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GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE
EQUATIONS WITH HORIZONTAL VISCOSITY AND VERTICAL
DIFFUSIVITY

CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

ABSTRACT. In this paper, we consider the 3D primitive equations of oceanic and
atmospheric dynamics with only horizontal eddy viscosities in the horizontal mo-
mentum equations and only vertical diffusivity in the temperature equation. Global
well-posedness of strong solutions is established for any initial data such that the ini-
tial horizontal velocity vo € H?(Q) and the initial temperature Ty € H'(Q)NL> ()
with VgTy € L1(Q), for some ¢ € (2,00). Moreover, the strong solutions enjoy
correspondingly more regularities if the initial temperature belongs to H2(£2). The
main difficulties are the absence of the vertical viscosity and the lack of the horizon-
tal diffusivity, which, interact with each other, thus causing the “mismatching” of
regularities between the horizontal momentum and temperature equations. To han-
dle this “mismatching” of regularities, we introduce several auxiliary functions, i.e.,
1,0, p, and ¢ in the paper, which are the horizontal curls or some appropriate combi-
nations of the temperature with the horizontal divergences of the horizontal velocity
v or its vertical derivative d,v. To overcome the difficulties caused by the absence
of the horizontal diffusivity, which leads to the requirement of some L}(W.}°)-
type a priori estimates on v, we decompose the velocity into the “temperature-
independent” and temperature-dependent parts and deal with them in different
ways, by using the logarithmic Sobolev inequalities of the Brézis-Gallouet-Wainger
and Beale-Kato-Majda types, respectively. Specifically, a logarithmic Sobolev in-
equality of the limiting type, introduced in our previous work [12], is used, and a
new logarithmic type Gronwall inequality is exploited.
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1. INTRODUCTION

The incompressible primitive equations form a fundamental block in models of
oceanic and atmospheric dynamics, see, e.g., the books Lewandowski [27], Majda [35],
Pedlosky [36], Vallis [42], Washington—Parkinson [43], and Zeng [45]. The primitive
equations are derived from the Navier-Stokes equations by applying the Boussinesq
and hydrostatic approximations. The hydrostatic approximation is based on the
fact that the vertical scale of the the ocean and atmosphere is much smaller than the
horizontal ones, and its mathematical justification, by taking small aspect ratio limit,
was carried out by Azérad—Guillén [1] in the framework of weak solutions and recently
by Li-Titi [31] in the framework of strong solutions; moreover, the strong convergence
rates were also obtained in [31]. In the oceanic and atmospheric dynamics, due to
the strong horizontal turbulent mixing, the horizontal viscosity is much stronger than
the vertical viscosity and the vertical viscosity is very weak and often neglected.

In this paper, we consider the following incompressible primitive equations, which
have only horizontal viscosities and vertical diffusivity

B0+ (v- Vi)o + wdv + Vip — Agv + fo k x v =0, (1.1)
d.p+T =0, (1.2)

Vu-v+ 0w =0, (1.3)

T +v-VyT +wd, T — 9T = 0, (1.4)

where the horizontal velocity v = (vt v?), the vertical velocity w, the temperature T'
and the pressure p are the unknowns, and fj is the Coriolis parameter. In this paper,
we use the notations Vi = (9,,0,) and Ay = 07 4 02 to denote the horizontal gra-

dient and the horizontal Laplacian, respectively. Here, ‘il)e term ? X v is understood
as tlﬁ first two components of the vector product of k& = (0,0,1) with (vl 02 0),
e, k xv=(—v}vl).

The first systematically mathematical studies of the primitive equations were car-

