a decision

is made on the final evaluation. Thus, FATE evicts content or not based upon the

results of the evaluation. FATE is meant to allow rapid prototyping of algorithmic

features, and be portable over any platform to aid in research. FATE can be used,

as-is, in various platforms for security, forwarding, or caching. However, we note

that FATE will be slower than a customized algorithm (due to the evaluations)

and, most likely, use more memory (each evaluator carries internal state, with

no external dependencies). As an example, LRU needs no internal state (unlike

LFU), by using its ordering to dictate which content was used least, resulting in

easier evictions.

FATE uses a modified BSD license. The license makes the code free to use,

with the exception of giving credit when FATE or a part of it is used.

4.3.1 Functional Algebraic aTomic Evaluators

The concept of FATE is to evaluate information (typically via named packets

of information), and perform an action, based upon said result. To evaluate a

64

result, atomic algebraic functions are used. Each function can be an aggregate

(such as minimum or addition), or an atomic evaluator. An atomic evaluator can

evaluate based upon a content (such as a meta-data attribute like hop count, or

type of service), context (such as the purpose of the packet, e.g., interest or data),

or by name (use a function, such as Least Recently Used, evaluates upon). Each

function (atomic or combinational) returns a normalized scalar [0,1] that allows

each function to return a normalized value no matter how dissimilar in evaluation,

which can be compared or evaluated with each other. Since all functions return

a normalized scalar, actions are based upon matching an expected range. Any

content may qualify for caching, but only high value content should be cached, as

determined by FATE evaluators.

Aggregation Functions

FATE supports several aggregation methods that take one or more inputs,

and return appropriate results. The following is a partial listing of available

aggregation functions.

MIN : MINIMUM(a,b,..,z) returns the minimum value of its inputs.

MAX : MAXIMUM(a,b,..,z) returns the maximum value of its inputs.

ADD : ADDITION(a,b,..,z) returns the sum of all its input. If the sum is

greater than 1.0, it will require scaling.

MULT : MULTIPLICATION(a,b,..,z) returns the product of its inputs.

STEP : STEP(function,range) if ’function’ has a value with the specified

range, it will return a value of 1.0, otherwise it will return a value of 0.0. It is also

known as an impulse or (single) step function.

65

Atomic Methods

FATE supports several atomic methods. Some methods have an option of how

to rank information based upon configuration settings (such as LRU, which may

be evaluated temporally or spatially). Each atomic method may be stateful, but

the state is exclusive to each instance of the method. Atomic methods evalu-

ate a specific attribute, functionality, algorithm response, or statistical method,

with a specific purpose, to provide an evaluation based upon its functionality. As

an example, certain algorithms are based upon several or multiple parameters;

whereas FATE is based upon the principle of having many singular functions do

the evaluation, then obtain a weighted result based upon the appropriate aggre-

gate function). The following is a subset of atomic algebraic methods currently

available.

Figure 4.1: Temporal vs spatial LRU values

LRU : LRU, or Least Recently Used, Ranks the most recent information,

with the highest value (1.0), and progressively lower ranked information has a

lower value. LRU has two ways to rank itself, one is temporal and the other is

spatial (Figure 4.1). Spatial ranking is evaluated by when the Information was

received (e.g. 5 pieces of Information will be ranked at: 1.0, 0.8, 0.6, 0.4 and 0.2).

66

The evaluated difference between evaluations is constant. The other method to

measure LRU is temporally, which evaluates based upon when the information is

received. As depicted in the graph, after 0,1,3,8, and 10 seconds, the information

is evaluated at; 1.0, 0.9, 0.7, 0.2 and 0. Depending on the method of evaluation,

the Information may be (or never be) evaluated at zero.

LFU : LFU, or Least Frequently Used, ranks the highest occurrence of informa-

tion with the highest value (1.0), and lower occurrence information, progressively

less. LFU, like LRU, can be evaluated in different methods. LFU can be evalu-

ated as spatial or weighted ranking (see Figure 4.2). As shown in the graph, and

like LRU, spatial ranking will have a constant differential value between Informa-

tion evaluations. The other method of evaluating is Weighted (based upon actual

number of occurrences). In the graph, based upon the number of occurrences (or

hits in a cache system), of 1,4,5,6, and 10 occurrences, weighted LRU will evaluate

the Information as 0, 0.4, 0.6, and 1.0, respectively.

Figure 4.2: Weighted vs spatial LFU values

CONSTANT : A constant value, typically used with multiplication, e.g., 0.5 *

LRU.

HASH : HASH(rawdata, modulus) uses a modulus type function, based upon

a hash value of either an attribute, data, packet, or file. If the modulus of the

67

hash matches a configured value, it returns a ’1.0’, otherwise it returns a ’0.0’; 5

% 3 == 2.

FRESH : FRESH(packet.attribute) uses an attribute of the packet (such as

html Cache-Control metadata), to define if the file can be cached, and for how

long. Evaluation of this attribute results in a ’1.0’ for fresh, and ’0.0’ for stale.

HOPCNT : HOPCNT simple counts (up or down) from a specified node (e.g.

client or server), to identify shorter and longer routes. Useful for caching content

which has a significant penalty for cache misses.

Since all rankings occur within the [0,1] range, some values are calculated

based upon a secondary metric as mentioned above. The metric is defined by the

function itself. Both LRU and LFU algorithms have a spatial implementation,

but differ, based upon how the algorithm is defined, to use either a temporal or

weighted implementable metric.

Some of the choice on which implementation of an algorithm depends on pos-

sible memory or computation intensity for said algorithm. Spatial ordering may

be memory intensive as the ranking of each content, along with the original time

stamp is kept (and may be recomputed). Temporal and Weighted orderings are

based upon the highest and lowest measurement value, and only need to be com-

puted when either of these values are removed (adding a higher measurement does

not change the internal marker. But the removal of said measurement will require

a search of all content, to find the updated low/high measurements).

4.3.2 Modules

The structure of FATE can be viewed as a tree, as illustrated in Figure 4.3,

with atomic functions being the leaf, and algebraic aggregate functions being

branches. The information packet is passed down and evaluated at each leaf.

68

MIN
MIN(0.6*HASH+0.4*LRU, FRESH)

SUM
(0.6*HASH+0.4*LRU)

MULT
0.6 * HASH

MULT
0.4 * LRU

CONST
(0.6)

FRESH

CONST
(0.4)HASH LRU

Figure 4.3: Utility caching tree representation of MIN(.6*HASH+.4*LRU,
FRESH)

The results then move along the aggregated branches, towards the root, to give

an evaluated result. To easily model this, we need two main (atomic) functions:

the traditional caching algorithm to determine content value is determined by a

weighted evaluation from LRU. A bias for node placement is determined by the

HASH of the content, which if matched will give greater value for the packet to

be stored in a matching node, as opposed to a non HASH matching node. Finally,

FRESH allows non fresh content to be evicted. It should be noted, that when the

cache (or content store) exceeds a defined threshold, it will evaluate all existing

content and purge all the lowest value content. Thus, if a content store of size 10,

adds new content, the entire store is evaluated (including the new content). If the

new content can not be cached (valuation of ’0’), or any content expired (stale,

not fresh), will be evicted. From this formula, it may be useful for having some

content cached (due to the hashing function), using an LRU to decide the value of

the packets. Notice new content will have a lower value (0.4 at best), compared to

low value, correctly placed (via HASH) packets (0.6 minimum). FRESH removes

69

all expired/stale content.

4.4 Results

FATE caching was evaluated using two simple network scenarios. Figure 4.4 il-

lustrates the first scenario of a simple network with a single caching node between

a client and a server. Figure 4.5 illustrates the second scenario, which consists of

a similar setup, except that four on-path caching nodes exist between the client

and server. Both scenarios were run with five different seeds (the averages are pre-

sented), using a zipf-mandelbrot distribution (s=0.7), with N=10000 (maximum

number of uniquely requested content). Each scenario was run for 1000 seconds,

with a request rate of 100 requests/sec (for 100k requests total). Each caching

node can contain 10 elements.

SERVER

CACHE

CLIENT

Figure 4.4: Simple single caching node

There is no consensus on what the correct Internet traffic distribution is, with

some support for a Mandelbrot distribution [48], while others support a Zipf dis-

tribution [19]. Both distribution models were tested using the same random seeds

on the single cache scenario by using different ’q’ settings in the Mandelbrot dis-

tribution. Table 4.1 uses the default adopted in NDNSim with a ’q’ setting of ’0.7’

for the Mandelbrot distribution. Table 4.2 shows the results of the Mandelbrot

70

CACHE1CLIENT

CACHE4

CACHE3 CACHE2

SERVER

Figure 4.5: Four Caching Node Network

’q’ setting set to ’0’, which closely resembles a traditional Zipf distribution.

The LRU and LFU algorithms implemented in NDNSim are used as a bench-

mark against algorithm FATE1 (LRU implemented in FATE). FATE1 is con-

trasted with LRU implemented in NDN to demonstrate that the algorithmic and

evaluated implementations of LRU return the same results. FATE2 is a weighted

combination of LRU and LFU given by the algebraic formula (0.2+LRU*0.8)*LFU.

The FATE2 algorithm is implemented to give the benefit of LFU at higher hit

rates while allowing the temporal property of LRU (as popular content changes,

the older and more popular content is purged, unlike with LFU). This combina-

tion gives nearly a 28% and 12% average increase in hit rate, respectively. Other

combinations of LRU and LFU were tested (e.g., adding or using different weights)

but no other combinations were as successful.

Table 4.1: Single Cache Hit Results by Algorithm, q=0.7

ALGORITHM MIN MAX AVG
LRU 0.84% 0.90% 0.88%
LFU 3.75% 5.59% 4.34%
FATE1 0.84% 0.90% 0.88%
FATE2 5.01% 6.47% 5.54%

The results show that the atomic FATE LRU evaluator ranked values similarly

to the traditional algorithmic LRU implementation in NDN. LFU significantly

71

Table 4.2: Single Cache Hit Results by Algorithm, q=0.0

ALGORITHM MIN MAX AVG
LRU 1.10% 1.18% 1.14%
LFU 4.15% 6.71% 5.90%
FATE1 1.10% 1.18% 1.14%
FATE2 6.17% 6.97% 6.61%

outperforms LRU, but LFU suffers from a temporal problem. If content was very

popular, but not currently popular, it remains in the cache. LRU does not suffer

from this problem. In correlation to LRU and LFU, the FATE cache evaluator

of ((0.2+LRU*0.8)*LFU) gives a slightly better hit cache ratio than a pure LFU,

while retaining the temporal properties of LRU as content popularities change. If

popular content is not used for a while, it is replaced as the LRU value declines

over time.

According to results published by Dabirmoghaddam et al.[32], caching is most

effective when it is placed closer to the requesting client, and on-path caching

provides no benefits compared to a larger cache near the edge.

In Scenario 2, LFU does take advantage of the additional caching between

client and server compared to LRU, which barely improves with additional on-path

caching. However, the hit rate declines as the distance from the client increases.

Noticing this trend, we have created and tested three custom algorithms, each

giving a better caching efficiency, better content response, and intermediate results

of the two.

In the above scenarios, LRU, LFU, and FATE2 are the same algorithms as

those used in the single-cache scenario. As mentioned previously, most on-path

caching nodes are not used effectively, as shown by LRU’s poor performance for

nodes 2-4 (C2-C4) and LFU’s declining performance over the same nodes. Even

the algorithm FATE2, which was more effective in a single cache scenario, did not

72

Table 4.3: Network with four on-path caching nodes

ALGO C1 Hit C2 Hit C3 Hit C4 Hit Total Total Resp
Rate Rate Rate Rate Hitrate Delay(ms)

LRU 0.86% 0.16% 0.17% 0.15% 1.35% 491598
LFU 4.58% 2.49% 1.84% 0.95% 9.86% 467553

FATE2 5.38% 0.48% 0.67% 0.10% 6.63% 473259
FATE3 5.20% 1.37% 1.11% 1.40% 9.08% 469270
FATE4 5.22% 0.94% 0.99% 0.79% 7.95% 471249
FATE5 3.66% 2.74% 2.11% 2.46% 10.98% 468206

fare as well as LFU, over four on-path caching nodes. In order to more effectively

use the nodes, the HASH evaluator was included in the FATE evaluation. Other

algorithms may use an approximation of this effect: random or a probabilistic

method, to determine if the content might be cached at each node, which may

place content at zero, or multiple nodes.

Hashing avoids the zero/many placement problem associated with random/prob-

abilistic cache placement, and allows other nodes to have higher or lower weight

to keep the content. FATE5 uses the hash to determine cache placement using a

modulus function (hash modulus 4 determines which node will cache the content),

and is represented by (0.2+LRU*0.8)*LFU*HASH. As shown by the hit rate per

individual node, it is more efficient in the use of the on-path caching nodes, and

gives over 11% benefit compared to LRU.

FATE4 was an attempt to heavily bias caching via HASH, but allow other

(popular content) to be cached, and is expressed by: MIN((0.2+LRU*0.8)*LFU,

0.2+0.8*HASH). With the result of having the second highest hit rate on cache

node 1, but poor utilization of the other cache nodes. FATE3 is an attempt to

use the FATE2 algorithm at node 1 (to maximize close caching), but FATE 5

algorithm at nodes 2, 3, and 4 (to allow more efficient on-path caching). This

heterogeneous-caching algorithm allows for most popular content to be cached

73

closer to the client, while maximizing efficiency of the remaining on-path nodes.

Total Hit-rate represents the total of all on-path cache hits (as opposed from

a server delivered content). Assuming a 1 ms delay, per request from the client

to each node (i.e., client to node 1 is 1ms, client to server is 5ms), the total time

required is represented by Total Response Delay(ms). Despite algorithm FATE5

delivering a better hit rate than LRU, LRU delivers the best (lowest) overall

response time.

74

Chapter 5

Extended Caching

5.1 Introduction

Caches have finite capacity. This affects not only how much content can be

available for cache hits, but affects the efficiency of certain cache eviction algo-

rithms. For these algorithms, such as LFU, the state can be changing, which

is not reflective of future demand. If LFU only could cache 5 large objects, it

would become difficult to reflect the most requested content, based upon a small

counting index. What is desired is an extended counting index, beyond the actual

capacity of the cache. The extended index is an ethereal state, reflecting more

objects for better caching, but having the same content capacity as the original,

smaller cache. LRU does not, natively, have an ethereal state. If an object is

evicted, then requested, the prior weighted value is lost; only algorithms, such as

LFU, which require a prior state (or count) can have an ethereal state.

In this experiment, a cache size of ’x’ (10 and 50 content entries) are available,

but FATE is stateful, which allows us to keep an extended ethereal state for

unavailable values (50 and 2500 ethereal entries, respectively). Since content

consumes significantly more memory than an ethereal entry (which is an integer),

75

it produces better results for the given cache size, but not as expensive as having

a cache size matching the ethereal size.

As an example, 10/50 has a physical cache size of 10 entries, but records the

ethereal values for up to 50 objects.

