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Abstract
Recent evidence indicates that color categories can exert a
strong influence over color matching in both perception and
memory. We explore this phenomenon by analyzing the cost
function for perceptual error. Our analysis is developed within
the mathematical framework of rate–distortion theory. Ac-
cording to our approach, the goal of perception is to minimize
the expected cost of error while subject to a strong constraint
on the capacity of perceptual processing. We propose that the
cost function in color perception is defined by the sum of two
components: a metric cost associated with the magnitude of er-
ror in color space, and a cost associated with perceptual errors
that cross color category boundaries. A computational model
embodying this assumption is shown to produce an excellent fit
to empirical data. The results generally suggest that what ap-
pear as ‘errors’ in working memory performance may reflect
reasonable and systematic behaviors in the context of costs.
Keywords: color perception; visual working memory; infor-
mation theory; rate–distortion theory

Visual working memory is central to daily life. Even ex-
tremely simple tasks, such as visually comparing the size or
color of two objects, requires the storage and manipulation of
perceptual information in working memory. Given the central
role of visual working memory in natural tasks, it is quite sur-
prising that this system is also quite limited. Previous studies
have demonstrated that the capacity of visual working mem-
ory for simple unitary features such as color or orientation is
on the order of 2–4 bits (Sims, Jacobs, & Knill, 2012; Sims,
2015). With such a strong constraint on information process-
ing, it seems especially paramount that the brain use its avail-
able working memory capacity in an efficient manner. But
what defines an ‘efficient’ perceptual system?

A natural and intuitive answer is that visual working mem-
ory is used efficiently when it minimizes task-relevant costs
and errors. According to this perspective, the key to under-
standing perceptual processing is identifying the particular
cost function that it seeks to minimize. Abstractly, if a sen-
sory signal x is misperceived or misremembered as a differ-
ent signal y, then there exists some subjective cost (or disu-
tility) associated with this error, and this can be quantified
by some function L(x,y). An efficient perceptual system is
one that minimizes the expected cost according to a partic-

ular cost function, while subject to a constraint on the ca-
pacity of the perceptual channel. Recent work (Sims et al.,
2012; Sims, 2015) has demonstrated that this problem state-
ment corresponds quite naturally to a branch of information
theory known as rate–distortion theory (Berger, 1971). Rate–
distortion theory concerns the optimal solution to the prob-
lem of minimizing the costs of communication error, subject
to constraints on available capacity.

The goal of the present paper is to apply rate–distortion
theory in order to identify the cost function that drives color
matching in perception and memory. For example, if a par-
ticular shade of red is misperceived or misremembered as a
slightly different shade of red, how costly is that error to the
brain? Although this may seem like a trivial question, color
perception–even in simple laboratory contexts–exhibits many
subtle properties that are not completely understood (Allred
& Flombaum, 2014). Of particular relevance is the finding
that categories can strongly influence perception and mem-
ory (Huttenlocher, Hedges, & Vevea, 2000; Bae, Olkkonen,
Allred, & Flombaum, 2015). The question considered in this
paper is how color categories influence both color perception
and color memory, as formalized within the mathematical
framework of rate–distortion theory.

Bae and colleagues (2015) reported a series of four exper-
iments examining how categories influence color perception
and memory, and also developed a computational model to
account for their results. According to their model (referred to
as CATMET), colors are encoded in two separate channels in
perceptual processing: one channel encodes a category-based
representation, while the other encodes a metric-based rep-
resentation of color on a continuous scale. Color perception
results from the heuristic integration of these two channels to
form an estimate of the afferent sensory signal.

The current paper seeks to explain these same experimen-
tal data, but using an alternative modeling approach based on
rate–distortion theory. The goal of this effort is not to sup-
plant the CATMET model. Rather, rate–distortion theory can
offer an explanation at Marr’s computational level of anal-
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Figure 1: Empirical data and model fit for the color identifi-
cation experiment conducted by Bae et al. (2015).

ysis (Marr, 1982). Whereas the CATMET model provides
a process-level explanation for how categories influence per-
ception, the goal is to propose an explanation as to why cat-
egories influence perception. The model developed in this
paper represents a preliminary step in that direction.

