
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
A System-Level Framework for Privacy

Permalink
https://escholarship.org/uc/item/9sr047fh

Author
Dangwal, Deeksha

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sr047fh
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

A System-level Framework for Privacy

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Deeksha Dangwal

Committee in charge:

Professor Timothy Sherwood, Chair
Professor Chandra Krintz
Professor Jonathan Balkind
Professor Sandhya Dwarkadas

December 2023

The Dissertation of Deeksha Dangwal is approved.

Professor Chandra Krintz

Professor Jonathan Balkind

Professor Sandhya Dwarkadas

Professor Timothy Sherwood, Committee Chair

March 2022

A System-level Framework for Privacy

Copyright © 2023

by

Deeksha Dangwal

iii

To Mom, Dad, Anu, and Nani

In Memory of Raja Ram Dangwal, Bimla Devi Dangwal,

Naveen Dangwal, Abha Dangwal, and Ram Mohan Misra

iv

“Methought that of these visionary flowers

I made a nosegay, bound in such a way

That the same hues, which in their natural bowers

Were mingled or opposed, the like array

Kept these imprisoned children of the Hours

Within my hand,—and then, elate and gay,

I hastened to the spot whence I had come,

That I might there present it!—Oh! to whom?”

Percy Bysshe Shelley

v

Acknowledgements

Mom, and Dad, you both have been unwavering pillars of support throughout this

academic journey (truly this PhD belongs to you as much as it does to me). Your

perennial belief in me, especially on days I doubted myself the most, has meant everything

to me. You have grounded me on the most trying days, and I can’t thank you enough

for reminding me to enjoy the ride. I couldn’t have done this without you. Animesh,

thank you for your curiosity and genuine interest in my research. Your enthusiastic

questions kept my excitement alive even when I felt disheartened and uninspired. Thank

you also for serving as my rubber duck: I often wrote my paper introductions as if I were

explaining my research to you, so thank you for being such a good listener. ;)

Thank you to the best advisor anyone could ever ask for: Timothy “Processor-of-

Computer-Science” Sherwood. Tim, there will never be enough words to express how

much I value your mentorship (read: I am this close to turning these acknowledgements

into a Tim tribute). Tim is WACI (has Wild And Crazy Ideas) and his top-notch research

on the “fringe” has taught me to connect ideas from “far away” fields and has brought

this interdisciplinary thesis to life. Tim is miraculously both hands-on and hands-off as

an advisor and gives his students the best possible educational experience. I will hold

steadfastly to the Tim-isms I have learned. I still remember sitting in Tim’s CS254

lecture on RISC vs. CISC processors and wondering if he would ever take me on as his

student. I am so thankful you did, Tim. You are the reason I feel like I belong in computer

science. I will miss hearing about the latest python packages and podcast finds (e.g. on

how chimpanzees communicate), references to thinking fast and slow (and other great

books), and of course, the Rockwell Retro Encabulator. You are a great advisor because

you are a great person. I have not only learned how to be an exceptional scientist, but

also how to be an exceptional human being from you. Thank you for your kindness and

vi

unequivocal support throughout and thank you for the opportunities you have brought

my way.

Thank you to my committee members. Chandra, your CS263 remains one of my

favorite classes because I went in an electrical engineer and emerged a computer scientist.

I loved the lectures, our after-class discussions, and the projects. Thank you also for

guiding so much of my thesis. Jon, thank you for being my guide into the computer

architecture community. You have been so kind and supportive; so much that I don’t

think either of us will forget my ASPLOS talk (read: Jon heard it 3̃0 times). Sandhya,

you have been such a great role model and mentor, thank you for making me feel so

welcome in our community. Ever since we met in CRA-W Grad Cohort in 2017, I have

walked away feeling more confident in myself and our community. Another important

thanks goes to Prof. Michael Melliar-Smith, who encouraged me to change my major

and was later the first person to suggest I apply to the Ph.D. program. Your lectures

and stories about Cray supercomputers and stories about the Acorn RISC Machine were

so interesting that I ended up taking another graduate class in computer architecture

which changed the trajectory of my career. Thank you.

Thank you to my village. Starting with the best lab in the entire world with the best

people ever: the ArchLab, my home in UCSB. Joseph and Weilong, you showed me what

it’s like to be a graduate student. From our late nights in the lab during deadline season

eating Poke and Naan Stop, to lab taco Tuesdays at Brophy’s, and all the following

shenanigans in between: game nights (including spooky Halloween candle games), get-

ting our machines compromised by international hackers, talking about uncertainty, and

monads, and working on SLMs (small language models) for Arch-a-thons, I had the best

time with you. Thank you for teaching me your ways and setting such great examples.

Alvin, thank you for being my pandemic buddy. Apart from working on our projects,

chatting with you about Obsidian, traveling in Asia, and all the keyboards and mon-

vii

keytyping was a much needed respite during a very tumultuous time. Vaibhav, Sujaya,

Victor, and Nevena, thank you for your camaraderie and for all the happy memories we

made during happy hours.

Thank you to the UCSB community; it is rare to feel like you belong to an institution

that truly cares about you, but this is what I felt like at UC Santa Barbara. I owe great

thanks to the Department of Electrical and Computer Engineering and the Department

of Computer Science for all the opportunities, guidance, excellent education and fantastic

research support, and for fostering an inclusive and fun environment for your students.

Thank you especially to Val, Benji, Jill, Karen, and Samantha for your support through-

out. I had the most incredible opportunity to mentor many students at UCSB throughout

my PhD career and I learned so much from them. Thank you Saurabh Gupta, Jacqueline

Mai, Dawit Aboye, Dylan Kupsh, Maggie Lim, Junayed Naushad, Manu Kondapaneni,

and Bisman Sodhi. Working with you all was the most rewarding part of my graduate

experience. Thank you Diba for making so much of this rewarding process possible.

I have many people to thank from three great internship experiences and I’ll do

this in one breath. From Reality Labs Research, I’d like to thank Vincent Lee, Armin

Alaghi, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel,

Brandon Reagen, Vasileios Balntas, Eddy Ilg, Richard Newcombe, and Sarah Rathbun;

from Microsoft Research, I’d like to thank Doug Burger, Eric Chung, Karin Strauss,

and Andrew Putnam; and from Oracle Labs, thank you Ryan Bedwell and Sasitharan

Murugesan. You all took a chance on me and helped me work on great projects.

Thank you to my lifelines: Itir and Camille. I cannot imagine life without the dreamy

days of San Remo. You have been my most staunch supporters and going through the ups

and downs of graduate school life together has been a privilege; I will forever cherish our

homely antics. Anna, thank you for modeling strength and independence, and teaching

me the power of genuine curiosity. KP, Argya, Preethi, thank you for being my constants,

viii

my connection to my roots, and my reminders of how far I have come.

Thank you most of all to Abhe. Together we have seen the best of times (and we

have seen the worst of times). You challenged me to expand my thinking (learn signal

processing) and showed me how to dream big. Our early conversations on the beach

reminded me how much I love science and I know today that there’s no one else I’d

rather spend time solving problems with. Thank you for always being there for me; both

when I wanted to brainstorm and when I wanted to vent. Thank you for sharing so much

with me: your wild ideas and tips and tricks and python functions and servers you built

and so much more. Thank you for being my partner in this amazing journey. Thank

you for always picking me up when I was down and for celebrating with me when life

was good. Thank you for showing me Pollo Fino. You get me, and I cannot wait for a

lifetime of dreaming big with you.

To all the people who stood up for me when I was not around, to all the people who

took a chance on me, to all my coauthors, colleagues, friends, and family: THANK YOU.

“Maybe the Best Paper Award was the friends we made along the way”.

ix

Curriculum Vitæ
Deeksha Dangwal

Education

2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2016 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara.

2014 B.E. in Instrumentation Engineering, Ramaiah Institute of Tech-
nology, Bangalore, India

Experience

2015-2022 Graduate Student Researcher, UCSB ArchLab

2020-2021 Research Intern, Facebook Reality Labs Research, Redmond, WA

2018 Research Intern, Microsoft Research, Redmond, WA

2016 Research Assistant, Oracle Labs, Austin, TX

Honors and Awards

2021 Grad Slam Runner-Up, UC Santa Barbara

2020 Rising Star in EECS, UC Berkeley

2020 IEEE Micro Top Pick “Trace Wringing for Program Trace Privacy”

2020 Fiona and Michael Goodchild Graduate Mentoring Award, Gradu-
ate Division, UC Santa Barbara

2020 Outstanding Graduate Student Award, Department of Computer
Science, UC Santa Barbara

Conference and Journal Publications

PLDI 2021 “Porcupine: A Synthesizing Compiler for Vectorized Homomorphic
Encryption”, Meghan Cowan, Deeksha Dangwal, Armin Alaghi,
Caroline Trippel, Vincent T Lee, Brandon Reagen in Proceedings
of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation [1]

BMVC 2021 “Mitigating Reverse Engineering Attacks on Local Feature Descrip-
tors”, Deeksha Dangwal, Vincent T Lee, Hyo Jin Kim, Tian-
wei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon

x

Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy
Ilg in the 32nd British Machine Vision Conference (BMVC) [2]

SEED 2021 “Context-Aware Privacy-Optimizing Address Tracing”, Deeksha
Dangwal, Zhizhou Zhang, Jedidiah R Crandall, Timothy Sher-
wood in IEEE International Symposium on Secure and Private Ex-
ecution Environment Design (SEED) [3]

IEEE Micro 2020 “Trace Wringing for Program Trace Privacy”, Deeksha Dangwal,
Weilong Cui, Joseph McMahan, Timothy Sherwood in IEEE Micro
Top Picks 2020 [4]

IEEE Micro 2020 “Agile Hardware Development and Instrumentation With PyRTL”,
Deeksha Dangwal, Georgios Tzimpragos, Timothy Sherwood in
IEEE Micro [5]

JETC 2019 “Language Support for Navigating Architecture Design in Closed
Form”, Weilong Cui, Georgios Tzimpragos, Yu Tao, Joseph McMa-
han, Deeksha Dangwal, Nestan Tsiskaridze, George Michelogian-
nakis, Dilip P Vasudevan, Timothy Sherwood in ACM Journal on
Emerging Technologies in Computing Systems (JETC) [6]

ASPLOS 2019 “Safer Program Behavior Sharing through Trace Wringing”, Deek-
sha Dangwal, Weilong Cui, Joseph McMahan, Timothy Sherwood
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems [7]

ISCA 2018 “Charm: A Language for Closed-Form High-Level Architecture Mod-
eling”, Weilong Cui, Yongshan Ding, Deeksha Dangwal, Adam
Holmes, Joseph McMahan, Ali Javadi-Abhari, Georgios Tzimpra-
gos, Frederic Chong, Timothy Sherwood in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA) [8]

FPL 2017 “A Pythonic Approach for Rapid Hardware Prototyping and Instru-
mentation”, John Clow, Georgios Tzimpragos,Deeksha Dangwal,
Sammy Guo, Joseph McMahan, Timothy Sherwood in 27th Inter-
national Conference on Field Programmable Logic and Applications
(FPL) [9]

Workshop Publications

xi

HASP 2020 “SoK: Opportunities for Software-Hardware-Security Codesign for
Next Generation Secure Computing”, Deeksha Dangwal, Meghan
Cowan, Armin Alaghi, Vincent T Lee, Brandon Reagen, Caronline
Trippel in Hardware and Architectural Support for Security and
Privacy (HASP) [10]

WCAE 2019 “PyRTL in Early Undergraduate Research”, Diba Mirza, Deeksha
Dangwal, Timothy Sherwood in Proceedings of the Workshop on
Computer Architecture Education [11]

EMC2 2019 “PyRTLMatrix: An object-oriented hardware design pattern for
prototyping ML accelerators”, Dawit Aboye, Dylan Kupsh, Maggie
Lim, Jacqueline Mai, Deeksha Dangwal, Diba Mirza, Timothy
Sherwood in the 2nd Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing for Embedded Applications (EMC2) [12]

US Patents

2020 “Deriving a concordant software neural network layer from a quan-
tized firmware neural network layer”, Jeremy Fowers, Daniel Lo,
Deeksha Dangwal [13]

xii

Abstract

A System-level Framework for Privacy

by

Deeksha Dangwal

Privacy in the digital age has become increasingly difficult to achieve. While there

is consensus on the importance of building privacy into systems that deal with sensitive

information, our ability to reason about system-level privacy is severely limited. In this

work, I introduce wringing, a new computer architecture approach for building privacy

in systems to minimize information leakage. I detail how wringing enhances the privacy

of program traces and how it opens up a new optimization space between privacy and

utility.

Next, I demonstrate how wringing generalizes beyond traces: in computer vision

pipelines that rely on streaming user data for localization tasks in augmented reality

settings. We discover a new reverse engineering attack on localization pipelines that can

compromise user privacy and show that data minimizing wringing serves as a mitigation

for such attacks.

Finally, I present a new architecture that builds privacy into personal devices. Our

architecture supports both data minimizing techniques like wringing and differential pri-

vacy to protect streaming data being crowd-sourced by a central aggregator. With this

hardware implementation, we can enforce the user’s privacy settings and prevent unin-

tended data leakage.

xiii

Contents

Curriculum Vitae x

Abstract xiii

1 Introduction 1
1.1 Thesis Statement . 5
1.2 Research Summary and Overarching Theme 6
1.3 Permissions and Attributions . 9

2 Trace Wringing for Safer Program Behavior Sharing 11
2.1 Introduction . 12
2.2 Wringing a trace . 15
2.3 Related work . 18
2.4 Our approach to wringing . 22
2.5 Evaluation . 31
2.6 Conclusion . 41

3 Context Matters: Optimizing Privacy of Traces with Information Flow
Tracking 44
3.1 Introduction . 45
3.2 Modeling Threats to Privacy of Traces 49
3.3 Scrubbing Data from Traces . 54
3.4 Evaluation . 62
3.5 Related Work . 73

4 Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in
Computer Vision Pipelines 78
4.1 Introduction . 79
4.2 System and Threat Definition . 82
4.3 Background . 85
4.4 Reverse Engineering Attack . 87
4.5 Evaluation . 92

xiv

4.6 Related Work . 101
4.7 Conclusion . 104

5 A Privacy-Enhancing Architecture for Crowd Sourced Data 105
5.1 Introduction . 106
5.2 Privacy Threat Model . 110
5.3 Privacy-Enhancing Architecture . 112
5.4 Private Stream Generation . 117
5.5 Hardware Architecture . 127
5.6 Evaluation . 129
5.7 Related Work . 134
5.8 Conclusion . 137

6 Conclusion and Future Directions 139
6.1 Future Directions . 140

Bibliography 143

xv

Chapter 1

Introduction

Privacy in the digital age has become increasingly difficult to achieve as technologies that

capitalize on sensitive information such as facial recognition, location services, health

tracking, etc. have become mainstream. Policymakers have put in place regulations on

data protection including the European General Data Protection Regulation (GDPR),

California Consumer Privacy Act (CCPA), Illinois Biometric Information Privacy Act

(BIPA), etc. and while there is growing consensus on the importance of building privacy

into systems that deal with sensitive information, our ability to reason about and imple-

ment system-level privacy is severely limited so far. As a field, we must develop tools,

mechanisms, and primitives to uphold these regulatory protections.

In this thesis, I introduce a new framework for privacy that is especially produc-

tive when considering the whole computer system. This includes considering various

system-level and application-specific concerns, including performance, power usage and

availability, privacy algorithm design, and the definition of privacy itself. For the applica-

tions presented in this thesis, the methods simultaneously consider software, hardware,

and privacy design parameters when optimizing for power- and performance-efficient,

high-fidelity, and threat-model-optimal solutions. Like many computer systems prob-

1

Introduction Chapter 1

lems, there exist several tradeoffs that we must manage, and in this work, I

It is natural to extend this idea of having a tightly coupled, synergistic codesign

feedback loop to include security constraints. We define the notion of software-hardware-

security codesign as Our goal is to establish a set of design consideration dependencies

for each secure computing technology, and expose the feedback loops between the nodes

and the opportunities for enabling iterative codesign.

Having studied this tradeoffduring my phd, I have found that there is a recipe for

success to design private systems efficiently.

The ingredients are: a means to minimize the information leakage A means to traverse

and optimize the privacy-utility trade off space A means to enforce privacy-enhancing

methods This thesis is interdisciplinary and contains ideas from computer architecture,

computer vision, and security and privacy.

I introduce wringing, a new computer architecture approach to building privacy in

systems to minimize information leakage while still maintaining utility of the privatized

data. When working towards application-tuned systems, developers often find themselves

caught between the need to share information (so that partners can make intelligent

design choices) and the need to hide information (to protect proprietary methods or

sensitive data). One place where this problem comes to a head is in the release of

program traces, for example a memory address trace. A trace taken from a production

server might expose details about who the users are or what they are doing, or it might

even expose details of the actual computation itself (e.g. through a side channel). To

protect the privacy of user data and safeguard proprietary details, engineers are often

asked to make, by hand, “analogs” of their codes that would be free from such sensitive

data or, may even try to describe behaviors at a high level with words. These approaches

lead to missed opportunities, confusion, and frustration. We propose a new problem for

study, trace wringing, that seeks to remove as much information from the trace as possible

2

Introduction Chapter 1

while still maintaining key characteristics of the original. We formalize this problem and

show that, for a specific instance around memory traces, as little as a few thousand bits

need to be shared. We demonstrate experimentally that the trace-wrung proxies behave

similarly in the context of cache simulation but with bounded leakage, and examine the

sensitivity of wrung traces to a class of attacks on AES encryption.

As global policy progressively moves in favor of protecting user data, and the ability

to gather and process very personal information at scale becomes commonplace, it be-

comes all the more pressing to find and develop methods that prioritize user and data

privacy. Computer architecture research is already enmeshed in security research as a re-

sult of recently exposed architecture vulnerabilities. But we must also address the rising

importance of privacy as a field. Fortunately, we do not have to start from scratch and

can build on top of methods such as LINDDUN [14] privacy threat modeling, which we

apply to the problem of privately sharing traces. While prior approaches look primarily

at bounding leakage through the uniform application of an extreme form of lossy com-

pression, trace scrubbing represents a new family of approaches that attempt to remove

information in a more targeted fashion. This can range from a simple redaction of cer-

tain addresses (when the sensitive information has very limited footprint in the trace)

to techniques that attempt to intelligently apply a mixture of methods to minimize the

number of bits leaked while attempting to achieve the best possible utility for memory

access traces. We present the cache and prefetch performance of our strategies and, by

only scrubbing portions of a trace where sensitive information might flow, we place an

upper bound on information leakage that surpasses prior work in this area by an order of

magnitude. Trace scrubbing accurately captures trace behavior while minimizing leak-

age. By connecting this problem to information flow tracking techniques in the context

of scrubbing execution traces, we open the door to even further refinement through the

application of more advanced information flow analysis techniques and the adoption of

3

Introduction Chapter 1

multi-level privacy schemes that can further limit the amount of potential leakage.

In the next chapter, we demonstrate how wringing generalizes beyond address traces.

The widespread use and the low cost of sensor systems, photography, and video capture

has unlocked new computational and algorithmic approaches to health, entertainment,

transportation, robotics, and many other fields. As applications such as autonomous

driving and augmented reality evolve, a practical concern is data privacy. Specifically,

we look at applications that rely on localization based on user images. The widely

adopted technology uses local feature descriptors, which are derived from the images and

it was long thought that they could not be reverted back. However, recent work has

demonstrated that under certain conditions reverse engineering attacks are possible and

allow an adversary to reconstruct RGB images. This poses a tremendous risk to user

privacy. We take this a step further and model potential adversaries using a privacy threat

model. Subsequently, we show under controlled conditions a reverse engineering attack

on sparse feature maps and analyze the vulnerability of popular descriptors including

FREAK, SIFT and SOSNet. Finally, we evaluate potential mitigation techniques based

on wringing and scrubbing that select a subset of descriptors to carefully balance privacy

reconstruction risk while preserving image matching accuracy; our results show that

similar accuracy can be obtained when revealing less information.

Finally, we present an architecture that enables data minimizing wringing for pri-

vacy of streaming data in a crowd-sourcing application. For stronger guarantees on the

privacy of users’ biometric information, our architecture supports the addition of differ-

entially private noise. Biometric information collected from wearable devices can yield

new insights with the potential to improve the health and wellness of those individuals

under measurement. The aggregation of this data over ever larger groups compounds this

potential benefit by helping professionals understand the full shape of the distribution,

however the nature of such biometric data is extremely personal. Prior work has shown

4

Introduction Chapter 1

how such shared data can leak your gender, age, habits, and can even be linked back to

identity. Future computer architectures have a role to play in protecting user privacy, and

we find their use in addressing the privacy loss associated with sharing time-series data

specifically (such as those collected from wearables) to be most critical. We introduce

the two-stream privacy architecture including two privacy-enhancing interventions that,

through a small-footprint hardware extension, can both bound the amount of information

leaving a user’s wearable device and provide differential privacy guarantees. Through a

careful formulation of privacy as an architectural design constraint, the examination of

interacting privacy-enhancing parameters, a hardware design and evaluation, and the

evaluation of privacy versus utility for a suite of privacy-sensitive applications, we show

a flexible and effective privacy framework enabling sharing of streaming sensor data.

1.1 Thesis Statement

There is consensus on the importance and urgency to build privacy into computer

systems that deal with sensitive information. However, system designers and architects

have historically focused on improving system performance and do not have reliable tools

and methods to balance privacy and utility.

In this thesis, we demonstrate and explore a fundamental tradeoff between

privacy and utility in many computer systems problems. Within the context

of these problems, we unify privacy-enhancing interventions such as data

minimization, anonymization, and differential privacy. We further introduce

application-dependent system-level metrics to evaluate privacy and utility and

leverage these to achieve optimal privacy and utility design points. Finally,

we enforce these interventions with computer architecture innovations.

5

Introduction Chapter 1

1.2 Research Summary and Overarching Theme

The main thrust of this thesis is a new approach to privacy: wringing. The essence of

system design is in maneuvering tradeoffs and it continues to be the bottom line in this

work on the design of private systems as well. Once privacy and usefulness of privatized

data, utility, is defined, wringing is used to reason about privacy-preserving choices and

traversing the privacy-utility tradeoff space. In this thesis, we see this problem come to

a head in the release of program traces for hardware-software co-optimization, in visual

pipelines which form the backbone of always-on visual systems such as augmented reality

and autonomous driving, and finally in aggregating crowd-sourced biometric data.

My research on trace wringing [7, 4] navigates this quandary by sharing the structure

of the program trace without leaking the actual addresses. Trace wringing is a new

paradigm of anonymity and privacy of traces where compression and modeling provide

a way to release information with easily verifiable bounds on leakage. Trace wringing

uses a surprisingly simple metric to quantify information leakage—number of bits, and

estimates utility through cache simulations. Trace-wrung proxies leak as few as tens of

thousands of bits which is orders of magnitude fewer than prior work on compressed

traces and even profiles used in synthetic trace generation. To evaluate the security of

trace wringing beyond bit leakage, I show that a class of existing AES attacks fails to find

useful information in the leakage-bounded proxies. Trace wringing introduces a tradeoff

between privacy and utility and each proxy trace is a point in this bit-error space. Various

points in the bit-error tradeoff space can be compared with each other and the “best”

points can be used for sharing program behaviors safely and effectively. However, there

is a complex space of possibilities to consider and a systematic framework is required. I

have subsequently shown that it is possible to formulate trace privacy as a non-gradient

optimization problem to better explore the bit-error tradeoff space and this has driven

6

Introduction Chapter 1

improvements of an order of magnitude in both leakage and accuracy.

Trace scrubbing further links trace privacy to the well-studied problem of information

flow analysis. When naively wringing a trace, there is no sense of where the most sensitive

data is and all addresses in the trace are considered equally “bad to leak”. Accordingly,

the leakage of all the addresses must be restricted to a similar degree to bound the overall

leakage. However, in real applications, some trace data may be under the influence of

extremely sensitive data while others may not. In fact, in many cases, only a small

subset of the entire set of addresses accessed by an application may be related to private

information. This is the key insight: not all addresses in a program trace are equally

bad to leak. Now, sensitive information can be identified at the program level, and its

impact can be determined in the resulting trace. When only a subset of the addresses in

a trace are deemed sensitive, then one can either eliminate or reduce leakage from those

addresses specifically. I present an ensemble of mitigation or scrubbing techniques that

at the extreme end simply delete or redact sensitive addresses from a trace or replaces

sensitive data with leakage-reduced addresses that are behaviorally similar.

For systems that have direct access to user data through their personal devices, user

privacy is a practical and urgent concern. One such setting is commonly seen in always-

on augmented reality devices that rely on user images and video to perform localization

and mapping tasks through feature descriptors. In this thesis, I re-examine the privacy

of systems which shared user image local descriptors with the server [15]. I first showed

that these descriptors, previously considered private, can be used to reverse

engineer raw user images. I designed and trained a generative adversarial network

(GAN) that attacked the local descriptors. My results surpassed the state-of-the-

art reconstruction accuracy. Next, I provided mitigation techniques to protect the

user’s data. Yet again, I employed the privacy-utility tradeoff to reason about

privacy-enhancing design choices and was able to show that optimal solutions

7

Introduction Chapter 1

which maximize privacy and accuracy do, in fact, exist. My mitigation tech-

niques minimized the leakage of data, by sharing fewer features. This is either done by

treating all features as equally leaky (similar to trace wringing), or specifically target-

ing features around sensitive categories such as people, license plates, etc. (similar to

trace scrubbing). Another significant contribution of this work was proposing a privacy

threat modelling procedure in the computer vision and machine learning domain. I also

introduced a new privacy metric: semantic privacy , based on the similarity of

objects detected on both the original image and the reconstructed privacy-maximized

images using YOLOv3 [16].

Privacy is an increasingly critical consideration of system design, and while multiple

large corporations have started to invest in privacy preserving technologies, there is still

a great deal of room for innovation. Techniques that distribute the responsibility of

privacy and avoid centralized points of naked aggregation are useful both because they

lower the responsibility of aggregators and because they avoid single points of failure.

Even if we are to trust a few entities with our most private data, there is now (and likely

always will be) an appetite for our data beyond our ability to carefully examine. We

propose the Two-Stream Privacy architecture, a new framework for supporting privacy

management that combines information theoretic methods with randomized response-

based local different privacy to enable private aggregation of wearable time-stamped

sensor data. Key to this solution is a privacy-preserving Data Minimization Unit which

uses Short-Time Fourier Transform that allows mutual information reduction by using

a filter for lossy reconstruction of input signals. As a demonstration, we successfully

evaluate the effectiveness of our technique for sensor data such step count and BPM

from real world accelerometer and electrocardiagram sensor readings. Over all we find

that a carefully reduced disclosure, when coupled with random response, can unlock parts

of the design space not reachable by random response alone. In several cases the error

8

Introduction Chapter 1

could be reduced by a factor of 3x or more under the same privacy budget and have up to

72% improvement in privacy for the same utility tolerance. Furthermore we find that the

hardware overhead of such an implementation is quite small and we find the proposed

solution does not have significant overhead in terms of chip area and power consumption.

1.3 Permissions and Attributions

1. The content of Chapter 2 is the result of a collaboration with Weilong Cui, Joseph

McMahan, and Timothy Sherwood. Parts of this chapter have previously appeared

in the Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems [7] and IEEE Micro

“The 2019 Top Picks in Computer Architecture”, Volume 40, Issue 3 [4]. It is

reproduced here with the permission of ACM 1 and IEEE 2.

2. The content of Chapter 3 is the result of a collaboration with Zhizhou Zhang,

Jedidiah Crandall, and Timothy Sherwood. It has previously appeared in the 2021

International Symposium on Secure and Private Execution Environment Design

(SEED). It is reproduced here with the permission of IEEE [3].

3. The content of Chapter 4 is the result of a collaboration with Vincent T. Lee, Hyo

Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon

Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg. Parts of

this work have appeared in the 2021 British Machine Vision Conference [2].

4. The content of Chapter 5 is the result of a collaboration with Alvin Glova, Abhejit

Rajagopal, Rhys Gretsch, Pranjali Jain, Jonathan Balkind, and Timothy Sherwood.

1https://authors.acm.org/main.html
2https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions faq.pdf

9

Introduction Chapter 1

5. The content of Chapters 1 and 6 is a result of all the collaborations mentioned

above. Parts of these chapters have previously appeared in the conferences, jour-

nals, magazines mentioned above and in the 2020 workshop on Hardware and Ar-

chitectural Support for Security and Privacy (HASP) [10]. It is reproduced here

with the permission of ACM and IEEE.

10

Chapter 2

Trace Wringing for Safer Program

Behavior Sharing

In this chapter, I introduce the computer architecture method of wringing and apply

wringing to traces to minimize information leakage when sharing program traces for

application tuning. When working towards application-tuned systems, developers often

find themselves caught between the need to share information (so that partners can

make intelligent design choices) and the need to hide information (to protect proprietary

methods or sensitive data). One place where this problem comes to a head is in the

release of program traces, for example a memory address trace. A trace taken from a

production server might expose details about who the users are or what they are doing,

or it might even expose details of the actual computation itself (e.g. through a side

channel). Engineers are often asked to make, by hand, “analogs” of their codes that

would be free from such sensitive data or, may even try to describe behaviors at a high

level with words. Both of these approaches lead to missed opportunities, confusion, and

frustration. We propose a new problem for study, trace wringing, that seeks to remove

as much information from the trace as possible while still maintaining key characteristics

11

Trace Wringing for Safer Program Behavior Sharing Chapter 2

of the original. Trace wringing exposes a new tradeoff space between privacy and utility

in the context of address traces. We formalize this problem and show that, for a specific

instance around memory traces, as little as a few thousand bits need to be shared. We

demonstrate experimentally that the trace-wrung proxies behave similarly in the context

of cache simulation but with bounded leakage, and examine the sensitivity of wrung

traces to a class of attacks on AES encryption.

2.1 Introduction

A quantitative approach to optimizing computer systems requires a good understand-

ing of the way applications exercise a machine; real program traces taken from production

code, in production environments lead to the clearest understanding. Unfortunately, even

the simplest program traces, such as memory access patterns, have the potential to leak

arbitrary information about the system. For example, a trace can capture the memory

access behavior of a critical cryptographic function (which is known to be a function of

the secret key [17]), a set of lookups corresponding to the parsing of a social security

number, or even detailed system configuration parameters that are considered a trade

secret. While the sharing of these traces between technology partners can lead to more

robust and high performance systems, it can also leak highly sensitive information, and

expose user data to security vulnerabilities.