5.2 Results

The results of LFU and the extended-LFU are in the table 5.1. Ethereal

refers to the quantity of tracked named-content, while the cache value refers to

the actual (maximum) number of cacheable objects stored. The results show an

improvement from the physical cache size, but not as significant as the ethereal

size. This feature allows greater cache-ability at the expense of a few bytes of

memory.

Using the extended values in table 5.1, we present the cache-ethereal values

for 10C-E50, 50C-E2500, and the fixed LFU values for cache sizes of 10,50,and

2500. To show the actual effectiveness of extended-LFU, comparison values of real

to ethereal are shown: The increase cache rate of 10C-50E is compared to LFU

fixed of cache size 10 (and ethereal size 10), and decrease from cache size of 50.

Likewise, we compare 50C-2500E to LFU cache sizes of 50 and 2500.

5.3 Conclusion

The results show an intermediate hit rate from Extended FATE caching (small

cache, large ethereal state tracking) from a traditional small and large cache. Com-

parison in table 5.2 and table 5.1, shows the improvement and the conclusion that

extending the ethereal state, without increasing the content store, does enable a

higher cache hit rate. For stateful caching algorithms, using an extended, ethereal

76

Table 5.1: LFU cache size x / (ethereal) record Y entries

algorithm run1 run2 run3 run4 run5 avg std
zipf dev

LFU 10/10
0.5 0.03% 0.21% 0.20% 0.30% 0.09% 0.17% 0.10%
0.8 5.43% 5.90% 5.75% 5.90% 6.44% 5.89% 0.37%
1 21.73% 22.06% 21.04% 20.33% 21.82% 21.40% 0.71%
1.2 45.41% 42.37% 41.42% 46.88% 44.59% 44.13% 2.23%
0.5 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
0.8 0.02% 0.39% 0.07% 0.47% 0.13% 0.22% 0.20%
1 1.91% 10.10% 2.27% 3.13% 2.70% 4.02% 3.43%
1.2 35.67% 36.70% 11.90% 29.32% 24.60% 27.64% 10.08%

LFU 50/50
0.5 0.75% 0.77% 0.71% 0.77% 0.56% 0.71% 0.09%
0.8 11.23% 11.83% 10.86% 11.56% 11.53% 11.40% 0.37%
1 33.30% 33.14% 33.27% 33.35% 33.81% 33.38% 0.25%
1.2 61.09% 61.02% 61.05% 61.06% 60.96% 61.04% 0.05%

LFU 2500/2500
0.5 8.68% 8.65 8.71 8.68 6.23 8.48% -
0.8 35.32% 35.42% 35.30% 35.56% 35.32% 35.38% 0.11%
1 64.13% 63.79% 64.02% 64.21% 63.68% 63.97% 0.23%
1.2 85.70% 85.83% 85.93% 86.07% 85.93% 85.89% 0.14%

LFU 10/50
0.5 0.49% 0.53% 0.60% 0.57% 0.30% 0.50% 0.12%
0.8 7.67% 7.73% 7.75% 7.80% 7.53% 7.70% 0.10%
1.0 26.00% 25.97% 25.89% 26.04% 26.04% 25.99% 0.06%
1.2 55.35% 55.15% 55.40% 55.08% 55.69% 55.33% 0.24%

LFU 50/2500
0.5 1.91% 1.90% 1.90% 1.92% 1.92% 1.91% 0.01%
0.8 17.53% 17.80% 17.66% 17.64% 17.52% 17.63% 0.11%
1.0 50.36% 50.22% 50.30% 50.56% 50.11% 50.31% 0.17%
1.2 81.78% 81.89% 81.97% 82.22% 81.89% 81.95% 0.16%

77

Table 5.2: Hit rate improvement of extended ethereal vs traditional caching

C10-E50 Zipf Ethereal Fixed Increase Decrease
LFU LFU from C10 from C50

0.5 0.50% 0.17% 194.12% -29.58%
0.8 7.70% 5.89% 30.73% -32.46%
1.0 25.99% 21.40% 21.45% -22.14%
1.2 55.33% 44.13% 25.38% -9.35%

C50-E2500 Zipf Ethereal Fixed Increase Decrease
LFU LFU from C50 from C2500

0.5 1.91% 0.71% 169.01% -78.00%
0.8 17.63% 11.40% 54.65% -50.17%
1.0 50.31% 33.38% 50.72% -21.35%
1.2 81.95% 61.04% 34.26% -4.59%

state helps cache efficiency.

78

Chapter 6

QoS Caching

6.1 Introduction

Internet content uses a well known distribution, which is mandelbrot-zipf in

nature. Many internet caching eviction protocols, such as LRU and LFU, take

advantage of this distribution to maximize caching efficiency.

But, other types of networks may not have a zipf-ian distribution. Other

networks may have other criteria, or constraints, for caching. These constraints

may be dictated by small cache size [21], optimization for video playback [113],

pocket or local networks [77] [24] [50], actual type of content/service such as video

[70], availability of content affected by long distances to the producer [81] [79], or

having a packet marked to dictate content importance (similar to the TOS flag

on tcp). Each criteria can not only be unique, but have several additional criteria

to dictate content importance.

FATE, which uses evaluation to dictate content value, as opposed to a strict

algorithmic formula, can be used for QoS caching. To illustrate this, we will create

a requirement for cascading constraints to be issued, requiring the prior results

for each stage to be done.

79

For the following examples, three consumers will request different content,

from three different producers. Each producer is set at a different distance from

the consumers. In addition, each producer will be ranked differently for preferred

caching, and which requested content may contain important messages.

In each case, the XML configuration changes are shown, as well as the cache

state, at the time of completion. First, each individual evaluation will be used:

LRU, SIZE, QoS (field value dictating preferred customer content value), DIS-

TANCE, and REGEX (matching specific field value) are used to see the effects

of each individual evaluator. In the formula, a small randomness and the last

packet inserted are protected, to allow a more correct eviction of content, when

necessary.

After each individual QOS evaluator is used, the requirements become complex

and are combined into an expression, to choose the best evaluation of LRU, SIZE,

and DISTANCE, unless a QOS field is set or a REGEX matching pattern in the

content.

1. LRU - First LRU is used to show results of repeatability.

2. SIZE - The size of the content is considered for eviction. Smaller content is

higher ranked, than larger content.

3. QOS - Traditional field used to signify customer and value. Similar to TOS/-

COS fields.

4. REGEX - Allows regex matching in a packet field, used to indicate high

priority fields.

5. DISTANCE - Producers which are farther away are given higher rank than

closer producers. It is more expensive in network lag to retrieve content

farther away.

80

6. LRU*SIZE - The first complex QOS cache algorithm, considering size and

content request frequency.

7. MAX(LRU*SIZE,QOS) - Similar to above, but we consider size and content,

against customer ranking.

8. MAX(LRU*SIZE,QOS,REGEX) - Above, plus checking for URGENT fields.

9. MAX(LRU*SIZE*DISTANCE,QOS,REGEX) - Above, but consider distance,

size, and content frequency to urgent and customer fields.

6.2 Results

Results are presented for each individual and combination of QOS caching.

Each section will show the relevant XML configuration segment, and the cache

contents. Cache hit rate is an effective metric for comparison of caching algorithms

which are comparing over zipf distribution (frequently requested content). By

showing a cache dump, the desired effects can be seen, as applied for each specific

QOS requirement.

Three producer nodes (and clients) are used to show the effect of distance (the

content is labelled /test1, /test2, and /test3).

6.2.1 FATE LRU effects

Starting with standard LRU and the complete module configurations for LRU.

SIZE XML configuration snippet

A full XML configuration file is presented in listing 6.1 . LRU is chosen, using

the ’ceiling’ normalizer.

81

<NodeModule>
<UtilityModule moduleName="CacheBasicManager"
associatedStore="CacheStore" cacheSize="370"
ContentTypes="File" > <!−−File" or "Icn"−−>

<Utility name="UTILITYBLOCK" order="1" >
<Utility name="LRU" >
<Normalize normalizeName="NormalRanked"
value_type="ceiling" />

</Utility>
</Utility>

</UtilityModule>
<UtilityModule moduleName="SecurityBasicManager" >
<Utility name="UTILITYBLOCK" proxyName="SecurityBlock" order="1">
<Utility name="COUNT" missing_count_value="0"
matching_lower_bound="0" matching_upper_bound="1"
count_condition="increment"
match_criteria="LeftRightInclusive" attribName="Distance" />

</Utility>
</UtilityModule>
<UtilityModule moduleName="ForwardNs3Ipv4Manager3" order="3"
associatedCacheStore="CacheStore" >
<Utility name="UTILITYBLOCK" order="1">

<Utility name="NAMECHAIN" appendNodeName="true"
defaultAttribute="Path:" nodeNamePartition=" ; "
appendIfnExist="true" appendInFront="false"
nodeNameUnique="false"/>

</Utility>
</UtilityModule>
<Store storeName="CacheBasicStore" name="CacheStore" size="370"
storageMethod="MemMap"/>

</NodeModule>
Listing 6.1: Base Packet XML format

82

Cache Snippet of LRU with alpha=0.8

Below are the zipf alpha used, and a dump of the cache upon completion.

Traditional caching uses hit rates, to reflect availability of most requested content.

But in QoS caching, the desired content may not be the more requested content.

Thus, to help show the effects of QoS caching, and which elements were purged

due to low valuation.
LRU a0.8

CACHED: /test1/fileNum=5 = 0.381665
CACHED: /test1/fileNum=3 = 0.382289
CACHED: /test1/fileNum=79 = 0.382351
CACHED: /test2/fileNum=1 = 0.383386
CACHED: /test3/fileNum=1 = 0.384688
CACHED: /test3/fileNum=34 = 0.385511
CACHED: /test3/fileNum=12 = 0.38626
CACHED: /test3/fileNum=6 = 0.387108
CACHED: /test3/fileNum=16 = 0.393201
CACHED: /test1/fileNum=32 = 0.395977
CACHED: /test1/fileNum=10 = 0.398969
CACHED: /test1/fileNum=50 = 0.39917
CACHED: /test3/fileNum=67 = 0.39983
CACHED: /test3/fileNum=3 = 0.580155
CACHED: /test2/fileNum=2 = 0.782019
CACHED: /test1/fileNum=1 = 0.981504
PURGE: Store size is 400/370,

erase /test1/fileNum=5 value of 0.381665
PURGE: Store size is 380/370,

erase /test1/fileNum=3 value of 0.382289

Cache Snippet of LRU with alpha=1.2

Using LRU with the request rate set to alpha = 1.2, a snippet of cache is

below.

83

LRU a1.2
CACHED: /test1/fileNum=19 = 1.92868e-311
CACHED: /test3/fileNum=49 = 0.0559752
CACHED: /test1/fileNum=46 = 0.111284
CACHED: /test3/fileNum=78 = 0.167037
CACHED: /test1/fileNum=32 = 0.222346
CACHED: /test3/fileNum=34 = 0.278099
CACHED: /test1/fileNum=5 = 0.333407
CACHED: /test2/fileNum=1 = 0.388716
CACHED: /test3/fileNum=1 = 0.388716
CACHED: /test1/fileNum=4 = 0.5
CACHED: /test3/fileNum=12 = 0.666815
CACHED: /test2/fileNum=2 = 0.667037
CACHED: /test3/fileNum=67 = 0.777877
CACHED: /test1/fileNum=1 = 0.833185
CACHED: /test3/fileNum=16 = 0.888938
CACHED: /test2/fileNum=4 = 0.88916
CACHED: /test3/fileNum=6 = 1
PURGE: Store size is 430/370,

erase /test1/fileNum=19 value of 1.92868e-311
PURGE: Store size is 420/370,

erase /test3/fileNum=49 value of 0.0559752
PURGE: Store size is 410/370,

erase /test1/fileNum=46 value of 0.111284
PURGE: Store size is 400/370,

erase /test3/fileNum=78 value of 0.167037
PURGE: Store size is 390/370,

erase /test1/fileNum=32 value of 0.222346
PURGE: Store size is 380/370,

erase /test3/fileNum=34 value of 0.278099
PURGE: Store size is 370/370,

erase /test1/fileNum=5 value of 0.333407

6.2.2 FATE SIZE effect upon caching

File definition for content sizes

The next block deals with object size. To mimic different object sizes, a file

contains a description of the sizes. The first entry gives the block size (10 bytes).

Each block is requested per request, thus requesting four blocks of 10 bytes will

result in 4 packet requests of 10 bytes each. The next entry maps to the first

request (fileNum=1 of size 4 blocks, each block/packet request is 10 bytes, for

content size of 40 bytes), the next entry maps to the second request (fileNum=2),

etc. The last entry represents the nth request and all subsequent requests. The

file representing the content sizes used is below:

84

<UtilityModule moduleName="CacheBasicManager" order="2"
associatedStore="CacheStore" cacheSize="370" ContentTypes="File">

<!−−File" or "Icn"−−>
<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="SUM">
<Utility name="MULT">
<Utility name="RawEval" attribName="TotalSize">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="false" divisor="10"/>
</Utility>
<Utility name="CONST" defaultValue="0.92"/>

</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>

</UtilityModule>
Listing 6.2: Size Eval XML format

10 //size of each block in bytes
4 //size of 1st element (40 bytes)
3 //size of 2nd element (30 bytes)
4 //size of 3rd element (40 bytes)
5 //size of 4th element (50 bytes)
2 //size of 5th element (20 bytes)
7 //size of 6th element (70 bytes)
1 //size of 7th (and beyond) file size of 10 bytes

SIZE XML configuration snippet

The XML segment for size is shown in listing 6.2:

Cache Snippet of SIZE with alpha=0.8

With a consumer request rate of alpha = 0.8, cache dump at the end (as there

is a bias towards smaller files, most of the content is small). Request rate has no

bearing on size functionality, but is shown as later complex formulation uses LRU

in the context. From the configuration file, listing 6.2, shows the exact formulation

85

as MAX(SIZE∗.92+RND∗0.02, PLE). This takes the size evaluation (block size

’1’ is 1.0, block size ’2’ is 1/2, size ’n’ is 1/n ...). The size evaluation is multiplied

by a constant value of 0.92, then a random number ([0,0.02]) is added. To protect

the latest/newest content, it is maximized with PLE (protect last element ; which

the last inserted element returns a 1.0).
SIZE a0.8

CACHED: /test3/fileNum=6 = 0.134241
CACHED: /test1/fileNum=17 = 0.920049
CACHED: /test3/fileNum=21 = 0.920733
CACHED: /test2/fileNum=92 = 0.92084
CACHED: /test1/fileNum=73 = 0.922281
CACHED: /test1/fileNum=13 = 0.92387
CACHED: /test3/fileNum=68 = 0.923917
CACHED: /test1/fileNum=43 = 0.923955
CACHED: /test3/fileNum=78 = 0.924171
CACHED: /test3/fileNum=49 = 0.924173
CACHED: /test2/fileNum=21 = 0.924611
CACHED: /test3/fileNum=15 = 0.925001
CACHED: /test3/fileNum=13 = 0.925281
CACHED: /test2/fileNum=8 = 0.925875
CACHED: /test3/fileNum=17 = 0.926299
CACHED: /test2/fileNum=66 = 0.926728
CACHED: /test2/fileNum=10 = 0.927455
CACHED: /test1/fileNum=19 = 0.92753
CACHED: /test3/fileNum=16 = 0.929747
CACHED: /test2/fileNum=34 = 0.930145
CACHED: /test1/fileNum=32 = 0.930224
CACHED: /test1/fileNum=50 = 0.931866
CACHED: /test2/fileNum=7 = 0.932153
CACHED: /test2/fileNum=100 = 0.932904
CACHED: /test3/fileNum=67 = 0.934209
CACHED: /test3/fileNum=29 = 0.935101
CACHED: /test3/fileNum=12 = 0.935752
CACHED: /test3/fileNum=60 = 0.938138
CACHED: /test1/fileNum=46 = 0.939302
CACHED: /test1/fileNum=56 = 0.939484
CACHED: /test2/fileNum=55 = 0.939774
CACHED: /test1/fileNum=10 = 1
PURGE: Store size is 380/370,

erase /test3/fileNum=6 value of 0.134241

Cache Snippet of SIZE with alpha=1.2

alpha− 1.2 dump at the end (as there is a bias towards smaller files, most of

the content is small), except the last inserted element.