To us, it is intuitive and plausible that there is a cost to com-
mitting categorical errors in perception. Consider the task of
selecting fruit based on ripeness. Both ripe and unripe fruit
may encompass a wide range of hues, but for the purpose of
finding the best one to eat, perceptual errors that do not cross
this category boundary have little practical implication. Much
more nutrition is provided by yellow bananas and red berries
than green bananas and berries; hence it seems plausible that
perception should be sensitive to category boundaries.

In a nutshell, we propose that color perception is the result
of the rational minimization of a particular cost function, sub-
ject to a constraint on capacity. In the model we will describe,
the cost function driving perception is the sum of a metric er-
ror term (the distance between a stimulus and its perceived
value in color space) as well as an additional cost when per-
ceptual errors cross color category boundaries.

Before describing the mathematical details of the model,
we first introduce the experimental results to be explained.

Experimental results
Bae et al. (2015) conducted four experiments examining the
relationship between color categories, and color matching in
perception and memory. In the current paper we restrict our
attention to three of these datasets: color identification, unde-
layed estimation, and delayed estimation.

In the color identification experiment, subjects were pre-
sented with a color wheel containing 180 equiluminant colors
varying only in hue, along with 6 color category labels (pink,
orange, yellow, green, blue, purple). Subjects were asked to
simply click on a point along the color wheel to indicate the
best example for each of the six color categories. The results
from this experiment are shown in Figure 1. Subjects were
highly consistent in their identification of color categories.

In the undelayed estimation experiment, subjects were pre-
sented with a color patch as well as a color wheel from which
the color was sampled. The task for the subject was to choose
a point along the color wheel to indicate the best color match
for the given probe. This procedure was repeated using 180

different color targets, collecting a large number of trials per
subject. For complete experimental methods the reader is
directed to the source publication (Bae et al., 2015). Note
that since the color patch and color wheel remained visi-
ble throughout the duration of each trial, it would seemingly
be an easy task for subjects to click on the exact matching
color on each trial. The delayed estimation experiment was
methodologically similar, except that in this experiment the
color patch disappeared during the response portion of the
trial and subjects had to rely on a memory representation of
the probe color.

The important results from the undelayed and delayed es-
timation experiments are illustrated in Figure 2. Figure 2a
shows the overall histogram of responses grouped into 180
equal-width bins. Although probe stimuli were sampled uni-
formly along the color wheel, responses are clearly nonuni-
formly distributed. The magnitude of this effect is greater in
the delayed experiment. Figure 2b shows the mean bias ob-
served for each of the 180 probe stimuli. Positive values indi-
cate responses that were clockwise, on average, relative to the
probe stimulus. The bottom panel shows the circular standard
deviation of the response distribution. The figure shows that
response variability also varied systematically across hues.

Figure 3a gives an overhead view of the both datasets in
their entirety, showing the conditional response distribution
for each of the 180 stimuli used in the estimation experiments.
An unbiased perceptual system would exhibit a straight diag-
onal line; in contrast, human performance shows a consistent
pattern of distortion (bias) and variability.

The empirical results summarized in Figures 2 and 3
demonstrate unquestionably that color perception and color
memory both show strong stimulus-specific properties (see
also Allred & Flombaum, 2014). Bae and colleagues (2015)
previously developed a model that could produce these ef-
fects; our goal is to model the effects specifically as the con-
sequence of a cost function, framed by rate-distortion theory.

An information-theoretic model of color
perception and color memory

Rate–distortion theory concerns the optimal solution to mini-
mizing costs according to a particular cost function, subject to
a constraint on channel capacity. We assume that color per-
ception can be modeled as a communication channel where
some input signal x is perceived or remembered as a possi-
bly different signal y. In the experiments under considera-
tion, stimuli are color hues drawn from a circular color wheel;
hence x and y can be considered as the angle of a given stim-
ulus, and the response angle around this color wheel. Our
model assumes a cost function consisting of two terms: a met-
ric cost related to the angular difference between x and y, and
a categorical cost that is based on the probability that x and y
would be assigned different color category labels. Hence,

L(x,y) = f (y− x)+P(Cx 6=Cy). (1)