It has been shown [18, 19] that safe ad-hoc anonymization is difficult to achieve.

Given the cleverness of attackers working to undo well-intentioned, but ultimately insuf-

ficient, anonymization techniques [20], many have simply decided to cease making traces

available altogether. Today when such traces are needed, programmers may be asked to

“obfuscate” the key algorithm behaviors to hide sensitive data or provide “models” of

the system which approximate the same behavior but omit sensitive parts. Hand-built

12

Trace Wringing for Safer Program Behavior Sharing Chapter 2

“models” of the system are both tedious to code and of limited predictive power. Since

there is no well-defined and well-trusted approach to this problem, developers are often

forced to resort to rough human-language descriptions of the behavior of programs (e.g.

“it is 80% pointer-chasing”). This leads to missed opportunities, frustrated optimiza-

tion, and the design process ultimately suffers. Ideally, engineers would access methods

to eliminate any sensitive information from the traces while still capturing the program

behavior and its interaction with the underlying hardware. However, the extent to which

“sensitive” data influences program behavior is rarely understood by a single party, and

even harder to argue is that it is completely absent from a trace.

We present a new formulation of this problem where one knows a priori exactly how

much information a trace is giving away in the worst case. The basic idea is to take a

trace and squeeze it through as small a “hole” as possible to extract as much information

as possible out of the trace without completely compromising the usefulness of the trace.

Like wringing all of the water from a sponge, in the ideal case only the structure of the

trace (the dry sponge) remains and all potentially sensitive data has been eliminated.

While we have no mechanism of quantifying the amount of sensitive data that remains,

we do have a way to say how much total information is provided, which yields a useful

upper bound. In other words, while we cannot say for certain how much water remains

in the sponge, we know that the amount of water has to be strictly less than the total

volume we squeezed the sponge into. We observe that when compression is taken to

this extreme and lossy form, it connects to security in this unexpected way. However,

as is often the case in computer architecture, an important tradeoff remains between

information leaked and degree to which the trace accurately captures the behavior across

a suitable domain of possible options.

We formalize this new approach specifically in the context of memory address traces,

as they are well studied and we have many prior techniques to build from. To explore

13

Trace Wringing for Safer Program Behavior Sharing Chapter 2

the tradeoff exposed by this problem, we examine a new approach of performing guided

memory trace synthesis building on ideas from signal processing. By projecting the

address space onto a wrapped 2D image, we are able to decompose memory behavior into

an orthogonal set of features that can then be replayed to reproduce the same “visible”

patterns as the traces under examination. Specifically, we use a Hough-transformed

version of the trace to find both constant and strided access patterns; Hough features

are also used to concisely summarize the trace behaviors. Our contributions:

1. We introduce trace wringing, a new paradigm of anonymity and privacy in the con-

text of traces where compression and modeling provide a way to release information

with easily verifiable bounds on leakage.

2. We demonstrate a pipeline instantiating this idea in the context of address traces

and show how signal processing techniques can be used to squeeze information out

of traces while maintaining program behavior.

3. We verify through cache-simulation results that trace-wringing can be achieved as

a proof-of-concept. While the resulting systems may still give away thousands or

tens of thousands of bits, it opens the door to further optimization and refinement.

4. We compare our approach with prior work in address trace compression and syn-

thetic trace generation. We are able to construct proxy traces using as few as tens

of thousands of bits which is orders of magnitude fewer than compressed traces and

the profile used in synthetic trace generation.

5. As a first evaluation of security beyond just bit leakage, we show that a class of

existing AES attacks fails to find useful information in the traces processed in this

way, which illustrates the utility of such an approach.

14

Trace Wringing for Safer Program Behavior Sharing Chapter 2

The rest of the chapter is laid out as follows. First, we present the new problem of

“wringing” a trace more completely. In Section 3, we compare and contrast this problem

to its related work on prediction, compression, and other classic trace analysis approaches.

Section 4 describes our approach of using signal processing techniques for trace wringing.

In Section 5, we describe our experimental setup, followed by an evaluation where we

compare cache-simulation results. We summarize and conclude in Section 6.

2.2 Wringing a trace

A program trace can contain a tremendous amount of information about the system

under evaluation. For example, memory accesses give away the data (e.g. secret keys)

used in calculating the addresses, simultaneous accesses to different data storage areas

can give away important relationships (e.g. between an individual’s access rights and

fields of a data structure they are accessing), and so on. But, as we know, such traces

are invaluable for performance evaluation because they demonstrate the way the system

actually behaves in the face of the workloads it must actually handle.

While the behaviors are important at a high level, rarely are the specific elements of

the trace critical. Rather it is the relationship between those elements and the proportions

that they appear in the trace that is often the key. This is of course not a new insight,

and many people have attempted to capture these behaviors with microbenchmarks [21]

and other trace synthesis schemes in the past [22]. What we claim as new is the idea that

we can formalize these schemes in such a way that it bounds the amount of information

leaked about a system being traced.

The argument is simple: if we only share n bits about a specific trace then we cannot

leak more than n bits about that trace. In practice, this means that if we share only

a few tens of thousands of bits of information about the trace, then nothing beyond

15

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.1: Forcing a trace through a channel with a capacity of only a few bits
bounds the amount of sensitive data shared. While any public information such as
prior non-private traces can be used in the creation of the code, the trace to be coded
must not be known to the receiver. The objective then is to minimize the number
of bits shared while maximizing the utility of the proxy trace. Here, we measure the
utility in terms of whether or not certain tests t1, t2, and t3 are passed by the proxy
test and/or how close to the original tests results they get.

16

Trace Wringing for Safer Program Behavior Sharing Chapter 2

those bits has been leaked. While it is not a perfect solution (some information might

be lost), it says something useful about the maximum amount of information that can

be leaked. For example, it should be impossible to recover an extensive list of social

security numbers, sensitive health information, or even an entire set of secret keys from

such a trace. To maximize security one wants to give away as little data as possible about

the trace. However, to maximize utility the opposite is true. Here is a new question for

computer architects – how little can one give away from the trace while still being useful?

At first one might consider this to be exactly the problem of compression, and there

definitely is a resemblance. Most compression schemes seek to perfectly replay a given in-

put sequence by exploiting the fact that their inputs are far from completely random [23].

By understanding those common structures, for example the tendency for repeating pat-

terns to occur [24], a more concise representation exploiting these structures is possible.

Most modern compression algorithms start from a relatively blank slate and train a pre-

dictor of some form on the input as they process it. The duality between compression

and prediction is pointed out by Chen et al. [25], who note that when you predict a

value with high accuracy you can compress by storing an encoding that “the predictor is

correct n times in a row” most of the time. Lossy compression is then a natural extension

of this idea where the predictor is “close enough n times in a row”.

However, even lossy compression schemes typically seek to minimize the error between

the original trace values and the compressed trace values [26]. Here we have a problem

that is different in two important aspects. First, while we want to keep the behavior of

the trace to our tests the same, we may not care that the actual addresses themselves

are similar. Second, we should be able to prime our scheme with data from other traces

that do not contain a secret that we care about. In this way, we can think about this

problem as attempting to decompose a trace into two aspects: a trace’s “structure”, and

a trace’s “data”. The trace structure is what defines the hierarchy of patterns inherent

17

Trace Wringing for Safer Program Behavior Sharing Chapter 2

to the trace that are useful for making statements about performance, while the trace

data contains the specific set of addresses that makes the trace complete. The structure

is all we really care to transmit and, when separated from the data, may be incredibly

compact. The question then becomes, how compact for how useful?

Answering this question requires an analysis across two metrics: information and

utility, as described in Figure 2.1. Information is surprisingly easy to quantify; it is the

number of bits from the secret trace that need to be transmitted. Note that any number

of bits about other traces or training data can be shared freely and even hard-coded into

the receiver. Our approach is to describe traces as a probabilistic grammar of generators

coupled with very high level accounting of behavior over time and account for bits in

both the structure and parameters of this scheme. Quantifying utility is harder and

more use-case specific. We define a distance function between cache miss-rates of trace

vectors as one such function, but understand there are many other metrics one might

use [27, 28, 22].

While this problem is generalizable, we are considering address traces for this initial

class of experiments. While many other classes of traces might benefit, address traces are

some of the most well studied and understood, and provide the most stable foundation

for this new work to be developed upon and evaluated.

2.3 Related work

In this work, we start with a security parameter (the number of bits we tolerate

giving away) and analyze a program’s behavior by studying its address trace to eliminate

information that is not essential to describe its behavior down to that security parameter.

At the heart of it, we want to accurately characterize a program’s trace, and preserve

only the bare minimum information, so as to not leak it unintentionally. This new

18

Trace Wringing for Safer Program Behavior Sharing Chapter 2

problem can then leverage much of the related problems in the fields of trace compression,

statistical program profiling, synthetic trace and benchmark generation, and data privacy

and anonymity. In the rest of this section, we will compare and contrast our work with

the large body of work that precedes it.

2.3.1 Trace compression and approximation

Trace compression is well studied. TCgen [29] has a compression ratio as high as

77, 000 for certain benchmarks. Lossless algorithms exploit sequentiality and spatiality,

value prediction [30, 23, 31], perform loop detection and reduction [24], convert absolute

values to offsets [32], and use clustering to improve compression [33]. ATC [26], a com-

pression tool for cache-filtered addresses, is capable of both lossless (using bytesort) and

lossy compression (using sorted byte-histograms).

Compressed compact representations are used to understand and predict program

behavior. Larus’s work on whole program paths [34] introduces a method to determine

a program’s dynamic control flow, using the SEQUITUR [35] compression algorithm.

Chilimbi presents a similar scheme to effectively represent a program’s dynamic data ref-

erence behavior [36], also using SEQUITUR. Trace Approximation [37] generates compact

summaries of memory accesses of parallel applications to achieve trace reduction.

2.3.2 Characterizing program behavior

Eeckhout et al., have described a method to obtain detailed statistical profiles within

program traces [38] with the combination of microarchitecture-dependent and -independent

profiling tools. Their syntactically correct, and representative synthetic traces can be

simulated on existing simulation tools. Machine learning algorithms are to understand

large scale program behavior by clustering basic block vectors to find the representative

19

Trace Wringing for Safer Program Behavior Sharing Chapter 2

sections of a program [39].

Chen et al., have shown that hardware event profiles for feedback-directed optimiza-

tions, can be improved by using machine learning and statistical techniques[40]. Oskin et

al. collect statistics from actual program simulation to generate a synthetic benchmark

[41] that is faster to run. While statistical methods are useful in modeling behaviors

of programs, they do not consider the amount of information they inadvertently leak.

It is worth revisiting these works in the context of how much total information they

leak versus how useful they are across a range of optimizations. We leave unifying these

approaches in the context of wringing as future work.

2.3.3 Synthetic trace generation

Synthetic trace generation has been a classic solution to characterize performance

and effectiveness of novel designs (when workloads do not exist) [42]. To ensure that the

synthetic traces behave as expected, Thiebaut et al. adhere to a hyperbolic probability

law [43, 42]. Other methods on artificial workload generation have been described [44]

and reviewed [45]. PSnAP [46] separates the program structure from the memory access

pattern in two phases: capture, when PSnAP generates a profile using PMaCInst [47],

and replay, when it produces a synthetic trace based on the captured profile.

For HPC applications, Weinberg et al. determine memory signatures and mimic

them to generate synthetic traces [48]. They maintain the cache miss rates of the appli-

cations under test with Chameleon [22], a memory locality analysis tool suite. The tool

produces a small seed, which is replicated to construct an arbitrarily long trace. Bench-

Maker [21] is a parameterizable and scalable synthetic benchmark generator, which can

create customized workloads given some (forty) microarchitecture-independent program

characteristics.

20

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Unlike the previously discussed papers, BenchMaker creates benchmarks which can

then be run on real-hardware (or simulators) in order to better explore the application

space. Van Ertvelde et al. go further and propose code mutation [49] for generating

benchmarks that hide functional semantics of proprietary programs. They do this at the

binary level of chosen benchmarks rather than on traces.

2.3.4 Preserving data privacy

Differential privacy [50] protects anonymity by adding some amount of carefully cali-

brated noise to the sensitive data sets so as to maintain the main properties under study.

Access to the system is metered out carefully to ensure privacy is maintained while being

as true to the original distribution as possible. It has been pointed out recently [51],

that differential privacy may introduce an unacceptable amount of error. Being able to

add noise to address traces in this fashion may not result in similar or expected program

characteristics.

Plausible deniability [52] presents a formal framework to generate synthetic data

records efficiently while guaranteeing privacy. Their data synthesizer is based on a prob-

abilistic model; it captures the joint distribution of attributes collected from the real

dataset. Their target applications include machine learning and dataset analyses. Other

formalizations of privacy are an active area of exploration with k-anonymity [53], i-

diversity [54], t-closeness [55], and many others.

Traces are inherently time-series data sets. They map less clearly onto these models

where a set of queries are often asked and answered by someone with the full data set.

Unifying trace analysis and these models of privacy appears to be an open problem and

our work stands out from the ones described here both by its intent and simplicity. We

provide an up-front security parameter, the total amount of bits to be leaked, and we

21

Trace Wringing for Safer Program Behavior Sharing Chapter 2

squeeze our traces to that level. This approach provides a useful point of comparison as

more advanced techniques linked directly to more specific security models are developed

and evaluated. Drawing inspiration from information theory, we also try to find an upper-

bound on the information leaked from the system by trying to quantify the number of

bits of information given away by our method while trying to minimize it.

Another related field is quantitative information flow analysis; similar to differential

privacy it proposes numeric measurements that pertain to privacy. Some examples of its

applications are in producing better bug reports which maintain user privacy [56] and

measuring source-location information leakage in wireless sensor networks [57] among

many others. McCamant et al., present a method to determine how much information

real programs leak [58] using a practical implementation of quantitative information flow

which uses dynamic analysis.

2.4 Our approach to wringing

Traces expose the inner workings of a program, its interaction with the runtime, and

the underlying hardware architecture. As such, even the simplest memory traces prove to

be a complex concoction of patterns generated by these underlying factors. For example,

in a memory address trace, accesses to many different types of objects across both stack

and heap are all interleaved to create the whole. Our goal of capturing the structure of

these traces first requires that we identify, describe, and quantify the patterns that we

care most about. While understanding the underlying cause of these patterns requires

detailed knowledge of the program, quantifying the magnitude of these patterns can be

done on the traces alone. In fact, it is observed that even complicated programs exhibit

memory access patterns that can be decomposed into simpler ones.

To get a visual sense for the structure of such traces, we project the address trace

22

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.2: The modulo-memory access heatmap for gcc. The heatmap is an N ×M
sized graph, whereN is some high power of 2 andM is the number of 10000 instruction
windows in the trace. These modulo-memory access heatmaps illustrate patterns that
exist within program executions, and give us a visual sense of memory access activity.
When mapping longer traces, for example, we see phases (as in 2.4), but we also
observe local patterns within these phases as shown here.

Figure 2.3: Pipeline for our approach to trace-wringing for proxy trace generation.
The problem of sharing information can be described with two subsystems; at the
trace-wringing end, we find parameters that will accurately generate the trace at the
generator subsystem end. The goal is to minimize the size of the packets being sent
between the two subsystems, while still maintaining integrity of the data transmitted.

23

Trace Wringing for Safer Program Behavior Sharing Chapter 2

onto a fixed-size modulo-mapping of the memory space. This heatmap is a graphical

representation of the memory access behavior over time. Figure 2.2 shows such a heatmap

for gcc where instruction count (time) runs along the x-axis and the address runs along

the y-axis. If we were to plot this for the entire memory it would clearly be too large for

such a graph (the distance between the stack and heap would dwarf any local behavior),

so we instead plot the address modulo a large power of two. We call that the “wrapped

address”. This plot of the wrapped address over time (in terms of instructions) has

the advantage of mapping addresses onto a more manageable space, but at the same

time keeps the spatial-temporal structures that would actually impact a real cache. The

darkness of each pixel is a function of the total number of memory accesses that happen

to that wrapped address during a window of instructions.

Interesting and intuitive patterns emerge after looking over this graph. The flat

horizontal lines in the graph are patterns of repeating access to a set of addresses. These

are high temporal locality behaviors. Sharp diagonal lines, on the other hand, are regions

of high spatial locality as addresses are accessed one after the other in succession. If we

can concisely capture the character of these behaviors, without transmitting the addresses

themselves, we can minimize the amount of information leaked. Describing an efficient

method for extracting these patterns is exactly the goal of this section.

Figure 2.3 gives a high-level overview of the pipeline we propose to first wring and

then expand a trace. There are two essential subsystems in our pipeline; one for extract-

ing structural information about the trace from our heatmaps, i.e., for trace-wringing,

and the other for rebuilding a proxy trace with the same structural information. At one

end, as seen in Figure 2.1, with the help of some prior reference knowledge about traces,

a full trace is decomposed into its describing parameters. These parameters are the ones

being communicated via a constrained channel to the generator subsystem, which then

uses the same prior reference knowledge and the descriptive parameters to generate a

24

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.4: Phases visible in the trace generated by gcc after k-means clustering. Each
of the 3 colors in the bottom marks a unique phase in the trace. Note, importantly,
that phases reoccur over time.

proxy trace. In our pipeline, prior reference is used for optimization of encoding (gen-

eration of heatmaps, detection of phases and line segments within them, and creation

of “information packets”), decoding (proxy trace generation from shared “information

packets”), and the selection of Hough parameters. The generated proxy trace’s utility is

measured by testing its properties against that of the original full trace.

The modulo-memory heatmaps exhibit hierarchical organization. Globally, there ex-

ists a recurrence of similar patterns in the order of a few tens of thousand instructions,

i.e., the presence of program phases, and within them, we observe patterns that we asso-

ciate with the more local memory access activity. In order to find some representative of

the higher echelons of this hierarchy, we employ k-means clustering to detect the program

phases [39].

2.4.1 Phase detection

While Figure 2.2 is not the full execution of gcc, we note the presence of a set of

program phases. The first observation we make is that if we wish to capture the character

of these traces, we need to extract higher level shifts in behavior over time. If one can

group together alike behaviors (for example, the middle and end of Figure 2.2) we can

then select only a single representative for each such behavior. Fortunately this is almost

25

Trace Wringing for Safer Program Behavior Sharing Chapter 2

exactly the problem of phase detection [59, 60, 61]. To find the phases, and select a

representative, we pose this as a clustering problem (similar to prior work). We break

the execution up into a set of “chunks” by instructions executed. The columns of the

chunks are then summed together to form a vector. Each vector thus has a length equal

to the number N of wrapped line addresses. We can think of each of these vectors

then as a point in N dimensional space. Finding groups of similar points (our memory

vectors) is then exactly the clustering problem. Here we can simply apply the k-means

algorithm [62] with k equal to the number of phases we wish to represent in the trace.

The k-means algorithm represents clusters by a set of k cluster centroids which it then

iteratively optimizes. Each iteration alternates between assigning each point in the space

to exactly one centroid, and updates centroid position to be in the “middle” of the new

set. After k-means, we take each cluster and select one that is the longest to be the

representative cluster.

Figure 2.4 shows the result of running the phase detector on the memory address trace

for gcc. Each of the 3 colors labels the trace above it with a unique phase identifier. The

technique does a good job of lining up with the repeating structures.

Now, with these phases marked, rather than encoding the full trace monolithically,

we can encode just the k representative clusters independently with log2k bits. The list

of the phase identifiers can then become part of the information shared. As can be seen

in Figure 2.4, there is a great deal of temporal locality in the phases and can be trivially

compressed by another order of magnitude with run-length encoding.

Given that we now have a set of representative chunks of execution, we need to

efficiently summarize the features that exist within each chunk. If we look back to

Figure 2.2, we can see that many of the patterns in the heatmap can, in fact, be reduced

mostly to a set of lines.

26

Trace Wringing for Safer Program Behavior Sharing Chapter 2

2.4.2 Decomposing with Hough transforms

Concisely summarizing all of the complex patterns of the trace all at once can be

overwhelming. However, if we can break the pattern down into a set of simpler behav-

iors, we can then tackle them one by one. Given that both strong temporal and spatial

locality features show up as lines, decomposition into a set of line segments is a nat-

ural place to start. However, decomposing the address trace features in the space of

wrapped addresses× instruction count directly is not easy. Luckily, we can draw upon

established methods in image processing to transform our heatmaps into a space where

such extractions are achievable.

The Hough transform [63] is a popular computer vision procedure used to detect

patterns in images. The technique is used to find the locations and orientations of

certain geometric primitives in the given space. Hough transforms, being resilient to

noisy images, makes for an ideal feature extraction candidate for our problem. Geometric

primitives such as lines, ellipses, and circles are supported by Hough transforms, but we

find use only for the simplest Hough transform: the Hough-line Transform.

While standard regression methods are useful fitting a slope-intercept form of y =

mx + b to a set of points, finding sets of rotated lines from an image is hard in the

Cartesian coordinate system. The Hough-line transform employs the polar coordinate

form and describes lines by their distance from the origin r and the angle formed between

the origin and the closest point on the line θ: r = x cos θ + y sin θ.

Now, we have two separate coordinate systems in which we can find the best fit

line; the image space, and the ¡r, θ¿ parameter space. For every point in the image

space, the Hough transform considers every possible rotation of lines passing through

that point. Iterating through the different possible values of r and θ in the Hough space,

the algorithm forms a sinusoidal curve for each point in the image space. Each point

27

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.5: We capture information about lines we observe in trace heatmaps using the
Hough Transform. Here, we demonstrate its working. The points on the test image
are surveyed for parameters in the polar coordinate space described as the Hough
Transform. The intersections describe the parameters of the detected lines. The final
figure shows the Probabilistic Hough Lines, the more robust and efficient algorithm.
For our heatmaps, we use the Probabilistic Hough Line algorithm.

28

Trace Wringing for Safer Program Behavior Sharing Chapter 2

in the ¡r, θ¿ space corresponds back to one possible straight line in the image space.

This point-to-curve transformation (where every point in the image space is a curve in

¡r, θ¿ space) is the Hough-line transform. We do this for all the points, and the most

coincident points (where the most sine curves intersect) in the ¡r, θ¿ space is the choice of

parameters for a line in the image space. Specifically, what makes the Hough transform

robust is how the parameter space is set up: it is divided into a mesh of finite intervals

or accumulator cells. As the algorithm proceeds from point-to-point in the (x, y) (image)

space, the accumulators in the discretized ¡r, θ¿ space are incremented.

For our instance, we use the progressive probabilistic Hough transform [64], a ren-

dition of the Hough transform algorithm that only performs voting on a subset of the

input points. These input points are chosen based on certain features of the expected

result, such as a threshold of “darkness”, the length of the expected line, interpolation

strategies, and the angle of the line. By interleaving the voting process with line de-

tection, this algorithm finds the most prevalent features first, while also minimizing the

computational load.

The progressive probabilistic Hough transform returns a set of lines, with each line’s

(x, y) coordinates in the modulo-memory heatmap space. We also introduce a variable,

“weight”, for each line, which is a measure of darkness of the line.

The list of phase identifiers (the result of clustering), the two (x, y) coordinates of

each line detected by the Hough transformation, and the line’s weight per representative

phase, give us the amount of share-able information.

2.4.3 Proxy trace generation

Using phase detection and Hough-line transformation, we end up with a set of Hough

lines for each representative phase. Each phase is also assigned a label indicating to

29

Trace Wringing for Safer Program Behavior Sharing Chapter 2

which cluster it belongs to, i.e., which representative phase “represents” it. Since the

structural information of each phase is encoded in the the Hough lines, we can generate

an “address tracelet” for each phase using the representative’s Hough lines.

Phases from the same cluster may occur intermittently and in different lengths. For

all phases in the same cluster, we generate patterns continuously in a rotating fashion

regardless of the length. For example, if phases x1 and x2 are both represented by repre-

sentative phase r1 (suppose x1 occurs before x2 and there’s no other phases represented

by r1 in between), we then generate a trace for x2 following the partial patterns we gen-

erate for x1 and wrap over if the total length grows beyond r1, i.e., the starting time step

t when generating addresses for x2 will follow the end time step t− 1 when we generate

for x1 and wraps over when t becomes larger than the end time stamp in r1.

Within each phase, we generate addresses by alternatively picking addresses from the

subset of lines that cover each point in time (each time step t in the projected address

space corresponds to N addresses, in which N is determined by the window size when

the heatmap is generated at first place). If there are no lines covering the current time

step t, we generate addresses for t from a uniformly distributed noise function as there is

no clear pattern observed by the Hough transformation and we mimic a random access

behavior in this way.

Upon picking a Hough line at time t, we generate an address “segment” from that

line based on a fixed segment length, which captures locality at a small granularity. The

segment length for each workload is hand-picked so that it best captures characteristics

of the trace. Each address generated from the line is also shifted to the left by the cache

block offset bits (6 bits for a typical 64B line size) since the purpose of wringing is to

preserve the cache-level patterns.

After generating address tracelets for all the phases, we concatenate them together in

the original order of the phase occurrences to form a complete proxy address trace. The

30

Trace Wringing for Safer Program Behavior Sharing Chapter 2

proxy trace has the same length as the original trace but its memory footprint is limited

to the wrapped address space.

2.5 Evaluation

To evaluate the effectiveness of the approach, we take a set of traces, wring them

through our pipeline to a target number of bits, and evaluate the traces across a range of

cache configurations with regards to miss rate. The details of the parameters and process

follow below.

Starting with the full traces, we first convert them into heatmaps which are param-

eterized by the number of instructions from the trace to simulate, the window size, and

the total size of the mapped space. If a map space is chosen to be too large, the line

detection techniques will fail to pick up useful edges as there is too much white space for

them to operate properly. If the map space is too small then the addresses will be trun-

cated to such a degree that they will cease to be useful for evaluating miss rate. For our

experiments, the x axis in the modulo-memory heatmap represents 10,000 instructions.

We use signal processing techniques here to collect important information about

the heatmaps. We compute the Hough transforms, as described prior, to give us the

value of the constants that describe the lines that the algorithm is able to “see” in the

heatmaps. Specifically we must hand-tune the progressive probabilistic Hough transform

input points (to reduce the search space of the algorithm) to find the lines in the midst

of all the noise that these heatmaps inherently have. For our experiments, the parameter

threshold ranged from [20,200], line length ranged between [10,60], line gap ranged be-

tween [1,50], and theta ranged between π and π/2. Specifically, the probabilistic Hough

lines [65] are then generated and remapped back into the address space.

31

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.6: Producing probabilistic Hough lines on top of the heatmap of the
SPEC2006 benchmark, gcc. The colors are used to indicate distinct lines produced
by the decomposition.

32

Trace Wringing for Safer Program Behavior Sharing Chapter 2

2.5.1 Measuring bits

While our main goal so far has been to extract and describe the structure of traces

as correctly as possible, we must also maintain that not too much information is given

away. The information that needs to be transmitted to the trace generator must contain

both the global phase-identifier information, and the line coordinates and weights per

representative phase.

Phase bits = ⌈log2(# phases) ∗ len(phase seq)⌉ (2.1)

To calculate the bits that are needed to produce the proxy trace for each workload,

we dump all the labels from the clustering result as well as all the Hough lines detected,

each of which is a 5 tuple of coordinates in the heatmap space and a weight value.

The phase information can be represented using Phase bits (Eq. 2.1). We then apply a

variety of compression techniques to compress the dumped files and estimate the bits of

information by measuring the size of the compressed file. We push all of the information

that is to be measured into a single file to ensure that no side information is accidentally

shared between the two halves of the system. We discuss the breakdown effects of each

compression technique in Section 2.5.4.

2.5.2 Trace selection

Rather than working on the traces in their entirety, for each workload, we evaluate

from a large SimPoint [39] trace of the most representative region of 100M instructions,

which results in a variable length of address traces from 30M to 70M accesses for dif-

ferent workloads. We use benchmark subsetting suggestions [66] to reduce the space of

evaluation to a more manageable level, although our results are limited to 6 of the 9

suggested due to errors getting the benchmarks running. Results from all benchmarks

33

Trace Wringing for Safer Program Behavior Sharing Chapter 2

run are considered and the optimal (in terms of bits leaked and accuracy of miss rate)

points at two different levels of bit transmission budget are shown in Table 2.1. The

time overhead for our pipeline is also presented in Table 2.1. Although it varies between

different workloads, we expect this overhead to grow sub-linearly as the trace becomes

longer for any single workload. The time overhead is linearly correlated with the number

of distinctive phases in the trace and the number of phases tends to grow very slowly

since phases often repeat themselves.

2.5.3 Measuring utility

As we concentrate on cache behavior as a target for initial evaluation we use cache

miss rates pre-wringing and post-wringing to evaluate how useful the resulting trace

is. The collected address traces are simulated with different cache configurations using

DineroIV [67]. We use 6 cache configurations in our experiments: direct-mapped and

4-way associative combined with 3 different cache sizes (8k, 16k and 32k), and measure

their miss rates.

From Table 2.1, we observe that as the bits of information leakage increase, the miss

rate gets closer to the ground truth miss rate, which confirms that, with more information

going through the wringing “hole”, the proxy trace we reconstruct becomes more similar

to the original trace in terms of structure. Some benchmarks such as sjeng and hmmer

do not benefit much from the extra bits, in terms of closeness to the miss rate, as 10, 000

or even fewer bits are enough to accurately capture their cache behavior, while others

including libquantum perform much better due to the fact that they have a more complex

structure which requires more bits to encode.

Figure 2.7 compares the proxy heatmap generated for gcc against the original. Our

wrapped address space is of height 2048 (lines in the heatmap) and each “column” in

34

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.7: Heatmap for the original gcc trace and the trace-wrung proxy generated
for gcc trace from the wrapped address space. Each pixel corresponds to one wrapped
address at one time step. The darker the pixel, the more times that address is accessed
during that time step.

the heatmap corresponds to 10,000 memory accesses. The figure illustrates that our

approach is able to capture all but the subtlest patterns.

2.5.4 Comparison to existing compression and trace generation

techniques

We are not aware of any prior methods that have attempted to bound the informa-

tion leakage from generated traces. While our approach to bounding draws from trace

compression and synthetic trace generation techniques, we stand out in at least the fol-

lowing ways: (a) we seek similar behavior in our generated traces, rather than similar

addresses, (b) we allow unbounded priors from non-sensitive traces, (c) our traces are

lossy specifically in a way that it maintains architectural utility, and (d) qualitatively,

the target size of the final “compressed” trace is far smaller than normally considered.