86

SIZE a1.2
CACHED: /test1/fileNum=1 = 0.242089
CACHED: /test3/fileNum=5 = 0.467078
CACHED: /test3/fileNum=10 = 0.920831
CACHED: /test1/fileNum=29 = 0.921264
CACHED: /test2/fileNum=7 = 0.922507
CACHED: /test1/fileNum=10 = 0.922754
CACHED: /test1/fileNum=15 = 0.923437
CACHED: /test2/fileNum=24 = 0.924349
CACHED: /test1/fileNum=90 = 0.924506
CACHED: /test2/fileNum=60 = 0.925119
CACHED: /test3/fileNum=11 = 0.926779
CACHED: /test1/fileNum=14 = 0.92702
CACHED: /test1/fileNum=34 = 0.927109
CACHED: /test3/fileNum=43 = 0.927306
CACHED: /test3/fileNum=34 = 0.927844
CACHED: /test3/fileNum=7 = 0.929535
CACHED: /test2/fileNum=53 = 0.929796
CACHED: /test3/fileNum=8 = 0.929832
CACHED: /test2/fileNum=9 = 0.930613
CACHED: /test1/fileNum=21 = 0.93075
CACHED: /test1/fileNum=22 = 0.932898
CACHED: /test2/fileNum=91 = 0.934841
CACHED: /test1/fileNum=11 = 0.935731
CACHED: /test1/fileNum=12 = 0.936516
CACHED: /test1/fileNum=80 = 0.936531
CACHED: /test1/fileNum=35 = 0.93678
CACHED: /test1/fileNum=16 = 0.93743
CACHED: /test1/fileNum=7 = 0.938876
CACHED: /test3/fileNum=18 = 0.939387
CACHED: /test3/fileNum=76 = 0.939395
CACHED: /test2/fileNum=35 = 0.939418
CACHED: /test2/fileNum=23 = 0.939725
CACHED: /test2/fileNum=4 = 1
PURGE: Store size is 410/370,

erase /test1/fileNum=1 value of 0.242089
PURGE: Store size is 370/370,

erase /test3/fileNum=5 value of 0.467078

6.2.3 FATE QOS effect upon caching

listing 6.3 is the XML fragment for QOS matching. It looks for 3 QoS values

in the packet and gives each a specific weight (QoS1 is 1) (QoS2 is .8) (QoS3

is .6). All other content will have a value of .4 (in reality, the formula is .38

+ .02*rnd). Only packet /test1/fileNum=1 matches QoS1, /test2/fileNum=2

matches QoS2, and /test3/fileNum=3 matches QoS3. The FATE formulation

becomes MAX(QoS1 ∗ .98, Qos2 ∗ .78, QoS3 ∗ .58, 0.38) +RND ∗ 0.2. Thus, any

non QoS marked content will have a weight of 0.38, while other QoS values will

be appropriately evaluated.

87

<Utility name="UTILITYBLOCK" order="1">
<!−− COUNT QoS (count_condition=none)(matching_lower_bound=A

matching_upper_bound=B); −−>
<Utility name="SUM">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="COUNT" count_condition="none" attribName="QOS"

matching_lower_bound="1" matching_upper_bound="1"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.98"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none" attribName="QOS"

matching_lower_bound="2" matching_upper_bound="2"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.78"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none" attribName="QOS"

matching_lower_bound="3" matching_upper_bound="3"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.58"/>
</Utility>
<Utility name="CONST" defaultValue="0.38"/>

</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>

</Utility>
Listing 6.3: QoS Packet XML format

QOS XML configuration snippet

Cache Snippet of QOS with alpha=0.8
QOS a0.8

CACHED: /test1/fileNum=5 = 0.381665
CACHED: /test1/fileNum=3 = 0.382289
CACHED: /test1/fileNum=79 = 0.382351
CACHED: /test2/fileNum=1 = 0.383386
CACHED: /test3/fileNum=1 = 0.384688
CACHED: /test3/fileNum=34 = 0.385511
CACHED: /test3/fileNum=12 = 0.38626
CACHED: /test3/fileNum=6 = 0.387108
CACHED: /test3/fileNum=16 = 0.393201
CACHED: /test1/fileNum=32 = 0.395977
CACHED: /test1/fileNum=10 = 0.398969
CACHED: /test1/fileNum=50 = 0.39917
CACHED: /test3/fileNum=67 = 0.39983
CACHED: /test3/fileNum=3 = 0.580155
CACHED: /test2/fileNum=2 = 0.782019
CACHED: /test1/fileNum=1 = 0.981504
PURGE: Store size is 400/370,

erase /test1/fileNum=5 value of 0.381665
PURGE: Store size is 380/370,

erase /test1/fileNum=3 value of 0.382289

88

Cache Snippet of QOS with alpha=1.2
QOS a1.2

CACHED: /test1/fileNum=12 = 0.382163
CACHED: /test2/fileNum=53 = 0.383754
CACHED: /test2/fileNum=60 = 0.383823
CACHED: /test3/fileNum=76 = 0.388166
CACHED: /test2/fileNum=4 = 0.389808
CACHED: /test2/fileNum=15 = 0.389939
CACHED: /test2/fileNum=3 = 0.390614
CACHED: /test3/fileNum=44 = 0.393168
CACHED: /test3/fileNum=18 = 0.394925
CACHED: /test3/fileNum=6 = 0.396114
CACHED: /test3/fileNum=5 = 0.39694
CACHED: /test2/fileNum=7 = 0.398771
CACHED: /test3/fileNum=2 = 0.399071
CACHED: /test3/fileNum=3 = 0.594125
CACHED: /test2/fileNum=2 = 0.784917
CACHED: /test1/fileNum=1 = 0.983106
PURGE: Store size is 400/370,

erase /test1/fileNum=12 value of 0.382163
PURGE: Store size is 390/370,

erase /test2/fileNum=53 value of 0.383754
PURGE: Store size is 380/370,

erase /test2/fileNum=60 value of 0.383823
PURGE: Store size is 370/370,

erase /test3/fileNum=76 value of 0.388166

6.2.4 FATE REGEX effects upon caching

Next is the XML snippet for a REGEX match, using the configuration in list-

ing 6.4. If the field ’help’ contains any match of ’SOS*’, it will return a value of

’1’. Only content /test1/fileNum=6, /test2/fileNum=5, and /test3/FileNum=4

contain this field. The FATE formula evaluation is MAX(REGEX,RND ∗

0.2, PLE). Only new content and ’SOS’ matching content will return a ’1.0’.

89

<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="PLE"/>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.2"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
<!−− REGEX_MATCH −−>
<Utility name="REGEX_MATCH" matchFieldName="help"

regexPattern="(SOS)(.∗)">
</Utility>

</Utility>
</Utility>

Listing 6.4: MAX(Regex,PLE) Packet XML format

REGEX XML configuration snippet

Cache Snippet of REGEX with alpha=0.8
REGEX a0.8

CACHED: /test3/fileNum=12 = 0.0165522
CACHED: /test1/fileNum=1 = 0.0334573
CACHED: /test2/fileNum=1 = 0.0619461
CACHED: /test1/fileNum=2 = 0.081915
CACHED: /test3/fileNum=16 = 0.15571
CACHED: /test3/fileNum=67 = 0.179923
CACHED: /test3/fileNum=78 = 0.189962
CACHED: /test1/fileNum=50 = 0.192296
CACHED: /test3/fileNum=6 = 0.198144
CACHED: /test1/fileNum=10 = 1
CACHED: /test1/fileNum=6 = 1
CACHED: /test2/fileNum=5 = 1
CACHED: /test3/fileNum=4 = 1
PURGE: Store size is 380/370,

erase /test3/fileNum=12 value of 0.0165522
PURGE: Store size is 370/370,

erase /test1/fileNum=1 value of 0.0334573

Cache Snippet of REGEX with alpha=1.2
REGEX a1.2

CACHED: /test1/fileNum=1 = 0.00616449
CACHED: /test2/fileNum=7 = 0.0167715
CACHED: /test2/fileNum=24 = 0.0234033
CACHED: /test2/fileNum=53 = 0.0715269
CACHED: /test1/fileNum=2 = 0.119695
CACHED: /test3/fileNum=6 = 0.165288
CACHED: /test3/fileNum=5 = 0.18933
CACHED: /test2/fileNum=3 = 0.192861
CACHED: /test1/fileNum=6 = 1
CACHED: /test2/fileNum=4 = 1
CACHED: /test2/fileNum=5 = 1
CACHED: /test3/fileNum=4 = 1
PURGE: Store size is 420/370,

erase /test1/fileNum=1 value of 0.00616449
PURGE: Store size is 380/370,

erase /test2/fileNum=7 value of 0.0167715
PURGE: Store size is 370/370,

erase /test2/fileNum=24 value of 0.0234033

90

<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="SUM">
<Utility name="MULT">
<Utility name="RawEval" attribName="Distance"

updateEntryPktType="8">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="true" divisor="1"/>
</Utility>
<Utility name="CONST" defaultValue="0.9998"/>

</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.0002"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>

Listing 6.5: MAX(Distance,PLE) Packet XML format

6.2.5 FATE Distance effects upon caching

This snippet deals with distance of producers from cache, using the configu-

ration shown in listing 6.5. It is more costly, and requires more time, to fetch

content from farther producers, than closer producers. The farthest distance is

evaluated at higher, based upon the chosen normalizer, 1 − 1/n. The producers

have distance of 3, 7, and 10 hops away from the cache. The actual evaluation

becomes MAX((1−DIST)∗ .9998+0.0002, PLE), so only new content is valued

at ’1’.

91

Distance XML configuration snippet

Cache Snippet of DISTANCE with alpha=0.8
DISTANCE a0.8

ACHED: /test1/fileNum=3 = 0.66664
CACHED: /test1/fileNum=13 = 0.666667
CACHED: /test3/fileNum=11 = 0.857005
CACHED: /test3/fileNum=29 = 0.857017
CACHED: /test3/fileNum=27 = 0.857037
CACHED: /test3/fileNum=4 = 0.857042
CACHED: /test3/fileNum=14 = 0.857059
CACHED: /test3/fileNum=8 = 0.857089
CACHED: /test3/fileNum=86 = 0.857103
CACHED: /test3/fileNum=60 = 0.857109
CACHED: /test3/fileNum=25 = 0.857137
CACHED: /test3/fileNum=2 = 0.857147
CACHED: /test3/fileNum=36 = 0.85715
CACHED: /test3/fileNum=7 = 0.857163
CACHED: /test2/fileNum=1 = 0.908917
CACHED: /test2/fileNum=62 = 0.90898
CACHED: /test2/fileNum=100 = 0.908997
CACHED: /test2/fileNum=35 = 0.909037
CACHED: /test2/fileNum=9 = 0.909047
CACHED: /test2/fileNum=2 = 0.909053
CACHED: /test2/fileNum=28 = 0.909057
CACHED: /test2/fileNum=14 = 0.909095
CACHED: /test2/fileNum=13 = 0.909095
CACHED: /test2/fileNum=25 = 1
PURGE: Store size is 380/370,

erase /test1/fileNum=3 value of 0.66664

Cache Snippet of DISTANCE with alpha=1.2
DISTANCE a1.2

CACHED: /test1/fileNum=1 = 0.666725
CACHED: /test3/fileNum=76 = 0.857017
CACHED: /test2/fileNum=15 = 0.908915
CACHED: /test2/fileNum=1 = 0.908917
CACHED: /test2/fileNum=53 = 0.908925
CACHED: /test2/fileNum=5 = 0.908934
CACHED: /test2/fileNum=23 = 0.908947
CACHED: /test2/fileNum=9 = 0.908947
CACHED: /test2/fileNum=97 = 0.908994
CACHED: /test2/fileNum=12 = 0.908999
CACHED: /test2/fileNum=28 = 0.909008
CACHED: /test2/fileNum=4 = 0.909025
CACHED: /test2/fileNum=91 = 0.909053
CACHED: /test2/fileNum=10 = 0.909057
CACHED: /test2/fileNum=3 = 0.909059
CACHED: /test2/fileNum=24 = 0.909064
CACHED: /test2/fileNum=7 = 0.909069
CACHED: /test2/fileNum=60 = 0.909081
CACHED: /test2/fileNum=18 = 0.9091
CACHED: /test2/fileNum=84 = 0.909101
CACHED: /test2/fileNum=2 = 0.909107
CACHED: /test3/fileNum=44 = 1
PURGE: Store size is 380/370,

erase /test1/fileNum=1 value of 0.666725

92

<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="SUM">
<Utility name="MULT">
<Utility name="RawEval" attribName="TotalSize">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="false" divisor="10"/>
</Utility>
<Utility name="LRU">
<Normalize normalizeName="NormalRanked" value_type="ceiling"/>

</Utility>
<Utility name="CONST" defaultValue="0.98"/>

</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>

Listing 6.6: MAX(Size*Lru, PLE) Packet XML format

6.2.6 FATE SIZE*LRU effects upon caching

FATE will consider caching of content size with most requested content, using

the configuration in listing 6.6. There are a myriad of ways to enact this type

of cache, but for simplicity, it is simply multiplied together to determine it’s

valuation.