The first term represents the metric cost of error. Potential
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Figure 2: Results from the estimation experiments conducted
by (Bae et al., 2015). (a) Response frequency, demonstrat-
ing systematic biases in color perception and memory. (b)
The magnitude of bias for each stimulus hue. (c) The cir-
cular standard deviation in the response distribution for each
stimulus hue. In all panels, empirical data is given by colored
markers/lines while the black curve shows the information-
theoretic model fit to the data.

candidates for this function include the squared error, (y−x)2

or absolute error | y−x |. However, since x and y are points in
a circular space we first assume a metric cost function based
on the cosine of the difference between x and y:

f (y− x) =
1
2
[1− cos(y− x)] . (2)
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Figure 3: (a) Conditional probability distributions showing
the response distribution for each of the 180 stimuli used in
the undelayed (left panel) and delayed (right panel) estima-
tion experiments. (b) Model fit to the experimental data.

This function is zero when x = y, and reaches a maximum
of 1 when x and y differ by the maximum of 180 degrees.
The second term in the cost function given by Eq 1 indicates
the probability that x and y would be assigned different cate-
gory labels, indicated by Cx and Cy. Specifying this requires
a model of how color hues are mapped on to color categories.
Our model assumes that different hues in color space are bet-
ter or poorer examples of each color category. The strength
or ‘goodness’ of a given hue for a particular color category k
is modeled as a scaled Von Mises distribution:

φk(x) =
αk

eτk
exp(τk cos(x−µk)) . (3)

Hence, each color category is described by three param-
eters: its central location (µ), the category precision (τ,
the inverse of width), and the maximum strength of the
color category (α). If there are K categories, then a given
hue angle corresponds to a vector of category strengths,
〈φ1(x),φ2(x), . . . ,φK(x)〉. The probability that the hue x is as-
signed to category k is modeled using the softmax equation:

P(Cx = k) =
exp(φk(x))

∑
K
j=1 exp(φ j(x))

. (4)

This process allows for noise in color category assignment:
when all αk = 0, category assignment is performed at chance.
With this generative model of color category assignment, the
probability that two hues x and y are assigned different labels
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is equal to one minus the probability that they are given the
same label:

P(Cx 6=Cy) = 1−
K

∑
k=1

P(Cx = k)P(Cy = k). (5)

Equations 1–5 fully describe the cost function L(x,y) that
we assume the perceptual channel seeks to minimize. Specif-
ically, the goal is to minimize the expected cost, subject to a
constraint on available channel capacity,

Minimize E [L(x,y)] w.r.t. p(y | x)
= ∑

x
∑
y

L(x,y)p(y | x)p(x)

Subject to I(x,y)≤ C , (6)

where the minimization is performed over the space of condi-
tional probability distribution p(y | x) (this conditional prob-
ability distribution specifies the probability that the channel
produces an output y for a given input x). The second line
of this equation specifies that the mutual information I(x,y)
must be less than a specified channel capacity C . Equation 6
represents a standard poblem statement in rate–distortion the-
ory (Berger, 1971). For readers unfamiliar with information
theory, in the present case it only matters that the solution
to this constrained optimization problem represents an infor-
mation channel that minimizes expected cost according to a
given cost function, subject to a specified constraint on chan-
nel capacity. Our model obtains a solution to this equation
using an efficient numerical algorithm due to Blahut (1972).

With a cost function specified, it is possible to examine
the predictions of the model by comparing the distribution
p(y | x) (the distribution of channel outputs for a given stimu-
lus input) against empirical data. However, the model just de-
scribed requires the specification of three parameters for each
color category (µk,τk,αk), along with a constraint on avail-
able memory capacity (C ).

Our approach is to estimate the mean (µk) and precision
(τk) of each color category using data from the color iden-
tification experiment (Figure 1). To do so requires one ad-
ditional modeling assumption. If a color category is defined
by its central location µ and precision τ, it is necessary to
describe how a single color is selected from this category as
the best example of the category. Our current model assumes
that color identification is also based on the softmax equa-
tion. Now however, rather than selecting between categories,
the goal is to select a hue that best represents a particular cat-
egory k. Mathematically, this is stated as

P(θ | k) = exp(β ·φk(θ))

∑Θ exp(β ·φk(Θ))
. (7)

This introduces one additional parameter, β, which con-
trols the noise in color identification (as β→ ∞, the model
deterministically selects the peak of the color category, µk).