This last point, (d), is something that we can quantify experimentally.

35

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Table 2.1: Best miss rates observed for the benchmarks with three different bit-budgets
of information leakage and time overhead for trace-wringing followed by proxy trace
generation. For each cache configuration 4 miss rates are reported. We report: ground
truth miss rate from the original trace, best miss rate using all hough lines, best
miss-rate with 100k bits, and best miss-rate with merely 10k bits. “-” means the most
aggressive setting in our experiments requires more bits to construct the proxy traces.

Benchmark Bit Budget
Cache Configs. Time

8k,dm 8k,4w 16k,dm 16k,4w 32k,dm 32k,4w Wringing Decompression

gcc

Orig. 6.88% 3.91% 4.86% 2.79% 3.36% 2.11%

138.55s 123.37s
Full 6.10% 3.98% 3.60% 1.27% 1.93% 0.48%
100k 4.82% 2.94% 2.81% 0.72% 1.40% 0.25%
10k - - - - - -

sjeng

Orig. 12.3% 5.01% 6.45% 2.19% 4.24% 0.64%

94.42s 128.08s
Full 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
100k 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
10k 11.89% 7.78% 1.13% 4.39% 0.25% 2.25%

cactusADM

Orig. 8.29% 7.03% 5.44% 5.29% 2.09% 1.54%

209.94s 918.04s
Full 9.35% 4.98% 5.21% 0.85% 2.08% 0.29%
100k 3.73% 0.49% 2.02% 0.14% 0.55% 0.12%
10k - - - - - -

milc

Orig. 7.99% 7.09% 7.68% 7.03% 7.35% 6.94%

336.41s 31.36s
Full 7.73% 7.19% 7.11% 6.66% 5.93% 5.69%
100k 7.51% 7.25% 6.75% 6.44% 5.46% 5.44%
10k - - - - - -

hmmer

Orig. 27.8% 2.54% 26.8% 1.20% 17.0% 0.78%

151.79s 287.95s
Full 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
100k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
10k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%

libquantum

Orig. 16.3% 16.2% 16.2% 16.2% 16.2% 16.2%

57.73s 21.89s
Full 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
100k 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
10k 74.46% 74.44% 69.33% 69.31% 59.31% 59.32%

36

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Figure 2.8: Breakdown of trace-wringing pipelines and comparison against
state-of-the-art compression and synthetic trace generation techniques in the bit-er-
ror space. The x-axis represents number of bits transmitted, y-axis represents the
geometric-mean of error in miss rate. Per workload, we mark the bit-error points
for different techniques; being in the lower-left is better. A packet contains informa-
tion about hough lines and labels. “FP” is fixed-point quantization on hough lines,
“RLE” is run-length encoding on labels, “H5” is the HDF5 format compressed us-
ing h5py [68] for hough lines. We use a general purpose compressor on our packets,
either Gzip,“GZ”, or Bzip2, “BZ2”. “GZ/ALL” and “GZ/HALF” indicate Gzip on
unquantized packets of either all or highly-weighted half of the hough lines. “ATC”
is the off-the-shelf lossy compression [26], “ATC TUNED” is hand-tuned to minimize
information transferred. “CHAMELEON’ is from the open source implementation of
Chameleon [22]

37

Trace Wringing for Safer Program Behavior Sharing Chapter 2

Specifically, we compare our method against a state-of-the-art lossy compression and

synthetic trace generation in Figure 2.8. “ATC” is an open-source implementation of

the address trace compression framework [26], which supports lossy compression over

cache traces. We run both off-the-shelf ATC, and a hand-tuned version that attempts

to further minimize the trace size while still decompressing into useful traces. Although

off-the-shelf ATC achieves good accuracy, it requires up to tens of millions of bits to

represent the structure and data of the original trace in most cases. Even the hand-

tuned version, which adjusts the similarity threshold and reduces the size of the unit of

comparison, does not change the result significantly. This is orders of magnitude more

than the number of bits transmitted in our trace-wringing framework (note the base

10 log scale). For synthetic trace generation, we use an open-source implementation of

the Chameleon framework [48]. The profiles/characterization of traces are quite large

even after h5 compression due to the fact that a histogram of address reuse is entirely

captured in order to generate a similar-behaving synthetic trace. “FP+RLE+BZ2”, our

most aggressive post-wringing compression technique, significantly reduces the number of

bits while maintaining good accuracy. This is not to say that these and related approaches

could never be improved to be competitive on this new problem, but both out of the box

and with some careful tuning, they do not appear to be currently.

2.5.5 Case study: AES attack

While it is impossible to say with certainty what could be leaked in the resulting bits,

it is worthwhile to examine the technique practically in the context of a known attack.

Specifically, we choose to examine the trace to see if it is possible to recover an AES key

using known attacks. AES attacks based on cache sets have been well-studied [17]; we

follow a similar process here.

38

Trace Wringing for Safer Program Behavior Sharing Chapter 2

The vulnerable portion of an AES trace lies in the accesses to the Rijndael substitution

function (sbox). This is stored as a table in memory. In the first round of encryption,

the offset into the table is the result of each byte of the key xor’d with each byte of the

plaintext. When the attacker chooses or knows the plaintext, the offsets are of obvious

importance — the ability to discover the table offsets directly leads to discovery of the

secret key. Because the post-wringing trace consists of cache set indices, we limit the

attack on the original trace to cache sets only as well for a fair comparison.

The attack model is as follows. Assume the attacker has chosen a uniformly random

plaintext, and made N calls to an AES encryption, where each call has 16 bytes of the

plaintext. The attacker can observe the resulting traces, either pre- or post-wringing.

The attacker prepares a table of 256 “candidate” values for each byte of the key. Then,

for each key byte, the attacker considers every address in the traces that could potentially

fall within the sbox table. Each of these addresses corresponds to an sbox table offset,

and, when xor’d with the appropriate plaintext byte, yield a candidate key byte. The

corresponding entry of the candidate table is incremented by one. When finished, the

key byte with the highest candidate score is used in the key guess.

The vast majority of addresses processed will not be sbox accesses; however, because

the plaintext is chosen to be random, these will become uniform random noise. Only

the first-round sbox accesses always come out to the same value when xor’d with the

random plaintext: the correct key byte. With enough traces, the signal corresponding to

the correct key will rise above the noise and be readily apparent. In our attack, looking

at full addresses, it took only 13 encryptions to get all bits of the correct 16-byte key.

Since the post-wringing trace is a smaller space of bits, we are unable to attack full

addresses. Instead, we attack the bits provided; this makes the attack very similar to

the original cache attack [17]. Attacking the first round of AES cannot yield all the bits

of each byte of the key, since the offset within a given cache set is unknown. Attacking

39

Trace Wringing for Safer Program Behavior Sharing Chapter 2

subsequent rounds of AES can provide the rest of the bits, but requires that the first

round attack is successful. Therefore, showing that the attacker is unable to succeed in

attacking the first round is sufficient to demonstrate that the attack fails.

We perform this attack on a set of traces collected from runs of Tiny AES [69] with

a random plaintext. We perform the same attack pre- and post-wringing. In the pre-

wringing trace, we use only 12 bits of the address (the amount of information contained in

the post-wringing trace), masking the lower three bits and the upper bits of the address.

We note that this trace was wrung with 8-byte cache lines specifically to give advantage to

the attacker and show the usefulness of the approach; increasing the cache line size only

makes the attack more difficult. Pre-wringing, the attacker correctly guesses the upper

five bits of all 16 key-bytes after 1,838 encryptions. This is the maximal information that

can be learned in a first-round attack with 8-byte cache lines. Post-wringing, the attack

guesses wrong for all 16 bytes of the key after 50,000 traces.

We performed an entropy calculation on the original traces based on the distribution

of addresses at each time step across a number of traces. We see that ∼160 addresses

have more than 5x the information content of the remaining addresses. These higher

information-content addresses correspond to the sbox computations. Post wringing, all

addresses have uniform information content, i.e., there is no set of addresses that is more

influenced by the key than others.

Our wringing process was able to produce a new trace with comparable cache miss

rates. We received 0.0% (new trace) against 0.9% (original trace) for the direct mapped

cache and 0% (both new trace and original trace) on the 4-way associative caches while

completely stopping our AES cache attack.

40

Trace Wringing for Safer Program Behavior Sharing Chapter 2

2.6 Conclusion

The conflict between the need to share information (to provide more optimal perfor-

mance) and hide information (for privacy) is becoming increasingly fundamental in the

computer system fields. While addresses are one such type of trace, one can certainly un-

derstand how related problems exist with storage traces, cache coherence traffic, energy

usage, user interaction data, and certainly location data. Clever, yet complex, techniques

have been developed to address certain anonymity problems in the past, yet the reality

is that they are often dependent on specific assumptions such as a lack of prior informa-

tion, statistical distributions governing the data, or that number of queries can be tightly

bounded. While our wringing approach is very direct, that directness also comes with

clarity as to what it does and does not do. It does not guarantee anything about how

useful the resulting trace will really be for optimization. However, it does transform the

problem of safe sharing into a measurable systems problem subject to the myriad tools

we have at disposal for common-case optimization. Furthermore, it does provide a strong

and clear bound on the amount of useful information given by the trace.

The technique we present here is a proof-of-concept and we make no claims that it

captures anywhere near the true minimum leakage to utility tradeoff. There is much work

left to be done to bring the number of bits shared compared to the accuracy lost down

into a more appealing tradeoff. 10, 000 bits, let alone 100, 000 bits, is still a tremendous

amount of information to leak and it is far from certain that it can never be used for

anything malicious. From a security standpoint, we must do far better than that. Despite

this gap, we feel that even these results are better than the other approaches, which fall to

the extreme of either leaking almost no information with limited connection to reality or

direct connection to observed behavior and completely unbounded information sharing.

We establish this experimentally in Section 2.5 by comparing against existing approaches,

41

Trace Wringing for Safer Program Behavior Sharing Chapter 2

which while designed for different purposes, do functionally provide a bit-reduced trace

with diminished fidelity. The specific set of techniques we propose push the traces to

much lower levels of leakage than these other past works can achieve with only slight

losses in accuracy. This is perhaps not surprising as the levels of “compression” one

needs to achieve to store a trace efficiently on disk are far less than that needed to have

confidence there is little sensitive information retained.

Looking forward, with this new approach we can build on years of community ex-

perience dealing with address traces and encode common patterns in a general way. In

many important applications, striding memory behavior is an important component and

we believe we are the first to connect the address trace analysis problem with the Hough

transform. The resulting analysis is surprisingly robust to noise and can capture general

striding behavior. While this approach is effective for the memory problems we examined,

there is no shortage of opportunity to build on the techniques we lay out to create more

robust and higher quality trace wringing systems. Fully leveraging the best synthetic

trace, trace compression, and statistical modeling techniques and understanding what

they each bring to the problem is one next step. Bringing the full algorithmic power

provided by the fact that any public trace data can be leveraged in the compression is

also very promising. This opportunity is particular interesting as it sits outside of any

past lossy compression or synthetic trace scheme’s ability to exploit (i.e. minimizing

total data transferred is different than minimizing sensitive data transferred). Further

forward, we see a set of access behaviors (uniform random, stride, etc) that might form

a set of “basis functions” which then are composed to describe a set of traces. Finding

the best set of basis functions and how to optimally compose them to form good proxy

traces can lead to many interesting follow-on works. It remains to be seen just how small

of a footprint is achievable, but we believe there are orders of magnitude of improvement

left to be had. Luckily, because the data to train such a wringing approach is generated

42

Trace Wringing for Safer Program Behavior Sharing Chapter 2

completely by machine, this is an area where there is a great opportunity to gather a

great deal of data to inform our models. The exploration of the hyper-parameter space

of the wringing process can be automated using existing frameworks (e.g., [70]). In the

end, this work is a stepping stone to more general methods for trace sharing and we

hope the clear metrics for success (e.g. share as few bits as possible) prompts further

discussion and effort by the community.

43

Chapter 3

Context Matters: Optimizing

Privacy of Traces with Information

Flow Tracking

As we have seen from Chapter 2, application tuning requires a coordinated effort across

hardware and software to achieve optimized application performance. Execution traces

offer unique insights into a program’s behavior over real inputs and serve as an invaluable

resource for hardware and software engineers during the co-optimization process. Un-

fortunately, these traces are rarely shared between technology partners because even the

simplest address traces gathered from applications that utilize private data can divulge

sensitive information. The fundamental tradeoff between sharing accurate and precise

execution information that will lead to the best co-optimization and protecting sensitive

data remains the just as pivotal.

Concurrently, global policy is moving in favor of providing users with privacy pro-

tections. As a field, we must develop tools, mechanisms, and primitives to uphold these

regulatory protections. In this chapter, we focus on refining our methodology from Chap-

44

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

ter 2 to provide an order of magnitude of improvement in the utility of wrung traces.

We (1) utilize the leading industry standard: the LINDDUN privacy threat modeling

method, (2) leverage advances in information flow tracking techniques to prevent inad-

vertent leakage of information, (3) introduce multiple classes of privacy-enhancing tracing

techniques that allow context-aware differentiation of what information should remain in

the trace and in what amounts based on annotations of private user input, and finally, (4)

run non-convex optimization to maximize utility and minimize bit leakage. To explore

how meaningful the privatized traces are, we compare cache simulation and prefetching

properties. This new approach leaks as few as zero bits of sensitive information and has

an order of magnitude better utility than prior work.

3.1 Introduction

Traces provide invaluable insights into a program’s behavior, notably its interactions

with the runtime system and underlying hardware. These insights guide system designers

as they perform hardware-software co-optimization and application tuning. For example,

address traces can be used to optimize memory and cache behavior. Unfortunately

program traces also leak practically unbounded and arbitrary information about the

programs, sometimes in unexpected ways. This is especially true when program behaviors

are influenced by some private user inputs to that program.

For example, consider a trace taken from a machine as it runs a bioinformatics ap-

plication that analyzes nucleotide sequences for alignment; hmmersearch [71] detects the

similarity, or homology, between a private user profile (containing a nucleotide sequence)

and a database of known sequences. As the program runs, the program path and data

accesses will be dependent on the user’s private nucleotide and that dependence will

show up in the trace as certain code paths being exercised as a function of the nucleotide

45

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Figure 3.1: Modulo memory heatmaps of hmmersearch can reveal number of nu-
cleotide matches between a private user profile and a known database of sequences.

matches. Therefore, by observing the trace, we can make inferences and gain informa-

tion about the nucleotide matches. Figure 3.1 is a visual representation, or a modulo

memory heatmap [7] of a hmmersearch execution. These heatmaps concisely represent

the memory activity of a program execution. In this case, the private nucleotide has 45

matches with the known database. There are also 45 repeating features observable in

the highlighted regions. The knowledge of this relation can be used to infer the number

of matches as is shown in the highlighted regions in this heatmap!

History has taught us that researchers and engineers are highly effective at inferring

sensitive information from even incredibly noisy data. The most advanced methods are

capable of combining abstruse statistical artifacts with prior understanding of compu-

tations to identify secret keys with surprising effectiveness [72, 73, 74, 75, 76]. Privacy

concerns from leaked data extend far beyond cryptographic techniques and include re-

verse engineering attacks on private neural network parameters [77, 78], web traffic be-

havior [79], to even the complete reconstruction of images from a few features [80, 15].

While providing a trace can be an effective means of sharing program behavior with

46

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

others, the same precise visibility into program behavior that makes a trace useful for

performance analysis also makes it useful for identifying private and sensitive data.

As a result, while program traces are a very effective means of gaining insights, they

remain problematic to share widely as things stand today. Moreover, the privacy of

program traces is not well defined and is difficult to formalize. What exactly constitutes

leakage in a trace? Is it the individual addresses, the relationship between the addresses,

or more? This lack of understanding adds a significant research challenge to this area,

making it increasingly unmanageable to share traces even if performance improvements

are highly promising.

Prior work [15, 7, 81, 82] has established that for many applications (including sharing

of address traces [7]), there exists a tradeoff between sharing data for improvements and

profit, i.e. utility, and withholding sensitive data, i.e. privacy. Studying the privacy-

utility tradeoff allows us to move away from operating over an opaque system with no

utility and a transparent system where all data is in the public domain. As a field, we

must tackle system design with privacy and utility in mind. It is therefore necessary to

clearly define goals, threats, and build some amount of tolerance into our systems.

In this chapter, we apply the leading privacy threat modelling framework, LIND-

DUN [14], to the problem of defining privacy of program traces. The LINDDUN method-

ology is an information flow oriented model that helps elicit and mitigate threats to the

privacy of the defined system. Specifically, we employ the “hard privacy” threat model

where the objective is to minimize information leakage. Informed by the LINDDUN

framework, we present strategies for better managing the leakage of information intro-

duced by the sharing of program address traces. While prior work has shown how address

trace data can be represented with statistical models [46, 22, 38], proxy applications [21],

or via trace wringing [7], these trace sharing approaches all treat every part of the trace

as homogeneously sensitive. We introduce hybrid techniques that find and eliminate or

47

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

differentially reduces sensitive information from program traces before they are shared,

thereby eliminating the flow of sensitive information from the private entities to untrusted

processes.

Our hybrid technique, trace scrubbing, begins with application-level input sensitivity

information and, leveraging techniques from information flow analysis, automatically

infers the degree of sensitivity of each memory reference in an execution trace so that its

leakage can be managed appropriately. That sensitive data might be location information,

genetic sequences, lists of contacts, people in images, or private messages. In any of these

domains the specifics of the data considered private, the degree of sensitivity, and how

it interacts with program execution will inform the decision of what information would

need to be reduced or even removed entirely from a trace.

Once a decision has been made about what information to limit, we must consider how

this reduction in information will impact the utility of the trace. The definition of utility

depends on the use case. For our application of generating privacy-enhanced address

traces, this is the distance between cache missrates and prefetching in simulations. Does

the complete removal of these sensitive references make the program traces less useful?

The answer to that question is dependent on both the amount of sensitive data and

how much the program behavior depends on it. In certain cases simply removing all

potentially sensitive data is possible, but in other cases stand-in information will need

to be used to “fill in” for any data removed. We explore a spectrum of methods in this

work that allows us to balance sensitive information leakage and utility of the program

traces. Specifically our contributions are as follows.

• We formalize the privacy threats to sharing program traces using the LINDDUN

privacy threat modeling framework. While this leading industry standard is preva-

lent in modeling software architectures, this is the first time it is being applied

48

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

in the context of sharing program traces, and the first time it is appearing in a

hardware-software system.

• We show that the problem of address trace privacy can be linked to the well-

studied problem of information flow analysis and that by learning which addresses

in a trace are sensitive to the private input, we can specifically target them with

more aggressive leakage mitigation strategies.

• We demonstrate the resulting technique, which balances the cost of replacements

with the set of application behaviors that need to be shared automatically, provides

a new and tighter upper bound on leakage by combining non-sensitive and leakage-

reduced information effectively. Importantly, we demonstrate that this balance is

not tied to the specific use of the trace (through a study of prefetching from these

traces gathered for cache analysis).

We begin with a discussion of our problem formulation and background on privacy

models (Section 3.2). We follow with an overview of our new trace scrubbing technique

and outline a specific instance of this idea that builds on multi-execution information flow

analysis (Section 3.3). We evaluate our technique on a set of applications (Section 3.4).

We end by relating this approach to some additional prior efforts (Section 3.5).

3.2 Modeling Threats to Privacy of Traces

Threat modeling is widely used to identify risk and potential security vulnerabilities

and prioritize mitigations. A privacy threat model specifically targets the privacy of the

system, rather than the security of the system. In this section, we detail how we utilize

privacy threat modeling techniques, and a recent privacy model with high effectiveness

when dealing with memory address traces.

49

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

3.2.1 Trace Privacy with LINDDUN

LINDDUN [14] is the leading privacy threat modeling framework. LINDDUN is a

mnemonic for the privacy threat categories it supports: (a) Linkability, (b) Identifiability,

(c) Non-repudiation, (d) Detectability, (e) Disclosure of Information, (f) Unawareness,

and (g) Non-compliance. The LINDDUN analysis occurs in 3 steps: (1) model the

system, (2) elicit threats, and (3) manage threats. LINDDUN uses data flow diagrams

(DFD) to model the system. It elicits threats by iterating over the DFD and manages

threats by targeting the riskiest DFD elements. The elicitation and mitigation steps

are strengthened by privacy knowledge support structured in to the 7 privacy threat

categories encapsulated within LINDDUN’s acronym.

We provide a LINDDUN data flow diagram for our system in Figure 3.2. The legend

describes the various types of elements in the DFD. In our case, the “User”, “Application

Designer”, “Application”, “Trace Generation” process, and the “Trace Database” are

trusted entities and lie within the “Trust Boundary” in the figure. The Hardware/System

Designer and the Application Tuning” process are the untrusted elements.

The second step is to elicit threats to privacy by mapping the untrusted DFD ele-

ments onto the threats in its knowledge base. We study the relationships between these

untrusted DFD elements to the sensitive DFD elements that we must protect. For this,

we ask the following questions; (1) can an adversary link two items of interest without

knowing the identity of the data subject(s) involved (Linkability), (2) can an adversary

identify a data subject from a set of data subjects through an item of interest (Identifia-

bility), (3) can the data subject deny a claim (e.g., having performed an action, or sent a

request) (Non-repudiation), (4) can an adversary distinguish whether an item of interest

about a data subject exists or not (Detectability), (5) can an adversary learn the content

of an item of interest about a data subject (Disclosure of information), (6) can the data

50

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

subject be unaware of the collection, processing, storage, or sharing activities of the data

subject’s personal data (Unawareness), and (7) is the processing, storage, or handling

of personal data compliant with legislation, regulation, and/or policy (Non-compliance).

(Note: in this work, we do not consider non-compliance.) In Table 3.1, we provide a

mapping for our system, which looks at how the untrusted entities and processes interact

and what they can learn about the system by looking at a sensitive program trace that

might be shared for application-tuning.

Finally, we manage the threats to privacy using privacy-enhancing technologies and

LINDDUN provides an extensive taxonomy in its knowledge base. The common theme

this knowledge base reveals is that for maintaining privacy, it is pivotal to “remove”,

“hide”, “replace”, and “generalize” data and data associations. In this work, we apply

these mitigation strategies to the problem of sharing traces (Section 3.3).

Figure 3.2: Data flow diagram (DFD) for privacy threats to sharing traces for applica-
tion tuning. External entities, processes, data stores, data flow, and trust boundaries
are described through the DFD. Elicitation and mitigation steps iterate over elements
of this DFD to manage threats.

51

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Table 3.1: Eliciting threats to privacy using the LINDDUN knowledge base. Following
from Figure 3.2, we map the untrusted DFD elements to a privacy threat described
by LINDDUN.

DFD Element Description L I N D D U N

System designer Untrusted entity x x x x x -
Application tuning Untrusted process x x x x x -

3.2.2 Trace Wringing Privacy Model

Figure 3.3: (a) In the trace wringing privacy model [7], the secret information is
encoded into a compact packet. The size of the packet in bits is the upper-bound on
information leaked by the secret trace. Trace wringing argues that if you share n bits
about a trace, then you are only leaking n bits. Furthermore, trace wringing allows
extensive use of public information. As such, while the information in the packet
remains secret, it can be used to point to public information. (b) The trace wringing
pipeline [7] is shown here on the hmmer benchmark. Wringing begins by generating
modulo-memory heatmaps followed by phase analysis using k-means clustering. The
cluster labels for each vector is shown in the colorbar under the heatmap. Lines that
describe representative phases are then generated using the hough line transform.
The phase sequence and line information of representative phases are quantized and
compressed into a compact packet.

While superbly useful for purposes of application-tuning, traces can potentially leak

arbitrary information about the application, the system, or even users. Power traces and

branch traces, which both leak far less precise information than address traces, have been

shown to completely compromise critical cryptographic keys [17]. Trace wringing [7] looks

52

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

at the problem of how to safely share memory access traces and establishes a connection

between extreme lossy compression and privacy.

Figure 3.3(a) describes the trace wringing privacy model. The trace with sensitive

information is “squeezed” through a narrow n-bit channel into a compact packet. The

packet, whose encoding is highly lossy but hopefully captures the most important be-

haviors of the trace, can then be shared in lieu of the full trace. The size of the packet

in bits gives us an upper bound on information leaked by the modified trace (since the

modified trace can be completely reconstructed from the packet). One must then attempt

to minimize the size of the packet, while still being able to decode the secret packet into

meaningfully useful traces. Interestingly the trace wringing privacy model allows, in the-

ory, unlimited use of public information. If there is publicly available knowledge about

traces, encodings, programs, or patterns, we may leverage it to minimize bit leakage. Of

course any reference or “pointer” in to public data derived from an analysis of private

data would still need to be included in the packet and would still count against any

leakage calculation.

Trace wringing introduced a pipeline of encoding based on computer vision to extract

and preserve the underlying behavior of memory access traces. To wring a trace one be-

gins with a modulo-memory heatmap. A modulo-memory heatmap is a 2-D histogram of

size N by M which graphically represents the trace behavior with dark spots represent-

ing more heavily accessed areas of memory. Here, N is a large power of 2 and M is the

number of accesses per ten thousand references. Accesses to the same region of memory

over time show up as a horizontal line, while striding behavior appears as a diagonal line.

Trace wringing tries to extract and then replay these visible features to reproduce a proxy

with the same temporal and spatial locality features. Even complex programs exhibit

these patterns and while the striding patterns are important to understand program be-

havior at a high level, the actual addresses themselves are not. Trace wringing attempts

53

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

to preserve these“structural” relationships between trace elements and also proportions

of phases in which they originally appear. Specifically, the pipeline begins with a phase

analysis, recognizing program phases that repeat over time using k-means clustering [62]

over the modulo-memory heatmap. The sequence in which phases appear in the program

are saved for future replay (in the packet). Detailed striding information is detected and

collected by using hough line transforms [64]. The sequence of labels and the detailed

hough lines are compressed into a packet which can then be used to generate a proxy

trace. An overview of this pipeline is shown in Figure 3.3(b).

Notably, this method treats all addresses in the trace as equally sensitive. Therefore,

the number of bits leaked by the trace-wrung proxy are the same for both “safe” and

“unsafe” addresses; an AES sbox is treated the exact same as a stack push and the

pixels of a face are treated the same as pixels of a patch of sky. There is a pressing need

for a full accounting of which addresses are most sensitive so we can definitively, and

with finer granularity, reduce the amount of private information while leaving as much

low-risk addresses in place as possible. Not only would this yield a tighter upper bound

on information leakage, it would also enable higher utility traces since the behavior of

non-sensitive addresses could be less perturbed.

3.3 Scrubbing Data from Traces

The privacy threat modeling reveals that to achieve hard privacy, minimizing data and

data-association leakage is a key requirement. Informed by LINDDUN and trace wringing

(Section 3.2), we actively build in oversight into our system to prevent the leakage using

the prescribed “remove”, “replace”, and “generalize” approaches. Specifically, Trace

Scrubbing through Redaction (Section 3.3.11) embodies the “remove” mitigation principle,

Trace Scrubbing through Replacement (Section 3.3.12) embodies “replace”, and good

54

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

“generalizations” can be attained using methods shown in Section 3.4.1.

When minimizing privacy leakage from a trace, there is often no sense of where the

most sensitive data is and all addresses in the trace are considered equally “bad to leak”.

Accordingly, to bound the overall leakage, the leakage of all the addresses is restricted

to a similar degree. However, in real applications, some trace data may be under the

influence of extremely sensitive data while others may not. In many cases, only a small

subset of the entire set of addresses accessed by an application maybe related to private

information. This is one of our key insights: not all addresses in a program trace are

equally bad to leak and targeting the regions with the strongest information flow from

private and sensitive inputs is a reliable method to maximize both privacy and utility

definitions.

Figure 3.4: Our techniques to scrub sensitive data from traces: redact, and replace.
By learning information about locations of sensitive addresses, we can redact them,
or replace them with stand-in data with similar behavior but bounded leakage. While
trace scrubbing is agnostic to what address sensitivity analysis is used, we use a
multi-execution technique. We mark the traces with unbounded leakage in red, and
traces with bounded leakage in green.

55

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

3.3.1 Trace Scrubbing Strategies

Consider an example of collecting a trace by instrumenting SCP (secure copy) while

we copy files over to a remote host. The generated trace will pick up information about the

authentication process which uses a private key, key 0. An address trace taken during

application execution, should never contain the actual key value key 0, but it could

contain addresses that are influenced by key 0. Even in cryptographic algorithms, where

the programmers are well aware of side channels introduced by many microarchitecture

influences and avoid things like branching based on cryptographic keys, it is still not

uncommon for memory addresses to be dependent on key values. Of course concerns

about privacy are not limited to cryptographic computations (and our results explore

other applications as well), but they provide a very clear example from which we can

build intuition.

The idea of information flow analysis is almost as old as the discipline of computer

security itself, and here too it finds application. However, one is not concerned about

the downstream variables that will be influenced by key 01, instead we need to under-

stand the influence of private information on load and store instructions including (most

importantly) which addresses are accessed. Many information flow analysis techniques

start by “tagging” data that is “high” and then observing how it flows through registers

and values stored and loaded in memory. Here, by contrast, it is perfectly fine if “high”

data is being read from memory; no information is inherently leaked to an address trace

in this case. This problem is if the private data is used as part of an address calculation

itself, for example, as part of a table lookup or in influencing the order of access to a data

structure. While we discuss more of the details of the specific multi-execution informa-

tion flow analysis used in Section 3.3.2 below and other approaches more in Section 3.5,

1unless, of course, those downstream variable influence other loads and stores

56

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

the important point to take away is that we can use the outcome of such an analysis

to bifurcate the address trace. Some of the addresses will be marked as dependent on

private data and some will be marked as independent. These two classes of address in

the trace can then be treated differently. While there are many ways in which one might

choose to differentially dial back information from these two different classes of addresses

in the trace, we concentrate on two in particular here:

Trace Scrubbing through Redaction

Once we have a trace, and know what the private addresses in the trace are, the

simplest and most conservative solution to ensure we are not leaking that private infor-

mation is to simply delete these addresses from the trace before sharing it. We term this

the redact trace scrubbing strategy. When dealing with legal documents it is not uncom-

mon to see redactions which often show up as thick black lines covering a portion of the

text. When confidential information such as names or places are redacted from classified

documents, we can still learn something about the redacted words, such as the number

of characters by observing the length of the black bars. But, when we redact addresses

from our traces, we are not blocking or “zeroing-out” the addresses that are sensitive; we

simply do not share the fact that there was any address which leaked information at all.