93

FATE SIZE*LRU configuration snippet

Cache Snippet of SIZE*LRU with alpha=0.8
SIZE*LRU a0.8

ACHED: /test1/fileNum=19 = 0.00150003
CACHED: /test3/fileNum=49 = 0.0648476
CACHED: /test1/fileNum=4 = 0.08568
CACHED: /test1/fileNum=46 = 0.102177
CACHED: /test3/fileNum=6 = 0.128193
CACHED: /test3/fileNum=78 = 0.139589
CACHED: /test1/fileNum=5 = 0.1401
CACHED: /test2/fileNum=4 = 0.159516
CACHED: /test1/fileNum=1 = 0.17647
CACHED: /test2/fileNum=2 = 0.183922
CACHED: /test1/fileNum=32 = 0.197466
CACHED: /test3/fileNum=34 = 0.238938
CACHED: /test3/fileNum=12 = 0.542932
CACHED: /test3/fileNum=67 = 0.632744
CACHED: /test3/fileNum=16 = 0.729498
CACHED: /test1/fileNum=50 = 0.898955
CACHED: /test1/fileNum=10 = 0.99292
CACHED: /test2/fileNum=1 = 1
PURGE: Store size is 410/370,

erase /test1/fileNum=19 value of 0.00150003
PURGE: Store size is 400/370,

erase /test3/fileNum=49 value of 0.0648476
PURGE: Store size is 390/370,

erase /test1/fileNum=4 value of 0.08568

Cache Snippet of SIZE*LRU with alpha=1.2
SIZE*LRU a1.2

CACHED: /test2/fileNum=24 = 0.016996
CACHED: /test2/fileNum=1 = 0.0437696
CACHED: /test3/fileNum=6 = 0.0838327
CACHED: /test1/fileNum=4 = 0.123782
CACHED: /test2/fileNum=2 = 0.143654
CACHED: /test2/fileNum=3 = 0.150181
CACHED: /test1/fileNum=1 = 0.242025
CACHED: /test3/fileNum=76 = 0.330524
CACHED: /test3/fileNum=44 = 0.453642
CACHED: /test3/fileNum=5 = 0.504847
CACHED: /test1/fileNum=14 = 0.506578
CACHED: /test2/fileNum=7 = 0.881485
CACHED: /test2/fileNum=4 = 1
PURGE: Store size is 390/370,

erase /test2/fileNum=24 value of 0.016996
PURGE: Store size is 380/370,

erase /test2/fileNum=1 value of 0.0437696

6.2.7 FATE MAX(SIZE*LRU,QoS) effects upon caching

In this section, we present the configuration and cache contents of the SIZE ∗

LRU with respect to packets with correct QoS valuations, using the configuration

in listing 6.7.

94

FATE MAX(SIZE*LRU,QoS) configuration snippet

Cache Snippet of MIN(SIZE*LRU,QOS) with alpha=0.8
MIN(SIZE*LRU,QOS) a0.8

CACHED: /test1/fileNum=73 = 0.0171146
CACHED: /test3/fileNum=28 = 0.0358469
CACHED: /test2/fileNum=8 = 0.0359898
CACHED: /test3/fileNum=17 = 0.107255
CACHED: /test2/fileNum=7 = 0.107398
CACHED: /test3/fileNum=6 = 0.122434
CACHED: /test2/fileNum=4 = 0.157155
CACHED: /test3/fileNum=21 = 0.178663
CACHED: /test1/fileNum=19 = 0.214082
CACHED: /test3/fileNum=49 = 0.250071
CACHED: /test1/fileNum=46 = 0.285633
CACHED: /test3/fileNum=78 = 0.32148
CACHED: /test1/fileNum=32 = 0.357041
CACHED: /test3/fileNum=34 = 0.392888
CACHED: /test3/fileNum=12 = 0.642816
CACHED: /test3/fileNum=67 = 0.714224
CACHED: /test3/fileNum=16 = 0.785633
CACHED: /test2/fileNum=2 = 0.797659
CACHED: /test1/fileNum=50 = 0.928306
CACHED: /test1/fileNum=1 = 0.992645
CACHED: /test1/fileNum=10 = 0.999714
CACHED: /test2/fileNum=1 = 1
PURGE: Store size is 400/370,

erase /test1/fileNum=73 value of 0.0171146
PURGE: Store size is 390/370,

erase /test3/fileNum=28 value of 0.0358469
PURGE: Store size is 380/370,

erase /test2/fileNum=8 value of 0.0359898
PURGE: Store size is 370/370,

erase /test3/fileNum=17 value of 0.107255

Cache Snippet of MIN(SIZE*LRU,QOS) with alpha=1.2
MIN(SIZE*LRU,QOS) a1.2

CACHED: /test1/fileNum=35 = 0.0908595
CACHED: /test3/fileNum=6 = 0.0909114
CACHED: /test2/fileNum=53 = 0.0914048
CACHED: /test1/fileNum=4 = 0.136326
CACHED: /test2/fileNum=3 = 0.170498
CACHED: /test2/fileNum=24 = 0.182264
CACHED: /test3/fileNum=76 = 0.454661
CACHED: /test3/fileNum=5 = 0.499909
CACHED: /test3/fileNum=44 = 0.545521
CACHED: /test1/fileNum=14 = 0.590769
CACHED: /test3/fileNum=3 = 0.599476
CACHED: /test2/fileNum=2 = 0.792411
CACHED: /test2/fileNum=7 = 0.90914
CACHED: /test1/fileNum=1 = 0.980482
CACHED: /test2/fileNum=4 = 1
PURGE: Store size is 410/370,

erase /test1/fileNum=35 value of 0.0908595
PURGE: Store size is 400/370,

erase /test3/fileNum=6 value of 0.0909114

95

<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="RawEval" attribName="TotalSize">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="false" divisor="10"/>
</Utility>
<Utility name="LRU">
<Normalize normalizeName="NormalRanked" value_type="ceiling"/>

</Utility>
</Utility>
<Utility name="SUM">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="1"
matching_upper_bound="1"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.98"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="2"
matching_upper_bound="2"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.78"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="3"
matching_upper_bound="3"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.58"/>
</Utility>

</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>
Listing 6.7: MAX(Size*Lru, Qos1, Qos2, Qos3, PLE) Packet XML format

96

6.2.8 FATE MAX(SIZE*LRU,QOS,REGEX) effects upon

caching

Extending the evaluation from only QoS customers, but high priority con-

tent, present the following FATE evaluation. The FATE cache valuation be-

comes MAX(SIZE ∗ LRU,MAX(QoS1 ∗ .88, QoS2 ∗ .78, QoS ∗ .83) + RND ∗

0.2, REGEX ∗ .98 +RND ∗ 0.2) using the configuration defined in listing 6.8.

Cache Snippet of MIN(SIZE*LRU,QOS,REGEX) with alpha=0.8
MIN(SIZE*LRU,QOS,REGEX) a0.8

CACHED: /test3/fileNum=6 = 0.139026
CACHED: /test2/fileNum=7 = 0.832273
CACHED: /test3/fileNum=21 = 0.845669
CACHED: /test1/fileNum=19 = 0.852326
CACHED: /test3/fileNum=49 = 0.859091
CACHED: /test1/fileNum=46 = 0.865775
CACHED: /test3/fileNum=78 = 0.872513
CACHED: /test1/fileNum=32 = 0.879198
CACHED: /test1/fileNum=1 = 0.88216
CACHED: /test3/fileNum=34 = 0.885936
CACHED: /test3/fileNum=12 = 0.932915
CACHED: /test3/fileNum=67 = 0.946337
CACHED: /test3/fileNum=16 = 0.959759
CACHED: /test1/fileNum=6 = 0.98102
CACHED: /test1/fileNum=50 = 0.986578
CACHED: /test2/fileNum=5 = 0.989384
CACHED: /test3/fileNum=4 = 0.999372
CACHED: /test1/fileNum=10 = 1
PURGE: Store size is 380/370,

erase /test3/fileNum=6 value of 0.139026

Cache Snippet of MIN(SIZE*LRU,QOS,REGEX) with alpha=1.2
MIN(SIZE*LRU,QOS,REGEX) a1.2

CACHED: /test2/fileNum=3 = 0.228919
CACHED: /test3/fileNum=5 = 0.499976
CACHED: /test3/fileNum=18 = 0.710837
CACHED: /test1/fileNum=35 = 0.758975
CACHED: /test2/fileNum=53 = 0.759071
CACHED: /test2/fileNum=24 = 0.783164
CACHED: /test3/fileNum=3 = 0.840952
CACHED: /test3/fileNum=76 = 0.855394
CACHED: /test3/fileNum=44 = 0.879487
CACHED: /test1/fileNum=14 = 0.891486
CACHED: /test1/fileNum=1 = 0.895248
CACHED: /test2/fileNum=7 = 0.975907
CACHED: /test2/fileNum=5 = 0.981427
CACHED: /test1/fileNum=6 = 0.983123
CACHED: /test3/fileNum=4 = 0.996156
CACHED: /test2/fileNum=4 = 1
PURGE: Store size is 410/370,

erase /test2/fileNum=3 value of 0.228919
PURGE: Store size is 370/370,

erase /test3/fileNum=5 value of 0.499976

97

<Utility name="UTILITYBLOCK" order="1">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="RawEval" attribName="TotalSize">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="false" divisor="10"/>
</Utility>
<Utility name="LRU">
<Normalize normalizeName="NormalRanked" value_type="ceiling"/>

</Utility>
</Utility>
<Utility name="SUM">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="1"
matching_upper_bound="1"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.88"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="2"
matching_upper_bound="2"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.78"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="3"
matching_upper_bound="3"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.83"/>
</Utility>
<Utility name="MULT">
<!−− REGEX_MATCH −−>
<Utility name="REGEX_MATCH" matchFieldName="help"

regexPattern="(SOS)(.∗)"/>
<Utility name="CONST" defaultValue="0.98"/>

</Utility>
</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>
Listing 6.8: max(LRU*size,qos1,qos2,qos, regex, PLE) Packet XML format

98

6.2.9 FATE MAX(SIZE*LRU*distance,QOS,REGEX) ef-

fects upon caching

The final FATE QoS caching formula is represented by: MAX(SIZE ∗LRU ∗

(1−DISTANCE),MAX(QoS1∗.88, QoS2∗.78, QoS∗.83)+RND∗0.2, REGEX∗

.98 +RND ∗ 0.2) using the listing in 6.9.

Again, there are myriad variations of how best to represent the desired out-

come, but FATE shows its flexibility, by simple modifications to its formulaic

evaluation to quickly and easily represent the desired outcome.

max(LRU*size*distance, qos1,qos2,qos, regex, PLE)

Cache Snippet of MIN(SIZE*LRU*DISTANCE,QOS,REGEX) with al-

pha=0.8
MIN(SIZE*LRU*DIST,QOS,REGEX) a0.8

CACHED: /test1/fileNum=50 = 0.00926431
CACHED: /test3/fileNum=6 = 0.111221
CACHED: /test2/fileNum=7 = 0.739798
CACHED: /test3/fileNum=12 = 0.746332
CACHED: /test3/fileNum=67 = 0.75707
CACHED: /test3/fileNum=16 = 0.767808
CACHED: /test2/fileNum=2 = 0.798336
CACHED: /test3/fileNum=3 = 0.847713
CACHED: /test1/fileNum=1 = 0.882126
CACHED: /test2/fileNum=5 = 0.98754
CACHED: /test1/fileNum=6 = 0.995815
CACHED: /test3/fileNum=4 = 0.995937
CACHED: /test1/fileNum=10 = 1
PURGE: Store size is 380/370,

erase /test1/fileNum=50 value of 0.00926431
PURGE: Store size is 370/370,

erase /test3/fileNum=6 value of 0.111221

99

<Utility name="MAX">
<Utility name="MULT">
<Utility name="RawEval" attribName="TotalSize">
<Normalize normalizeName="GeometricMatch" biasLowVal="false"

invertValue="false" divisor="10"/>
</Utility>
<Utility name="LRU">
<Normalize normalizeName="NormalRanked" value_type="ceiling"/>

</Utility>
<Utility name="RawEval" attribName="Distance"

updateEntryPktType="8">
<Normalize normalizeName="GeometricMatch" biasLowVal="true"

invertValue="true" divisor="1"/>
</Utility>

</Utility>
<Utility name="SUM">
<Utility name="MAX">
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="1"
matching_upper_bound="1"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.88"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="2"
matching_upper_bound="2"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.78"/>
</Utility>
<Utility name="MULT">
<Utility name="COUNT" count_condition="none"

attribName="QOS" matching_lower_bound="3"
matching_upper_bound="3"
match_criteria="LeftRightInclusive"/>

<Utility name="CONST" defaultValue="0.83"/>
</Utility>
<Utility name="MULT">
<!−− REGEX_MATCH −−>
<Utility name="REGEX_MATCH" matchFieldName="help"

regexPattern="(SOS)(.∗)"/>
<Utility name="CONST" defaultValue="0.98"/>

</Utility>
</Utility>
<Utility name="MULT">
<Utility name="CONST" defaultValue="0.02"/>
<Utility name="RND" randomType="alwaysRnd"/>

</Utility>
</Utility>
<Utility name="PLE"/>

</Utility>
</Utility>

Listing 6.9: max(LRU*size*distance, qos1,qos2,qos, regex, PLE) Packet XML
format

100

Cache Snippet of MIN(SIZE*LRU*DISTANCE,QOS,REGEX) with al-

pha=1.2
MIN(SIZE*LRU*DIST,QOS,REGEX) a1.2

CACHED: /test2/fileNum=3 = 0.203483
CACHED: /test3/fileNum=5 = 0.399981
CACHED: /test2/fileNum=53 = 0.67473
CACHED: /test3/fileNum=76 = 0.684316
CACHED: /test2/fileNum=24 = 0.696146
CACHED: /test3/fileNum=44 = 0.70359
CACHED: /test2/fileNum=2 = 0.780773
CACHED: /test3/fileNum=3 = 0.842415
CACHED: /test2/fileNum=7 = 0.867473
CACHED: /test1/fileNum=1 = 0.898962
CACHED: /test2/fileNum=5 = 0.982971
CACHED: /test1/fileNum=6 = 0.99202
CACHED: /test3/fileNum=4 = 0.992062
CACHED: /test2/fileNum=4 = 1
PURGE: Store size is 410/370,

erase /test2/fileNum=3 value of 0.203483
PURGE: Store size is 370/370,

erase /test3/fileNum=5 value of 0.399981

6.3 Conclusion

Complex QOS caching can be easily achieved by using weighted atomic eval-

uators, in an algebraic expression. FATE easily allows the changes to be made

for custom QOS caching evaluation. As shown, the desired QOS effect can be

achieved by simple changes to the evaluators, normalizers, and algebraic formula.

The strength of FATE comes from allowing, normally incompatible algorithm

evaluations to be mathematically defined, allowing a simple algebraic formula to

represent complex evaluations and outcomes.

101

Chapter 7

Hashed Caching With Fate

7.1 Introduction

Traditional internet caching uses ICP (Internet Caching Protocol) [103] to

distribute HTTP content. ICP will query other web caches for content upon a

miss. If one of the other caches has the desired content, the cache will request a

copy to itself. It requires a query to other CDN’s (Content Delivery Networks) on

a miss, and does not scale well. Either the scale of other CDN caches must be kept

small, or the algorithm becomes bloated with too many requests to other CDN

caches. Some, such as Fan [40], recommend a bloom filter to minimize requests,

and use the bloom filter to represent files present in each CDN cache. Others

have suggested different distributed cache protocols. Karger, et al [55] suggested

using ’random cache trees’, which are load balanced, and hashed and accessed via

a random function. ICN caching, on the other hand, is dependent upon on-path

caches for easily accessible content, without requiring additional control protocols

such as ICP. But, according to Dabirmoghaddam [33], on-path caching offers

little benefit compared to caching near the edge. Off-path caching, of the variety

used by CDN’s, is difficult. An ideal solution for ICN would be a distributed

102

off-path cache (preferably closer to the edge), but not having a control protocol.