ried out in 1990s by Lions—Temam—Wang [32-34], where they considered the systems
with both full viscosities and full diffusivity, and established the global existence
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of weak solutions; however, the uniqueness of weak solutions is still an open ques-
tion, even for the two-dimensional case. Note that this is different from the in-
compressible Navier-Stokes equations, as it is well-known that the weak solutions
to the two-dimensional incompressible Navier-Stokes equations are unique (see, e.g.,
Constantin—Foias [18], Ladyzhenskaya [26] and Temam [40], and even in the frame-
work of the three-dimensional Navier-Stokes equations, see Bardos et al. |2]). How-
ever, we would like to point out that, though the general uniqueness of weak solutions
to the primitive equations is still unknown, some particular cases have been solved,
see |4, 24, 130, 137, 39], and in particular, it is proved in [30] that weak solutions,
with bounded initial data, to the primitive equations are unique, as long as the dis-
continuity of the initial data is sufficiently small. Remarkably, different from the
three-dimensional Navier-Stokes equations, global existence and uniqueness of strong
solutions to the three-dimensional primitive equations has already been known since
the breakthrough work by Cao-Titi [16]. This global existence of strong solutions
to the primitive equations were also proved later by Kobelkov [23] and Kukavica—
Ziane[25], by using some different approaches, see also Hieber—Kashiwabara |22] and
Hieber-Hussien-Kashiwabara [21] for some generalizations in the L? settings.

Note that in all the papers mentioned in the previous paragraph, the systems in
question are assumed to have full viscosities in the horizontal momentum equations
and full diffusivity in the temperature equation. As stated in the previous paragraph,
the primitive equations with both full viscosities and full diffusivity have a unique
global strong solution, which is smooth away from the initial time. However, on the
other hand, it has already been proven that smooth solutions to the inviscid prim-
itive equations, with or without coupling to the temperature equation, can develop
singularities in finite time, see Cao et al. [8] and Wong [44]. Comparing these two
kind results of the two extreme cases, i.e., global existence for the primitive equations
with both full viscosities and full diffusivity and blowup in finite time for the inviscid
primitive equations, it is natural for us to consider the intermediate cases, i.e., the
primitive equations with partial viscosities or partial diffusivity, and to ask of whether
the solutions exist globally in time or blow up in finite time for these intermediate
cases.

There has been several works concerning the mathematical studies on the primitive
equations with partial viscosities or partial diffusivity. It has been proved by Cao—
Titi |17] and Cao-Li-Titi [10, [11] that the primitive equations with full viscosities
and with either horizontal or vertical diffusivity have a unique global strong solution.
It turns out that the vertical viscosity is even not necessary for the global well-
posedness of the primitive equations. In fact, it was proved by Cao-Li-Titi |[12] that
strong solutions are unique and exit globally in time for the primitive equations with
only horizontal viscosity and only horizontal diffusivity for any initial data in H?
(see Cao—Li-Titi [13] for some generalization of the result in [12]). We would like to
point out that there is a notable difference between the arguments for the primitive
equations with full viscosities and those for the case of only horizontal viscosity: for
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the primitive equations with full viscosities, the a priori L*°(L?) estimate on v for
some ¢ € (3, 00) is sufficient for establishing higher order estimates, but it is not the
case for the primitive equations with only horizontal viscosity. In fact, as pointed out
in [12], due to the absence of the vertical viscosity, in order to obtain higher order
energy estimates, one has in some sense to get the a priori L?(L>) estimate on v.
The idea used in [12] to overcome this difficulty is to carry out the precise growth
with respect to ¢ of the LY norms of v for ¢ € [4,00), and connect the L norm
of v with such precise growth, by an N-dimensional logarithmic Sobolev embedding
inequality, which states that the L*° norm can be dominated by some appropriate
growth in ¢ of estimates for the L? norms, up to some logarithmic of the higher order
norms.

In this paper, we continue to study the primitive equations with partial viscosities
or partial diffusivity. Recall that the case with horizontal viscosity and horizontal
diffusivity has been investigated in [12, [13], as a counterpart, we consider in the
current paper the case with only horizontal viscosity, but with vertical diffusivity,

i.e., system (LI)-(L4). The aim of this paper is to show that system (LII)-(L4),
subject to appropriate boundary and initial conditions, is global well-posed.

We consider system ([LI)-(T4) on the domain  := M x (—h,h), with M =
(0,1) x (0,1), and complement it with the following boundary and initial conditions

v,w,p, T are periodic in x, v, z, (1.5)
v and p are even in z, w and T are odd in z, (1.6)
(v, T)|e=0 = (vo, Tp). (L.7)

Note that condition (L.€)) is preserved by system (LI))—(I4]), as long as it is satisfied
initially. Also, we remark that no initial condition is imposed on w. This is because
there is no dynamical equation for w, and in fact, w is uniquely determined by the
incompressibility condition (I3]).