The resulting scrubbed trace is shorter, but if the information flow analysis is sound and

all influence is actually captured, then there is no way to figure out where the missing

addresses would go from the data released. Redacting these sensitive addresses from the

trace leads to an information leakage of zero bits. Note that this will be true for any

sound analysis, even if it is not precise.

Of course, redacting hundreds of thousands of addresses from a trace will come at

a high cost to utility. By choosing not to share information about sensitive addresses

altogether, we lose out on key locality information which may adversely affect the utility

57

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

of these traces when sharing program behavior. The resulting scrubbed trace is also

shorter than the input trace since the redacted addresses are not replaced with any other

information. A sound but imprecise analysis might even further exacerbate this issue.

Still, as we will see, redacting a trace often has impressive utility as well.

Trace Scrubbing through Replacement

While redaction has the advantage of leaking no sensitive information about the

trace, when program sharing requires a higher utility, we need a better strategy. One

solution is to replace the sensitive addresses in the trace with similar stand-in data with

bounded leakage, instead of completely eliminating it as in redact. A key insight is

that we can use our trace wringing privacy model more cleverly, i.e., we can now treat

an entire redacted trace as public information and can share it freely. In fact, we can

leverage this new public information and build new trace scrubbing strategies on top of

this simple redaction method. However, any additional information we provide about the

redacted information, including where in the trace the addresses were redacted from, will

leak additional private information. Replacement tries to get the best of both worlds,

it starts with a redacted trace but additional information is substituted into the trace

strategically from a trace-wrung proxy.

To really maximize the use of the replacement trace scrubbing strategy and find

many different points in the bit-error space we can employ replacement incrementally.

By starting from a fully redacted trace, and incrementally increasing the number of

addresses being included, we can sweep the tradeoff space. One way to do this is to

add information back into the redacted trace phase-by-phase. Since the trace wringing

pipeline separates information in terms of program phases, we can leverage this and

simply add information one phase at a time and generate a superset of the combinations

of phases to generate a spectrum of points. This can be especially useful when making

58

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

decisions about optimality under a tight bit budget. Unlike in redaction, in replace, we

also leak information about where the sensitive addresses are located. The information

leakage includes the program phases being called as stand-in (the representative phase

from trace wringing), the sequence in which they appear across the trace (the phase

sequence from trace wringing), and locations or indices where the replacement must

happen. We describe our trace scrubbing methods in Figure 3.4.

3.3.2 Inferring Private Addresses

As we have mentioned before, private inputs to an application can influence what a

trace looks like. Addresses that hold private information can be tracked using information

tracking methods and learn where the sensitive addresses are. An important concept in

information flow is that of non-interference [83], where changes to high security inputs

affect low security outputs. Researchers have observed that this idea can be extended

to measure information flow by counting the number of outputs generated by a program

given a set of inputs [84, 85, 86]. Each trace is captured from an actual execution of the

program, and we can create a set of such executions that represent different inputs.

Let’s consider our running example of collecting a trace by instrumenting SCP while

we copy files to a remote server. The authentication in this run happens via the default

keys. Now consider that you change your identity file and use key 1 for authentication,

and collect another trace. Can this change of private keys be observed in the traces? Not

unexpectedly, yes, the location of the keys is now determined by the identity file and this

will show up as different addresses accessed in memory compared to the default keys.

Comparing multiple executions can pick up these differences.

While there are many ways to perform information flow analysis, this particular

method requires deterministic behavior to be precise. Note that any non-determinism in

59

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Figure 3.5: SCP heatmaps with an overlay of the sensitive addresses in the trace. The
x-axis is windows of size 10, 000 instructions and indicates the passage of time; the
y-axis is the address modulo 2048. In the first figure, we find the addresses that are
sensitive to a change in the SCP keys, and mark them in blue. In the second figure,
we find and mark the addresses that are sensitive to a change in data that is being
transferred to the remote machine.

60

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

the system will simply show up as additional differences and will result in a conservative

“over redaction” of the trace. However, non-determinism should still be reduced to

maximize utility of the technique under any given leakage restriction. We first collect a

trace of the application running with the secret input via Intel’s Pin tool [87]. We then

re-run this application with a modified private user input to observe how this change

influences the generated trace. In order to maintain repeatability across traces, address

space layout randomization (ASLR) is turned off during collection and changes to the

length of the command line arguments are minimized. This allows us to observe the

different program paths taken with changing sensitive inputs to the application. While

not used in this chapter, there is significant existing literature on deterministic record

and replay methods and techniques [88].

An important side effect of measuring information flow in this way, where the actual

system is executed repeatedly, is that side channels in the address traces are captured

in the information flow measurements because the definition of the system is the system

itself. The only way to hide information flow is if the applications under evaluation are

actively communicating across executions such as through the timing or storage objects

that are part of the record used for deterministic record and replay [84]. Thus, although

measuring information flow in adversarial environments is a notoriously challenging prob-

lem, for an application under controlled evaluation where we can apply more advanced

information flow measurement techniques, many of the traditional concerns about covert

channels and system definitions are much less significant because we can apply techniques

that captures most side channels.

Once the traces are gathered, there is the problem of understanding their differences.

Because the traces can be of different lengths, the addresses may not be strictly subsets

of one another, and there is no clearly defined shared reference points, any simple direct

address-by-address comparison is not possible. Ideally we would examine the minimum

61

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

cost way that one trace might be “edited” into the other to identify the differences, but

because these traces are billions of instructions long that approach is computationally

prohibitive. Instead we examine differences conservatively using standard file comparison

tools [89] between stripped down traces generated from multiple executions with changing

private inputs. Again this form of comparison of differences is sound but not precise as

there could potentially be smaller “explanations” of differences between the traces.

With this difference map in hand, going back to our example of SCP, we can visualize

the impact of changing a sensitive input. In Figure 3.5, we show where these multi-

execution differences appear and overlay them on top of the existing heatmaps for SCP

to understand what is changing over multiple executions. In the first figure, we observe

what memory accesses are sensitive to the private keys being changed from the default

keys to key 1. The percentage of sensitive addresses here is about 2.5%. Next, we change

what we consider to be the private input to our analysis. We now consider the data being

transferred via SCP to be the sensitive input. The trace region that is sensitive to change

in data being transferred is much higher: 90%.

3.4 Evaluation

3.4.1 Collecting Bounded Leakage Traces

We compare the privacy-utility performance of trace scrubbing methods to prior work

on trace wringing [7]. We begin by demonstrating that prior work on trace wringing

actually describes a previously unexplored Pareto surface in the dimensions of privacy

and the utility of memory access traces. We, for the first time, formalize the approach

as an optimization problem and quantitatively evaluate this tradeoff space to show that

order of magnitude improvements over prior work are possible. We briefly describe our

62

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

methods here.

We seek a solution to the optimization problem min J(h̄), and J can be appropriately

defined, e.g.:

J1(h̄) = error (3.1)

J2(h̄) = bits × error (3.2)

where h̄ represents the tuple of parameters we wish to optimize, bits refers to the size

of packet we are sharing, and error is measured as deviation from cache missrates of the

ground truth. Specifically, the six parameters we optimize are:

• Number of clusters, k, in k-means clustering, to determine the number of program

phases there might be in the heatmap of the trace.

• Progressive probabilistic hough transform search parameters threshold, line gap,

and line length. These parameters are used to search for striding behavior within

program phases. The threshold is used to separate lines from surrounding noise,

the line length is the minimum length of line segment we are searching for, and the

line gap is the maximum allowed distance between points to still be classified as a

line.

• Proxy trace generation parameters filter percent and block size. Filter percent is

the percentage of detected hough lines that we ignore when generating addresses,

and blocksize is the number of addresses called sequentially.

.

We measure the information leakage as the size of the packet being shared in bits. The

packet contains a sequence of program phase labels (seq) and hough lines that describe

63

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

striding behavior for each representative program phase (rep phase). This information is

quantized, encoded, and compressed. That is,

I(packet) =I(RLE(seq))

+
∑
i

I(hough lines(rep phasei)) (3.3)

where I is a function measuring the number of bits, RLE is a function performing run-

length encoding, and hough lines is a function returning a set of tuples {(x1, y1, x2, y2, w)}

indicating the start-end points and weight of the corresponding hough line.

To quantify utility, we perform trace-based cache simulations [67] and compute both

the mean absolute error (MAE) and mean relative error (MRE) as:

MAE(TMR, PMR) =
1

8

∑
i,j

|TMR(i, j)− PMR(i, j)| (3.4)

MRE(TMR, PMR) =
1

8

∑
i,j

|TMR(i, j)− PMR(i, j)|
TMR(i, j)

(3.5)

where TMR(i, j) and PMR(i, j) represent the cache missrates for i-way associativite cache

(i ∈ {1, 4}) and cachesize j ∈ {8, 16, 32, 64} (KB) for the ground truth and proxy

traces, respectively. For optimization, we use MAE and report MRE (Figure 3.7).

To descend on this objective (Eq. 3.1), we use differential evolution as a search strat-

egy [90]. Differential evolution is a simple, yet powerful non-gradient stochastic algorithm

used for global optimization. Starting from an initial seed, the optimizer maintains a

population of candidate solutions and during each pass, the algorithm creates new trial

candidates by combining existing ones, using the update rule:

b′ = b0 + F × (pop[rand0]− pop[rand1]) (3.6)

64

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

where pop[randk] represents a randomly chosen member of the current population, and

the constant mutation factor F or differential weight is used to control the search radius.

A large F will increase the search radius, but tends to slow down convergence. The

optimizer attempts many hyperparameters settings and finds those that minimize the

error (Eq. 3.1), or the bit-error product (Eq. 3.2). Once we have explored the tradeoff

space, we can define the surface of useful points, i.e., the ones the leak the least amount

of information without excessively compromising the utility.

The plots in Figure 3.7 show the bit-error tradeoff space for our benchmarks. We

let the optimizer choose combinations of parameters that minimize the cache missrate

error of the generated proxy trace. In the logscale bit-error plot, we mark the Pareto

frontier as wring opt. These are the best points in this space. We also compute the

centroid of all bit-error points to approximate hand-picking these parameters and mark

it as wring centroid in the figure as a reference for what an “un-optimized” parameter

selection process might choose. Please note that this figure is log-log. While we present

results for a larger set of applications later in our evaluation, it is important to point out

that a well chosen point can easily both leak a factor of 10x less information and a have

a factor of 10x less error than a point chosen haphazardly. Using the multi-execution

technique, we mark all addresses that are influenced or “tainted” when a change in an

annotated private user input occurs. We describe more details of the applications studied

below, including the private user input. We collect all our program traces on an Intel(R)

Core(TM) i7-7700 CPU with 64GiB system memory running Ubuntu 18.04. Program

traces are collected with Intel’s Pin tool [87].

65

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

3.4.2 Applications

We study seven applications where the user’s private data could be exposed. Addi-

tionally, we define the annotated secret which is used to mark the sensitive addresses in

the trace.

The specific applications we choose are: scp, hmmersearch, a language model in

Python (py), MNIST inference, and video compression using ffmpeg. The trace scrub-

bing strategies track and eliminate the influence of sensitive inputs from appearing in

the share-able proxy trace. A brief summary of the applications and input pairs are

described in Table 3.2.

SCP (keys)

Secure copy [91] (SCP) is a utility that copies files between local/remote hosts over

a secure, encrypted network connection. SCP uses public-key cryptography for user

authentication. For password-less authentications, the user’s public key must be available

on the remote host and the matching private key available locally. We use different

authenticating keys to determine what regions of the memory are influenced by the

private keys.

SCP (data)

Here, we annotate the data being transferred to be private. We first transfer a secret

audio recording in mp3 format. In the second run, we transfer a secret JPEG image. As

shown in Table 3.2, the taint from annotating the keys is 2.5% and from annotating the

transferred data is 90%. These traces, while collected from the same application, have

very different responses to trace scrubbing techniques.

66

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Table 3.2: Benchmarks used to evaluate trace scrubbing.

Benchmark Private info. # Addresses % Sensitive

scp keys auth. key 16,613,181 2.5
mnist weights trained weights 74,371,421 2.66
mnist act activation function 70,338,220 19.54
ffmpeg video being compressed 75,481,059 38.98
py training corpus 35,122,862 76.76
scp data copied 68,177,397 90.23
hmmer protein seq. 51,392,655 94.15

Training a language model in Python

There are privacy concerns when personal data is used to train large models, for

example, in text prediction. One such algorithm is the unsmoothed maximum-likelihood

character level language model. We annotate the text corpora [92] as private.

Hidden Markov Sequence Analysis

HMMER [71] is a bioinformatics software for sequence analysis using profile hidden

Markov models (HMMs). It is used to identify protein or nucleotide sequences for align-

ment. HMMER detects homology (similarity) by comparing a profile-HMM to a database

of sequences. For this benchmark, we compare a profile-HMM to a database of sequences

and annotate the profile-HMM to be private. One of these has zero matches with the

database, while the other has 45 matches.

Trained weights

Optimal neural network weights are vital for the accuracy of the network and are also

considered trade secrets. We annotate the weights to be private in a network trained to

identify handwritten digits (MNIST [93]).

67

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Network architecture

Similar to trained weights, neural network architectures are also considered private

and treated as a trade secret. In this benchmark, we annotate the activation function to

be private in an MNIST handwritten digits network.

Video compression

Video compression utilities such as ffmpeg [94] are content dependent, relying on

information shared within and across image frames to achieve compression. Here, we

annotate the private video and track changes across multiple compression runs.

3.4.3 Results

We look at the privacy and utility characteristics of the different privacy-preserving

trace sharing methods introduced in this chapter: optimized trace wringing, trace scrub-

bing through redaction, and trace scrubbing through replacement.

Measuring privacy

Our privacy metric is simple but information theoretically sound: we count the total

number of bits made available publicly after trace scrubbing. When optimizing trace

wringing parameters, the information leaked is the size of the compressed packet which

contains information about the program phases, how they occur in time, and the lines

that describe the striding behavior within each program phase. Because trace redaction

removes all tagged information, and because we assume that all sensitive information

is tagged at input, trace redaction leaks no information at all. By eliminating all the

sensitive information from the redacted trace, we reduce the trace to a fully publicly

disclosable state. If there is still some sensitivity to releasing the remaining data, that

68

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Figure 3.6: Comparing heatmaps generated from trace wringing, and trace scrubbing
strategies replace and redact, to the ground truth. The x-axis is windows of size ten
thousand instructions and the y-axis is the address modulo 2048. These heatmaps
are collected from the hmmer benchmark and specific regions of these heatmaps leak
information about the program execution visually.

new concern could be further managed through the serial application of trace wringing,

but this trivial composition of techniques is not studied further here. The replace strat-

egy, on the other hand, adds information back into the redacted trace replace any data

removed with bounded information proxy data. This might be done one program phase

at a time or though a combination of different phases. The resulting packet contains

information about the phases that occur, where they occur in the redacted trace, and a

lossy representation of data within each of the transmitted phases. In either case, replace

or redact, the upper bound to information leakage is simple to compute (i.e. count the

number of bits in the packet) and thus easy to put into practice and verify in real-world

applications. We compare our bit leakage numbers with prior work on Mocktails [95] and

present these results in Table 3.3. Our leakage is between 100-40, 000x smaller.

69

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Measuring utility

All the new techniques presented in this work are evaluated in the context of mem-

ory access traces: trace wringing optimization, multi-execution techniques to determine

information flow through addresses, and redact and replace trace scrubbing strategies.

We use cache simulations and prefetching as utility functions. For a robust and clear

understanding of the utility of our traces, we compare cache missrates in eight configura-

tions. We choose four cache sizes, and 2 cache associativities. We measure miss rates for

a direct-mapped cache and a four-way set-associative cache; the cache sizes we use are

8KB, 16KB, 32KB, 64KB. For each individual configuration, we measure the absolute

and relative errors. Per benchmark, we compute a mean over all configurations to get

an absolute and relative error. In Figure 3.7, we present the relative errors as a utility

metric.

Qualitative Analysis

While cache miss rates and prefetching are robust quantitative metrics to measure

the utility of the bounded information traces, we begin with heatmaps of these traces to

get a better qualitative sense of how they are altered by trace scrubbing. We present four

modulo-memory heatmaps for hmmer in Figure 3.6 for the ground truth trace, the wrung

trace with optimal parameters, a replaced trace, and the redacted trace. The x-axis is

windows of 10, 000 instructions (time) and the y-axis is the address modulo some large

power of 2. Here, the large power of 2 is 2048. These heatmaps show the memory activity

over the course of the application’s run.

To maintain similar program behavior to the ground truth, the proxy or scrubbed

traces should visually resemble the ground truth. Both wring opt and replace share

heatmap similarity, but redact is just barely 5% the length of the ground truth trace.

70

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Most of the “sensitive” activity is also missing from the redacted trace, but these include

important regions which could benefit from some optimization through the release of

trace data.

Taking a closer look at these traces, we have marked three sections to go over. In

section [1] in the ground truth trace, we see some “block-like” features which trace

wringing obfuscates. But, since that is not part of the “sensitive” addresses, we see that

it shows up in both replaced and redacted traces. Section [2] exists in the ground truth,

but is also omitted by trace wringing. Unfortunately though, since this is part of the

sensitive information, we do not see it in replace, nor in redact. Most interesting of

all is section [3]. The ground truth trace is taken from an application run where there

are 45 protein sequence matches against the database. The number of “blocks” seen

in section [3] is also forty-five. This means that only by looking at the heatmap, we

can learn information about the number of matches found by hmmersearch. While this

information is captured in the trace-wrung version, the number of “blocks” here is very

unclear. Similarly, we see the same behavior in replace. Of course, since this is sensitive

information, it does not at all show up in the redacted trace.

Quantitative Analysis

Figure 3.7 illustrates our main results. We compare trace wringing, optimized trace

wringing, trace redaction, and trace replacement techniques in the bit-error space. The

x-axis is the upper bound bit leakage in logscale, and y-axis is the mean relative error

in logscale. Each point, represents the bit-error value for a generated proxy trace. The

markers represent the various methods used in the work. The wring points and the

wring opt points are the result of the optimization of trace wringing. We mark the

centroid of all the wring points to represent naively wringing a trace with hand-picked

parameters. Trace redaction is treated as a line, since it leaks zero bits and is considered

71

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

104 105

Bits (logscale)
100

101

102

103

104

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

SCP (KEYS)

104 105

Bits (logscale)

102

103

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

SCP (DATA)

104 105

Bits (logscale)

101

102

103

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

PY

104 105

Bits (logscale)
101

102

103

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

HMMER

104 105 106

Bits (logscale)

101

102

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

MNIST (WEIGHTS)

104 105 106

Bits (logscale)

102

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

MNIST (ACTIVATION)

104 105

Bits (logscale)

101

102

Re
la

tiv
e

Er
ro

r (
lo

gs
ca

le
)

FFMPEG (VIDEO COMPRESSION)

wring
wring_opt
prior work
replace
replace_opt
redact

Figure 3.7: Trace scrubbing techniques placed in bits-error space, where the x-axis
represents upper-bound information leaked in bits (logscale) and the y-axis represents
the mean relative error in cache missrates (logscale). A redacted trace is considered
public information and leaks zero bits, therefore, we present it as a line here. Each
plot shows the trace wringing points, the replace points, and the redact line. The
wringing points include the Pareto frontier, the centroid (naively-handpicked config-
uration), and all other attempted points. Replace points with information added in
phase-by-phase are also presented.

public information according to our privacy model. The replace points are generated by

adding information phase-by-phase to the redacted trace. We choose phases from the

wring opt points to add back into the redacted trace. We mark the best replace points

as replace opt.

For all benchmarks the formulation of trace wringing as an optimization problem and

the application of more rigorous techniques takes us quite far. In all cases wring opt

significantly outperforms wring centroid. The improvement is nearly an order of mag-

nitude better in both the x- and y- dimensions compared to wring centroid in most

cases. Simply deleting the sensitive addresses in the case of redaction, as expected, leaks

no information at all. In terms of miss rate, it performs well in most cases however

adding information back into the redacted traces phase-by-phase using the replace trace

scrubbing strategy yields better results.

72

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Figure 3.8: Cache miss rates across various cache configurations for ffmpeg.

Prefetching on Scrubbed Traces

To demonstrate that the scrubbed traces have utility that extend beyond cache miss

rates alone, we evaluate their “prefetchability”, i.e., how similar the scrubbed traces are

to the ground truth in terms instructions per cycle (IPC). We use Champsim [96] which

simulates a 4-wide out-of-order processor with an 8-stage pipeline, a 128-entry reorder

buffer, and a 3-level cache hierarchy. We collect IPCs with a next-line L1D prefetcher

and the relative errors are posted in Table 3.4. With redaction, IPC errors are between

19-64% of the ground truth; with wring, the errors are within 0.006-0.13%; with replace,

the errors are within 0.005-0.12%.

3.5 Related Work

As described above, prior work on trace privacy has treated all trace information as

equally “bad to leak”. Trace scrubbing advances this idea to specifically target parts

73

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Table 3.3: Comparing bit leakage of trace scrubbing techniques with Mocktails [95].
We measure Mocktails leakage through size of generated profiles. We choose the
smallest sizes, and the preferred profiles (2L-TD) for comparison. Note that Mocktails
was not designed to minimize bit leakage.

Benchmark
Mocktails [95] Trace Scrubbing

min. leak
(KB)

2L-TD
(KB)

min. leak
(KB)

max. acc
(KB)

redact
(KB)

scp keys 3208 8417 13 15 0
scp data 3143 7852 5 63 0
hmmer 6725 24238 15 37 0
py 37356 122856 12 18 0
mnist weights 494 1359 3 32 0
mnist act 487 1350 3 63 0
ffmpeg 257870 564967 12 14 0

of the traces that are sensitive to private information flows and in doing so builds on

concepts and techniques in closely related fields of information flow tracking, synthetic

trace generation, and program privacy techniques which we describe in more detail.

Information Flow Analysis. Information flow analysis via software-only techniques [97,

98, 99, 100], programming-languages and analysis based models [101, 102, 103, 104, 100],

and through hardware extensions [105, 106, 107, 108, 109, 110, 111] provide the ability

to understand the flow of influence in a program. Tags can be used in the enforcement

of a policy, such as in the taint analysis [112, 113, 114, 115, 116, 117] where tag prop-

agation methods carry information transitively through a computation to tell us if any

specific words are derived from that secret or untrustworthy information. More recent

approaches have sought to establish more precise quantitative information flows [58, 116]

which could, in theory, even further enhance the ability to make tradeoffs. Our approach

is agnostic to the specific information flow analysis used, although questions of soundness

74

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

Table 3.4: IPC numbers for the ground truth (GT) and relative error percentage of
redacted traces (rd), replaced traces (rp) and wrung traces (wr). The settings are
chosen to maximize accuracy (.a) and minimize bit leakage (.b). Note that we did not
rerun optimization to find these parameters, and chose them from the previous study
on cache missrates.

Exp.
IPC % error in IPC

GT rd. rp.a rp.b wr.a wr.b

scp keys 1.053 19.61 0.005 0.006 0.031 0.028
scp 0.939 38.90 0.014 0.025 0.020 0.022
py 0.696 63.89 0.017 0.024 0.020 0.006
hmmer 1.244 18.94 0.121 0.009 0.118 0.133
mnist weights 1.037 9.67 0.038 0.070 0.048 0.045
mnist act 0.971 20.59 0.002 0.001 0.001 0.001
ffmpeg 0.964 54.67 0.804 0.737 0.788 0.406

and precision will certainly have downstream ramifications that could require even deeper

tradeoff analysis. The information flow techniques applied in the work are based on se-

cure multi-execution methods [85] which introduce a provably sound and precise method

for ensuring that a program is noninterferant (outputs are not influenced by inputs at

higher security level). Related efforts [84, 86] developed an information flow security

technique that can detect information theft and provide an upper bound on amount of

information that can be stolen without being detected.

Synthetic Trace Generation Characterizing and benchmarking performance[95, 38,

46, 22, 118, 119], when workloads do not yet exist or when systems are too complex to

simulate, is done via synthetic trace generation and statistical simulation techniques. For

early performance models of big-data applications, CAMP [120] proposes a system-level

proxy benchmark generation methodology to accurately both model core and memory.

WEST [119] utilizes reuse distance to model temporal and spatial locality by building

75

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

multiple models per cache configuration (cacheline size, etc.). SLAB [118] leverages in-

struction streams to improve accuracy and reduce metadata size. CAMP proxies are

approximately 10-12x shorter than the originals and have an average cloning error of

11%. SLAB metadata is reported to be 7% the size of LLC traces and have 91% ac-

curacy. WEST produces profile sizes for individual cache sizes and for a 32KB L1, 8M

L2 cache, the profile size is 233KB. MeToo [121] extends WEST by simulating DRAMs

and produces 20-50x shorter traces with an average error of 4.2%. While all of these

schemes were intended for easier sharing and more compressed representations of traces

and not privacy, it is conceivable they could be further tuned to bring the amount of data

shared down to the order of a few KB we share with our best tuned approach treating

all addresses as equally sensitive. However, as better techniques for representing traces

are developed, the additional use of redaction and other techniques differentiating the

sensitivity of particular addresses relative to one another (as we describe in this chapter)

should strictly improve the accuracy/privacy tradeoff achievable.

Enhanced Program Privacy We should also point out that the performance trace

analysis of an entire execution is somewhat related to, but quite distinct from, the prob-

lem of sharing information for bug reports. For example, it is possible to generate bug

reports that include new inputs that made the software fail in the way it originally

did [56]. In that work it is further shown how to compute an upper bound on the infor-

mation leaked by the bug report and present this to the users to assist them in making

the decision to share the report or not. RESPA [122] is another example that generates

anonymous error reports using symbolic execution to find failure-inducing paths and de-

rive the conditions to replay the execution. With the goal of automatically rectifying

dangerous inputs, SOAP [123] first learns a set of constraints characterizing typical in-

puts and when given an atypical input that does not satisfy these constraints, which

SOAP then automatically rectifies. Scrash [124] modifies the source of C programs and

76

Context Matters: Optimizing Privacy of Traces with Information Flow Tracking Chapter 3

safeguards to enhance user privacy by removing sensitive information from application

crash reports. Other prior techniques have described how to transform program execu-

tion traces to maximize users’ anonymity, using a crowd of users and k-anonymity [125]

to eliminate personally identifiable information or protect the privacy of cloud-hosted

deep neural network inference [126].

77

Chapter 4

Wringing Beyond Traces: Mitigating

Reverse Engineering Attacks in

Computer Vision Pipelines

In this chapter, I demonstrate how wringing generalizes beyond program traces. Specif-

ically, we look at emerging technologies such as autonomous driving and augmented

reality (AR), where the privacy of visual data is a critical concern. For example, these

applications rely on localization based on user images derived from always-on cameras

and sensors. Localization is the process of identifying where in three-dimensional space

the object of interest is. It reveals the location and pose of objects of interest such as

an autonomous car or a person wearing AR glasses. The widely adopted technology

uses local feature descriptors at specific key points (e.g. corners) which are derived from

the images. It was long thought that once extracted, feature descriptors could not be

transformed back into the images they were derived from. However, recent work [80] has

demonstrated that under certain conditions reverse engineering attacks are possible and

allow an adversary to reconstruct RGB images. This poses a risk to user privacy. In

78

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

this chapter, we model potential adversaries using a privacy threat model and we believe

that we are the first to have performed such threat modeling in the computer vision

field. Subsequently, we show under controlled conditions a reverse engineering attack

on sparse feature maps and analyze the vulnerability of popular descriptors including

FREAK, SIFT and SOSNet. Our reconstruction is state-of-the-art and produces high

quality reverse-engineered images; it underscores the importance of prioritizing privacy-

preserving mechanisms for localization. Finally, we evaluate potential mitigation tech-

niques that employ the data minimization philosophy to attain privacy: we minimize the

information leaked by selecting only a subset of descriptors and carefully balance privacy

reconstruction risk while preserving image matching accuracy, a vital step in localiza-

tion. Our results show that similar matching accuracy can be obtained when revealing

less information thereby demonstrating that wringing generalizes beyond traces, and that

privacy-preserving localization is possible.

4.1 Introduction

Privacy and security of user data has quickly become an important concern and

design consideration when engineering computer vision applications such as autonomous

driving and augmented reality systems. In order to support machine perception stacks,

these systems require always-on information capture. Most of these use-cases rely directly

or indirectly on the data that originates from the user’s device, i.e., RGB, inertial, depth,

and other sensor values. These data assets are potentially rich in private information,

but due to the compute power limitations on the device, they must be sent to a service

provider to enable services such as localization, and virtual content overlay. As a result,

there is concern that any data assets shared with a cloud service provider, no matter how

well-trusted, can potentially be abused [127]. To enable augmented reality in practice,

79

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

beyond the application functionality, privacy-preserving techniques are thus an important

consideration.

In this work, we focus on localization as a fundamental component of augmented

reality. Localization relies on visual data assets to make a prediction of the location

and pose of the user; in particular, most established algorithms rely on local feature

descriptors. Since these descriptors contain only derived information, they were long

thought to be secure.

Unfortunately, recent literature shows that descriptors can be reverse engineered sur-

prisingly well. We show an example in Figure 4.1. In general, a reverse engineering

attack is the process by which an artificial object is deconstructed to reveal its designs,

architecture, code or to extract knowledge from the object [128]. For feature descriptors,

a reverse engineering attack attempts to reconstruct the original RGB image that was

used to derive the feature descriptors. The fidelity to which the original RGB image can

be reconstructed roughly correlates to the severity of the potential risk to privacy. Prior

work [129, 130, 131, 132] has shown that feature descriptors are potentially susceptible

to such an attack under a range of conditions and configurations. However, there is lim-

ited work on quantitatively analyzing privacy implications as well as evaluating potential

defenses against such reverse engineering attacks, which our work will explore.