FATE makes this possible for both ICN and HTTP content. FATE allows an

Ipv4 packet to be forwarded to intermediate destinations. ICN, traditionally,

uses on-path caching, which can be inefficient, especially if not traversed. FATE

allows a chained IP field, for matching intermediate destinations. A traditional

consumer-producer pair arrives at a FATE node. The FATE node will lookup the

destination, and find an appropriate intermediate off path cache nodes. FATE will

push the producer destination on a chained list in the FATE packet, and push the

intermediate destination as the packet new destination. As each packet arrives at

an intermediate destination, the list is popped off.

7.2 Redirect to Off-Path Cache

Typically, packets are routed along a path: Original Packet Source(S) ->

Destination (D)

FATE will transmit the packet normally, except it will add an intermediate

off-path cache destination. The intermediate destination is calculated by hashing

the packet, and using the hashed value to determine which off-path node for the

intermediate destination. A Packet arrives at a FATE node, and based upon the

destination, intermediate nodes (A) are assigned (off path caches). The packet

pushes the Destination onto the packet list of destinations, and puts the first

intermediate route on the destination field.

Updated packet Source(S)-> Destination (A) Intermediate Path Field: A,D

When arriving at Node A, the next intermediate path is switched to the des-

tination:

Node A: Source (S) -> Destination (D) Intermediate Path Field: D

This continues until the packet either gets a cache hit (and returns early) or

103

arrives at the producer destination.

The various FATE packets are modified to track current and future intermedi-

ate nodes. The interest packet is modified as shown in listing 7.1, and the return

packet is appropriately modified as shown in 7.2.

In addition, the visited Nodes are pushed on a return path. This ensures, if a

packet goes to the producer, it will have the correct off-path return path of the

caches, before returning to the consumer.

By using a hash of the content name, the packet is redirected from its server

to an appropriate off path cache.

In traditional internet routing, NDS (name domain servers) play the role of

directing the desired named content to CDN’s or to the original origin/producer

of the content. When CDN’s are used, the information of the desired producer is

located inside the HTML header, allowing the CDN to fetch unavailable content.

This requires NDS to not have poisoned entries, and a 3rd party vendor to handle

sensitive content.

104

PktToFate:<FATEPKT purpose="4" name="/test1/fileNum=1/segment=0">
<Attribute name="DstChain" nameType="1" dataType="1" data="10.0.0.13;" />
<Attribute name="ReturnChain" nameType="2" dataType="1" data="" />
<TempAttribute name="Ipv4Dst" nameType="10" dataType="1" data="10.0.0.10"

/>
<TempAttribute name="Ipv4Src" nameType="11" dataType="1" data="10.0.0.1"

/>
...

</FATEPKT>

<FATEPKT purpose="4" name="/test1/fileNum=1/segment=0">
<Attribute name="DstChain" nameType="1" dataType="1"

data="10.0.0.13;10.0.0.10;" />
<Attribute name="NAMECHAIN" nameType="17" dataType="1" data="Node1 ;

" />
<Attribute name="ReturnChain" nameType="2" dataType="1" data="" />
<TempAttribute name="Ipv4Dst" nameType="10" dataType="1" data="10.0.0.13"

/>
<TempAttribute name="Ipv4Src" nameType="11" dataType="1" data="10.0.0.1"

/>
...

</FATEPKT>
Listing 7.1: FATE interest packet being modified to an intermediate destination

Return Data Packet:
<FATEPKT purpose="8" name="/test1/fileNum=1/segment=0">
<Attribute name="DATA" nameType="19" dataType="1" data="XX..." />
<Attribute name="DstChain" nameType="1" dataType="1"

data="10.0.0.13;10.0.0.1;"/>
<Attribute name="NAMECHAIN" nameType="17" dataType="1"

data="Node1 ; Node4 ;Node4 ; Node5 ; Node3 ; " />
<Attribute name="ReturnChain" nameType="2" dataType="1" data="" />
<Attribute name="ServerHitNodeName" nameType="20" dataType="4"

data="3" />
<Attribute name="Timestamp" nameType="4" dataType="2"

data="0094357700000000" />
<Attribute name="TtlHop" nameType="3" dataType="4" data="124" />
<TempAttribute name="Ipv4Dst" nameType="10" dataType="1"

data="10.0.0.13" />
...

</FATEPKT>
Listing 7.2: FATE data packet being modified to return to source, same path

105

Simple example of a normal consumer to producer request, with FATE packet

modifications, where there is no on-path cache in Figure 7.1. FATE allows al-

ternative routes, including towards on-path cache nodes in Figure 7.2, and if it

misses, use that route to the producer (and return path through the cache node)

in Figure 7.3. Listings 7.1 and 7.2 show the FATE packet modifications used for

internodal routing.

Figure 7.1: The original request path from consumer to producer

Figure 7.2: Simple redirected off-path cache hit

Figure 7.3: Simple redirected off-path server hit

106

7.3 Partition-Hashed Cache

In reality, cache locations may not be optimal, and may not be easily upgraded.

Adding a new cache on a different network node, rarely helps increase overall

cache-ability, typically requiring a replacement of the smaller sized cache with

larger size cache. Using FATE, we look at a single, large contiguous cache (of 30

elements) and compare it to a distributed hash cache (3 nodes, with capacity of

10 elements per node). Typically, on-path caching is ineffective and suffers from

a significant decay in cache hits the farther from the consumer. FATE attempts

to resolve that problem by hashing the content, to provide a distinct partition for

each content. Providing an ’extra’ cache node is similar to hard drive striping,

where each drive has a hashed portion of content. Whereas hard drives must be

located in the same machine to be effective, that stipulation does not exist for

network drives or caches.

For the single cache node, LRU is used to dictate eviction policy. In the

hash-cached modules, the formula becomes LRU ∗HASH(= num), where ’num’

represents a matching modulus value (1,2,3) for the respective cache node.

7.4 Results

Simple example of single cache vs hashed cache (over 3 nodes):

Producer

CACHE

CONSUMER

Figure 7.4: Single cache

107

Producer CACHE
(HASH =1)

CONSUMER

CACHE
(HASH=2)

CACHE
(HASH=3)

Node B

Node A

Figure 7.5: Simple 3-cache hashed network

Table 7.1: Total Cache vs split hash distributed caching

Alpha=1.2
Cache run1 run2 run3 run4 avg std

Topology dev
Cache-30 20.03% 20.13% 19.72% 19.63% 19.83% 0.0022

3 Hash Cache 10 19.42% 19.52% 19.5% 19.25% 19.42% 0.0017
effectiveness 96.96% 96.97% 98.91% 98.03% 97.96% 0.0017

Simple Hashed Caching: 3x10 vs 30 results, N=100k LRU, 7200 sec, 20 req/sec,

alpha=1

During the first run, the first cache had 1865 hits, second had 8798 hits, and

the third had 3316 hits, out of 71970 requests.

Below shows an example of cache hits from hashing by name, and which cache

contained it. Under that, we show the top ten cache distributions compared to

the calculated distribution by cache type. It should be noted cache1 (from hash

= 1) has the highest ratio of the top ten objects (66%), cache2 has 22% of the

distribution, and cache0 has 12%. Hash by name happened to hash more to cache1

than cache2 or cache0. Based upon the calculations for a summation of the first 10

elements only, the expected weighted values closely match the actual percentage

distributed to cache nodes at 63% for cache1, 24% for cache2, and 13% for cache0.

108

Top content, hashed value, and cache matching:
/test1/fileNum=1/segment=0 original hash:3636636289, to 1 [1,1]=1
/test1/fileNum=2 original hash:1685425049, to 2 [2,2]=1
/test1/fileNum=3 original hash:1398045355, to 1 [1,1]=1
/test1/fileNum=4 original hash:239951871, to 0 [0,0]=1
/test1/fileNum=5 original hash:84233572, to 1 [1,1]=1
/test1/fileNum=6 original hash:3591469750, to 1 [1,1]=1
/test1/fileNum=7 original hash:1621263263, to 2 [2,2]=1
/test1/fileNum=8 original hash:142833049, to 1 [1,1]=1
/test1/fileNum=9 original hash:4081996468, to 1 [1,1]=1
/test1/fileNum=10 original hash:2133279732, to 0 [0,0]=1

If we a rough, partial calculation for zipf distribution with only ten objects,

we have:
Hash Results Top 10

summation of N=10, alpha=1.0 = 2.929
Position 1 0.341417152147406
Position 2 0.170708576073703
Position 3 0.113805717382469
Position 4 0.085354288036851
Position 5 0.068283430429481
Position 6 0.056902858691234
Position 7 0.048773878878201
Position 8 0.042677144018426
Position 9 0.03793523912749
Position 10 0.034141715214741

Using the hash function on the first ten objects, into three separate hashed

receptacles shows it matches our hashed-cache distribution of the top ten items:
Hash DistributionHash 0 Hash 1 Hash 2

11.95\% 66.10\% 21.95\% Top 10 Cache distribution by hash
13.34\% 62.94\% 23.72\% expected hits by hash distribution

of top 10 elements

Using a distributed cache methodology, a highly comparable cache hit-rate

can be achieved as using a single higher capacity cache. In this test, a single 30

entry cache vs three 10 entry caches produced a 96+% effective cache rate. This

allows easier expansion of caches using a distributed method, as it is easier to

add additional caches compared to increasing the size of an existing cache. While

on-path caching will not be as effective as a single large cache, as-is, it can become

very competitive with proper tweaking of eviction criteria (as shown in this case,

using a HASH to partially dictate caching).

109

7.5 Ubiquitous Hashed Caching

Using Intermediate Route Caching presented earlier, on a complex map with

160 nodes, 60 consumers and 10 producers (6 consumers will request the same

content), and a variable number of caching nodes (10 and 83 caches).

Three scenarios are presented:

First, Intermediate Routing is disabled. This is the traditional IPv4/ICN

routing, with a small possibility of encountering a randomly placed, on-path cache.

Second, Intermediate (Directed) Routing using content dedicated caches. When

a FATE node assigns an intermediate cache, it is hashed from the producer des-

tination address. In our scenario, with 10 caching nodes, every 6 consumers will

request content from the same producer. Each FATE node will hash to the same

intermediate off-path cache. These cache nodes are not exclusive to the content,

they will cache any content which is off-path (via intermediate routing) or on-path

(via random network routing through the node).

Lastly, Hashed-Directed Intermediate Routing works differently. The packet’s

ICN name is hashed and directed to a cache. Thus different packet names, going

to the same producer can be directed to different caches. Each cache node reports

how much free space is available. The entire free space is summed up,and a hash

function modulus the availability is performed to determine which cache node

destination is used.

7.6 Results

The results between on-path, hashed and content-centric are shown, with 10

and 83 cached nodes.

110

Figure 7.6: Complex redirected off-path server hit

Table 7.2: Offpath vs On-path: 10 caches, 10 producers, 60 consumers, N=100k

Alpha=1.2
Cache run1 run2 run3 run4 avg std

Topology dev
Hash-Directed 28.84% 28.86% 28.82% 28.66% 28.8% 0.0009

Directed 28.84% 25.05% 23.89% 28.10% 26.47% 0.0238
On-Path 0% 2.94% 6.25% 0.51% 2.42% 0.0285
Alpha=0.8

Hash-Directed 0.98% 0.97% 0.98% 0.99% 0.98% 0.0001
Directed 0.98% 0.84% 0.79% 0.95% 0.89% 0.0009
On-Path 0% 0.08% 0.18% 0.02% 0.07% 0.0008
Alpha=0.5

Hash-Directed 0.031% 0.029% 0.034% 0.028% 0.031% 2.76e-05
Directed 0.031% 0.028% 0.028% 0.026% 0.028% 2.18e-05
On-Path 0% 0.002% 0.06% 0% 0.002% 2.71e-05

111

Table 7.3: Offpath vs On-path: Ubiquitous (83) caches, 10 producers, 60 con-
sumers

Alpha=1.2
Cache run1 run2 run3 run4 avg std

Topology dev
Hash-Directed 51.95% 42.78% 54.25% 36.56% 46.39% 0.0821

Directed 54.22% 51.05% 53.72% 52.85% 52.96% 0.0139
On-Path 0% 13.4% 12.36% 11.96% 9.43% 0.0631
Alpha=0.8

Hash-Directed 5.59% 7.76% 5.81% 5.6% 6.19% 0.0105
Directed 4.98% 4.8% 5.12% 5.06% 4.99% 0.0014
On-Path 0.16% 0.39% 0.34% 0.33% 0.31% 0.0010
Alpha=0.5

Hash-Directed 1.38% 4.86% 3.71% 6.12% 4.02% 0.0201
Directed 0.22% 0.21% 0.22% 0.2% 0.21% 0.0001
On-Path 0.01% 0.01% 0.01% 0.01% 0.01% 0

7.7 Comparison of Fate vs Traditional Caching

7.7.1 Traditional Caching

Caching, on the internet, has been extensively researched. Most of the recent

work improved cache performance using a constraint of popularity. The problem

is twofold: Popularity is not the only metric in a modern CDN. Customer level

(QoS), size of content, time to first byte for a cache miss (farther content origins

increase time) are all considered and measured. Yet, LRU is used not because

it is the best popularity caching algorithm (it is not), but because of the ease

of use, complexity of multiple constraints and temporal properties (which better

algorithms, such as LFU, lack). At times, popularity is not the most important

metric. CBMEN (DARPA program) used pocket networks of uniquely produced

content. It was a problem of preserving unique content and distributed access to

it.

Using traditional methods to (varying degrees) mimic FATE flexibility of

112

(MIN(SIZE * LRU * QoS, FRESHNESS):

1. Over all cached elements, evaluate all:

2. SIZE, LRU: MAP/SKIP LIST to find content quickly. Linked list to rank

the content. Separate into multiple QoS buckets. (e.g., QoS1-Lru or QoS2-

Lru)

3. FRESHNESS: Each content must be tagged with additional information

4. MULT: Use their relative position in the list to determine their rank or

value.

5. MIN(): Compare if FRESHNESS is valid. If it is not, evict content. If it is

valid, rank it against other content for eviction.

6. Problems: Inefficient traditional method: Requires O(N*E) ranking, where

N is the number of content, and E are the number of evaluations.

A faster, but less flexible traditional method requires grouping everything into

buckets:

1. TOTAL ORDERING SOLUTION: Have L*(E-1) number of buckets (L is

the number of rankings, and E is the number of buckets). Rank each element

to each other (e.g. QoS is lowest priority, then Size, and both are relatively

ranked by LRU).

2. Identify the correct bucket based on the ordering (which subset of QoS, Size,

ordered by LRU).

3. Take lowest ranked LRU in the appropriate Size-QoS buckets.

4. Evict from the lowest, non empty bucket.

113

5. Problems: Not Flexible, complex:

6. Requires time to create, program and debug each different structure for each

caching constraint combination.

7. Adding new constraints makes the implementation much more difficult

8. Breaks down when you use different ordering algorithms (e.g. LRU and

LFU).