Conspicuously, we observe that the periodic and symmetry boundary conditions
(CH)—(T4) on the domain M x (—h, h) are equivalent to the physical boundary con-
ditions of no-permeability and stress-free at the solid physical boundaries z = —h
and z = 0 in the sub-domain M x (—h,0), namely:

v,w, p,T are periodic in x and vy, (1.8)
(0.0, W)|o=—no =0, Tli=—po=0. (1.9)

This equivalence between the two problems can be easily achieved by suitable reflec-
tions and extensions of the solutions. More precisely, if (v, w, p, T') is a strong solution
(see Definition [I1] below, for the definition of strong solutions) to system (LI])—(L4)
on the domain M x (—h, h), subject to (LA)—(L1), then the restriction of (v, w,p, T)
to the sub-domain M x (—h,0) is also a strong solution to the same system but on
the sub-domain, subject to (IL7) and (L)—(T3); and, conversely, if (v,w,p,T) is a
strong solution to system ([[LT)—(T.4]) on the sub-domain M x (—h, 0), subject to (L.7)
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and (L8)—(L9), then by extending v, w,p and T" to the larger domain M X (—h, h),
respectively, even, odd, even and odd with respect to z, (v,w,p,T) is also a strong
solution to the same system but on the larger domain, subject to (LI)—(L1).

Using equation ([L2), the pressure p can be represented by

z

p(,9,2,8) = pale, 5, 1) — / ey &0

for unknown “surface pressure” ps. Using this representation, system (LI)—(T4) can
be rewritten as

v+ (v-Vy)v+wd,v— Agv

- z
_'_fO k xov+ VH <ps(x7y7t) o f_h T(xvyugut)d£> = Ov (11())
Vg-v+0w=0, (1.11)
OT +v-VyuT +wd.T — T = 0. (1.12)

Concerning the boundary and initial conditions, we can now drop the boundary con-
ditions for the pressure from (L5)—(L7), since it is hidden in the above formulation,
in other words, the boundary and initial conditions now read as

v,w,T are periodic in z,y, z, (1.13)
visevenin z, w and T are odd in z, (1.14)
(U,T)|t:0 = (UQ,T()). (115)

By the aid of the periodic boundary condition (LT3 and the divergence free con-
dition (L.II)), it is obviously that

h
/ Vu-v(z,y,zt)dz =0, (1.16)
—h

for any (z,y) € M. By the periodic and symmetry conditions (LI3) and (L.I4),
one has w|,—_j = w|,—=p = —w|,—_, = 0 and, as a result, using (II]), w can be

represented in v as
w(zaya Z>t) = _/ vH ' U(Iayagat)dg' (117)

—h

On the other hand side, (I.I7) obviously implies (I.I)) and, furthermore, (I.I6) and
the conditions for v as stated in (LI3)—(LI4) imply those for w as stated in (LI3])—
(.14

On account of what we stated in the previous paragraph, with the aid of the
expression (L.I7), one can replace (LII)) by (I.I6) and drop the conditions for w
in (LI3) and (LI4]), without changing the system. In other words, system (LI0)—
(LI2)), subject to the boundary and initial conditions (LI3)—(I3), is equivalent to
the following system

v+ (v-Vy)v+wd,v— Agv



6 CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

+fo? X v+ Vg (ps(:)s,y,t) — [Z, T(z,y,&, t)df) =0, (1.18)
f_hh Vg -v(r,y,zt)dz =0, (1.19)
T +v-VgT +wd, T — T = 0, (1.20)
with w given by (LI7), subject to the boundary and initial conditions
v, T are periodic in x, ¥, 2, (1.21)
v and T are even and odd in z, respectively, (1.22)
(v, T)|t=0 = (vo, To). (1.23)

Applying the operator divy to equation (LLI8) and integrating the resulting equa-
tion with respect to z over (—h, h), one can see that ps(z,y,t) satisfies the following
(see Appendix A for the details)

- z
{ —Appe= Vg " (VH (o)t ok xv— 7, vHng) dz,

1.24
[y ps(z,y, t)dedy =0, p, is periodic in x and y. (1.24)

Here the condition | 1 Ps(x,y, t)drdy = 0 is imposed to guarantee the uniqueness of
such p,.