To scope the problem, we first outline a privacy threat model [133] to contextualize

the practicality and data assets available to a descriptor reverse-engineering attack. Using

these assets, we show potential reverse engineering attacks and quantify the information

leakage to evaluate the privacy implications. We then propose mitigation techniques

inspired by some of the current best practices in privacy and security [14]. In particular,

we propose two mitigation techniques: (1) reducing the number of features shared and (2)

selective suppression of features around potentially sensitive objects. We show that these

techniques can mitigate the potency of reverse engineering attacks on feature descriptors

80

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

(a) (b) (c) (d)

Figure 4.1: Reverse Engineering Attack and Mitigations. (a) Original image.
Objects detected marked in orange (b) Reverse-engineered image using our attack.
The reconstruction preserves semantic information. By (c) reducing the number of
features or (d) selective suppression around private objects, we reduce the efficacy of
the attack and improve privacy.

to improve protections on user data. In summary, we make the following contributions:

1. We present a privacy threat model for a reverse engineering attack to narrow down

the privacy-critical information and scope the setup for a practical attack.

2. We demonstrate a reverse engineering attack to reconstruct RGB images from

sparse feature descriptors such as FREAK [134], SIFT [135] and SOSNet [136], and

quantitatively analyze the privacy implications. In contrast to previous work [132,

131], our approach does not take additional information such as sparse RGB, depth,

orientation, or scale as input.

3. We present two mitigation techniques to improve local feature descriptor privacy

by reducing the number of keypoints shared for localization. We show that there

is a trade-off between enhanced privacy (less fidelity of reconstruction) and the

utility (localization accuracy). We also show which keypoints are shared matters

for privacy.

81

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

4.2 System and Threat Definition

In this section, we first define privacy, utility and their trade-offs in the context of

localization. We also describe our privacy threat model, which defines assumptions on

adversary behavior and the conditions for a practical reverse engineering attack.

4.2.1 Definitions

Privacy. LINDDUN, a popular methodology in academic discussions, looks at the fol-

lowing privacy properties [133]: linkability, identifiability, non-repudiation, detectability,

information disclosure, content unawareness, and policy. LINDDUN claims that when-

ever users share information, one or more of these privacy properties may be at risk.

This leads to the notion that minimizing the amount of shared information improves

privacy. However, precisely quantifying the impact on privacy is application-specific and

can be implemented as a continuum, modulating the amount of information to be shared

as required. In this work, references to privacy risk and/or threat applies specifically to

reidentification risk, a direct result of the reverse engineering attack; we describe and

evaluate the trade-offs in Section 4.5.2.

Utility. Utility captures the accuracy (or performance) of an application. Applications

may have multiple utility functions for a well-rounded understanding of the operation.

Utility often presents a trade-off with privacy as performance tends to increase with data

size, e.g., ML training. We use feature matching recall as a proxy for localization accu-

racy (Section 4.5.2).

Privacy-Utility Trade-Off. Applying privacy-preserving techniques can adversely af-

fect utility. Ideally, we want high utility and high privacy, but in practice there is a

fundamental trade-off between the amount of information one is willing to share and the

utility one receives from sharing it. In this work, the trade-off is between the localization

82

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

3D

?

?

?
?

?

?

?
?

query

CNN

MapRelocalization
Service

Reconstructed Image RGB Image

2D

Keypoints
and Descriptors

Location and Pose

Large Amount of Images
and Compute Power

Reverse
Engineering AttackUser Application

Private
Information

Honest-but-curious
Adversary

Service provider
is honest and
faithfully executes
relocalization.

Client Service Provider (Server)

Service provider
is curious and
may analyze
data it receives.

Figure 4.2: Privacy threat model for localization. A client derives descriptors
from RGB images and shares them with a service provider. The service provider is
honest and faithfully executes localization by matching query descriptors against a
map. But, the service provider may attempt to derive insight about the user. Our
mitigation strategy is to minimize information shared between the client and the
service provider to maximize privacy.

accuracy (utility) and the images that may potentially be revealed (privacy), i.e., the fea-

tures sent to the server are still useful to the application pipeline but do not directly leak

the rich information content of RGB images that may contain private user information.

In certain cases where the definitions of utility and privacy are simple, this trade-off can

be formalized and reasoned about analytically (e.g. k-anonymity [137]). In larger systems

this is not possible and we must actively play roles of attacker and defender to model

possible attacks and understand the potential risks to user privacy from reidentification.

This is the role of a privacy threat model [138, 139, 140, 141, 142, 143, 133].

4.2.2 Privacy Threat Model

Building a privacy threat model is application specific. For localization, we use the

LINDDUN ”hard privacy” threat model [133] where the objective is to share as little

information as possible to an adversary. LINDDUN proposes building a dataflow dia-

gram of a system and marking data assets, adversaries, and potential attack vectors.
83

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

These are used to audit against potential threats (described in LINDDUN) that impact

privacy. We focus on identifiability, detectability, and information disclosure to audit

potential reverse engineering attacks on RGB images. Identifiability checks if an ad-

versary can identify items of interest. Detectability looks at whether an adversary can

detect whether items exist or not. Information disclosure asks if private information is

disclosed to an adversary without access. An adversary with an RGB image can observe

information about each of these properties which poses a risk to privacy. Our goal is to

prevent the adversary from having such access.

System Definition and Sensitive Data Assets. Figure 4.2 shows the components of

our privacy threat model. Our system follows a client-server architecture to process lo-

calization requests. For localization, there are two primary data assets: (1) RGB images

(2) feature descriptors. We prevent the sharing of RGB images which can leak private

information. Descriptors are perceived as more private and more acceptable to share be-

cause they do not directly leak RGB information. The client derives feature descriptors

(from RGB images) and shares them with the server to query its pose from a global map.

Adversary Definition and Potential Attacks. Our privacy threat model considers

the service provider as an adversary (Figure 4.2) that is honest-but-curious [144]. This

type of adversary is a legitimate participant in the system and executes the agreed upon

service faithfully (as opposed to outright malicious behavior). But, while fulfilling the

service, the adversary is curious and may use available data to learn information about

the client. In our case, the adversary might reverse engineer the user’s RGB images from

feature descriptors. This is possible because the adversary has access to similar data

(feature descriptors, source RGB images) and large scale compute resources. The adver-

sary is capable of training deep-learning models (such as a reverse engineering model)

to analyze user data in a reasonable amount of time. Our goal is to understand how to

improve a client’s protection against an honest-but-curious adversary capable of training

84

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

deep learning models to reverse engineer RGB images from feature descriptors.

4.3 Background

In this section, I define terminology that is widely used in the rest of the chapter but

may be unfamiliar to those who are not experts in computer vision.

Localization. In computer vision, localization is the process of locating an object or an

instance of an object in an image. This often includes producing a tightly-fit bounding-

box centered around the object. In this chapter, we are considering localization in

the context of augmented reality which also includes the process of mapping the three-

dimensional space the object or person (i.e., agent) is in. Simultaneous localization and

mapping (SLAM) [145] is the process of constructing or augmenting a three-dimensional

map of the environment around the agent, while simultaneously being aware of where in

this map the agent is located.

Relocalization. Camera relocalization, or image-based localization is the process of

determining the camera pose, i.e., where and which way the camera is facing in three-

dimensional spatial map, derived from the visual scene representation. Relocalization

uses a single image to estimate the camera’s location and orientation in the three-

dimensional space.

Keypoint. A keypoint is a point of interest in an image. A point is chosen to be a

keypoint depending on its surroundings, e.g. a corner is considered a keypoint due to the

change in intensities around that point. Another defining feature of keypoint locations

is that they are scale-invariant, translation-invariant, and rotation-invariant, i.e., even if

the image goes through scale, translation or rotation transformations, the same keypoints

will be detected.

Descriptor. A descriptor is a finite vector that describes the area of interest around

85

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

a keypoint. The descriptors capture information about scale and orientation and this

information depends on the type of framework used. For example, we use SIFT, FREAK,

and SOSNet descriptor types, and each of them capture different information around the

keypoints. Some descriptor frameworks, such as SIFT, also have a mechanism to detect

their own keypoints, where as frameworks such as FREAK and SOSNet must be supplied

with the keypoints.

Feature. A keypoint and descriptor together form a feature.

Feature extraction. In general, feature extraction is the process of dimensionality

reduction such that information captured about images (say) are non-repetitive and

non-redundant. In this work, feature extraction is the process of finding keypoints and

descriptors (features) in an image using one of the descriptor frameworks (SIFT, FREAK,

SOSNet).

Image matching.

Scale-invariant feature transform (SIFT). SIFT [135] is a keypoint detector and

descriptor. It is a more involved algorithm than finding corners in an image and below I

describe the steps. (1) Scale-space Extrema Detection which uses Difference of Gaussians

(DoG) filtering at different scales to detect blobs of various sizes. This is followed by

a search for keypoints, the local extrema, through comparisons to neighboring pixels.

(2) Keypoint localization This step uses Taylor series expansion of scale space to get

more accurate location of extrema, and if the intensity at this extrema is less than

some threshold value (0.03 as per the [135]), it is rejected. (3) Orientation assignment

For rotation-invariance, each keypoint is assigned an orientation using an orientation

histogram with 36 bins covering 360 degrees. The highest peak in the histogram is taken

and any peak above 80% is also considered to calculate the orientation. (4) Keypoint

descriptor The keypoint descriptor is created as follows: a 16x16 neighbourhood around

the keypoint is taken, divided into 16 sub-blocks of 4x4 size and for each sub-block, an

86

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

8 bin orientation histogram is created. A total of 128 bin values are represented as a

vector to form the SIFT keypoint descriptor.

Fast retina keypoint (FREAK). FREAK [134] is a keypoint descriptor inspired by the

human visual system; especially the retina. A binarized descriptor, it uses a cascade of

binary strings which is computed by comparing image intensities over a retinal sampling

pattern. FREAK descriptors have the advantage of being fast to compute and have

relatively low memory load and are often used for embedded applications.

Second Order Similarity Regularization for Local Descriptor Learning (SOS-

Net). SOSNet [136] is a learned descriptor with second order similarities (SOS). SOS

has previously been used successfully for graph matching, clustering, etc and is known

to capture structure and scale information effectively. SOSNet is a convolutional neural

network based framework to find descriptors at given keypoints (local descriptors). It

utilizes a second order similarity regularization (SOSR) term to the training process that

improves matching performance.

4.4 Reverse Engineering Attack

This section defines the convolutional neural network models we use to craft our

reverse engineering attack. As shown in Figure 4.2, this model takes sparse local features

(keypoints and descriptors) as input and estimates the original RGB image.

4.4.1 Model Architecture

Given a user image I(i, j) ∈ R3 and a derived sparse feature map FI,M(i, j) ∈ RC

containing C-dimensional local descriptors from the image I using a feature extractor

M , we seek to reconstruct an image Î(i, j) ∈ R3 from FI,M . The sparse feature map is

assembled by starting with zero vectors and placing extracted descriptors at keypoint

87

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Figure 4.3: Reverse Engineering Attack Results. Top to bottom: ground truth
and reconstructions from a max. of 1, 000 sparse SIFT, FREAK and SOSNet features.
Reconstruction from only sparse local features reveals the original image information
extremely well. Note: images show landmarks not included in the training data.
Image attribution [146].

88

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

locations i, j. Our reverse engineering attack relies on a deep convolutional generator-

discriminator architecture that is trained for each specific feature extraction method M .

The generator GM produces the reconstructed image:

Î = GM(FI,M)

and follows a single 2-dimensional U-Net topology [147] with 5 encoding and 5 decoding

layers as well as skip connections with convolutions. The discriminator DM is a 6 layer

convolutional network operating on top of GM [148]. In order to adhere to our privacy

threat model and in contrast to prior work by Pittaluga et al. [132], we do not use depth

or RGB inputs and subsequently also do not make use of a VisibNet.

4.4.2 Loss Functions

We use the following loss functions to train the reconstruction network:

MAE. The mean absolute error (MAE) is the pixelwise L1 distance between the recon-

structed and ground truth RGB images:

Lmae =
∑
i,j

||̂I(i, j)− I(i, j)||1 . (4.1)

L2 Perceptual Loss. The L2 perceptual loss is measured as:

Lperc =
∑
i,j

3∑
k=1

||ϕk (̂I(i, j))− ϕk(I(i, j))||22 , (4.2)

with ϕk being the outputs of a pre-trained and fixed VGG16 ImageNet model [149]. ϕk

are taken after the ReLU layer k with k ∈ {2, 9, 16}.

BCE. For the generator-discriminator combination, we use the binary cross-entropy

89

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

(BCE) loss defined as:

Lbce =
∑
i,j

log(DM (̂I(i, j))) + log(1−DM(I(i, j))) . (4.3)

Finally, we optimize the losses together:

LG = Lmae + αLperc + βLbce , (4.4)

with α and β as scaling factors.

4.4.3 Architecture Implementation Details

Our reverse engineering attack uses a deep convolutional generator-discriminator net-

work (see main paper). We provide the implementation details of our reverse engineering

network, including architecture, optimization, and training methodology in this section.

Generator

The generator follows a 2-dimensional U-Net [147] topology with 5 encoding and 5

decoding layers. Specifically, the architecture of the encoder is conv64-conv128-conv256-

conv512-conv1024, where convN denotes a convolutional layer with N kernels of size 3× 3,

stride of 1, and padding of 1. A bias is added to the output, followed by a BatchNorm-2D,

and ReLU operation. Between convolutions, there is a 2D MaxPool operation with kernel

size and stride both set to 2. The decoder architecture is upconv1024-upconv512-upconv256-

upconv128-upconv64 where upconvN denotes a convolutional layer with N kernels which

is also upsampled by a scale factor of 2. The kernels for these layers are also 3 × 3 in

size and have a stride and padding of both 1. The convolution is also followed by a

BatchNorm-2D and ReLU operation.

90

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Discriminator

The discriminator used for adversarial training has the following architecture: Disc256-

Disc128-Disc64-Disc32-Disc16-Disc8-Disc4 where DiscN denotes a 2D-convolution with N

kernels of size 4× 4, stride of 2, and padding of 1, followed by BatchNorm-2D and leaky

ReLU with negative slope of 0.2. Disc256 is not followed by a batch normalization and in

Disc4 leaky ReLU is replaced by a sigmoid operation.

Training Methodology and Optimization

The loss functions we use are described in Section 4.2 of our paper. Our losses together

are described as:

LG = Lmae + αLperc + βLbce , (4.5)

where, α = 1, and β = 0.1.

We detail how we use the L2 perceptual loss here. We utilize a VGG16 model pre-

trained on ImageNet [150]. The outputs of three ReLU layers are used: layers 2, 9, and 16.

ϕi is used to denote the these layers. ϕ1 : RH×W×3 → RH/2×W/2×64, ϕ2 : RH/2×W/2×64 →

RH/4×W/4×128, and ϕ3 : RH/4×W/4×128 → RH/8×W/8×256. These outputs are used by the L2

perceptual loss to train the network.

Both the generator and discriminator were trained using the Adam optimizer with

β1 = 0.9 and β2 = 0.999 and ϵ = 1e−8. The learning rate for the generator is 0.001

and for the discriminator is 0.0001. We train each of the SIFT, FREAK, and SOSNet

networks for 400 epochs each. The first 250 epochs are run without the discriminator

contributing to the generator-discriminator combination network. The next 150 epochs

are run with both the generator and discriminator losses.

91

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

4.5 Evaluation

4.5.1 Experimental Setup

Sparse Local Features.

For the feature extraction methodM from Section 4.4.1, we use SIFT [135] (C = 128),

FREAK [134] (C = 64), and SOSNet [136] descriptors (C = 128) as representatives of

traditional and machine-learned variants. Keypoint locations for FREAK and SOSNet

were detected using Harris corner detection [151]. For reconstruction, we use the SIFT

detector for SIFT descriptors as in [132]; however, for image matching we use Harris

corners for SIFT descriptors because we found the SIFT detector performed poorly in

this setting.

Training and Evaluation Data. We train our networks on 50, 000 images and their

extracted sparse local features from the training partition of the MegaDepth dataset [152].

For testing the reverse engineering attack, we sampled 9, 800 images from the MegaDepth

test set that contain objects as candidates for potential private data.

Network Training. A different reverse engineering model M is trained for 400 epochs

for each descriptor type. The learning rate is initialized to 0.001 and 0.0001 for the

generator and discriminator networks respectively. Learning rates are adjusted using the

Adam optimizer [153].

4.5.2 Measuring Privacy and Utility

Measuring Privacy with SSIM. Our first metric for measuring privacy is structural

similarity (SSIM), which measures the perceptual similarity between images. In our

case, we use SSIM to evaluate how much visual information the reverse engineering

attack can recover by comparing against the original image. Therefore, SSIM provides

92

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

a way to measure identifiability. We note that the SSIM measures to what extent the

whole image may be recovered, which includes private and public information (e.g.

people and buildings respectively); the public information is also available to the service

provider when building the map. However, measuring how well the whole image can be

reconstructed includes the reconstruction quality of private regions. SSIM can further

serve as a proxy to estimate how well other tasks such as object detection, landmark

recognition, and optical character recognition may perform on the reverse-engineered

image.

Measuring Privacy by Object Detection. We use an object detector (YOLO v3 [16],

with 80 classes) to measure how much semantic information can be inferred from the

reverse-engineered images. We compare object detection results on both the original and

the reconstructed images. If an object’s bounding box in the original image has at least

50% overlap with that of the reconstructed image of the same class label, we consider

them as a match. The more correspondence between objects in the original and the

reconstructed image, the higher the risk to privacy.

Measuring Utility. To assess utility of local features when applying our mitigation

strategies, we define an image matching task as a proxy for localization and investigate

how the feature matching between two images deteriorates as we increase the privacy.

Specifically, we generate corresponding image pairs from the 53 landmarks of the test

split of the MegaDepth [152] dataset. For each landmark, we sample 50 pairs of images

that have at least 20 covisible 3D points determined from a reference map built with

COLMAP [154], resulting in 2, 650 image pairs. For each corresponding pair of images,

we perform local correspondence matching using input features, and count the number

of pairs with at least 20 inlier matches which we deem as successful. We refer to the

proportion of image pairs that have been successfully matched as our matching recall,

which we use as our utility measure (Table 4.3).

93

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Figure 4.4: Reverse engineering ablation study of reducing keypoints. SIFT,
FREAK and SOSNet reverse engineering results using 1, 000, 800, 400, 200, and 100
keypoints respectively, annotated in red. Reducing keypoints reduces the potency of
the reverse engineering attack. Regions with higher densities of keypoints have better
reconstruction quality.

Descriptor SSIM Detected Objects
SIFT [135] 0.675 32.58%

FREAK [134] 0.511 19.32%
SOSNet [136] 0.616 41.26%

Table 4.1: Privacy metrics of reverse-engineered images using 1, 000 key-
points. The number of detected objects using YOLO v3 [16] is measured on the re-
verse-engineered images relative the number detected on the original images. FREAK
descriptors reveal less information than SIFT and SOSNet.

4.5.3 Reverse Engineering Attack

We first evaluate to what extent the reverse-engineering attack from Section 4.4 poses

a reidentification risk to privacy. Examples of the reconstructions are shown in Figure 4.3

and the privacy metrics of the reverse-engineered images are given in Table 4.1. Re-

constructions using FREAK [134] descriptors yield substantially poorer reconstruction

quality and semantic content than SIFT [135] and SOSNet [136]. Despite differences in
94

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

feature extraction techniques and descriptor sizes, all three descriptors are susceptible

to the attack and yield reconstructions comparable to prior work [132] (please see sup-

plemental material for detailed comparison to prior work), but notably without RGB or

depth information as input. At a higher level, the results show that under controlled

conditions the reverse engineering attack can introduce a reidentification risk of RGB

image content. The results from Table 4.1 also show that the reverse-engineered images

still allow an adversary to potentially detect and identify some objects that were present

in the original images.

4.5.4 Comparison to Prior Work

We compare our work against several prior works that attempt to reverse engineer

RGB images from features. Figure 4.5 compares our reverse-engineered image results

compared to that of d’Angelo et al. [130] and Weinzaepfel et al. [129]. Compared to the

latter, our result using SIFT shown in Figure 4.5 produces a qualitatively better reverse-

engineered image with more accurate color estimates. As shown in Figure 4.5, the work

from d’Angelo et al. reconstructs image gradients only and is not comparable to our work.

We also compare our results to those by Dosovitskiy and Brox [131] in Figure 4.5. In

contrast to our work, Dosovitskiy and Brox use more keypoints and descriptors for their

reconstruction using SIFT descriptors; they use roughly 3000 keypoints to reconstruct

this image while we use 1, 000 or fewer in our experiments. Qualitatively the results are

comparable.

The previous state of the art is recent work proposed by Pittaluga et al. [132] which

also uses convolutional neural networks to reverse-engineer images. Pittaluga et al. use

additional information such as depth and RGB at the keypoint location to supplement

SIFT descriptors as input to their reverse engineering model. Our work does not use

95

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

(a) Original (b) Ours-SIFT (c) Ours-FREAK (d) Ours-SOSNet

(e) Weinzaepfel et al. (f) d’Angelo et al. (g) Dosovitskiy et al.

Figure 4.5: Comparing our reconstruction quality to that of prior work.
Original image (a) and our reconstructions from SIFT (b), FREAK (c), and SOSNet
(d) descriptors. Reconstructions by prior work from SIFT descriptors in [129] (e), and
BRIEF descriptors in [130] (f), and SIFT descriptors in [131] (g)

96

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Inputs SSIM

Prior Work [132]
Depth Only 0.578
Depth+SIFT 0.597
Depth+SIFT+RGB 0.631

Ours
SIFT Only 0.675
FREAK Only 0.511
SOSNet Only 0.616

Table 4.2: Comparison of average SSIM values of the reverse engineered images from
prior work [132] and our work. Our work achieves better SSIM results for SIFT
without using inputs like depth or RGB.

depth nor RGB information, and does not make use of a separate network for visibility

estimation (as the VisibNet from [132]). We also compare against FREAK and SOSNet

descriptors while Pittaluga et al. exclusively analyze SIFT descriptors.

The results show that even without the additional depth and RGB information from

Pittaluga et al., our reconstructions produce more detail and more accurate color in

average in the cases of SIFT and SOSNet. In contrast, FREAK does not allow us to

reconstruct the color information as well and we see some color artifacts (e.g., see the

clock image). Since a practical reverse engineering attack for a relocalization service

does not provide depth or RGB information to the honest-but-curious adversary, our

attack formulation aligns with the real-world scenario. When using all input data assets

(depth, SIFT, and RGB) Pittaluga et al. achieve a maximum average SSIM of 0.631

on reconstructions and an average SSIM of 0.578 when using only SIFT descriptors

(Table 4.2). In contrast, our reverse engineering attack yields an average SSIM of 0.675

for reconstructions from SIFT features alone and thus provides a new state of the art.

We attribute the improvements to our architecture choice and training procedure which

we describe below.

97

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

(a) (b) (c)

Figure 4.6: Utility and Privacy Trade-Off when Varying the Number of
Features. Privacy increases when reducing the number of features where FREAK
gives the best results. For utility, FREAK and SIFT gives the best results. SIFT
gives the best overall trade-off.

4.5.5 Mitigation by Reduction of Features

Following Section 4.2.2, to improve privacy, our objective is to minimize the infor-

mation shared by the client. To this end, we investigate how reducing the number of

features increases privacy at the expense of utility.

For each descriptor type, we retain a maximum of N top-scoring keypoints based

on the detector response and vary N from 1000 to 100. For each value of N we then

evaluate how well our reverse-engineering models perform. Qualitative results are given

in Figure 4.4. We show the average privacy (measured by 1−SSIM) of the reconstructed

images vs. the number of features in Figure 4.6. The data shows the degradation in

SSIM of the reconstructed images accelerates as more keypoints are removed. For less

than 300 features, SIFT gives better results than SOSNet. FREAK outperforms SIFT

and SOSNet, and yields the best results in terms of privacy.

However, despite strong privacy results, FREAK trades-off utility. In Figure 4.6,

we show how the utility changes. Here, FREAK gives the lowest utility, indicating

that FREAK descriptors overall provide less useful information than SOSNet and SIFT.

98

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Suppression
Privacy (Object Recall) Utility (Matching Recall)
No Yes No Yes

SIFT [135] 20% 2.21% 100% 88%
FREAK [134] 11% 1.29% 34% 28%
SOSNet [136] 28% 5.21% 100% 88%

Table 4.3: Privacy-Utility Trade-Off for Selective Feature Suppression. Ob-
ject recall shows how many objects can be detected from the reverse engineered images
compared to the original images without and with suppression (note that lower is bet-
ter). Matching recall shows how many images can be successfully matched without
and with selective feature suppression. SIFT gives the best overall trade-off.

Interestingly, for SOSNet and SIFT the number of keypoints can be reduced to 200 by

sacrificing only 2% performance. The trade-off between utility and privacy is shown in

Figure 4.6. Overall, we find that SIFT yields the best privacy-utility trade-off among

the evaluated descriptor configurations on the Megadepth dataset. We note that these

results do not preclude the possibility that other descriptor configurations (i.e., in terms of

dimensionality, target dataset, and type) may achieve better results. Ultimately the ideal

descriptor chosen will depend on the precise privacy and utility requirements necessitated

by the localization service.

4.5.6 Selective Suppression of Features

Globally reducing image features can reduce the potency of the reconstruction attack,

but at the same time it reduces the matching accuracy. In this section, we investigate

to what extent an object detector can help implement a more selective approach. We

identify and mark the sensitive regions in the images using the bounding boxes produced

by the YOLO v3 [16] object detector. Based on the bounding boxes, we then suppress

any features in these regions. Finally, we apply our reverse-engineering attack and mea-

sure the detectable semantic information content in the images before and after reverse

engineering (Table 4.3).

99

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

Figure 4.7: Reverse Engineering after Selective Feature Suppression. (a)
Object detection on original image (b) Object detection on reverse-engineered images
(max. 1000 keypoints) (c) Object detection on reverse-engineered images with feature
suppression. All objects detected by the object detector without suppression are
successfully removed with suppression.

Figure 4.7 shows a qualitative example of how selective feature suppression effectively

defeats the object detector; the people detected in the original image do not appear nor

are identifiable by the object detector in the reconstructed images. These results confirm

our intuition that selective suppression can effectively preserve the privacy around a

potentially sensitive region of interest (in our case semantic content of people in the

image). Note that the quality of the overall image outside of the marked sensitive regions

remains largely unaffected. Finally, the results show that features of private objects

should not be shared in order to mitigate privacy risks posed by reverse engineering

attacks.

Results for the privacy-utility trade-off of the suppression are given in Table 4.3.

Under the evaluated experimental conditions, SIFT and SOSNet give better trade-offs

than FREAK; these trends are consistent with the results from Section 4.5.5. Notably

100

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

for SIFT the utility drops slightly, while the detected objects are almost eliminated.

4.6 Related Work

The concept of reverse engineering local features has evolved over recent years as local

descriptors play an increasingly important role. Prior work focused primarily on better

understanding the image features. Only recently have there been proposals towards

leveraging this line of research to understand the privacy implications. Work towards

discovering vulnerabilities and mitigating against attacks remains an emerging area of

research.

4.6.1 Recovering Images from Feature Vectors

Reconstruction from Sparse Local Features. Weinzaepfel et al. [129] demonstrated

the feasibility of reconstructing the input image, given SIFT [135] descriptors and their

keypoint locations, by finding and stitching the nearest neighbors in a database of patches.

d’Angelo et al. [130] cast the reconstruction problem as regularized deconvolution prob-

lem to recover the image content from binary descriptors, such as FREAK [134] and

ORB [155], and their keypoint locations. Kato and Harada [156] showed that it is possi-

ble to recover some of the structures of the original image from an aggregation of sparse

local descriptors in bag-of-words (BoW) representation, even without keypoint locations.

While the quality of reconstructed images from the above methods is far from the original

images, they allow clear interpretations of the semantic image content. In this paper, we

demonstrate that reverse engineering attacks using CNNs reveal much more image details

and quantitatively analyse privacy implications for floating-point [135], binary [134] and

machine-learned descriptors [136].

Reconstruction from Dense Feature Maps. Vondrick et al. [157] perform a visual-

101

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

ization of HoG [158] features in order to understand its gaps for recognition tasks. To

understand what information is captured in CNNs, Mahendran and Vedaldi [159] showed

the inversions of CNN feature maps as well as a differentiable version of DenseSIFT [160]

and HoG [158] descriptors using gradient descent. Dosovitskiy and Brox [131] took an

alternative approach to directly model the inverse of feature extraction for HoG [158],

LBP [161] and AlexNet [162] using CNNs, and qualitatively show better reconstruction

results than the gradient descent approach [159]. They also show reconstructions from

SIFT [135] features using descriptor, keypoint, scale, and orientation information. All the

above approaches differ from ours in that we perform the reconstruction from descriptors

and keypoints only.

Modern Reverse Engineering Attacks. In the context of 3D point clouds and the

AR/VR applications built on top of them, a common formulation of the reverse engineer-

ing attack is to synthesize scene views given the 3D reconstruction information. Recent

work by Pittaluga et al. [132] showed that it is possible to reconstruct a scene from an

arbitrary viewpoint from SfM models using the projected keypoints, sparse RGB val-

ues, depth, and descriptors. Our work extends this approach by considering only the

modalities available to an attacker as input, which are keypoints and descriptors.

4.6.2 Defences and Mitigations

Mitigations for Attacks on Sparse Local Features. For reverse engineering at-

tacks on local features, one notable recent work [163, 164, 165] proposes using line-based

features to obfuscate the precise location of keypoints in the scene to make the recon-

struction difficult. The key idea is to lift every keypoint location to a line with a random

direction, but passing through the original 2D [164] or 3D keypoints [163]. Since the

feature location can be anywhere on a line, this alleviates privacy implications in the

102

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

standard mapping and localization process. Shibuya et al. [165] later extended this ap-

proach for SLAM. Similarly, Dusmanu et al. [166] represent a keypoint location as an

affine subspace passing through the original point, as well as augmenting the subspace

with adversarial feature samples, which makes it more difficult for an adversary to recover

original image content.

Mitigations on Raw Images. Apart from local features, other works try to alleviate

the privacy concern around sharing raw images by perturbing the images [167, 168, 81,

169, 170, 171, 172, 173]. One way of achieving this is to mask out or replace the parts of

images (e.g., faces) that may contain private information [174, 167, 168]. Another stream

of work focuses on encoding schemes or degrading images to prevent recognition of private

image content [81, 169, 170, 171, 172, 173]. A few cryptographic methods were proposed

to encrypt visual content in a homomorphic way on local devices [175, 176, 177], which

allows computing on encrypted data without decrypting. However, such methods are

computationally expensive and it is not clear how to apply them to complex applications

such as localization.