Pink Purple Blue Green Yellow Orange
Color category

0.
0

0.
5

1.
0

1.
5

Delayed estimation
Undelayed estimation

Figure 4: Color category strengths, αk, fit to the undelayed
and delayed estimation experiments.

In the model a single parameter β is used for all color cat-
egories. In summary, the parameters µk, τk and β were es-
timated from the color identification experiment. The best
fitting parameters were determined by maximum likelihood
estimation using numerical optimization. As shown in Fig-
ure 1, this model produces a close fit to the data.

With these parameters fixed, the category strengths (αk)
and capacity C were fit to the undelayed and delayed estima-
tion experiments via maximum likelihood estimation. Model
predictions are based directly on the optimal channel distribu-
tion p(y | x) obtained from Equation 6. Corresponding model
fits are shown in Figures 2 and 3. In terms of parameter es-
timates, the primary difference between the undelayed and
delayed conditions is the estimated memory capacity. For the
undelayed condition, channel capacity was estimated as 3.02
bits; for the delayed condition estimated capacity was 2.60
bits. These estimates are well in line with previous analyses
of visual working memory capacity (Sims et al., 2012; Sims,
2015). What is notable is that in the undelayed experiment,
capacity is still strongly limited even while stimuli remain
continuously visible throughout each trial. This underscores
the fact that perception has limited channel capacity in an in-
formation sense. In other words, there is always uncertainty
in the interpretation of sensory signals.

The color category strengths, αk are illustrated in Figure 4.
Recall that these values determine the maximum strength of
each color category, which in turn influences the probability
of category assignment via Equation 4. The parameter esti-
mates from the two experiments are highly similar, with one
notable exception: in the delayed estimation condition of the
experiment, the purple color category exhibits no influence
over perception. This can also be seen in the histograms in
Figure 2a. The reason for this difference between conditions
is not clear; perhaps the influence of categories on percep-
tion shows strong individual differences, or perhaps the dif-
ference is due to the memory retention interval imposed by
the delayed estimation experiment. Exploring this question
remains a topic for future research.

Figure 5 shows the estimated cost functions for the unde-
layed and delayed experiments. The function L(x,y) is vi-
sualized as a two-dimensional heat map, where colors cor-
respond to the cost of a particular perceptual error. Inter-
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Figure 5: Cost functions estimated from the undelayed and
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that costs lie in the range (0, 1).

Comparison Model
∆BIC
Delayed

∆BIC
Undelayed

(a)
Category + Metric 0 0
Metric only 1159.71 294.92
Category only 10682.77 7697.35

(b)
Cosine cost 151.94 246.93
Parameterized cost 0 0

Table 1: Model comparisons based on Bayesian Information
Criterion (BIC) scores, for the delayed and undelayed esti-
mation experiments. Models with the lowest relative score
(∆BIC) are favored, indicated with bold type. Comparisons:
(a) Examining whether category and metric costs of error are
both necessary to account for performance. (b) Comparing
the choice of alternative metric cost functions.

estingly, the cost function is highly similar between the two
experiments; the change in performance is almost entirely
due to the decrease in channel capacity in the delayed esti-
mation experiment. According to the model, as capacity de-
creases, the relative influence of category errors on perception
increases (as illustrated in Figure 2).

Model extensions and additional analyses
The model we have described so far assumes that the per-
ceptual cost function is the sum of two terms, a metric and a
categorical cost. Are both of these components necessary to
explain performance in the information-theoretic model?

To answer this question, we fit two additional information-
theoretic models: one that uses only a metric cost, and one
that uses only a category cost. Relative performance of the
three models was assessed using the Bayesian Information
Criterion (BIC score). The results indicate that the model
combining both categorical and metric costs is strongly sup-
ported over the two alternatives (BIC scores are reported in
Table 1a; ∆BIC > 10 is typically interpreted as strong sup-
port). This result is particularly important, as nearly all exist-
ing models of visual working memory ignore or overlook the
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Figure 6: Left: Comparison of two different metric cost func-
tions: a cosine cost function and a parameterized function fit
to the data from the delayed estimation experiment. Right:
Predicted error distributions for each cost function. In both
cases a channel capacity of 2.75 bits is assumed.

influence of categories on perception (for further discussion,
see Allred & Flombaum, 2014; Bae et al., 2015).