9. Difficult to implement, when not fixed to a total ordering scheme for eviction.

7.7.2 FATE Caching

FATE, in caching, makes no assumptions. Fate resolves both issues of Caching.

Each constraint, or desired ranking (such as popularity or freshness) is an inde-

pendent evaluator. This evaluator returns, based upon its own method, a ranking

of content: ranging from 0 to 1. As each value is a normalized scalar [0,1], the re-

sults can be weighted, multiplied, added, minimum, maximum, or other aggregate

functions. This allows complex algorithmic implementations for requirements and

allows quick implementation. If the desired evaluator does not exist, it must be

created, which is much simpler in scope and complexity than a full caching algo-

rithm. Each Evaluator, independently, evaluates each packet (QoS, LRU, SIZE,

and Freshness). The results from each evaluator are weighted and combine into

an algebraic expression. Extra flexibility and simplicity: If different weights or

algebraic expression is desired, only the XML configuration file is changed (no

compile) Existing formula is easily modified for new constraints (e.g. Distance

from Producer) to adapt to different network systems

114

7.8 Conclusion

On-Path caching gets the lowest rate of cache hits. It shows the inefficiency

of on-path routing. Hash-Directed caching performs better at lower alpha’s (for

zipf), while Directed caching performs the best for highly repetitive (high alpha)

content.

115

Chapter 8

Functional Algebraic aTomic

Evaluators in Packet Forwarding

8.1 Introduction

Developing a new network routing protocol can be an laborious process com-

plicated by the constraints on how information is shared.

Each of these constraints affect the chosen routing algorithm: how is collision

detected (if detected at all), and how is it handled? What is the best route, hop

distance vs link bandwidth? Priority content vs low priority content, how is it

handled? The answer, typically, is "It depends". Depending on what is desired, a

longer optical fiber route may be preferred to over-the-air transmission. Battery

life for mobile devices/sensors may limit what needs to be routed. FATE is similar

to an FPGA; it is not as fast as a custom ASIC, but it has many advantages: it

allows reprogramming in the event the internal algorithm is not optimal; it allows

immediate testing of algorithms, as opposed to waiting for custom silicon to be

delivered. When a potential design is hindered by multiple parameters, creating

116

multiple versions of the software, each version having different dependencies, will

create unnecessary hardship in comparison of results, validation of algorithm, and

later improvements. Creating new algorithms, and comparing them to existing

research has many problems, including reproducibility [60] [97].

FATE evaluates information, from contextual metadata, to decide a course of

action, based upon the evaluated results. In essence, instead of a dependency upon

a fixed algorithmic implementation, FATE makes decisions based upon algebraic

atomic evaluators. Each evaluator performs an atomic evaluation of information,

which reflects the Linux philosophy of "Doing one thing, and do it well". The

entire evaluation formula consists of the atomic evaluators, connected by alge-

braic expressions, to give a higher level evaluation (e.g. MIN(FN1, FN2, MAX(

(FN3*0.6+0.4*FN4), 0.4))). FATE, in networking, can evaluate various content

to store/evict in a cache, determine which egress port offers the best performance

(in terms of networking constraints), or which content to prefetch. The purpose

of FATE is two fold. The first is to allow rapid changes to a given algorithm,

due to algorithmic changes, erroneous assumptions, or different constraints. The

second purpose is replicability of results regardless of architecture. FATE is ag-

nostic to the types of networking environments (hardware or various simulators),

or kernel/operating system implementations. FATE, as presented, allows faster

development for custom routing protocols, and ensures reproducibility when com-

pared on different platforms.

117

8.2 Related Work

8.2.1 NS3 Network Simulator

NS-3[31] is one of the most popular network simulators, with over a thousand

papers published on its platform. NS3 is event driven, written in C++11 (same as

FATE), to schedule networking events. NS3 also models real world interactions,

such as error rates on various mediums, and collisions.

8.2.2 ENCODERS

ENCODERS[61, 95] (Edge Networking with Content-Oriented Declarative En-

hanced Routing and Storage) is an SRI implementation of the PSIRP ICN models,

based upon Haggle[87]. PSIRP and Encoders both use a bloom filter based Pub-

Sub model, disseminating interests to neighbor nodes, and those neighbors return

matches to the data. ENCODERS used a very early iteration of FATE called Util-

ity Networking (Utility Caching-Prefetch, and Utility Forwarding), which evalu-

ated content, and based upon that value, made a decision. In ENCODERS,

Forwarding was fixed to several schemes, and was done via an early immature

version of Utility Forwarding, Prophet[66], Direct[89], or Epidemic[99].

8.2.3 Traditional Routing

Traditional routing, such as IP (Internet Protocol), uses a routing table, con-

sisting of subnets, which dictate the interface, gateway and next-hop neighbor for

each forwarded packet. The tables are populated by various routing protocols to

determine the best egress port, for packet delivery; typically shortest hop distance

or largest path bandwidth. The tables are populated by various routing proto-

cols, including but not limited to: OSPF (Open Shortest Path First) [74], RIP

118

(Routing Information Protocol [47], EIGRP (Enhanced Interior Gateway Rout-

ing Protocol) [15]. OLSR (Open Link State Routing) [29], and static routing.

When a packet is ready to be transmitted, the Layer 2 medium is checked for in-

progress packet transmissions. Typically, wired networks use CSMA/CD (packet

collision) and wireless networks use CSMA/CA (use RTS/CTS or Ready/Clear

signals to control when packets are sent) to avoid packet congestion/collisions in

the network.

8.3 FATE Forwarding Implementation

FATE resolves system dependencies, such as timers or hardware (such as GPS),

by using its own functions, wrapped and translated (if necessary) from the correct

architectural implementation. Thus, a timer on the NS3 simulator will use the

event-driven timer available in NS3, but in a Linux implementation, use the Linux

timer POSIX methods. Mentioned for completeness, FATE uses a flexible packet

framework, which uses a type-name-value tuple in the packet. FATE does use

uniquely named information, or named data, to identify each unique chunk of

data, allowing access to all the packet attributes by name.

FATE is organized in a top-down format, where the ’Node’ module (8.3.2)

handles specific purpose modules. Specific purpose modules can be any purpose,

with the intent to have the specific module do its own job, for easier mainte-

nance, verification, and testing. Some modules are forwarding, caching, discovery,

security, et al.

Each utility is an atomic, algebraic function, which evaluates the content, or

returned value, and returns a normalized scalar ([0, 1]). This allows a very flexible

and powerful method to evaluate information. The module will take a valuation

of the content, and perform an action on it (e.g. Caching will store or evict

119

content, forwarding will decide which packet for which egress port and next hop

neighbor, or security will evaluate the packet for trust-worthiness). In this paper,

we concentrate on the forwarding aspects of FATE.

FATE uses a modified BSD license. The license makes the code free to use,

with the exception of giving credit when FATE is used in any manner.

8.3.1 Functional Algebraic aTomic Evaluators

The concept of FATE is to evaluate information (packet attributes, network

conditions, or physical (PHY) properties), and perform an action, based upon

said result. In order to evaluate a result, atomic algebraic functions are used.

Each function can be an aggregate (such as minimum or addition), or an atomic

evaluator.

Aggregation Functions

FATE supports several aggregation methods, all take one or more inputs, and

returns an appropriate result. Below is a partial listing of available aggregation

functions:

MIN : MINIMUM(a,b,..,z) returns the minimum value of its inputs.

MAX : MAXIMUM(a,b,..,z) returns the maximum value of its inputs.

ADD : ADDITION(a,b,..,z) returns the sum of all its input. The sum may be

greater than 1.0, and may require scaling.

MULT : MULTIPLICATION(a,b,..,z) returns the product of its inputs.

Atomic Functional Methods

FATE supports several atomic functional methods, below is a partial listing.

Each atomic function may be stateful, but the state is exclusive to each instance

120

of the function. Atomic functions evaluate a specific attribute, functionality, algo-

rithm response, or statistical method, with a specific purpose, to provide an eval-

uation based upon its functionality (as an example, certain algorithms are based

upon several or multiple parameters; whereas FATE is based upon the principle

to have many singular functions do the evaluation, then weighted based upon the

appropriate aggregate function). Many functions are generic, with configuration

options to allow them to be aliased to specific functionality. The following is a

subset of atomic algebraic functions, currently available:

CONSTANT: A constant value, typically used with multiplication, e.g., 0.4 *

TOS (Type Of Service).

PKT_ATTRIBUTE: This function relays a value of a specified packet at-

tribute. Examples include TTL (which returns a ’1’ if TTL is 1+, but ’0’ if it is

zero), TOS/COS (where a matching attribute value returns a predefined value,

e.g., TOS of ’3’ returns ’1.0’, etc.). Some of the functions are generic, applied

to many fields (e.g. TOS matches a specific value, it returns ’1’. It depends on

multiplying by a constant to give a weighted value, such as 0.4 * TOS. While the

generic function uses a named field (all field attributes are accessed by name),

they are, typically, written in a straightforward manner to identify their purpose.

Thus, ’TOS’ is shorthand for PKT_ATTRIBUTE("TOS", 3).

TABLE_ATTRIBUTE : ATTRIBUTE(node/PHY-name, name) is used when

a function needs to access a table to determine a value. Examples of this are

properties of the PHY (speed or properties, such as secure fiber optical cable vs

wireless broadcasting), or a nodes’ power measurement (e.g. how much battery is

left). Other traditional attributes may be accessed from an internal node table,

including if the medium is busy, PHY is transmitting, or measurements of network

congestion (if available). Typically, discovery (or HELLO) packets are used to help

121

fill in tables, such as new neighbors, or monitor how often collisions occur.

TUPLE_NORMALIZED : TUPLE_NORMALIZE(PHY, Source, Destina-

tion, value, FN()) Table of tuples, which return a value. Typically, hop-counts for

the specified PHY, and how many hops from ’Source’ to ’Destination’, are used

as a key. Any tuple property can be modeled, but, for this paper, it is aliased

to HOPCOUNT(). The actual normalization function is dictated by passing in a

function, FN(). This allows a choice of linear, logarithmic, or other normalization

of counts.

Packet Attributes: FATE packets can carry many attributes, most of which

can be evaluated. There is an exception to this, currently being used to forward

IP packets. By using a chain (list) of intermediate destinations, and allow the

existing layer 3 (typically IP) to route the packet. FATE has its own packet

format, and can be encapsulated within any L2/L3/L4 packet (or it can be left

a pure FATE packet). But, this attribute can be used to encapsulate a list of

Addresses (A,B,C,D). When a packet (such as IP) is sent and arrives at the correct

destination, this field is checked, and the destination packet is changed. E.g. if

a packet has a destination of E, when it arrives at E, it is replaced with ’A’

(which is popped off the attribute queue). When the packet is received by ’A’,

it is forwarded to ’B’ (as the new destination). There are multiple uses for this

feature, but it does not evaluate as other atomic functions. This feature is used to

query specific nodes, off-path caching, share information between specific network

nodes, and avoid known down network pitfalls. The routing used is the original

routing protocol, but simply forced to route multiple times, to collect or share

information.

122

MIN
MIN(0.8*SPEED+0.2*QoS, PHYFREE, TTLVALID)

SUM
(0.8*SPEED+0.2*QoS)

MULT
0.2 * QoS

MULT
0.8* SPEED

CONST
(0.2)

(PHYFREE)
MEDIUM_ACTIVE

CONST
(0.8)

QoS SPEED

(--TTL != 0)
TTLVALID

Figure 8.1: Simple forwarding representation of MIN(0.8*HOPCNT+0.2*QoS,
PHYFREE, TTLVALID)

8.3.2 Modules

FATE is structured as a tree illustrated in Figure 8.1. Atomic functions are

the leaves of the tree and algebraic aggregate functions are tree branches. The

information packet is passed down and evaluated at each leaf. The results then

move along the aggregated branches towards the root to give an evaluated result.

To easily model this, we need three main (atomic) functions to forward, in

this simple example: We take an evaluation of the HOPCNT (hop count to the

destination, from a specific neighbor node and PHY), weighted at 80%, and the

QoS (Quality of Service, typically TOS field in IP) at 20% weight (summing

them). To prevent sending a packet when the TTL has expired, we do a MIN

(minimum) with TTLVALID (’1’ if the TTL field is 1+, otherwise ’0’); note the

Figure shows it being pre-decremented (some FATE utilities can modify the packet

fields/attributes). In addition, we do not wish to transmit the packet when the

PHY is busy, or the timer is still counting down from a packet collision, such as

CSMA/CD or /CA (represented by PHYFREE). Based upon the evaluation, it is

123

up to the final evaluation to decide if the packet is forwarded, dropped, or must

wait in the queue.

Figure 8.2: Utility forwarding tree representation of physical ports

When FATE evaluates a packet for forwarding, it evaluates against every PHY-

Neighbor pair (against the destination node, not shown). As shown in Figure 8.2,

UF1 has 1 neighbor node via bluetooth, UF2 has twoWiFi neighbors, and UF3 and

UF4 each have a single wired neighbor. Notice the UF1 and UF2 share the same

neighbor, but using different PHYs. For each packet, the evaluation occurs on

the UF1-Node2, UF2-Node2, UF2-Node3, UF2-Node4, UF2-Node5 pairs. Thus,

in this case, for a single forwarding, 5 evaluations are made, and the highest rated

evaluation wins. FATE allows a minimum threshold to send. In case there is

more than a single packet to send, the first packet is sent out, and that PHY

(and its neighbors) are removed from evaluation. Thus, if a queue of 2 packets

are waiting to be routed, and the first is transmitted on UF2, the next packet is

evaluated on UF1,UF3, and UF4. If any of those meet the minimum threshold

to send (the threshold is set in the XML file), it will be sent on another PHY, to

allow more efficient load balancing. As an example, WiFi might be preferred, but

bluetooth could be acceptable for packet transmission. FATE configures at the

124

PHY level, sharing the same configuration for each PHY-Neighbor pair, but does

not require all PHY configuration files to be the same (allowing flexibility in WiFi

vs Ethernet collision avoidance/detection). When each neighbor is compared, the

table lookup utility is used to identify (as a normalized vector) the distance to

the intended destination.

8.4 Example Forward Load Balancing

Figure 8.3: Example: FATE load balancing

Considering the following three constraints, and the desire is to minimize con-

gestion by using the FATE formula: MIN(DIST * DELIVERTIME, TIMEOUT)

Time to delivery: Delivery time from request to delivery. The prior packet’s

results are sent as a packet attribute, thus the Forwarding module gets the deliv-

ery time rate from the prior packets. Packet failure timeout (TIMEOUT): Using

ACK’s, measure the rate of successive and successful packet transmission. For the

timeout, it returns ‘0’, if the timeout expires, it returns ‘1’. This is per destination

for ACKs, but apply universally if using Ethernet collision detection. Distance

(Hops) to Destination (DIST) : Hops to destination DIST will use the distance

normalizer (e.g. 10 hops = 0.5, 5 hops = 1.0), as data is more expensive when it

must be retrieved over longer distances. DELIVERY TIME will use linear time

normalization (similar to LRU) over ‘x’ seconds TIMEOUT will use exponential

125

timeout (2n)microseconds (zero if no ACKs are seen), otherwise it will be ‘1’

Comparing two cases (SHORT1, LONG1 and SHORT2, LONG2), it can be

seen how algebraic evaluators make a decision to forward.