4.6.3 Relationship to Adversarial Attacks on Neural Networks

Recent work has shown that it is possible to trick deep learning models with adver-

sarial inputs to induce incorrect outputs [178, 179, 180, 181]. For example, an adversarial

attack may engineer a perceptually indistinguishable input image to trick a deep learning

model into emitting an incorrect classification result.

Conceptually, these adversarial attacks are similar to the defense or mitigation strate-

gies that we will propose, since state-of-the-art reverse engineering attacks on descriptors

rely on deep learning models. Our mitigation techniques modify inputs in a way to

prevent the deep learning model used in the attack from accomplishing its objective —

103

Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
Chapter 4

reverse engineering the image. However, unlike prior work in this space, our work lifts

the insight that inputs can be modified to induce incorrect outputs and leverages it to

defend against reverse engineering attacks instead of as an attack vector.

4.7 Conclusion

Our work has formulated a privacy threat model to scope the threats to descriptor-

based localization. In contrast to prior work, for the first time, we have shown a re-

verse engineering attack that operates in the real-world scenario, where only sparse local

features are available to an honest-but-curious adversary. We found that our reverse

engineering attack could reconstruct the original image with surprisingly good quality.

We then investigated two mitigation techniques and showed a trade-off between privacy

and utility (measured by feature matching). We found that using an object detector to

suppress objects slightly reduces matching accuracy (as a proxy for localization accu-

racy) but gives better privacy results (fewer reidentifiable objects). Finally, our analysis

has shown that, among the descriptors and we evaluate, the best overall privacy-utility

trade-off can be achieved with SIFT, when compared to FREAK and SOSNet. Pri-

vacy (defined as reidentification risk through reverse engineering attacks as specifically

described in this paper) may be preserved with the mitigation techniques described in

this paper. Looking forward, our work provides initial experiments on some mitigation

techniques the community may consider to further the privacy-aware descriptor-based

applications research.

104

Chapter 5

A Privacy-Enhancing Architecture

for Crowd Sourced Data

In this chapter, We target biometric information collected from wearable devices which

can yield new insights with the potential to improve the health and wellness of those

individuals under measurement. The aggregation of this data over ever larger groups

compounds this potential benefit by helping professionals understand the full shape of the

distribution, however the nature of such biometric data is extremely personal. Prior work

has shown how such shared data can leak your gender, age, habits, and can even be linked

back to identity. Future computer architectures have a role to play in protecting user

privacy, and we find their use in addressing the privacy loss associated with sharing time-

series data specifically (such as those collected from wearables) to be most critical. We

introduce two privacy-enhancing interventions that, through a small-footprint hardware

extension, can both bound the amount of information leaving a user’s wearable device

and provide differential privacy guarantees. Through a careful formulation of privacy

as an architectural design constraint, the examination of interacting privacy-enhancing

parameters, a hardware design and evaluation, and the evaluation of privacy versus utility

105

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

for a suite of privacy-sensitive applications, we show a flexible and effective privacy

framework enabling sharing of streaming sensor data

5.1 Introduction

While it often benefits individuals to learn from crowd-sourced aggregated data, indi-

viduals may not be happy revealing their own data to a central aggregator. Differential

privacy [182] provides a rigorous approach to handling privacy under aggregation and is

especially well suited for problems of making queries over aggregated data. A differential

privacy mechanism ensures that every single user has plausible deniability [52], where

there exists another set of data that could produce the same response with the same

probability. At a high-level there are two primary sub-types of differential privacy: a

global (or centralized) model and the local model.

In the global model, a trusted central aggregator collects individual data and applies a

differentially private mechanism to it [183]. Typically the differential privacy mechanism

is applied exactly once, and only after collecting all the data. However, any aggregator

has incredible visibility into the life of those whose data it aggregates, especially if that

is raw data coming right from a sensor. Under a typical aggregation system, such as that

shown in Figure 5.1, the raw data is still gathered in full – which means there exists a

single point in the system where direct access to the raw data of thousands of users must

be possible, in order to actually apply the global differential privacy mechanism. The

aggregator must, then, be a party fully trusted not to abuse or misuse the data provided.

Unfortunately, examples of user data being subject to significant breaches of privacy are

not at all uncommon [184, 185, 186] and while users may be willing to trust some parties,

they are most likely not even aware of who is aggregating their data. Once data leaves a

device there is little control one can assert about how and where that data is aggregated.

106

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Central
Aggregator

User
Devices

Analysts

Figure 5.1: Embedded data sources produce continuous streams of data which provide
significant value in aggregate form. Traditional models of differential privacy consider
what happens as queries are made on centralized collections of that data. Productions
can be either local (meaning they are enforced at the source) or global (meaning the
are enforced on the collection as a whole).

In contrast, under a local model of differential privacy, the central aggregator collects

only carefully modified data from individuals, i.e., each individual applies a differential

privacy mechanism to their own data [187]. Here the aggregator need not apply any

differentially private mechanisms – the privacy of the resulting queries is inherent in the

data provided to the aggregator who may view the privacy modifications made as a form

of noise. The lack of a single point of failure is a significant benefit and local differential

privacy approaches have been adopted by both Google [188] and Apple [189] in recent

years for various approaches to sampling.

While differential privacy is generally a useful tool for managing the release of per-

sonal data, wearables present some additional constraints because they collect streams

of personal data through their sensors. When combined, this aggregated information

107

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

PET Recon
Derived
Metrics

Randomized
Response

Unit
10 12 14 16

3

2

1

0

Data Minimization

Differential Privacy

Sensor

Central
Aggregator

Raw data Compressed
Representation

Privacy-
enhanced

reconstruction
Randomized

Response

theta p

Figure 5.2: System Overview: A key idea of this work is to compose data minimization
of sensor datastreams (implemented via a privacy-enhancing transform with parameter
θ) with local differential privacy (implemented via a randomized response unit with
parameter p) in hardware on device, prior to transmission to a centralized aggregator.
This protects against intentional and inadvertant (e.g. data breach) violations of the
trust boundary at the aggregator. The key insight of our work is that an optimal
choice of θ can improve user privacy without affecting the overall utility score of the
aggregated information.

can be incredibly helpful to analysts interested in questions that will help assess the

overall health of communities, learn about commuting patterns, evaluate infrastructure

and resource availability, and much more. However, while this sensor data can be used

to monitor individual activities and interactions, the same data can give away smoking

habits [190], reveal personal attributes such as age, height, and gender [191], or even lead

to user re-identification [192]. Even more problematically, standard differential privacy

mechanisms work from the idea of the management of “privacy budget” which, decided

a priori, limits the amount of information that will be given away. The higher the bud-

get, the lower the degree of privacy protection. When dealing with continuous streams

of data, the privacy budget is forced to continuously increase, meaning the release of

practically unbounded private information over time [183, 193].

This is a particularly acute problem, and in this chapter we introduce a small privacy

enhancement unit that can be integrated directly with sensing hardware to regain control

over user data release. Such a unit enables an architecture which bifurcates the stream

of sensor data into two: one for internal use only and one ready for aggregation. A key

108

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

challenge of realizing such an architecture is in ensuring that the privacy of the stream of

data ready for release is maintained, a challenge we demonstrate can be overcome through

the novel integration of information theoretic methods for reduced disclosure and local

differential privacy methods. The resulting system is the first privacy-preserving system

that couples Short-Term-Fourier-Transform based data minimization and randomized

response-based local differential privacy for managing and shaping the release of time-

varying data. Interestingly, for different application scenarios different balances of these

schemes are optimal, but in all cases the combination works better than any scheme in

isolation. A configurable hardware privacy unit allows such a tradeoff to be established

for each type of data independently, but at the same time it allows for the establishment

of clear and non-bypassable privacy on the data under aggregation. Specifically, the

contributions of this work are as follows:

1. We propose a new approach to embedded data privacy in which the architecture

produces and manages multiple streams of data, some of which are specifically

readied for external aggregation through hardware modification.

2. We demonstrate that stream data across a variety of applications can be most ef-

fectively readied for aggregation through a novel combination of short-term Fourier

analysis and randomized response.

3. We further show it is possible to embody these techniques in a small hardware unit

that works in a completely streaming fashion at low overhead compared to power

budget of typical wearable processors.

4. We quantitatively evaluate our approach across motion sensor and ECG data using

information theoretic tools from the privacy community and qualitatively against

our chosen privacy threat model.

109

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

The rest of the chapter is organized as follows. We begin by clarifying our Privacy

Threat Model is Section 5.2 before we dive into the high level architecture and ways of

measuring success in Section 5.3. From there we describe the algorithms (Section 5.4)

and hardware (Section 5.5) at the heart of our approach. We finish up with a discussion

of our evaluation, related work, and conclusions in Sections 5.6, 5.7, and 5.8 respectively.

5.2 Privacy Threat Model

Just as an architecture security paper should be clear about the specific threat model

it attempts to address, best practice in privacy research is to be clear about a privacy

threat model. What data is being protected, from whom is it being protected, what types

of steps might we assume someone interested in breaching privacy would be willing to

take, and under what conditions might we say that privacy has been breached might all

be considered of such a model. The strongest class of assumptions one might make are

adversarial and reduce to information flow, such that any leakage of information about a

user, given any computational actions by an adversary, could be considered a violation of

privacy. However, this model precludes any useful sharing of data. Instead most privacy

research assume users are willing to give up some information as long as that information

cannot, in some sense, be “used against them” as long as some utility is derived from

that sharing. Specifically we consider systems that tackle the problem of aggregating

sensitive, personal data from thousands of users for research and analysis. The goal is to

accomplish this while keeping the individual users’ sensitive information private to the

highest degree possible.

LINDDUN [14] provides an intellectual privacy threat modeling framework and is a

mnemonic for the privacy threat categories it supports: (a) Linkability, (b) Identifiability,

(c) Non-repudiation, (d) Detectability, (e) Disclosure of Information, (f) Unawareness,

110

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

and (g) Non-compliance. In Table 5.1, we provide a LINDDUN mapping for our system,

which looks at how the untrusted entities and processes interact and what they can learn

about the individual when no privacy guards are in place. From our assumptions, we

do not consider linkability, and also assume that the individual users already know that

their personal data is being used. We also consider managing non-compliance to be out

of the scope of this work.

In our setting there are three components: (1) the individual users whose data is

being aggregated, (2) the aggregator who is collecting data, and (3) analysts who want

to infer trends and patterns among many individuals. The aggregator is considered to be

honest-but-curious and follows protocol; sending queries from analysts to the individuals

in a timely manner. But, they may try to exploit the information available to them. The

aggregator does not collude with individuals, nor the analysts, but have direct access to

both parties. Analysts are considered potentially malicious; they may try to learn more

information about the individual users by leveraging publicly available data for such

inference, building user profiles, and trying to remove noise from the query responses.

Security vulnerabilities and client malfunction/misconfiguration that allow direct access

to private data through unintended channels, while important, are considered by other

research and outside the scope of this work.

Under this setting a trade-off between local privacy and aggregate utility is inevitable.

The goal is to strengthen the privacy of the users; more privacy for the individual results

in less reliable and useful data for analysts. To this end, we present a software framework

and hardware implementation that work together to manage privacy and utility in data

aggregation systems that specifically deal with sensitive time-series data collected from

wearables.

111

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Table 5.1: Eliciting threats to privacy using the LINDDUN knowledge base. We map
the untrusted elements to a privacy threat model described by LINDDUN.

Untrusted Element L I N D D U N

Aggregator - y n y y - -
Analyst - y n y y - -

5.3 Privacy-Enhancing Architecture

In this chapter, we present a privacy architecture capable of safely aggregating streams

of personal and sensitive biometric data from users. Our technique includes novel privacy-

enhancing algorithms and their low-overhead hardware implementations. Because previ-

ous approaches based on local differential privacy alone are insufficient when periodically

gathering time-series data from the same device [189], we choose a hybrid approach that

combines information theoretic and differential privacy. The key idea underpinning this

approach is creation of two different streams of data, one that is strictly to be kept on

the device, and one that can be released for aggregation.

5.3.1 A Two Stream Model of Privacy

Modern sensors provide high resolution data that capture an extraordinary amount

of information about their users’ movements, environment, and interactions. And while

that data is useful for providing features users care about (e.g. good accelerometer data

is useful for understanding the orientation of a mobile device), that raw data also has a

great deal of other information embedded in it (e.g. turning it back into location data).

One simple approach to reducing the amount of privacy lost would be to simply reduce

the fidelity of the sensors to only provide the amount of resolution needed for a specific

task. However this has several problems. First, it requires that we have a clear way

of specifying the needs of the task that can be trusted. Second it says nothing about

112

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

what happens to the data after it is used for the task (e.g. that it is not then shared

externally). In reality, there is likely always a local use for a sensor running at its highest

sensitivity or otherwise the sensor in question would not provide sufficient value to merit

inclusion on the device at all. Such a scheme either over-limits the local capability of

the device out of an abundance of caution or under-protects the privacy of the users. A

second solution is to trust the local applications to not abuse the sensor data provided

to them and to properly aggregate that data responsibly through calls to some privacy

preserving framework. Such a framework might even be local, with software hooks in

place to downgrade information before aggregation. However, exactly where those hooks

must be invoked and understanding how that data is allowed to flow through the system

is not an easy problem.

A related problem comes up in the development of high-assurance systems when

attempting to enforce access control. In that community a simple but powerful concept

is that of a “reference monitor”. A reference monitor has the job of inspecting every access

on the system, traditionally a read or write reference, and examining it for compliance

with an access control policy. Allowed accesses are completed as requested and disallowed

accesses are simply rejected. Four critical properties must hold for a reference monitor

system to be secure: it must by non-bypassable, it must be verifiable, it must always be

invoked, and it must be tamper-proof. A privacy scheme requiring minimal trust would

ensure all data is transformed into a privacy-enhanced form before being given “access”

to the outside world – and one would hope that those same four properties would hold

for whatever mechanism is responsible for modifying the data.

Here we believe that architecture has an important role to play. Hardware is much

harder to modify than software, it can be more easily designed with a restricted set

of possible behaviors, and different physical interfaces can provide true separation of

information. In the case of privacy this is extremely helpful because it allows us to

113

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

separate some levels of sensor data for internal use and other levels of data for aggregation.

If data flows directly from the sensor to privacy-enhancing transformations and both are

directly implemented in hardware, it is trivial to ensure non-bypassability to the interface.

At that point it becomes a standard information flow management problem to ensure that

only privacy-transformed data can exit the system, a problem well studied in numerous

prior works [194, 195, 196]. The more interesting part of the problem then is how would

one actually enhance the privacy of the sensor data to prepare it for aggregation?

Our approach there is two-fold. First, we can reduce the total disclosure of sensor

data by producing a privacy-enhanced reconstruction of raw sensor data from a lossy

compressed representation. Specifically we propose a new privacy-enhancing transform

(PET) unit that is parameterized by θ, the disclosure minimization rate which controls,

in a sense, how “lossy” the compressed representation will be. A full-length privacy-

enhanced signal stream is reconstructed from the compressed representation, and used to

obtain derived metrics (e.g. step counts from accelerometer signals, beats per minute from

ECG signals, etc.) Second, all of the queries we consider in this work are designed such

that the values of derived metrics over n time units can be encoded as histograms, and a

randomized response unit further strengthens the privacy of the response by adding noise

through differential privacy mechanisms. This novel combination of reduced disclosure

and random response in fact works far better than either approach independently, and yet

the resulting hardware for such a transform is small, only 0.134mm2 on 7nm technology

as shown in Section 5.6.3. A graphical depiction of the approach can be found in Figure

5.2.

While we describe the specific hardware required later in Section 5.5, central to the

design process is the idea of finding an approach that either “reduces” the loss of privacy

for a given utility, or “improves” utility under an given degree of privacy. To accomplish

either of these we require a way of quantifying these dimensions of design, and while no

114

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

measure will capture every aspect of privacy or utility, there are several insights from the

privacy community one can draw upon.

5.3.2 Quantifying Utility

A metric of utility should attempt to capture the degree of usefulness of the aggre-

gated data. While in the general case putting a number to how useful something is is

no easy task, here we specifically care about how useful some data is in comparison to

the case where complete sensor data is available. One task-independent measure then

of utility is how close a privacy-enhanced reconstruction of some data is to this ground

truth. Of course any single measure of closeness may hide pathological cases that just

happen to be similar in some shallow way, so we consider 4 different utility functions

defined below.

1. Utility Score and Utility Score with Margins. If analysts are interested in asking

queries in the style of “what is the bin with the highest counts?”, the utility metric

must capture how the normalized bins are ranked by counts. We introduce two

utility scores as follows.

ranking score(t, r) =

|t|∑
i=1

int(t̃[i] == r̃[i]) (5.1)

where t̃ = argsort(t), and r̃ = argsort(r). Similarly we define the utility score with

margins as:

ranking score(t, r) =

|t|∑
i=1

int(γℓt̃[i] <= r̃[i] <= γht̃[i]) (5.2)

where γℓ, γh define a margin of error in matching, e.g. (γℓ, γh) = (0.9, 1.1) to indicate

a 10% margin.

115

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

2. Mean Absolute Error and Mean Relative Error We may also quantify utility by

computing the mean absolute error (MAE) and mean relative error (MRE) between

the normalized histograms.

MAE(t, r) =
1

|t|
∑
i

|t[i]− r[i]| (5.3)

MRE(t, r) =
1

|t|
∑
i

|t[i]− r[i]|
t[i]

(5.4)

where t[i] and r[i]) represent the aggregated value of ground truth histograms and

the aggregated values of predicted (privacy-enhanced) histograms respectively.

5.3.3 Quantifying Privacy

For two random variables T,R (e.g. representing the true and response value of some

wearable metric), the mutual information (or information gain) between them is defined

as:

I(X;Y) = DKL(P(T,R)∥PT ⊗ PR) (5.5)

where DKL is the Kullback–Leibler divergence [197], and T,R are summarized by the

probability distributions PR and PT . In the framework used in this chapter, we have

a natural discrete formulation for PT and PR as histograms generated from the distri-

bution of derived sensor metrics corresponding to unfiltered/unperturbed sensor data,

and data minimized and perturbed sensor data, respectively. Following the literature in

the field [198, 199], we define a local measure of privacy in which quantify the difference

116

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

between these discrete M -bin distributions using the Kullback–Leibler (KL) divergence:

DKL(P ∥ R) = −
M∑
i

P [x] loge

(
R[i]

P [i]

)
(5.6)

Due to the use of the natural logarithm in Eq. 5.6, this privacy measure is inter-

preted in nats taking values ∈ (0,∞), indicating maximally identical (bad privacy) and

independent (good privacy) distributions for T and R.

5.4 Private Stream Generation

As mentioned above, a key insight of our work is that, after spliting the streams of

data into one for local-use and one for aggregation, we apply privacy-preserving algo-

rithms directly in hardware. This hardware can be implemented locally (potentially even

directly on the sensor hardware itself). In demonstrating this concept we use two specific

techniques that complement each other in the enforcement of privacy.

First, we apply a novel privacy-enhancing transformation that (a) strengthens the

approach in the face of multiple query-response cycles, and (b) addresses identifiability,

detectability, and disclosure of information through reduced disclosure. The main idea

is to make use of a Short-Term Fourier Transform (STFT) to reduce the information

shared to the bare minimum required to get the job done. Exploiting structure inherent

to the data, we can reduce the amount of information that is shared in a way that

the utility falls off gracefully with the degree of reduction. From this reduced set, we

can then apply local differential privacy through randomized response in a way that

further addresses identifiability, detectability, and ensures non-repudiation. Applying

these privacy enhancements (reduced disclosure and randomized response) changes the

aggregated sensor data values. While the ideal scenario is to maximize both privacy

117

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

and utility, in reality there is a fundamental tradeoff between the two that we need to

navigate. However, as we will show in the Section 5.6, each of these two approaches adds

something unique to the solution.

5.4.1 Privacy-enhancing STFT

Spectral analysis of time-series data has numerous applications including signal arti-

fact removal, event detection, and compression over bandwidth-limited communication

channels. For digitally-sampled signals, the Discrete Fourier Transform (DFT) trans-

forms a length-N vector x ∈ Cn into a length-N vector of frequency coefficients X ∈ Cn,

as Xk =
∑N−1

n=0 xn · e−
i2π
N

kn, which affords the simple matrix formulation X = Fx. Since

F is a unitary transform, we can recover the signal x exactly without information loss

using the inverse transform x = F−1X = F TX. The Fast Fourier Transform (FFT) is

a computationally efficient way to implement the DFT (or inverse DFT) by leveraging

a factorization of F ∈ Cn,n into a product of sparse (mostly zero) factors, reducing the

complexity of computing the DFT from O(N) to O(N logN). There are many FFT fac-

torization and transform implementations, but the utility of each depends on the exact

value of N .

For streaming sensor data, the discrete-time Short-Time Fourier Transform (STFT)

is often used instead of the FFT because it provides frequency decomposition of local

segments of a time-domain signal. This desirable for two reasons: (1) local frequency

analysis enables higher temporal resolution for event detection and communication sig-

nals, and (2) this combats the rising power and complexity cost of using higher sequence

lengths. Specifically, the STFT may be defined as:

XSTFT[m,n] =
L−1∑
k=0

x[k]g[k −m]e−j2πnk/L (5.7)

118

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

and the inverse STFT may be defined as:

x[k] =
∑
m

∑
n

XSTFT[m,n]g[k −m]ej2πnk/L (5.8)

where x[k] denotes a signal indexed by k and g[k] denotes an L-point window function.

Thus, the STFT can be interpreted as the rolling L-point DFT of the product x[k]g[k−m],

where g is responsible for selecting and filtering a local segment of x. The shift between

each window m can be chosen to achieve the desired temporal resolution, but is normally

chosen to be ≥ ⌈L/2⌉ to support lossless reconstruction of x. The window function

g and length are typically chosen to maximize the frequency resolution and mitigate

high-frequency artifacts arising from clipping x to a finite-length window (Fig. 5.3).

There have been various ways devised to implement FFT in hardware and the most

common is to use pipelined butterfly-based architectures [200]. In order to construct an

STFT module in hardware, FFT units are typically reused along with some windowing

and data reordering units to accommodate different window sizes and overlap percentages.

In this work, in order to simplify our design and because of the nature of the data we

work on, we use a fixed windows size and overlap percentage as described in Section 5.5.

Specifically, we use a one-sided FFT-based STFT algorithm that not only affords a

relatively simple hardware implementation, but also enables a novel privacy-enhancing

transform close to the sensor. In particular, for L-sample time-window we perform a

memoryless privacy-enhancing transform W after the application of the L-point FFT,

expressed as (Fig. 5.4):

XPP-STFT[m] = ReLU(WθXSTFT[m] + bθ) (5.9)

where XSTFT[m] is the output of the FFT-unit for a given time segment, and Wθ and bθ

119

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Figure 5.3: The STFT filters and transforms data using a sliding window, resulting
in a time series of spectral coefficients. There poses a fundamental tradeoff between
frequency resolution and time resolution in the spectral coefficients, but still affords
perfect reconstruction when utilizing all the data.

120

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Figure 5.4: An adaptive privacy-enhancing transform (PET) embedded in the STFT
Module. It is parameterized by the privacy parameter θ and adapts Wθ to the signal
content of each time segment. Without additional compression, the bit leakage up-
perbound scales linearly with θ for each time window.

are parameters of the transform.

The optimal choice of Wθ and bθ depends largely on the application, and should typ-

ically be chosen via offline optimization to maximize utility within the user’s privacy

budget. Of primary importance to this chapter is the fact that Wθ should be parame-

terized by a user-controllable privacy parameter θ, although it can more generally be a

function of the signal content as well, as Wθ = W (θ, x). In lieu of a large, centralized,

offline optimization framework here we use a simple signal activity-dependent diagonal

parameterizations of W based on signal energy content and number of shareable bits in

the user’s privacy budget (Alg. 1) that zeros all but the top K = floor(L · θ) Fourier

coefficients with the highest magnitudes for each time segment. That is, θ is interpreted

121

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

as a fraction of the number of coefficients to retain, which scales linearly with the number

of bits shared. Another simple approach (not shown here) is to interpret θ as a fraction

of total information content to retain at each time segment. Once the transformed coeffi-

cient vector for a given time segment XSTFT[m] is computed, it is buffered for the inverse

STFT (ISTFT) computation, e.g. using the classical overlap-add (OLA) technique [201].

Algorithm 1 Top-K Coefficient Filter

function filter topK(XL , θ)
K ← floor(L · θ)
Xsorted, Isorted = sort(abs(XL))
Ikeep = Isorted[1 : K]
w ← {0}L
w
[
Ikeep

]
← XL

[
Ikeep

]
W ← diag(w)
return ReLU(W ·XL + b)

end function

5.4.2 Local Differential Privacy through Randomized Response

Randomized response is a mechanism for local differential privacy. First proposed as a

surveying technique for asking sensitive questions [202], randomized response provides the

surveyors with plausible deniability [52]. For a given sensitive question, the respondent

first flips a fair coin in secret, and answers “Yes” if it comes up heads, or truthfully

otherwise. This interaction is shown in Figure 5.5(a). A later variant [183] provides

deniability for both “Yes” and “No” responses: the respondent flips a coin in secret,

and answers truthfully if the coin is heads, or flips another coin. If the second coin is

heads, the respondent answers “Yes” and “No” otherwise. This randomized response

in Figure5.5(b) provides deniability for both “Yes” and “No” responses and satisfies

differential privacy for ϵ = 1.09.

This formulation works well for Yes/No questions but if the query is more complex,

122

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Sensitive
Question

Yes
heads

Flip a
fair coin

Answer
truthfully

tails
(a)

Sensitive
Question

heads

Flip a
fair coin

tails
(b)

Yes
heads

Flip a
fair coin

No
tails

Answer
truthfully

Figure 5.5: (a) Randomized response, (b) Differentially Private Randomized Response
with parameter p can be used to provides deniability for both ”yes” and ”no” responses
when answering sensitive survey questions.

Figure 5.6: Aggregated results for θ = 0.03, p = 0.9. Row I is the ground truth
aggregated histogram, Row II aggregates over locally randomized responses (RR), and
Row III aggregates over locally randomized responses over reduced disclosure signals
(DM + RR)

123

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

e.g., responding with a histogram of counts, we use the unary encoding (also used by

RAPPOR [188]). This requires two steps that are performed locally:

• encode, which one-hot encodes the response, and

• perturb, which perturbs the encoded response

Perturb flips bits to ensure local differential privacy based on parameters p and q.

Pr[B′[i] = 1] =

p B[i] = 1

q B[i] = 0

(5.10)

Given p and q, the noise budget is given by:

ϵ = log
(p(1− q)

(1− p)q

)
(5.11)

For p = 0.75 and q = 0.25, ϵ = 2.19. ϵ measures how much the risk to an individual’s

privacy may increase due to that individual’s data being included. A higher ϵ means

less privacy protection and increase to the privacy risk is proportional to exp(ϵ).

The aggregation takes into account the number of bit perturbations in each category,

which is a function of p, q, and number of responses, n,

A[i] =

∑
j B

′
j[i]− nq

p− q
(5.12)

Another serious difficulty when dealing with time-series sensor data from wearables

is that local differential privacy may not provide strong (or any) privacy guarantees

when collating multiple rounds of differentially private data [189], potentially leaking

unbounded information. Typically, a privacy budget is decided beforehand to apply over

the data to guarantee LDP. The higher the budget, the lower are its privacy protections.

124

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

When collecting multiple LDP data, due to composition theorems [183, 193], the privacy

budget continues to increase, thereby failing to protect the data. Unfortunately, many

current and state-of-the-art systems [188, 203] fail to address this concern. Alternative

strategies such as those based on information theory [204, 4, 7] can be useful for trans-

forming time-series data to leak less information. These frameworks often consider the

mutual information between the aggregated data and latent information that can be

inferred from it as the measure of privacy. While there is no additional noising mech-

anisms added to these methods, they rely instead, on removal of information, or data

minimization to protect privacy.

When considering time-series sensor data, an individual’s data contribution is rarely

limited to one single differentially private transaction. In fact, multiple transanctions over

streaming windows are inherent to time-series sensor data [205, 206]. But this stream

of (individually) differentially private data incurs an overall loss of sum of privacy losses

of each transaction [183, 193], making it exceptionally important to consider not only

individual transactions, but the number of transactions per time period over the lifetime

of the data-sharing as well. While prior work has shown that this lifetime leakage may be

unbounded [189] for certain uses, many current and state-of-the-art systems have failed

to address this issue. In this chapter, we present information theoretic techniques to

minimize this unbounded loss that current techniques have yet to address.

The input to the Randomized Response Unit (RRU) is the output of the reconstructed

output signal from the Privacy-Enhancing Transform (PET) Unit described previously.

Once the stream for these queries is answered, we can begin the process of applying

randomized response to them. As discussed above, we begin by encoding our signal. The

encoding we use for the unary mechanism is one-hot encoding.

Consider the example query that ISCA 2022 organizers might ask, in order to deter-

mine how walkable New York City is: “What is the distributions of steps taken per day by

125

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

individuals living in the city of New York?”. When querying this data, the analysts also

present the clients with the domain d = {[0− 1000], (1000− 2000], (2000− 3000], (3000−

4000], (4000− 5000], (5000,∞)}.

At each client device, the encode unit will accurately answer this and provide a one-hot

encoded response; one of the encoded responses may appear as so: encoded response =

{0, 0, 0, 1, 0, 0}. The perturb unit, functioning based on Eq. 5.10 might respond in the

following way: perturbed response = {0, 1, 0, 1, 1, 0}.

This perturbed response is collected across all the client devices and its response is

based on the privacy budget parameter ϵ. The aggregator further interprets

perturbed response and stores it in its database before responding to the analyst with

the final distribution.

Figure 5.6 presents the aggregation of derived data metrics across all the stream

devices. For each metric, we present three histograms: the ground truth aggregate

(Row I), the aggregate over randomized responses (Row II), and the aggregate over

privacy-enhanced randomized response (Row III). The x and y axes for all subplots

are bins and counts respectively. The ground truth is trivially computed by summing

true histograms drawn from untouched sensor data across all devices. The randomized

histogram response drawn from untouched sensor data with (p = 0.9) across all devices

presents a differentially private histogram. Note that while the relative “shape” of the

histogram remains similar to the ground truth, the counts are significantly different due

to the encode and perturb functions applied during randomized response. Row III

presents the aggregated histograms over randomized responses collected after applying

the privacy-enhanced transform over the sensor data with θ = 0.03. Here we see a change

in both the “shape” and counts.