One additional assumption of the model that we examine is
the form of the metric cost function. The model described so
far has assumed a cosine cost function (Equation 2). We de-
veloped an alternate model that includes category error costs,
as well as a parameterized metric cost function of the form

f (y− x) =
δzγ

δzγ +(1− z)γ
, z =

| y− x |
π

, (8)

where | y−x | represents the absolute angular difference. This
cost function introduces two additional parameters into the
model, δ and γ, controlling the shape of the function. The
category cost was left unchanged from the original model.
Relative BIC scores comparing the cosine and parameterized
metric cost functions are reported in Table 1b. The results
indicate that the parameterized cost function offers a superior
account for both the delayed and undelayed experiments.

The differing form and predictions of the two cost func-
tions are illustrated in Figure 6. Although the two cost func-
tions appear similar, the parameterized function predicts an
error distribution with a sharper peak and heavier tails than a
cosine cost function. This result is also in line with previous
findings in the visual working memory literature (Sims, 2015;
Van den Berg, Shin, Chou, George, & Ma, 2012).

Finally, we note that in the current paper model parameters
were fit to the aggregated data from all participants. An im-
portant direction for future research is to examine individual
differences in the influence of color categories as they relate
to differences in memory capacity.

Conclusions
This paper argues that a useful approach for understanding
perception is to understand the cost function that it seeks to
minimize. We proposed a specific cost function for the per-
ception and memory of color, based on a combination of a
metric cost, and a cost associated with memory errors that
cross category boundaries. This hypothesis was explored us-
ing a branch of information theory known as rate–distortion
theory, which concerns optimal communication or informa-
tion transmisison subject to strong limits on channel capacity.
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We demonstrated that the application of this framework was
able to provide a close quantitative fit to experimental data
previously collected (Bae et al., 2015).

There is substantial evidence to suggest that categories can
influence perception (Goldstone & Hendrickson, 2010). For
example, Huttenlocher et al. (2000) found that observers’
memory for the size of simple shapes is influenced by learned
categories. Feldman, Griffiths, & Morgan (2009) conducted
a rational analysis of perception of speech sounds in noise,
and demonstrated that an optimal solution results in the re-
duced discriminability near prototypical vowel sounds. At
the same time, there is conflicting evidence about the role of
categories in color perception specifically. Witzel and Gegen-
furtner (2013) argue that category effects are not inherent to
perception, rather that these effects can be explained by at-
tention to categorical distinctions which stem from linguistic
category boundaries. We believe the model developed in the
current paper may offer a productive theoretical tool for elu-
cidating the influence of categories on perception.

The current model was partly inspired by an existing
model of how categories influence color working memory
(CATMET; Bae et al., 2015). Whereas CATMET assumes
that color matching results from the integration of evidence
from two independent information sources (category and
metric representations), the current model assumes a single
perceptual channel that optimizes a cost function with two
terms. At present there is no consensus regarding the nature
of high-level color representation in the brain to inform the
selection between these two approaches (for related work see
Stoughton & Conway, 2008; Wade, Augath, Logothetis, &
Wandell, 2008; Bird, Berens, Horner, & Franklin, 2014). In
the absence of clear physiological evidence for a dual channel
representation, a one channel model is more parsimonious.
A more meaningful distinction between the CATMET model
and the current approach, however, lies in their intended roles
as process-level and computational explanations for behav-
ior, respectively (Marr, 1982). Unlike CATMET, the current
approach explains biases in perception from the rational per-
spective of minimizing the costs of error.

A closely related approach is a Bayesian model of color
perception developed by Persaud & Hemmer (2014). Their
model assumes that color perception is the result of Bayesian
inference, combining noisy sensory evidence with prior
knowledge of color categories. Both Bayesian inference
and rate–distortion theory offer normative theoretical frame-
works. Bayesian models of perception typically make as-
sumptions regarding the nature of noise that limits the fidelity
of perceptual processing. Information theory, by contrast, as-
sumes a limit on channel capacity; the nature of noise in the
channel is optimized with respect to a given cost function.
Hence, rate–distortion theory offers a more direct approach
to studying perception as an adaptive system. We believe that
the computational approach we are developing represents a
promising framework for understanding color perception as a
boundedly optimal system.
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