Table 8.1: Sample PHY Table Setup for Node B

Constraint SHORT1 LONG1 SHORT2 LONG2
Distance 1.0 0.5 1.0 0.5
Delivery Time 1.0 0.6 0.4 0.6
Timeout 0 1.0 1.0 1.0
MIN() (1*1, .0)=.0 (.5*.6, 1)=.3 (1*.4, 1)=.4 (.5*.6,1)=.3

Another form of congestion is BUFFERBLOAT. When the packet buffers are

full, it takes time for the buffers to drain. During this time, packets are dropped,

which may affect one packet stream more than another. Simple BUFFERBLOAT

solution: Drop the lowest ranked packet in buffer (similar to caching) Packet im-

portance (IMPORTANCE) Customer origin (some customers pay to have higher

QoS) (QOS) Packet Type (UDP is less sensitive to drops than TCP; network

control packets may warrant higher importance) (TYPE) Quota per destination

(shaping & sharing) (QUOTA): Ensure fair streaming bandwidth MIN((IMPORTANCE

* QOS)*0.5 + TYPE*0.5), QUOTA)

Drop all packets which don’t meet a certain threshold (e.g. 0.2), or lowest

ranked packet, same as caching.

8.5 Sample Results

FATE is currently available, but the full integration with NS3 simulator is

not yet complete (caching is complete, with partial routing). FATE is missing

the NS3 integration to retrieve hop-counts (from IPv4), PHY speed, and collision

rate from the NS3 simulator.

126

Figure 8.4 illustrates a sample network using Table 8.2 for the PHY properties

of Node B and Table 8.3 for the neighbor↔ {destination hop count per phy-pair}.

As stated in Table 8.2, the value of the PHY network speed is logarithmic

to the largest value (1Gbps) In a similar manner, the hop count is reduced to a

normalized value between [0,1]. The value of a destination 1-hop away is ’1.0’,

while three hops away is ’.034’.

A B

C
D

E F

Bluetooth

Figure 8.4: Representation of FATE with PHY-neighbor pairs

Using an algebraic formula of HOP*SPEED for route B to F, returns three

values, the Bluetooth route (1 hop, lower speed; 0.23 * 1 = 0.23), or the wired

route (3 hops, 1gbps speed; 0.34 * 1 = 0.34. From this formula, it is preferable

to send packets over the longer but faster wired route. Another example is from

node B to C, which gives a value, of 1 hop via WiFi of 1.0*0.67, as opposed to a

wired route (2 hops) of 0.67*1. In this instance, both have an equal rating (ties

can be broken by random determination, or by additional algebraic criteria).

Or, using TOS values to determine priority in a congested system, where TOS

of 0 returns ’0.2’, and TOS (Type of Service) of 7 returns ’1.0’, we can a simple

TOS*HOPS. This allows short path packets to be delivered despite their TOS

127

Table 8.2: Sample PHY Table Setup for Node B

PHY Range Speed SpeedValue
(logarithmic)

1-Wire inf 1gbs 1
2-Blue-tooth 5m 5mbs 0.23
3-Wireless 60m 100mbs 0.67

Table 8.3: Sample Partial HOP Table Setup for Node B

PHY Neighbor Dest Node Hops HopValue
1 A A 1 1
1 A C 2 0.67
1 A D 3 0.34
2 F F 1 1
2 F E 2 0.67
3 C C 1 1
3 D D 1 1
3 D E 2 0.67

value, while longer packet paths are served only by higher value TOS. Assuming

a maximum of 20 hops, a TOS(0), going 1 hop, will have the same value as

a TOS(7) packet going 4 hops (TOS * HOPS; 0.2 * 1.0 for short path, 1.0 *

0.2(4/20)). There is no restriction to HOW the packet gets evaluated. To always

give priority to TOS packet, routing can occur by TOS, then HOPS, e.g., TOS*0.8

+ HOPS*0.2, or MIN(TOS, HOPS) * SPEED. Obviously, these values are chosen

to give a sense of how a route would be selected, by evaluation, not an actual

forwarding algorithm per se.

8.6 Conclusion

Reducing algorithmic functionality to specialized atomic functions greatly in-

creases the flexibility and power of new implementations of routing protocols. As

128

each atomic evaluation function is created, it adds to the basic building blocks

for succeeding algorithms, and enables designers to focus on rapid and efficient

algorithmic development. The plug-and-play aspects of FATE significantly reduce

development time, and turn complex algorithms to simple algebraic expressions

(configured by XML). FATE forwarding is meant to be a consistent cross plat-

form and allow rapid development. It still keeps internal state and processes each

packet to every PHY-Neighbor (to destination) pair. Typically, FATE uses more

CPU and is slower than the equivalent optimized algorithm. FATE is implemented

under a modified BSD license, with the only requirement of giving credit for usage

of the code or concepts therein. The code is available online [68].

129

Chapter 9

Conclusion

This thesis introduced FATE, a simple approach for more efficient and effective

data interpretation in protocol stacks. It consists of a group of data interpreters,

or experts, that output the utility of an input piece of data based on an alge-

braic equation defined for a protocol and those outputs can be combined into an

aggregated utility that reflects a complex statement regarding the policies and

restrictions with which a protocol uses the data at hand to take actions.

FATE is configurable to handle changes in the network topology or user re-

quirements. It was shown that FATE can be used to improve the performance

of caching systems and handle multiple quality-of-service constraints. It was also

shown that FATE can be used for data forwarding subject to multiple constraints

route over many constraints. FATE was also shown to support hash-based routing,

where an Interest packet can hash the data name to resolve to a distributed cache

network. In this manner, both routing and caching are used to reduce producer

load and improve consumer response time for content delivery.

This thesis was limited to static functions and policies defining the way in

which the utility of data is computed for a protocol. However, a promising area

of future work consists of making the algebraic functions and the methods used

130

to aggregate them change dynamically in the context of reinforcement learning to

make the data interpretation component of a protocol more self-reliant,without

having to change the basic operation of the protocol itself. Simple examples of how

this could be approached are the parameter adaptations that have been proposed

in the recent past for TCP to take advantage of reinforcement learning in the

computation of round-trip times.

131

Bibliography

[1] Content mediator architecture for content-aware networks - comet. Online;
accessed 13-October-2015.

[2] Expressie internet architecture - xia. Online; accessed 13-October-2015.

[3] Green icn. Online; accessed 13-October-2015.

[4] Honeypot (computing). Online; accessed 13-October-2015.

[5] Personal and social communication services for health and lifestyle monitor-
ing. Online; accessed 13-October-2015.

[6] Publish-subscribe internet technology - pursuit. Online; accessed 13-
October-2015.

[7] Publish-subscribe internetrouting paradigm - psirp. Online; accessed 13-
October-2015.

[8] Scalable and adaptive internet solutions - sail. Online; accessed 13-October-
2015.

[9] Taguchi methods. Online; accessed 13-October-2015.

[10] B Adamson, C Bormann, M Handley, and J Macker. Negative-
acknowledgment (nack)-oriented reliable multicast (norm) protocol. Tech-
nical report, 2004.

[11] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN
simulator for NS-3. Technical Report NDN-0005, NDN, October 2012.

[12] Deepali D Ahir and Sagar B Shinde. Caching simulators for content centric
networking. International Journal of Science and Research (IJSR), 2014.

[13] Bengt Ahlgren, Matteo D’Ambrosio, Marco Marchisio, Ian Marsh, Chris-
tian Dannewitz, Börje Ohlman, Kostas Pentikousis, Ove Strandberg, René
Rembarz, and Vinicio Vercellone. Design considerations for a network of in-
formation. In Proceedings of the 2008 ACM CoNEXT Conference, page 66.
ACM, 2008.

132

[14] Jeff Ahrenholz, Claudiu Danilov, Thomas R Henderson, and Jae H Kim.
Core: A real-time network emulator. In Military Communications Confer-
ence, 2008. MILCOM 2008. IEEE, pages 1–7. IEEE, 2008.

[15] R Albrightson, JJ Garcia-Luna-Aceves, and Joanne Boyle. Eigrp–a fast
routing protocol based on distance vectors. 1994.

[16] Andrea Araldo, Michele Mangili, Fabio Martignon, and Dario Rossi. Cost-
aware caching: optimizing cache provisioning and object placement in ICN.
In IEEE Globecom 2014, Proceedings of Global Communications Confer-
ence (GLOBECOM), 2014 IEEE, pages 1108 – 1113, Austin, United States,
December 2014.

[17] Nils Aschenbruck, Raphael Ernst, Elmar Gerhards-Padilla, and Matthias
Schwamborn. Bonnmotion: a mobility scenario generation and analysis
tool. In Proceedings of the 3rd International ICST Conference on Simula-
tion Tools and Techniques, page 51. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2010.

[18] César Bernardini, Thomas Silverston, and Olivier Festor. Socially-aware
caching strategy for content centric networking. In Networking Conference,
2014 IFIP, pages 1–9. IEEE, 2014.

[19] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: Evidence and implications. In INFO-
COM’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 1, pages 126–134.
IEEE, 1999.

[20] Gabriel M. Brito, Pedro Braconnot Velloso, and Igor M. Moraes. Main ICN
Architectures, pages 23–42. John Wiley and Sons, Inc., 2013.

[21] Guohong Cao, Liangzhong Yin, and Chita R Das. Cooperative cache-based
data access in ad hoc networks. Computer, 37(2):32–39, 2004.

[22] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. Cache
“less for more” in information-centric networks. In NETWORKING 2012,
pages 27–40. Springer, 2012.

[23] Narottam Chand, Ramesh C Joshi, and Manoj Misra. Cooperative caching
in mobile ad hoc networks based on data utility. Mobile Information Sys-
tems, 3(1):19–37, 2007.

[24] Lei Chen and Wendi B Heinzelman. Qos-aware routing based on bandwidth
estimation for mobile ad hoc networks. IEEE Journal on selected areas in
communications, 23(3):561–572, 2005.

133

[25] Raffaele Chiocchetti, Dario Rossi, and Giuseppe Rossini. ccnsim: An highly
scalable ccn simulator. In ICC, pages 2309–2314. IEEE, 2013.

[26] Raffaele Chiocchetti, Davide Rossi, and Giuseppe Rossini. ccnsim: An
highly scalable ccn simulator. In Communications (ICC), 2013 IEEE Inter-
national Conference on, pages 2309–2314. IEEE, 2013.

[27] Kideok Cho, Munyoung Lee, Kunwoo Park, Ted Taekyoung Kwon, Yanghee
Choi, and Sangheon Pack. Wave: Popularity-based and collaborative in-
network caching for content-oriented networks. In Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages
316–321. IEEE, 2012.

[28] Hoon-gyu Choi, Jungmin Yoo, Taejoong Chung, Nakjung Choi, Taekyoung
Kwon, and Yanghee Choi. Corc: coordinated routing and caching for named
data networking. In Proceedings of the tenth ACM/IEEE symposium on
Architectures for networking and communications systems, pages 161–172.
ACM, 2014.

[29] Thomas Clausen, Philippe Jacquet, Cédric Adjih, Anis Laouiti, Pascale
Minet, Paul Muhlethaler, Amir Qayyum, and Laurent Viennot. Optimized
link state routing protocol (olsr). 2003.

[30] Brian Cohen. Bit torrent. Online; accessed 13-October-2015.

[31] NS-3 Consortium. Network simulator ns3. Online; accessed 13-October-
2015.

[32] Ali Dabirmoghaddam, Maziar Mirzazad Barijough, and JJ Garcia-Luna-
Aceves. Understanding optimal caching and opportunistic caching at the
edge of information-centric networks. In Proceedings of the 1st international
conference on Information-centric networking, pages 47–56. ACM, 2014.

[33] Ali Dabirmoghaddam, Maziar Mirzazad Barijough, and J.J. Garcia-Luna-
Aceves. Understanding optimal caching and opportunistic caching at “the
edge” of information-centric networks. In Proceedings of the 1st ACM Con-
ference on Information-Centric Networking, ACM-ICN ’14, page 47–56,
New York, NY, USA, 2014. Association for Computing Machinery.

[34] Christian Dannewitz. Netinf: An information-centric design for the future
internet. In Proc. 3rd GI/ITG KuVS Workshop on The Future Internet,
2009.

[35] Christian Dannewitz, Dirk Kutscher, Börje Ohlman, Stephen Farrell, Bengt
Ahlgren, and Holger Karl. Network of information (netinf)–an information-
centric networking architecture. Computer Communications, 36(7):721–735,
2013.

134

[36] Fahad R Dogar, Amar Phanishayee, Himabindu Pucha, Olatunji Ruwase,
and David G Andersen. Ditto: a system for opportunistic caching in multi-
hop wireless networks. In Proceedings of the 14th ACM international con-
ference on Mobile computing and networking, pages 279–290. ACM, 2008.

[37] Stephanie Fraley et al. Taguchi methods using orthogonal arrays. Online;
accessed 13-October-2015.

[38] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–
131, 2003.

[39] Suyong Eum, Kiyohide Nakauchi, Masayuki Murata, Yozo Shoji, and No-
zomu Nishinaga. Potential based routing as a secondary best-effort routing
for information centric networking (icn). Computer Networks, 57(16):3154–
3164, 2013.

[40] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache:
a scalable wide-area web cache sharing protocol. IEEE/ACM transactions
on networking, 8(3):281–293, 2000.

[41] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu
Koponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. Less pain,
most of the gain: Incrementally deployable icn. In ACM SIGCOMM Com-
puter Communication Review, volume 43, pages 147–158. ACM, 2013.

[42] Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C Polyzos. Devel-
oping information networking further: From psirp to pursuit. In Broadband
Communications, Networks, and Systems, pages 1–13. Springer, 2012.

[43] JJ Garcia-Luna-Aceves, James Mathewson, Ram Ramanathan, and Bishal
Thapa. Loop-free integrated forwarding and routing with gradients. In MIL-
COM 2018-2018 IEEE Military Communications Conference (MILCOM),
pages 1–9. IEEE, 2018.

[44] JJ Garcia-Luna-Aceves, Marc Mosko, Ignacio Solis, Rebecca Braynard, and
Rumi Ghosh. Context-aware packet switching in ad hoc networks. In 2008
IEEE 19th International Symposium on Personal, Indoor and Mobile Radio
Communications, pages 1–6. IEEE, 2008.

[45] Cesar Ghali, Gene Tsudik, and Ersin Uzun. Needle in a haystack: Mitigating
content poisoning in named-data networking. 2014.

[46] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Ragha-
van, and James Wilcox. Information-centric networking: seeing the forest

135

for the trees. In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, page 1. ACM, 2011.

[47] C Hedrick. Rfc 1058: The routing information protocol (rip). Internet
Engineering Task Force (IETF) Request For Comments, http://ietf. org/r-
fc/rfc1058. txt, 1988.