126

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Sensor
Data

Minimization
Unit

Randomized
Response

Unit

Signal
Aggregator

Response

Encode PerturbSTFT Filtering
Unit ISTFT

Bitonic
Sorter

Top-k
Filter

Windowing
Unit

FFT
(R2MDC)

Randomization
Parameters (p, q)

Privacy Parameter (θ)

Figure 5.7: Overview of System Components. Our proposed Data Minimization
Unit (DMU) and Randomized Response Unit (RRU). The DMU contains the STFT
and Filtering modules while RRU has Encode and Perturb modules.

5.5 Hardware Architecture

In this section we describe the design of the privacy enhancement stream of the two

stream model. Fig.5.7 shows the overview of the system we propose. It consists of

Sensor, Aggregator, and the two units we propose - Data Minimization Unit (DMU)

and Randomized Response Unit (RRU). As we see in Figure 5.7, there is an notion of

nonbypassability built-in to our implementation.

5.5.1 Data Minimization Unit (DMU)

Figure 5.7 shows the STFT-based Privacy-Enhancing Transform architecture. This

unit consist of the input/reconstruction buffers, the STFT/ISTFR units, and the Filter

127

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

unit implementing the Top-k filtering. For the STFT unit, since we are using a fixed

50% overlap window, we adapt a simplified hardware consisting of a windowing unit and

a 256-point R2MDC (Radix-2 Multi-path Delay Commutator) [200] FFT unit. A multi-

path FFT design was chosen over a serial one to optimize for speed and the R2MDC

provides a good tradeoff for speed and hardware complexity [200]. The output of the

STFT unit is then used as an input to the Filtering unit. In order to implement a Top-k

Filter, we used a Bitonic sorter to sort the data stream and to facilitate selection of

threshold values which will be used by the Filter to extract Top-k values only (others

values in stream are zeroed out in position). The 16-channel Bitonic sorter can be run

iteratively in multiple cycles, saving results in buffers in order to save area and power,

since performance is not critical with the low data rate. As noted earlier, we only explore

Top-K filtering in this work but the idea is applicable to other filtering mechanisms.

5.5.2 Randomized Response Unit (RRU)

Figure 5.7 also shows the Randomized Response Unit. It consists of Encode and

Perturb units. The Encode units converts the signal into a bitstring where a bit is set

to ’1’ in the location of the bin. For example for a signal of value 10 where the bin size

(uniform delta) is 5, the corresponding bitstring output of the Encode Unit is a 32-bit

length bitstring ’0x04’. Note that the number of bins of the query is assumed to be a

maximum of 32 and that the LSB of the bitstring always contains the lowermost bin. To

implement this, we used a divider unit and then a shifter to move ’1’ depending on which

bin the values are located. Finally, once the encoded bitstring is formed, the Perturb

unit is used to add noise on each of the bits of the encoded bitstring. For this work, as a

demonstration, we simply use an 32-bit LSFR/CASR-based PRNG. The output of this

is a ”noisy” bitstring that acts a response which is then sent to the aggregator.

128

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

5.6 Evaluation

5.6.1 Experimental Setup

We demonstrate our privacy approach on raw data from two types of sensor read-

ings: (1) accelerometer, and (2) electrocardiogram (ECG). The raw accelerometer data

is obtained from the ExtraSensory Dataset [207] and contains the magnitude of acceler-

ation in x, y, and z directions over time. The dataset was collected on everyday devices

such as sensors from smartphones and smartwatches from users that were engaged in

their regular natural behavior. Sampled at 40Hz for just about 20 second durations, the

dataset contains 377, 000 streams of accelerometer data. We use this to simulate 5027

personal devices sharing events from 1500-second windows. For the ECG experiments,

we use the MIT-BIH Arrythmia Database [208] which contains 1440 minutes of ECG

data sampled at 360Hz. After applying standard data augmentation techniques, we use

this to simulate approximately 5600 30-second streams spread across 231 devices.

For each device, we first perform data minimization with parameter θ over the en-

tire data stream (multiple 20-second and 30-second measurements for accelerometer and

ECG data, respectively), which results in a privacy-enhanced signal stream of identical

duration. As mentioned, data minimization is performed using the privacy-enhanced

STFT with parameters L = 256 and m = 128 (Eq. 5.7), which translates to roughly

8 seconds of accelerometer data and 711 milliseconds of electrocardiogram (ECG) data

at a time. A one-sided FFT is used because the input accelerometer and ECG sensor

data are real-valued, so negative portion of the spectrum is the complex conjugate of the

positive half.

We compute step count, cadence, and step time as derived metrics from the re-

constructed accelerometer data and beats per minute (bpm), heart rate variability

(HRV-SDNN), and breathing rate from the reconstructed ECG data, for each time

129

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Figure 5.8: Privacy Parameter Space Exploration: 2-D histograms, or heatmaps,
indicating the privacy metric KL-Divergence (Row I), aggregate utility metric Mean
Absolute Error (Row II), and Privacy-Utility Composition (elementwise division of
Row I and Row II) as a function of privacy parameters θ and p.

segment. The domain for the sensor metrics are shown in Table 5.2. For a single de-

vice, we generate a histogram using the metrics computed from the derived data, which

is input to a randomized response mechanism with parameter p to produce data ready

for aggregation. In our tests, we aggregate query responses from approximately 5000

accelerometer devices and 231 ECG devices, for various values of θ and p, in order to

search the privacy-utility tradeoff space. Specifically, for each derived metric we compute

and average over all devices the KL-divergence between the groundtruth histogram and

released histogram as a measure of privacy, and the MAE, MRE, and ranking scores of

the true and aggregated histograms as a measure of utility.

130

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Table 5.2: Sensor data and derived metrics.

Sensor # Devices Derived Metric # Bins for Query

Accelerometer [207]
(∼377K samples

5027
Step Count 11
Cadence 15
Step Time 10

ECG [208]
(∼5600 samples)

231
BPM 15
HRV-SDNN 15
Breathing Rate 7

Figure 5.9: Pareto-optimal Privacy-Utility points: Row I: Black points mark the
full search space (θ̄× p̄), Blue points mark the resulting Pareto-frontier. Row II: Grey
points mark the full search space, Orange points mark optima if only randomized
response (RR) is used. Comparison of rows indicates that better optima (upper left is
best) can be achieved by composing data minimization (DM) with RR, as indicated
by Gray points lying above Orange ones in Row II.

131

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

5.6.2 Finding Optimal Privacy-Utility Trade-off Points

While we present the resulting histogram responses from a single θ, p setting in

Figure 5.6, to maximize both privacy and utility, it is necessary that we observe how

these metrics change as we turn the knob on θ and p values. We take a grid search

approach to find the best points and present these results in Figure 5.8, which has six

columns for the derived metrics from accelerometer and ECG data. The grid search

over the privacy metric (KL-divergence) are shown in Row I and the utility metric (mean

absolute error) are shown in Row II. Row III is a composition that maximizes privacy and

minimizes error through elementwise division of Rows I and II. We evaluate 50 logspaced

p ∈ [0.75, 1.0) and 50 logspaced θ ∈ [0.01, 1.0]; these are the x and y axes in each of

the subplots. In Row I, the value at each block is represented through its color, Green

indicating better values than Red. We report the average values computed over all the

available devices (i.e., 5000+ accelerometer and 250+ ECG devices).

While Figure 5.8 gives us a sense of the search surface we must navigate when set-

ting privacy parameters for dealing with competing privacy and utility objectives, our

framework also allows us to navigate the privacy-utility space directly. We show this in

Figure 5.9. Each subplot in Row I of this figure is used to find the best possible privacy,

given that you want to operate at a certain utility. The x-axis is the utility metric (here

we show mean absolute error) and the y-axis is privacy (KL-Divergence) and each point

on the scatter plot is a unique privacy-utility point we discovered during the grid search

from Figure 5.8. Our goal is to maximize the privacy metric and minimize the utility

metric (error), and the best points lie in the top-left corner of the plot. We mark the

Pareto frontier in Blue to indicate the best operating points available to us.

Row II of Figure 5.9 demonstrates that it would not have been possible to achieve

the Pareto-optimal points without the novel data minimization technique intro-

132

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

duced in this chapter. The grayed out points are the same as the ones that appear

in Row I. The Orange points are privacy-utility points at θ = 1.0, i.e., without any data

minimization. As we can see, for each metric there are several gray points above the Or-

ange curve that indicate that correspond to better tradeoff between privacy and utility

using data minimization. Data minimization leads to both more discoveries, as well as

better discoveries, leading to strictly better and more flexible privacy settings.

5.6.3 Hardware Overhead

To evaluate the hardware overhead of our proposed system, we implemented the RTL

of the DMU and RRU. Our R2MDC-based STFT is based on an existing implementa-

tion [209]. Synthesis was done using 7nm process technology [210] in Synopsys Design

Compiler for 100 MHz operating frequency. Note that the most recent wearable pro-

cessors are already manufactured in 5nm process [211]. Also, since the nature of the

sensor we are interested in (low sampling rate), the hardware could be synthesized in

significantly slower frequencies. Table 5.3 shows the breakdown of the main components.

The Randomized Response Unit consists of around 17K gates and consumes a power

of 100uW while the Data Minimization Unit consist of around 850k gates with roughly

20mW power consumption. The total power overhead of the entire design is small com-

pared to the typical range of power consumption of wearable CPUs which is within 450

mW [212]. Area requirements for a wearable SoCs such as Qualcomm’s Snapdragon 400

are in the range of 50mm2 with 32nm technology [212]. If we scale our design as described

in [213], then it occupies around 6.27mm2.

133

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Table 5.3: Hardware Overhead Results. Figures were collected from synthesis of
implemented RTL modules using Synopsis Design Compiler.

Unit Gate Count Area (µm2) Power (µW)

Data Minimization Unit
- STFT 852240 133370 19886
— FFT+iFFT(256) 85614 12568
— Windowing 47756 7316
- Top-k Filter
— Bitonic Sorter(C=16) 29816 3506 771

Randomized Response Unit
- Encode 16453 1090 84.3
- Perturb
— PRNG 361 63 12.48

5.7 Related Work

5.7.1 Architectural and System Support for Privacy

To ensure an individual’s privacy and security many techniques such as homomorphic

encryption [214], secure multi-party computing [215], and trusted excecution environ-

ments [216] have been developed. These techniques provide strong security guarantees,

but when data needs to be aggregated and queried differential privacy is more applicable.

Prior work shows that that differential privacy and the techniques above can be combined

to provide stronger privacy guarantees [217, 218].

Ever since differential privacy was first proposed [219], it has been shown to be widely

applicable in many fields. It has been used by the U.S. Census [220] and has been adapted

in various applications such as IoT-based federated learning [221], privacy-preserving

news recommendation system [222], and cyber physical systems [223]. Companies have

also begun to use differential privacy in their data collection [188, 224, 225]

Lifestream [226] is a proposed temporal query processing engine that is optimized

134

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

for physiological waveform and designed to be deployed in hospital machines acting as

a central server that receives patient data. However, this work does not consider pa-

tient identity and privacy, so it would be important to privatize the data before it is

queried. Opaque [217], like Lifestream, is designed to be used in hospitals that uses

trusted execution environments such as Intel’s SGX to ensure the confidentiality and

privacy of the computations. However, the initial data must be aggregated before the

computations. This assumes that the data is secure while it is being collected and when

compiled. Likewise, systems like Airavat [227], PrivaApprox [228], and Microsoft’s PINQ

[224], which allow for differentially private querying and computations, also aggregate

the data beforehand and suffer from the same issue.

Google’s RAPPOR [188] is a platform that uses randomized response and bloom

filters to ensure LDP when determining internet traffic patterns. Microsoft’s teleme-

try collection technique [225] improves upon RAPPOR by guaranteeing privacy when

continuously changing data is collected at regular intervals through α-rounding. How-

ever, these techniques were developed for software systems and require energy intensive

computations.

5.7.2 Privacy in IoT Systems

Local differential privacy (LDP) assumes that every single data item is equally sensi-

tive. However, for real world data, a significant amount of data that is being protected

is not necessarily sensitive, consuming unnecessary resources. Based on this observation,

Murakami et. al.[229] proposed an extension to LDP that allow fined-grained protection

of only what the user considers as sensitive data. This makes it possible to improve

utility while keeping the same level of privacy. This technique comes with caveat that

the user is should be able to automatically classify sensitive data from those that are not.

135

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

Malekzadeh et. al. [230] proposed data transformations for sensitive sensor data

which can be used to obfuscate the identification of sensitive activities. For these trans-

formations, they used two types of autoencoders a Replacement AutoEncoder (RAE)

that protects sensitive inferences and an Anonymizing AutoEncoder (AAE) that pre-

vents user re-identification. Unlike the prior work, we propose a hardware-based solution

that integrates directly into the sensor-module and fully configurable to explore different

trade-off spaces in privacy and utility.

DP-Box [203] also attempts to provide a hardware solution for LDP in ultra low power

systems. The authors show that in ultra low power systems where floating point units

cannot be used, the Laplace mechanism (which relies on an RNG) does not guarantee

differential privacy. To solve this they created a hardware module that uses resampling

and thresholding techniques to manipulate and bound noise added by the RNG. While

this module is lightweight and low power, it does not provide strong enough guarantees

of LDP for time series data.

Similarly, the Privacy Protection Unit (PPU) [231, 232] is a proposed hardware unit

that implements differential privacy. The PPU resides off-chip between the sensor and

the processor, and provides access control and noise to the outputs of the sensors. This

potentially requires ISA changes to allow the processor to interface with the PPU and

assure private accesses, but this is only described at a high level and there has not been

an implementation or discussion of the design challenges.

5.7.3 Signal Processing in Hardware

Garrido [233] discusses the trade offs between creating an STFT unit with several

FFT units in parallel and using a windowing unit with a single FFT unit. He also

proposes a feed forward STFT design that minimizes accumulation error. This design

136

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

uses significantly less space than the parallel FFTs design, but is larger than the windowed

design. In this chapter we use the windowed STFT design. Garrido [200] also discusses

the different types of hardware FFT designs and their tradeoffs. This discussion informs

our design decisions discussed in Section 5.5

5.8 Conclusion

Privacy is an increasingly critical consideration of system design, and while multiple

large corporations have started to invest in privacy preserving technologies, there is still a

great deal of room for innovation. Techniques that distribute the responsibility of privacy

and avoid centralized points of naked aggregation are useful both because they lower the

responsibility of aggregators and because they avoid single points of failure. Even if we

are to trust a few entities with our most private data, there is now (and likely always

will be) an appetite for our data beyond our ability to carefully examine.

We propose a new framework for architecturally supported privacy management that

combines information theoretic methods with randomized response-based local different

privacy to enable private aggregation of wearable time-stamped sensor data. Key to this

solution is a privacy-preserving Data Minimization Unit which uses Short-Time Fourier

Transform that allows mutual information reduction by using a filter for lossy reconstruc-

tion of input signals. As a demonstration, we successfully evaluate the effectiveness of our

technique for sensor data such step count and BPM from real world accelerometer and

electrocardiagram sensor readings. Over all we find that a carefully reduced disclosure,

when coupled with random response, can unlock parts of the design space not reachable

by random response alone. In several cases the error could be reduced by a factor of 3x

or more under the same privacy budget and have up to 72% improvement in privacy for

the same utility tolerance. Furthermore we find that the hardware overhead of such an

137

A Privacy-Enhancing Architecture for Crowd Sourced Data Chapter 5

implementation is quite small and we find the proposed solution does not have significant

overhead in terms of chip area and power consumption.

While there is always more work to be done, we believe the contributions here take us

an important step closer to understanding how privacy, utility, and overhead can trade off

against one another in system that seeks to aggregate private data. Computer hardware,

with its lack of malleability, is a natural place to build in non-bypassable enforcement of

privacy control including the separation of levels of sensor data for internal use and other

levels of data for aggregation. The privacy threat modeling privacy threat modeling and

end-to-end evaluation of this work could open future research on low-power information

theoretic solutions for private computations.

138

Chapter 6

Conclusion and Future Directions

Looking further out, the conflict between the need to share information (to provide

more optimal performance) and hide information (for privacy) is becoming increasingly

fundamental in all of computer science. Threats to personal data privacy are emerging as

a leading concern for users. While the European GDPR and CCPA put in place privacy

and data protection requirements, the onus of implementing tools to understand and

embed privacy into systems falls on engineers. Computer architects must start thinking

more about privacy and provide infrastructure to enable privacy at all levels of computing.

Trace wringing was the first paper to connect the problems of compression and privacy

and established a new tradeoff space between utility and leakage in the context of memory

address traces. By providing a way to reason quantitatively about information leakage, it

opened the doors to techniques that formulate privacy as a verifiable and programmable

system requirement.

139

Conclusion and Future Directions Chapter 6

6.1 Future Directions

The widespread use of public photography and the low cost of video capture has

unlocked new computational and algorithmic approaches to entertainment, transporta-

tion, robotics, and many other fields, e.g. using computer vision. Unfortunately, the

data-driven nature of modern approaches leaves many questions about user privacy

unanswered. At the same time, due to growing reliance on custom accelerators, ker-

nels, compilers, etc., the gap between hardware and software design is growing. The

labyrinthine complexity of these designs, combined with manifestations of computer vi-

sion and machine learning, has made it increasingly challenging to reason about and

implement verifiable privacy across the stack.

I believe that the design of private systems is not only possible, but through a con-

certed effort that bridges the gap between hardware, software, and algorithms, we can

find optimal solutions. Through my interdisciplinary dissertation work, I have demon-

strated the ability to speak to experts in a variety of fields and brought together ideas

from architecture, system design, privacy, computer vision, machine learning together

to produce impactful contributions. I wish to explore privacy-preserving and privacy-

maximizing tools and methods for architecture and system design. Below, I outline four

areas in my research program which I believe will solve pressing problems and deliver

real-world impact.

Software-Hardware-Security Codesign. Recently, microarchitectural attacks

have spurred universal interest in the development of secure computing. But it is crucial

to understand how differing mechanisms in security, hardware, and software domains

must be combined to minimize performance overheads while achieving sufficient threat

model coverage. In a recent study [10], I make the case for software-hardware-security

codesign. Broadly, this is a design process where feedback is used to iteratively guide

140

Conclusion and Future Directions Chapter 6

the system toward performance and threat model goals. But for the various emerging

secure technologies like trusted execution environments (TEEs), homomorphic encryp-

tion (HE), and differential privacy (DP), we must first expose usable abstractions for

effective codesign interactions. In order to either automate or make the knowledge trans-

fer between domains efficient, we need to provide a well-established vocabulary at the

interface to collaborate effectively. Grounded in my experience of building system-level

tools like Charm [8] and PyRTL [9, 5], I look forward to building tools that automate

this constraint-driven iterative process and provide verifiable guarantees.

Performant Privacy. Computer architecture and systems were not developed with

privacy or security in mind: performance was always the focus. Rather than treating pri-

vacy as a constraint and restricting systems in order to be private, I believe we can design

secure, private, and performant systems, without having to give up either. Consider for

example, system-level privacy methods that minimize leakage. These data minimization

ideas can be likened to ideas from approximate computing. In many applications, using

“approximate-private” data can lead to significant performance benefits and reduce com-

munication overheads. In applications where data privacy and utility can be precisely

defined, optimal privacy-preserving systems are within reach. Additionally, this would

be the ideal means of achieving privacy in resource-constrained and edge systems.

Verifiably Private Architectures. While privacy models and methods are fast

becoming a popular area of study, there is little work done at the hardware or archi-

tectural level. For example: when an application promises to leak fewer than n bits

per second, how can we ensure that the application is staying within this limit? Using

methods similar to trace wringing and trace scrubbing, we can begin by quantifying in-

formation leakage. Once a reasonable bit leakage threshold is set, our techniques would

ensure that users’ sensitive data is transferred from their personal devices and processed

by cloud providers without exceeding a privacy bit budget per time unit. This measure-

141

Conclusion and Future Directions Chapter 6

and-enforce approach can be used to build verifiable, privacy-preserving systems from the

bottom up. In the future, I will explore privacy baked in to the architecture to support

confidential computing.

Private Machine Perception. Machine perception systems sense their environ-

ment, interpret and compute on sensor data, and take an action. The sensors at the

heart of these systems are in close proximity to rich sources of potentially private data.

Precisely defining privacy and utility early in the dataflow pipeline and restricting infor-

mation flow to connected servers will significantly benefit privacy efforts. A challenging

first task will be to understand what definitions of privacy and utility are most suitable

to both the performance of the system and user protections. As I have shown in my work

on reverse engineering user images [2], I believe data leakage minimization methods can

thwart such attacks on privacy. Combined with system-level modeling, such as Charm[8],

we may be able to untangle complicated relationships governing the utility and privacy

of such sensor data.

142

Bibliography

[1] M. Cowan, D. Dangwal, A. Alaghi, C. Trippel, V. T. Lee, and B. Reagen,
Porcupine: A synthesizing compiler for vectorized homomorphic encryption, in
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pp. 375–389, 2021.

[2] D. Dangwal, V. T. Lee, H. J. Kim, T. Shen, M. Cowan, R. Shah, C. Trippel,
B. Reagen, T. Sherwood, V. Balntas, et. al., Mitigating reverse engineering
attacks on local feature descriptors, .

[3] D. Dangwal, Z. Zhang, J. R. Crandall, and T. Sherwood, Context-aware
privacy-optimizing address tracing, in 2021 International Symposium on Secure
and Private Execution Environment Design (SEED), pp. 150–162, IEEE, 2021.

[4] D. Dangwal, W. Cui, J. McMahan, and T. Sherwood, Trace wringing for program
trace privacy, IEEE Micro 40 (2020), no. 3 108–115.

[5] D. Dangwal, G. Tzimpragos, and T. Sherwood, Agile hardware development and
instrumentation with pyrtl, IEEE Micro 40 (2020), no. 4 76–84.

[6] W. Cui, G. Tzimpragos, Y. Tao, J. McMahan, D. Dangwal, N. Tsiskaridze,
G. Michelogiannakis, D. P. Vasudevan, and T. Sherwood, Language support for
navigating architecture design in closed form, ACM Journal on Emerging
Technologies in Computing Systems (JETC) 16 (2019), no. 1 1–28.

[7] D. Dangwal, W. Cui, J. McMahan, and T. Sherwood, Safer program behavior
sharing through trace wringing, in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 1059–1072, 2019.

[8] W. Cui, Y. Ding, D. Dangwal, A. Holmes, J. McMahan, A. Javadi-Abhari,
G. Tzimpragos, F. Chong, and T. Sherwood, Charm: a language for closed-form
high-level architecture modeling, in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 152–165, IEEE, 2018.

[9] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood, A
pythonic approach for rapid hardware prototyping and instrumentation, in 2017

143

27th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–7, IEEE, 2017.

[10] D. Dangwal, M. Cowan, A. Alaghi, V. T. Lee, B. Reagen, and C. Trippel, Sok:
Opportunities for software-hardware-security codesign for next generation secure
computing, in Hardware and Architectural Support for Security and Privacy,
pp. 1–9. 2020.

[11] D. Mirza, D. Dangwal, and T. Sherwood, Pyrtl in early undergraduate research, in
Proceedings of the Workshop on Computer Architecture Education, pp. 1–8, 2019.

[12] D. Aboye, D. Kupsh, M. Lim, J. Mai, D. Dangwal, D. Mirza, and T. Sherwood,
Pyrtlmatrix: An object-oriented hardware design pattern for prototyping ml
accelerators, in 2019 2nd Workshop on Energy Efficient Machine Learning and
Cognitive Computing for Embedded Applications (EMC2), pp. 36–40, IEEE, 2019.

[13] J. Fowers, D. Lo, and D. Dangwal, Deriving a concordant software neural network
layer from a quantized firmware neural network layer, Sept. 3, 2020. US Patent
App. 16/290,117.

[14] K. Wuyts and W. Joosen, Linddun privacy threat modeling: a tutorial, CW
Reports (2015).

[15] D. Dangwal, V. T. Lee, H. J. Kim, T. Shen, M. Cowan, R. Shah, C. Trippel,
B. Reagen, T. Sherwood, V. Balntas, A. Alaghi, and E. Ilg, Analysis and
mitigations of reverse engineering attacks on local feature descriptors, 2021.

[16] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint
arXiv:1804.02767 (2018).

[17] D. A. Osvik, A. Shamir, and E. Tromer, Cache attacks and countermeasures: the
case of aes, in Cryptographers’ track at the RSA conference, pp. 1–20, Springer,
2006.

[18] L. Sweeney, Simple demographics often identify people uniquely, Health (San
Francisco) 671 (2000) 1–34.

[19] N. Y. Times, A face is exposed for aol searcher no. 4417749, 2006.

[20] A. Narayanan and V. Shmatikov, Robust de-anonymization of large sparse
datasets, in Security and Privacy, 2008. SP 2008. IEEE Symposium on,
pp. 111–125, IEEE, 2008.

[21] A. Joshi, L. Eeckhout, and L. John, The return of synthetic benchmarks, in 2008
SPEC Benchmark Workshop, pp. 1–11, 2008.

144

[22] J. Weinberg and A. Snavely, Chameleon: A framework for observing,
understanding, and imitating the memory behavior of applications, in PARA08:
Workshop on State-of-the-Art in Scientific and Parallel Computing, Trondheim,
Norway, 2008.

[23] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and N. B.
Sam, The vpc trace-compression algorithms, IEEE Transactions on Computers 54
(2005), no. 11 1329–1344.

[24] E. Elnozahy, Address trace compression through loop detection and reduction, in
ACM SIGMETRICS Performance Evaluation Review, vol. 27, pp. 214–215, ACM,
1999.

[25] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, Analysis of branch prediction via
data compression, ACM SIGPLAN Notices 31 (1996), no. 9 128–137.

[26] P. Michaud, Online compression of cache-filtered address traces, in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pp. 185–194, IEEE, 2009.

[27] E. Berg and E. Hagersten, Statcache: a probabilistic approach to efficient and
accurate data locality analysis, in Performance Analysis of Systems and Software,
2004 IEEE International Symposium on-ISPASS, pp. 20–27, IEEE, 2004.

[28] A. Sembrant, D. Black-Schaffer, and E. Hagersten, Phase guided profiling for fast
cache modeling, in Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pp. 175–185, ACM, 2012.

[29] M. Burtscher, Tcgen 2.0: a tool to automatically generate lossless trace
compressors, ACM SIGARCH Computer Architecture News 34 (2006), no. 3 1–8.

[30] M. Burtscher, Vpc3: A fast and effective trace-compression algorithm, in ACM
SIGMETRICS Performance Evaluation Review, vol. 32, pp. 167–176, ACM, 2004.

[31] M. Burtscher and M. Jeeradit, Compressing extended program traces using value
predictors, in Parallel Architectures and Compilation Techniques, 2003. PACT
2003. Proceedings. 12th International Conference on, pp. 159–169, IEEE, 2003.

[32] E. E. Johnson and J. Ha, Lossless address trace compression for reducing file size
and access time, in International Phoenix Conference on Computers and
Communications, IEEE Press, Los Alamitos, CA, USA, pp. 213–219, 1994.

[33] O. Hammami, Taking into account access patterns irregularity when compressing
address traces, in Southeastcon’95. Visualize the Future., Proceedings., IEEE,
pp. 74–77, IEEE, 1995.

145

[34] J. R. Larus, Whole program paths, in ACM SIGPLAN Notices, vol. 34,
pp. 259–269, ACM, 1999.

[35] C. G. Nevill-Manning and I. H. Witten, Linear-time, incremental hierarchy
inference for compression, in Data Compression Conference, 1997. DCC’97.
Proceedings, pp. 3–11, IEEE, 1997.

[36] T. M. Chilimbi, Efficient representations and abstractions for quantifying and
exploiting data reference locality, in ACM SIGPLAN Notices, vol. 36, pp. 191–202,
ACM, 2001.

[37] X. Gao, A. Snavely, and L. Carter, Path grammar guided trace compression and
trace approximation, in High Performance Distributed Computing, 2006 15th
IEEE International Symposium on, pp. 57–68, IEEE, 2006.

[38] L. Eeckhout, K. De Bosschere, and H. Neefs, Performance analysis through
synthetic trace generation, in 2000 IEEE International Symposium on
Performance Analysis of Systems and Software. ISPASS (Cat. No. 00EX422),
pp. 1–6, IEEE, 2000.

[39] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, Automatically
characterizing large scale program behavior, ACM SIGARCH Computer
Architecture News 30 (2002), no. 5 45–57.

[40] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan,
W. Chen, and W. Zheng, Taming hardware event samples for fdo compilation, in
Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, pp. 42–52, ACM, 2010.

[41] M. Oskin, F. T. Chong, and M. Farrens, HLS: Combining statistical and symbolic
simulation to guide microprocessor designs, vol. 28. ACM, 2000.

[42] D. Thiebaut, J. L. Wolf, and H. S. Stone, Synthetic traces for trace-driven
simulation of cache memories, IEEE Transactions on computers 41 (1992), no. 4
388–410.

[43] J. Rodriguez-Rosell, Empirical data reference behavior in data base systems,
Computer 9 (1976), no. 11 9–13.

[44] D. Ferrari, A generative model of working set dynamics, in ACM SIGMETRICS
Performance Evaluation Review, vol. 10, pp. 52–57, ACM, 1981.

[45] D. Ferrari, On the foundations of artificial workload design, vol. 12. ACM, 1984.

[46] C. M. Olschanowsky, M. M. Tikir, L. Carrington, and A. Snavely, Psnap: accurate
synthetic address streams through memory profiles, in International Workshop on
Languages and Compilers for Parallel Computing, pp. 353–367, Springer, 2009.

146

[47] M. M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, Pmac binary
instrumentation library for powerpc/aix, in Workshop on Binary Instrumentation
and Applications, 2006.

[48] J. Weinberg and A. E. Snavely, Accurate memory signatures and synthetic address
traces for hpc applications, in Proceedings of the 22nd annual international
conference on Supercomputing, pp. 36–45, ACM, 2008.

[49] L. Van Ertvelde and L. Eeckhout, Dispersing proprietary applications as
benchmarks through code mutation, in ACM SIGARCH Computer Architecture
News, vol. 36, pp. 201–210, ACM, 2008.

[50] C. Dwork, Differential privacy: A survey of results, in International Conference
on Theory and Applications of Models of Computation, pp. 1–19, Springer, 2008.