[48] Mohamed Hefeeda and Osama Saleh. Traffic modeling and proportional
partial caching for peer-to-peer systems. IEEE/ACM Transactions on net-
working, 16(6):1447–1460, 2008.

[49] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based for-
warding in delay-tolerant networks. Mobile Computing, IEEE Transactions
on, 10(11):1576–1589, 2011.

[50] Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp. A hybrid qos
routing strategy for suburban ad-hoc networks. In The 11th IEEE Inter-
national Conference on Networks, 2003. ICON2003., pages 225–230. IEEE,
2003.

[51] Natalie Ivanic, Brian Rivera, and Brian Adamson. Mobile ad hoc network
emulation environment. In Military Communications Conference, 2009.
MILCOM 2009. IEEE, pages 1–6. IEEE, 2009.

[52] Joshua Joy, Yu-Ting Yu, Mario Gerla, Samuel Wood, James Mathewson,
and Mark-Oliver Stehr. Network coding for content-based intermittently
connected emergency networks. In Proceedings of the 19th annual interna-
tional conference on Mobile computing & networking, pages 123–126. ACM,
2013.

[53] Jussi Kangasharju, James Roberts, and Keith W Ross. Object replica-
tion strategies in content distribution networks. Computer Communications,
25(4):376–383, 2002.

[54] Arseny Kapoulkine. pugixml – light-weight, simple and fast xml parser for
c++ with xpath support. Online, accessed 13-October-2015.

[55] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan
Dhanidina, Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi.
Web caching with consistent hashing. Computer Networks, 31(11-16):1203–
1213, 1999.

[56] Konstantinos Katsaros, George Xylomenos, and George C Polyzos. Mul-
ticache: An overlay architecture for information-centric networking. Com-
puter Networks, 55(4):936–947, 2011.

136

[57] Vikas Kawadia, Niky Riga, Jeff Opper, and Dhananjay Sampath. Slinky: An
adaptive protocol for content access in disruption-tolerant ad hoc networks.
In ACM MobiHoc 2011 International Workshop on Tactical Mobile Ad Hoc
Networking. Citeseer, 2011.

[58] Joud Khoury, Scott Nelson, Armando Caro, Vikas Kawadia, Dorene Ryder,
and Tim Strayer. An efficient and expressive access control architecture
for content-based networks. In Military Communications Conference (MIL-
COM), 2014 IEEE, pages 1034–1039. IEEE, 2014.

[59] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. In ACM
SIGCOMM Computer Communication Review, volume 37, pages 181–192.
ACM, 2007.

[60] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. Manet simula-
tion studies: the incredibles. SIGMOBILE Mob. Comput. Commun. Rev.,
9(4):50–61, 2005.

[61] Dirk Kutscher, Taekyoung Kwon, and Ignacio Solis. Information-Centric
Networking 3 (Dagstuhl Seminar 14291). Dagstuhl Reports, 4(7):52–61,
2014.

[62] Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. The lcd intercon-
nection of lru caches and its analysis. Performance Evaluation, 63:609–634,
2006.

[63] Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis. Meta algorithms
for hierarchical web caches. In Performance, Computing, and Communica-
tions, 2004 IEEE International Conference on, pages 445–452. IEEE, 2004.

[64] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. Lrfu: A spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE
transactions on Computers, (12):1352–1361, 2001.

[65] Jun Li, Hao Wu, Bin Liu, Jianyuan Lu, Yi Wang, Xin Wang, Yanyong
Zhang, and Lijun Dong. Popularity-driven coordinated caching in named
data networking. In Proceedings of the eighth ACM/IEEE symposium on Ar-
chitectures for networking and communications systems, pages 15–26. ACM,
2012.

[66] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in intermit-
tently connected networks. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 7(3):19–20, 2003.

137

[67] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia
Zhang. ndnSIM 2.0: A new version of the NDN simulator for NS-3. Tech-
nical Report NDN-0028, NDN, January 2015.

[68] James Mathewson. Fate - functional algebraic atomic evaluators.
http:/github.com/jlmathew/Fate. Online.

[69] James Mathewson. Fate cache code and results for icnc2019.
https://drive.google.com/file/d/1FYRE7SCiEWbJfWC1Icy04sp1uIhLNW2g/view?usp=sharing.
Online.

[70] Zhourong Miao and Antonio Ortega. Scalable proxy caching of video under
storage constraints. IEEE journal on selected areas in communications,
20(7):1315–1327, 2002.

[71] Scott Michel, Khoi Nguyen, Adam Rosenstein, Lixia Zhang, Sally Floyd,
and Van Jacobson. Adaptive web caching: towards a new global caching ar-
chitecture. Computer Networks and ISDN systems, 30(22):2169–2177, 1998.

[72] Zhongxing Ming, Mingwei Xu, and Dan Wang. Age-based cooperative
caching in information-centric networks. In Computer Communications
Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages 268–
273. IEEE, 2012.

[73] James Mathewson Maziar Barijough Ehsan Hemmati J.J. Garcia-Luna-
Aceves Marc Mosko. Sconet : Simulator content networking. Online; ac-
cessed 13-October-2015.

[74] John Moy et al. Ospf version 2. 1998.

[75] Parc. Ccnx content centric networking project. Online; accessed 13-October-
2015.

[76] Madhav S. Phadke. Taguchi methods using orthogonal arrays. Online;
accessed 13-October-2015.

[77] Thomas Plagemann, Roberto Canonico, Jordi Domingo-Pascual, Carmen
Guerrero, and Andreas Mauthe. Infrastructures for community networks.
In Content Delivery Networks, pages 367–388. Springer, 2008.

[78] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-
network caching for information-centric networks. In Proceedings of the sec-
ond edition of the ICN workshop on Information-centric networking, pages
55–60. ACM, 2012.

138

[79] Michael Rabinovich, Jeff Chase, and Syam Gadde. Not all hits are cre-
ated equal: cooperative proxy caching over a wide-area network. Computer
Networks and ISDN Systems, 30(22):2253–2259, 1998.

[80] Jing Ren, Kejie Lu, Fei Tang, Jin Wang, Jianping Wang, Sheng Wang,
and Shucheng Liu. Caka: a novel cache-aware k-anycast routing scheme for
publish/subscribe-based information-centric network. International Journal
of Communication Systems, pages n/a–n/a, 2015.

[81] Pablo Rodriguez, Christian Spanner, and Ernst W Biersack. Web caching
architectures: hierarchical and distributed caching. In Proceedings of WCW,
volume 99, 1999.

[82] Giuseppe Rossini and Dario Rossi. Coupling caching and forwarding: Ben-
efits, analysis, and implementation. In Proceedings of the 1st international
conference on Information-centric networking, pages 127–136. ACM, 2014.

[83] Lorenzo Saino, Ioannis Psaras, and George Pavlou. Icarus: a caching simula-
tor for information centric networking (icn). In Proceedings of the 7th Inter-
national ICST Conference on Simulation Tools and Techniques, pages 66–
75. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2014.

[84] Stefano Salsano, Nicola Blefari-Melazzi, Andrea Detti, Giacomo Morabito,
and Luca Veltri. Information centric networking over sdn and openflow:
Architectural aspects and experiments on the ofelia testbed. Computer Net-
works, 57(16):3207–3221, 2013.

[85] Stefan Saroiu, Krishna P Gummadi, Richard J Dunn, Steven D Gribble,
and Henry M Levy. An analysis of internet content delivery systems. ACM
SIGOPS Operating Systems Review, 36(SI):315–327, 2002.

[86] Mary R Schurgot, Cristina Comaniciu, and Katia Jaffres-Runser. Beyond
traditional dtn routing: social networks for opportunistic communication.
arXiv preprint arXiv:1110.2480, 2011.

[87] James Scott, Jon Crowcroft, Pan Hui, and Christophe Diot. Haggle: A
networking architecture designed around mobile users. In WONS 2006:
Third Annual Conference on Wireless On-demand Network Systems and
Services, pages 78–86, 2006.

[88] D. Skeen. Vitria’s publish-subscribe architecture. Online; accessed 13-
October-2015.

139

[89] Ignacio Solis and J. J. Garcia-Luna-Aceves. Robust content dissemination
in disrupted environments. In Proceedings of the Third ACM Workshop on
Challenged Networks, CHANTS ’08, pages 3–10, New York, NY, USA, 2008.
ACM.

[90] M. Mosko I. Solis. Ccnx messages in tlv format. Online; accessed 13-
October-2015.

[91] M. Mosko I. Solis. rfc8609. Online; accessed 17-Mar-2021.

[92] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghaven-
dra. Spray and wait: an efficient routing scheme for intermittently connected
mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking, pages 252–259. ACM, 2005.

[93] Thrasyvoulos Spyropoulos, Rao Naveed Rais, Thierry Turletti, Katia
Obraczka, and Athanasios Vasilakos. Routing for disruption tolerant net-
works: taxonomy and design. Wireless networks, 16(8):2349–2370, 2010.

[94] Thrasyvoulos Spyropoulos, Thierry Turletti, and Katia Obraczka. Rout-
ing in delay-tolerant networks comprising heterogeneous node populations.
Mobile Computing, IEEE Transactions on, 8(8):1132–1147, 2009.

[95] SRI. Edge networking with content-oriented declarative enhanced routing.
Online; accessed 13-October-2015.

[96] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. ACM SIGCOMM Computer Communication Review, 31(4):149–
160, 2001.

[97] Ivan Stojmenovic. Simulations in wireless sensor and ad hoc networks:
matching and advancing models, metrics, and solutions. IEEE Commu-
nications Magazine, 46(12):102–107, 2008.

[98] UCLA. Named data networking project. Online; accessed 13-October-2015.

[99] A. Vahdat, D. Becker, et al. Epidemic routing for partially connected ad hoc
networks. Technical report, Technical Report CS-200006, Duke University,
2000.

[100] Markus Vahlenkamp. Information-centric networking. Computer Science,
2012.

140

[101] András Varga and Rudolf Hornig. An overview of the omnet++ simulation
environment. In Proceedings of the 1st International Conference on Sim-
ulation Tools and Techniques for Communications, Networks and Systems
& Workshops, Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[102] Network Functions Virtualisation. Introductory white paper. In SDN and
OpenFlow World Congress, Darmstadt, Germany, 2012.

[103] Duane Wessels and Kim Claffy. Icp and the squid web cache. IEEE Journal
on Selected Areas in Communications, 16(3):345–357, 1998.

[104] Alec Wolman, M Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and
Henry M Levy. On the scale and performance of cooperative web proxy
caching. In ACM SIGOPS Operating Systems Review, volume 33, pages
16–31. ACM, 1999.

[105] S. Wood, J. Mathewson, J. Joy, M.-O. Stehr, Minyoung Kim, A. Gehani,
M. Gerla, H. Sadjadpour, and J.J. Garcia-Luna-Aceves. Iceman: A system
for efficient, robust and secure situational awareness at the network edge. In
Military Communications Conference, MILCOM 2013 - 2013 IEEE, pages
1512–1517, Nov 2013.

[106] S. Wood, H. Sadjadpour, and J.J. Garcia-Luna-Aceves. Socratic: A so-
cial approach to network coding rate control. In Global Communications
Conference (GLOBECOM), 2014 IEEE, pages 352–356, Dec 2014.

[107] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver Stehr, Minyoung
Kim, Ashish Gehani, Mario Gerla, Hamid Sadjadpour, and JJ Garcia-Luna-
Aceves. Iceman: A practical architecture for situational awareness at the
network edge. 2013.

[108] Ming Xie. P2p systems based on distributed hash table. Computer Science,
University of Ottawa, pages 1–6, 2003.

[109] George Xylomenos, Christopher N Ververidis, Vasilios Siris, Nikos Fo-
tiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Katsaros,
George C Polyzos, et al. A survey of information-centric networking re-
search. Communications Surveys & Tutorials, IEEE, 16(2):1024–1049, 2014.

[110] Wei You, Bertrand Mathieu, Patrick Truong, Jean-François Peltier, and
Gwendal Simon. Dipit: A distributed bloom-filter based pit table for ccn
nodes. In Computer Communications and Networks (ICCCN), 2012 21st
International Conference on, pages 1–7. IEEE, 2012.

141

[111] Guoqiang Zhang, Yang Li, and Tao Lin. Caching in information centric
networking: a survey. Computer Networks, 57(16):3128–3141, 2013.

[112] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick
Crowley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. Named
data networking. ACM SIGCOMM Computer Communication Review,
44(3):66–73, 2014.

[113] Zhourong Miao and A. Ortega. Scalable proxy caching of video under
storage constraints. IEEE Journal on Selected Areas in Communications,
20(7):1315–1327, Sep. 2002.

142

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Prior Work
	ICEMAN-ENCODERS
	Protocol Engines
	ICN Architectures
	Content Centric Networking (CCN)
	Named Data Networking (NDN)
	NS3
	Other ICN Architecture
	ENCODERS

	Caching Algorithms
	Cache Placement
	Cache Eviction

	Mobile Ad Hoc Networks, Delay Tolerant Networking

	FATE
	FATE Architecture
	FATE TLV Packet Format
	TLV Packet Design

	FATE Implementation
	Functional Algebraic aTomic Evaluators
	Normalizers
	FATE Packets

	XML Configuration
	Packet Types
	XML And Binary Compact Serialization
	Packet Name
	Metadata
	Packet Examples
	White-Black-Red Attribute List Packet Transformation
	Metadata Name Registration

	Life of A Packet
	Life of a Packet: Internode Communication
	Life of a Packet: Intranode Communication

	Modules
	Statistics
	Logging
	Node Overview
	Asynchronous Events
	Caching Module
	Forwarding Module
	Stores

	Licensing
	Intermediate-Directed Forwarding

	Flexible Evaluation Caching Using FATE
	Introduction
	Related Work
	FATE Cache Implementation
	Functional Algebraic aTomic Evaluators
	Modules

	Results

	Extended Caching
	Introduction
	Results
	Conclusion

	QoS Caching
	Introduction
	Results
	FATE LRU effects
	FATE SIZE effect upon caching
	FATE QOS effect upon caching
	FATE REGEX effects upon caching
	FATE Distance effects upon caching
	FATE SIZE*LRU effects upon caching
	FATE MAX(SIZE*LRU,QoS) effects upon caching
	FATE MAX(SIZE*LRU,QOS,REGEX) effects upon caching
	FATE MAX(SIZE*LRU*distance,QOS,REGEX) effects upon caching

	Conclusion

	Hashed Caching With Fate
	Introduction
	Redirect to Off-Path Cache
	Partition-Hashed Cache
	Results
	Ubiquitous Hashed Caching
	Results
	Comparison of Fate vs Traditional Caching
	Traditional Caching
	FATE Caching

	Conclusion

	Functional Algebraic aTomic Evaluators in Packet Forwarding
	Introduction
	Related Work
	NS3 Network Simulator
	ENCODERS
	Traditional Routing

	FATE Forwarding Implementation
	Functional Algebraic aTomic Evaluators
	Modules

	Example Forward Load Balancing
	Sample Results
	Conclusion

	Conclusion
	Bibliography