[51] A. Haeberlen, B. C. Pierce, and A. Narayan, Differential privacy under fire., in
USENIX Security Symposium, 2011.

[52] V. Bindschaedler, R. Shokri, and C. A. Gunter, Plausible deniability for
privacy-preserving data synthesis, arXiv preprint arXiv:1708.07975 (2017).

[53] L. Sweeney, k-anonymity: A model for protecting privacy, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), no. 05 557–570.

[54] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam,
l-diversity: Privacy beyond k-anonymity, in Data Engineering, 2006. ICDE’06.
Proceedings of the 22nd International Conference on, pp. 24–24, IEEE, 2006.

[55] N. Li, T. Li, and S. Venkatasubramanian, t-closeness: Privacy beyond
k-anonymity and l-diversity, in Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pp. 106–115, IEEE, 2007.

[56] M. Castro, M. Costa, and J.-P. Martin, Better bug reporting with better privacy,
ACM SIGOPS Operating Systems Review 42 (2008), no. 2 319–328.

[57] Y. Li, J. Ren, and J. Wu, Quantitative measurement and design of source-location
privacy schemes for wireless sensor networks, IEEE Transactions on Parallel and
Distributed Systems 23 (2012), no. 7 1302–1311.

[58] S. McCamant and M. D. Ernst, Quantitative information flow as network flow
capacity, in ACM SIGPLAN Notices, vol. 43, pp. 193–205, ACM, 2008.

[59] A. S. Dhodapkar and J. E. Smith, Comparing program phase detection techniques,
in Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, p. 217, IEEE Computer Society, 2003.

147

[60] X. Shen, Y. Zhong, and C. Ding, Locality phase prediction, ACM SIGPLAN
Notices 39 (2004), no. 11 165–176.

[61] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, Discovering and
exploiting program phases, IEEE micro 23 (2003), no. 6 84–93.

[62] J. A. Hartigan and M. A. Wong, Algorithm as 136: A k-means clustering
algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics)
28 (1979), no. 1 100–108.

[63] R. O. Duda and P. E. Hart, Use of the hough transformation to detect lines and
curves in pictures, Communications of the ACM 15 (1972), no. 1 11–15.

[64] C. Galamhos, J. Matas, and J. Kittler, Progressive probabilistic hough transform
for line detection, in Proceedings. 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 1,
pp. 554–560, IEEE, 1999.

[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et. al., Scikit-learn: Machine
learning in python, Journal of machine learning research 12 (2011), no. Oct
2825–2830.

[66] J. Y. Joshua, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K. John,
Evaluating benchmark subsetting approaches, in Workload Characterization, 2006
IEEE International Symposium on, pp. 93–104, IEEE, 2006.

[67] M. D. Hill, Dinero iv trace-driven uniprocessor cache simulator, http://www. cs.
wisc. edu/˜ markhill (1998).

[68] A. Collette, Python and HDF5: Unlocking Scientific Data. ” O’Reilly Media,
Inc.”, 2013.

[69] Tiny aes in c, 2014.

[70] W. Cui, Y. Ding, D. Dangwal, A. Holmes, J. McMahan, A. Javadi-Abhari,
G. Tzimpragos, F. Chong, and T. Sherwood, Charm: A language for closed-form
high-level architecture modeling, in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 152–165, June, 2018.

[71] S. Eddy, Hmmer user’s guide, Department of Genetics, Washington University
School of Medicine 2 (1992), no. 1 13.

[72] P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, in Annual
International Cryptology Conference, pp. 388–397, Springer, 1999.

148

[73] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh, Rendered
insecure: Gpu side channel attacks are practical, in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2139–2153,
2018.

[74] Z. H. Jiang, Y. Fei, and D. Kaeli, A complete key recovery timing attack on a gpu,
in 2016 IEEE International symposium on high performance computer
architecture (HPCA), pp. 394–405, IEEE, 2016.

[75] P. Luo, Y. Fei, X. Fang, A. A. Ding, M. Leeser, and D. R. Kaeli, Power analysis
attack on hardware implementation of mac-keccak on fpgas, in 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14), pp. 1–7,
IEEE, 2014.

[76] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
Branchscope: A new side-channel attack on directional branch predictor, ACM
SIGPLAN Notices 53 (2018), no. 2 693–707.

[77] W. Hua, Z. Zhang, and G. E. Suh, Reverse engineering convolutional neural
networks through side-channel information leaks, in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.

[78] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood, et. al., Deepsniffer: A dnn model extraction framework based on
learning architectural hints, in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 385–399, 2020.

[79] P. Lifshits, R. Forte, Y. Hoshen, M. Halpern, M. Philipose, M. Tiwari, and
M. Silberstein, Power to peep-all: Inference attacks by malicious batteries on
mobile devices, Proceedings on Privacy Enhancing Technologies 2018 (2018),
no. 4 141–158.

[80] F. Pittaluga, S. J. Koppal, S. B. Kang, and S. N. Sinha, Revealing scenes by
inverting structure from motion reconstructions, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 145–154, 2019.

[81] D. J. Butler, J. Huang, F. Roesner, and M. Cakmak, The privacy-utility tradeoff
for remotely teleoperated robots, in HRI, 2015.

[82] T. Li and N. Li, On the tradeoff between privacy and utility in data publishing, in
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 517–526, 2009.

[83] J. A. Goguen and J. Meseguer, Security policies and security models, in IEEE
Symposium on Security and Privacy, pp. 11–20, 1982.

149

[84] J. R. Crandall, J. Brevik, S. Ye, G. Wassermann, D. A. de Oliveira, Z. Su, S. F.
Wu, and F. T. Chong, Putting trojans on the horns of a dilemma: Redundancy
for information theft detection, in Transactions on Computational Science IV,
pp. 244–262. Springer, 2009.

[85] D. Devriese and F. Piessens, Noninterference through secure multi-execution, in
2010 IEEE Symposium on Security and Privacy, pp. 109–124, IEEE, 2010.

[86] A. R. Yumerefendi, B. Mickle, and L. P. Cox, Tightlip: Keeping applications from
spilling the beans., in NSDI, 2007.

[87] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, Pin: building customized program analysis tools with
dynamic instrumentation, Acm sigplan notices 40 (2005), no. 6 190–200.

[88] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush,
Engineering record and replay for deployability: Extended technical report, arXiv
preprint arXiv:1705.05937 (2017).

[89] D. MacKenzie, P. Eggert, and R. Stallman, GNU Diffutils Reference Manual.
Samurai Media Limited, 2015.

[90] R. Storn and K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, Journal of global optimization 11
(1997), no. 4 341–359.

[91] D. J. Barrett, D. J. Barrett, R. E. Silverman, and R. Silverman, SSH, the Secure
Shell: the definitive guide. ” O’Reilly Media, Inc.”, 2001.

[92] “Project gutenberg.” https://www.gutenberg.org/wiki/Main_Page.

[93] Y. LeCun, The mnist database of handwritten digits, http://yann. lecun.
com/exdb/mnist/ (1998).

[94] S. Tomar, Converting video formats with ffmpeg, Linux Journal 2006 (2006),
no. 146 10.

[95] M. Badr, C. Delconte, I. Edo, R. Jagtap, M. Andreozzi, and N. E. Jerger,
Mocktails: Capturing the memory behaviour of proprietary mobile architectures, in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 460–472, IEEE, 2020.

[96] “Champsim.” https://github.com/ChampSim/ChampSim.

[97] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham, Vigilante: End-to-end containment of internet worms, in ACM
SIGOPS Operating Systems Review, vol. 39, pp. 133–147, ACM, 2005.

150

https://www.gutenberg.org/wiki/Main_Page
https://github.com/ChampSim/ChampSim

[98] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, Lift: A low-overhead
practical information flow tracking system for detecting security attacks, in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06), pp. 135–148, IEEE, 2006.

[99] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
Understanding data lifetime via whole system simulation, in USENIX Security
Symposium, pp. 321–336, 2004.

[100] A. C. Myers and B. Liskov, Protecting privacy using the decentralized label model,
ACM Transactions on Software Engineering and Methodology (TOSEM) 9 (2000),
no. 4 410–442.

[101] D. E. Denning, A lattice model of secure information flow, Communications of the
ACM 19 (1976), no. 5 236–243.

[102] D. E. Denning and P. J. Denning, Certification of programs for secure
information flow, Communications of the ACM 20 (1977), no. 7 504–513.

[103] N. Heintze and J. G. Riecke, The slam calculus: programming with secrecy and
integrity, in Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 365–377, ACM, 1998.

[104] A. C. Myers and A. C. Myers, Jflow: Practical mostly-static information flow
control, in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 228–241, ACM, 1999.

[105] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, Secure program execution via
dynamic information flow tracking, in ACM Sigplan Notices, vol. 39, pp. 85–96,
ACM, 2004.

[106] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August, Rifle: An architectural framework
for user-centric information-flow security, in 37th International Symposium on
Microarchitecture (MICRO-37’04), pp. 243–254, IEEE, 2004.

[107] J. R. Crandall and F. T. Chong, Minos: Control data attack prevention orthogonal
to memory model, in Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, pp. 221–232, IEEE Computer Society, 2004.

[108] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, Complete information flow tracking from the gates up, in ACM
Sigplan Notices, vol. 44, pp. 109–120, ACM, 2009.

[109] M. Dalton, H. Kannan, and C. Kozyrakis, Raksha: a flexible information flow
architecture for software security, ACM SIGARCH Computer Architecture News
35 (2007), no. 2 482–493.

151

[110] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, Flexitaint: A
programmable accelerator for dynamic taint propagation, in 2008 IEEE 14th
International Symposium on High Performance Computer Architecture,
pp. 173–184, IEEE, 2008.

[111] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos, Flexible hardware
acceleration for instruction-grain program monitoring, ACM SIGARCH Computer
Architecture News 36 (2008), no. 3 377–388.

[112] J. Clause, W. Li, and A. Orso, Dytan: a generic dynamic taint analysis
framework, in Proceedings of the 2007 international symposium on Software
testing and analysis, pp. 196–206, ACM, 2007.

[113] J. Newsome and D. X. Song, Dynamic taint analysis for automatic detection,
analysis, and signaturegeneration of exploits on commodity software., in NDSS,
vol. 5, pp. 3–4, Citeseer, 2005.

[114] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, libdft: Practical
dynamic data flow tracking for commodity systems, in Acm Sigplan Notices,
vol. 47, pp. 121–132, ACM, 2012.

[115] A. M. Espinoza, J. Knockel, P. Comesaña-Alfaro, and J. R. Crandall, V-dift:
Vector-based dynamic information flow tracking with application to locating
cryptographic keys for reverse engineering, in 2016 11th International Conference
on Availability, Reliability and Security (ARES), pp. 266–271, IEEE, 2016.

[116] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, Tainteraser:
Protecting sensitive data leaks using application-level taint tracking, ACM
SIGOPS Operating Systems Review 45 (2011), no. 1 142–154.

[117] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
Speculative taint tracking (stt) a comprehensive protection for speculatively
accessed data, in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 954–968, 2019.

[118] R. Panda, X. Zheng, and L. K. John, Accurate address streams for llc and beyond
(slab): A methodology to enable system exploration, in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 87–96, IEEE, 2017.

[119] G. Balakrishnan and Y. Solihin, West: Cloning data cache behavior using
stochastic traces, in IEEE International Symposium on High-Performance Comp
Architecture, pp. 1–12, IEEE, 2012.

152

[120] R. Panda, X. Zheng, A. Gerstlauer, and L. K. John, Camp: Accurate modeling of
core and memory locality for proxy generation of big-data applications, in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 337–342, IEEE, 2018.

[121] Y. Wang, G. Balakrishnan, and Y. Solihin, Metoo: Stochastic modeling of
memory traffic timing behavior, in 2015 International Conference on Parallel
Architecture and Compilation (PACT), pp. 457–467, IEEE, 2015.

[122] J. Matos, J. Garcia, and P. Romano, Enhancing privacy protection in fault
replication systems, in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pp. 336–347, IEEE, 2015.

[123] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard, Automatic input
rectification, in 2012 34th International Conference on Software Engineering
(ICSE), pp. 80–90, IEEE, 2012.

[124] P. Broadwell, M. Harren, and N. Sastry, Scrash: A system for generating secure
crash information., in Usenix Security Symposium, p. 19, 2003.

[125] S. Andrica and G. Candea, Mitigating anonymity challenges in automated testing
and debugging systems, in Proceedings of the 10th International Conference on
Autonomic Computing ({ICAC} 13), pp. 259–264, 2013.

[126] F. Mireshghallah, M. Taram, P. Ramrakhyani, A. Jalali, D. Tullsen, and
H. Esmaeilzadeh, Shredder: Learning noise distributions to protect inference
privacy, in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 3–18, 2020.

[127] C. Cachin, I. Keidar, and A. Shraer, Trusting the cloud, Acm Sigact News 40
(2009), no. 2 81–86.

[128] E. Eilam, Reversing: Secrets of Reverse Engineering. John Wiley & Sons, Inc.,
USA, 2005.

[129] P. Weinzaepfel, H. Jégou, and P. Pérez, Reconstructing an image from its local
descriptors, in CVPR, 2011.

[130] E. d’Angelo, L. Jacques, A. Alahi, and P. Vandergheynst, From bits to images:
Inversion of local binary descriptors, TPAMI 36 (2013), no. 5 874–887.

[131] A. Dosovitskiy and T. Brox, Inverting visual representations with convolutional
networks, in CVPR, 2016.

[132] F. Pittaluga, S. J. Koppal, S. B. Kang, and S. N. Sinha, Revealing scenes by
inverting structure from motion reconstructions, in CVPR, 2019.

153

[133] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy
requirements, Requirements Engineering 16 (2011), no. 1 3–32.

[134] A. Alahi, R. Ortiz, and P. Vandergheynst, Freak: Fast retina keypoint, in CVPR,
2012.

[135] D. G. Lowe, Object recognition from local scale-invariant features, in ICCV, 1999.

[136] Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas, Sosnet: Second order
similarity regularization for local descriptor learning, in CVPR, 2019.

[137] L. Sweeney, k-anonymity: A model for protecting privacy, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), no. 05 557–570.

[138] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner, Toward a secure system
engineering methodolgy, in Proceedings of the 1998 workshop on New security
paradigms, pp. 2–10, 1998.

[139] S. Myagmar, A. J. Lee, and W. Yurcik, Threat modeling as a basis for security
requirements, in Symposium on requirements engineering for information security
(SREIS), vol. 2005, pp. 1–8, Citeseer, 2005.

[140] P. Torr, Demystifying the threat modeling process, IEEE Security & Privacy 3
(2005), no. 5 66–70.

[141] T. UcedaVelez, Real world threat modeling using the pasta methodology, OWASP
App Sec EU (2012).

[142] M. Morana, “Wiley: Risk centric threat modeling: Process for attack simulation
and threat analysis-tony ucedavelez, marco m. morana. accessed on 09/05/2016.”

[143] P. Saitta, B. Larcom, and M. Eddington, Trike v. 1 methodology document [draft],
URL: http://dymaxion. org/trike/Trike v1 Methodology Documentdraft. pdf
(2005).

[144] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, {GAZELLE}: A low
latency framework for secure neural network inference, in USENIX, 2018.

[145] H. Durrant-Whyte and T. Bailey, Simultaneous localization and mapping: part i,
IEEE robotics & automation magazine 13 (2006), no. 2 99–110.

[146] J. Miers, Brandenburg gate, 2008. [Online; accessed February 1, 2021].

[147] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in MICCAI, Springer, 2015.

154

[148] A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with
deep convolutional generative adversarial networks, arXiv preprint
arXiv:1511.06434 (2015).

[149] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in CVPR, 2009.

[150] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer
vision and pattern recognition, pp. 248–255, Ieee, 2009.

[151] C. G. Harris, M. Stephens, et. al., A combined corner and edge detector., in Alvey
vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

[152] Z. Li and N. Snavely, Megadepth: Learning single-view depth prediction from
internet photos, in CVPR, 2018.

[153] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[154] J. L. Schönberger and J.-M. Frahm, Structure-from-motion revisited, in CVPR,
2016.

[155] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative
to sift or surf, in ICCV, 2011.

[156] H. Kato and T. Harada, Image reconstruction from bag-of-visual-words, in CVPR,
2014.

[157] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, Hoggles: Visualizing
object detection features, in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1–8, 2013.

[158] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, Fast human detection using a
cascade of histograms of oriented gradients, in CVPR, 2006.

[159] A. Mahendran and A. Vedaldi, Understanding deep image representations by
inverting them, in CVPR, 2015.

[160] C. Liu, J. Yuen, and A. Torralba, Sift flow: Dense correspondence across scenes
and its applications, TPAMI (2010).

[161] T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns, TPAMI (2002).

[162] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, Communications of the ACM (2017).

155

[163] P. Speciale, J. L. Schonberger, S. B. Kang, S. N. Sinha, and M. Pollefeys, Privacy
preserving image-based localization, in CVPR, 2019.

[164] M. Geppert, V. Larsson, P. Speciale, J. L. Schönberger, and M. Pollefeys, Privacy
preserving structure-from-motion, ECCV, 2020.

[165] M. Shibuya, S. Sumikura, and K. Sakurada, Privacy preserving visual slam, arXiv
preprint arXiv:2007.10361 (2020).

[166] M. Dusmanu, J. L. Schönberger, S. N. Sinha, and M. Pollefeys,
Privacy-preserving visual feature descriptors through adversarial affine subspace
embedding, arXiv preprint arXiv:2006.06634 (2020).

[167] Z. Ren, Y. Jae Lee, and M. S. Ryoo, Learning to anonymize faces for privacy
preserving action detection, in CVPR, 2018.

[168] T. Li and L. Lin, Anonymousnet: Natural face de-identification with measurable
privacy, in CVPRW, 2019.

[169] M. S. Ryoo, B. Rothrock, C. Fleming, and H. J. Yang, Privacy-preserving human
activity recognition from extreme low resolution, arXiv preprint arXiv:1604.03196
(2016).

[170] N. Raval, A. Machanavajjhala, and L. P. Cox, Protecting visual secrets using
adversarial nets, .

[171] Z. Wu, Z. Wang, Z. Wang, and H. Jin, Towards privacy-preserving visual
recognition via adversarial training: A pilot study, in ECCV, 2018.

[172] F. Pittaluga, S. Koppal, and A. Chakrabarti, Learning privacy preserving
encodings through adversarial training, in WACV, 2019.

[173] Z. W. Wang, V. Vineet, F. Pittaluga, S. N. Sinha, O. Cossairt, and S. Bing Kang,
Privacy-preserving action recognition using coded aperture videos, in CVPRW,
2019.

[174] N. Vishwamitra, B. Knijnenburg, H. Hu, Y. P. Kelly Caine, et. al., Blur vs. block:
Investigating the effectiveness of privacy-enhancing obfuscation for images, in
CVPRW, 2017.

[175] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft,
Privacy-preserving face recognition, in International symposium on privacy
enhancing technologies symposium, 2009.

[176] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, Efficient privacy-preserving face
recognition, in International Conference on Information Security and Cryptology,
2009.

156

[177] R. Yonetani, V. Naresh Boddeti, K. M. Kitani, and Y. Sato, Privacy-preserving
visual learning using doubly permuted homomorphic encryption, in ICCV, 2017.

[178] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199 (2013).

[179] A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images, in CVPR, 2015.

[180] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, Evasion attacks against machine learning at test time, in Joint
European conference on machine learning and knowledge discovery in databases,
pp. 387–402, Springer, 2013.

[181] N. Akhtar and A. Mian, Threat of adversarial attacks on deep learning in
computer vision: A survey, IEEE Access 6 (2018) 14410–14430.

[182] C. Dwork, Differential privacy, in International Colloquium on Automata,
Languages, and Programming, pp. 1–12, Springer, 2006.

[183] C. Dwork, A. Roth, et. al., The algorithmic foundations of differential privacy.,
Found. Trends Theor. Comput. Sci. 9 (2014), no. 3-4 211–407.

[184] “HealthCare.gov Sends Personal Data to Dozens of Tracking Websites..” https:

//www.eff.org/deeplinks/2015/01/healthcare.gov-sends-personaldata.

[185] “Privacy Lawsuit Targets Net Giants Over ‘Zombie’ Cookies..”
http://www.wired.com/2010/07/zombiecookies-lawsuit.

[186] “University of California data breach: Sensitive information of staff, students
leaked.” https://portswigger.net/daily-swig/

\university-of-california-data-breach-sensitive-information\

-of-staff-students-leaked.

[187] T. Wang, J. Blocki, N. Li, and S. Jha, Locally differentially private protocols for
frequency estimation, in 26th {USENIX} Security Symposium ({USENIX}
Security 17), pp. 729–745, 2017.

[188] Ú. Erlingsson, V. Pihur, and A. Korolova, Rappor: Randomized aggregatable
privacy-preserving ordinal response, in Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, pp. 1054–1067, 2014.

[189] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, Privacy loss in apple’s
implementation of differential privacy on macos 10.12, 2017.

157

https://www.eff.org/deeplinks/ 2015/01/healthcare.gov-sends-personaldata
https://www.eff.org/deeplinks/ 2015/01/healthcare.gov-sends-personaldata
http://www.wired.com/2010/07/zombiecookies-lawsuit
https://portswigger.net/daily-swig/\university-of-california-data-breach-sensitive-information\-of-staff-students-leaked
https://portswigger.net/daily-swig/\university-of-california-data-breach-sensitive-information\-of-staff-students-leaked
https://portswigger.net/daily-swig/\university-of-california-data-breach-sensitive-information\-of-staff-students-leaked

[190] P. M. Scholl and K. Van Laerhoven, A feasibility study of wrist-worn
accelerometer based detection of smoking habits, in 2012 Sixth International
Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
pp. 886–891, IEEE, 2012.

[191] Q. Riaz, A. Vögele, B. Krüger, and A. Weber, One small step for a man:
Estimation of gender, age and height from recordings of one step by a single
inertial sensor, Sensors 15 (2015), no. 12 31999–32019.

[192] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, and
G. Taylor, Learning human identity from motion patterns, IEEE Access 4 (2016)
1810–1820.

[193] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker,
K. Nissim, D. R. O’Brien, T. Steinke, and S. Vadhan, Differential privacy: A
primer for a non-technical audience, Vand. J. Ent. & Tech. L. 21 (2018) 209.

[194] W. Hu, A. Ardeshiricham, and R. Kastner, Hardware information flow tracking,
ACM Comput. Surv. 54 (may, 2021).

[195] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, Register transfer level
information flow tracking for provably secure hardware design, in Design,
Automation Test in Europe Conference Exhibition, pp. 1691–1696, 2017.

[196] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, Complete information flow tracking from the gates up, SIGARCH
Comput. Archit. News 37 (mar, 2009) 109–120.

[197] D. Johnson and S. Sinanovic, Symmetrizing the kullback-leibler distance, IEEE
Transactions on Information Theory (2001).

[198] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, Local privacy and statistical
minimax rates, in 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 429–438, IEEE, 2013.

[199] Z. Li, T. J. Oechtering, and D. Gündüz, Privacy against a hypothesis testing
adversary, IEEE Transactions on Information Forensics and Security 14 (2018),
no. 6 1567–1581.

[200] M. Garrido, A survey on pipelined FFT hardware architectures, J. Signal Process.
Syst. (July, 2021).

[201] J. B. Allen and L. R. Rabiner, A unified approach to short-time fourier analysis
and synthesis, Proceedings of the IEEE 65 (1977), no. 11 1558–1564.

158

[202] S. L. Warner, Randomized response: A survey technique for eliminating evasive
answer bias, Journal of the American Statistical Association 60 (1965), no. 309
63–69.

[203] W.-S. Choi, M. Tomei, J. R. S. Vicarte, P. K. Hanumolu, and R. Kumar,
Guaranteeing local differential privacy on Ultra-Low-Power systems, in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pp. 561–574, June, 2018.

[204] Y. Amar, H. Haddadi, and R. Mortier, An information-theoretic approach to
time-series data privacy, in Proceedings of the 1st Workshop on Privacy by Design
in Distributed Systems, pp. 1–6, 2018.

[205] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, Mobile sensor data
anonymization, in Proceedings of the international conference on internet of
things design and implementation, pp. 49–58, 2019.

[206] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, Privacy and utility
preserving sensor-data transformations, Pervasive and Mobile Computing 63
(2020) 101132.

[207] Y. Vaizman, K. Ellis, and G. Lanckriet, Recognizing detailed human context in the
wild from smartphones and smartwatches, IEEE pervasive computing 16 (2017),
no. 4 62–74.

[208] P. S. Hamilton and W. J. Tompkins, Quantitative investigation of qrs detection
rules using the mit/bih arrhythmia database, IEEE transactions on biomedical
engineering (1986), no. 12 1157–1165.

[209] “Chisel-STFT.”
https://github.com/IA-C-Lab-Fudan/Chisel-FFT-generator/tree/STFT.

[210] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, ASAP7: A 7-nm finFET predictive process design
kit, Microelectronics J. 53 (July, 2016) 105–115.

[211] “Samsung Exynos W920 Wearable Processor.”
https://news.samsung.com/global/samsung-introduces-the\

-industrys-first-5nm-processor-powering-the-next-generation-\

of-wearables.

[212] C. Tan, A. Kulkarni, V. Venkataramani, M. Karunaratne, T. Mitra, and L.-S.
Peh, LOCUS: Low-Power customizable Many-Core architecture for wearables,
ACM Trans. Embed. Comput. Syst. 17 (Nov., 2017) 1–26.

159

https://github.com/IA-C-Lab-Fudan/Chisel-FFT-generator/tree/STFT
https://news.samsung.com/global/samsung-introduces-the\-industrys-first-5nm-processor-powering-the-next-generation-\of-wearables
https://news.samsung.com/global/samsung-introduces-the\-industrys-first-5nm-processor-powering-the-next-generation-\of-wearables
https://news.samsung.com/global/samsung-introduces-the\-industrys-first-5nm-processor-powering-the-next-generation-\of-wearables

[213] S. Sarangi and B. Baas, Deepscaletool: A tool for the accurate estimation of
technology scaling in the deep-submicron era, in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2021.

[214] C. Gentry, Fully homomorphic encryption using ideal lattices, Proceedings of the
41st annual ACM symposium on Symposium on theory of computing - STOC 09
(2009).

[215] A. C.-C. Yao, How to generate and exchange secrets, 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986) (1986).

[216] M. Sabt, M. Achemlal, and A. Bouabdallah, Trusted execution environment:
What it is, and what it is not, in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1,
pp. 57–64, 2015.

[217] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica,
Opaque: An oblivious and encrypted distributed analytics platform, in Proceedings
of the 14th USENIX Conference on Networked Systems Design and
Implementation, NSDI’17, p. 283–298, 2017.

[218] V. Bindschaedler, S. Rane, A. E. Brito, V. Rao, and E. Uzun, Achieving
differential privacy in secure multiparty data aggregation protocols on star
networks, Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy (2017).

[219] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, Calibrating noise to sensitivity
in private data analysis, Theory of Cryptography Lecture Notes in Computer
Science (2006) 265–284.

[220] J. M. Abowd, The u.s. census bureau adopts differential privacy, Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2018).

[221] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y.
Lam, Local differential Privacy-Based federated learning for internet of things,
IEEE Internet of Things Journal 8 (June, 2021) 8836–8853.

[222] T. Qi, F. Wu, C. Wu, Y. Huang, and X. Xie, Privacy-Preserving news
recommendation model learning, in Findings of the Association for Computational
Linguistics: EMNLP 2020, (Online), pp. 1423–1432, Association for
Computational Linguistics, Nov., 2020.

[223] M. U. Hassan, M. H. Rehmani, and J. Chen, Differential privacy techniques for
cyber physical systems: A survey, IEEE Communications Surveys & Tutorials 22
(2020), no. 1 746–789.

160

[224] F. Mcsherry and R. Mahajan, Differentially-private network trace analysis,
Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM - SIGCOMM
10 (2010).

[225] B. Ding, J. Kulkarni, and S. Yekhanin, Collecting telemetry data privately,
Advances in Neural Information Processing Systems 30 (2017).

[226] A. Jayarajan, K. Hau, A. Goodwin, and G. Pekhimenko, Lifestream: A
high-performance stream processing engine for periodic streams, in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, (New York, NY,
USA), p. 107–122, Association for Computing Machinery, 2021.

[227] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, Airavat: Security and
privacy for mapreduce., pp. 297–312, 07, 2010.

[228] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe, PrivApprox:
privacy-preserving stream analytics, in Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC ’17, (USA),
pp. 659–672, USENIX Association, July, 2017.

[229] T. Murakami and Y. Kawamoto, Utility-optimized local differential privacy
mechanisms for distribution estimation, in Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, (USA), pp. 1877–1894, USENIX
Association, Aug., 2019.

[230] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, Privacy and utility
preserving sensor-data transformations, Pervasive Mob. Comput. 63 (Mar., 2020)
101132.

[231] M. Maycock and S. Sethumadhavan, Hardware enforced statistical privacy, IEEE
Computer Architecture Letters 15 (2015), no. 1 21–24.

[232] S. Sethumadhavan, Hardware-enforced privacy, Computer 49 (2016), no. 10 10–10.

[233] M. Garrido, The feedforward short-time fourier transform, IEEE Transactions on
Circuits and Systems II: Express Briefs 63 (2016), no. 9 868–872.

161

	Curriculum Vitae
	Abstract
	Introduction
	Thesis Statement
	Research Summary and Overarching Theme
	Permissions and Attributions

	Trace Wringing for Safer Program Behavior Sharing
	Introduction
	Wringing a trace
	Related work
	Our approach to wringing
	Evaluation
	Conclusion

	Context Matters: Optimizing Privacy of Traces with Information Flow Tracking
	Introduction
	Modeling Threats to Privacy of Traces
	Scrubbing Data from Traces
	Evaluation
	Related Work

	Wringing Beyond Traces: Mitigating Reverse Engineering Attacks in Computer Vision Pipelines
	Introduction
	System and Threat Definition
	Background
	Reverse Engineering Attack
	Evaluation
	Related Work
	Conclusion

	A Privacy-Enhancing Architecture for Crowd Sourced Data
	Introduction
	Privacy Threat Model
	Privacy-Enhancing Architecture
	Private Stream Generation
	Hardware Architecture
	Evaluation
	Related Work
	Conclusion

	Conclusion and Future Directions
	Future Directions

	Bibliography