Before stating our main results, let’s introduce some necessary notations and give
the definitions of strong solutions. Throughout this paper, for 1 < ¢ < oo, we use
La(Q), LY(M) and W™4(Q), W™4(M) to denote the standard Lebesgue and Sobolev
spaces, respectively. For ¢ = 2, we use H™ instead of W™2. For simplicity, we still
use the notations LP and H™ to denote the N-product spaces (LP)Y and (H™),
respectively. We always use ||u||, to denote the LP(2) norm of u, while use || f||,.a
to denote the LP(M) norm of f. For shortening the expressions, we sometimes use

I(f1, f2, -+, fu)llx to denote the sum 3 7, || filx.
We introduce the following functions which will play crucial roles in this paper

z h z
u=0.v, 0=Vg-v, n:VH-v+/ Tdf—i/ / Tdédz, (1.25)

where V3 = (=9,,0,). As it will be seen later, these functions are introduced
to overcome the “mismatching” of regularities between the horizontal momentum
equations and the temperature equation.

Definition 1.1. Given a positive time T. Let vy € H?(Q) and T, € H* (), with
f_hh Vi -v(x,y,z)dz =0 and VT, € LI(R2), for some q € (2,00), be two periodic
functions, such that they are even and odd in z, respectively. A pair (v,T) is called

a strong solution to system (1.18)-(1.23) on 2 x (0,T) if
(i) v and T are periodic in x,y, z, and they are even and odd in z, respectively;
(i1) v and T have the regularities

ve L®0,T; H*(Q)NC(0,T); H(Q)), 0w e L*(0,T; H(Q)),
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T e L0, T, H (Q) NLQ)NnC([0,T]; L*(Q), o1 € L*0,T; L*()),
(Vuo.v,0.T) € L*(0,T; H(Q)), VuT € L>(0,7;LYQ)),
n € L*(0,T; H*(Q)), 6¢c L*0,T;H*Q));

(iii) v and T satisfy equations (L18)-(1.20) a.e.in Q% (0,T), with w and ps given
by (1.17) and (1.24), respectively, and satisfy the initial condition [L.23).

Remark 1.1. (i) The regularities in Definition [L1 seem a little bit nonstandard.
This is caused by the “mismatching” of reqularities between the horizontal momentum
equation (I18) and the temperature equation (I.20): a term involving the horizon-
tal derivatives of the temperature appears in the horizontal momentum equation, but
it 1s only in the vertical direction that the temperature has dissipation. More pre-
cisely, though one can obtain the reqularity that Vgd.v € L*(0,T; HY(Q)), which
is included in Definition (1.1), we have no reason to ask for the reqularity that
Vv € L*(0,T; HY(Q)), under the assumption on the initial data in Definition [
In fact, recalling the regularity theory for parabolic system, and checking the horizon-
tal momentum equation (LI18), the reqularity that V4v € L*(0,T; H'(Q)) appeals
to somehow V4T € L*(Q x (0,7)); however, this last requirement need not to be
fulfilled, because we only have the smoothing effect in the vertical direction for the
temperature.

(i1) The “mismatching” of reqularities as stated in (i) does not occur in the system
considered in our previous work [12], i.e., the system with only both horizontal vis-
cosities and horizontal diffusivity, because, in this case, the horizontal diffusivity in
the temperature equation provides the required reqularity that V4T € L*(Q x (0,7)).

(iii) As stated in (i), one can not expect such reqularity that Viv € L*(0,T; HY(Q)).
However, with the help of n and 0 in (I.23), one can expect that some appropriate
combinations of Vgv and T can indeed have second order spatial derivatives, that is
(n,0) € L*(0,T; H*(QQ)), as included in Definition [I1

Definition 1.2. A pair (v,T) is called a global strong solution to system (L18)-
(I.20), subject to the boundary and initial conditions (ILZ21)-(1.23), if it is a strong
solution on Q x (0,7T) for any T € (0,00).

The main result of this paper is the following global well-posedness result.

Theorem 1.1. Let vy € H*(Q) and Ty € H'(Q)NL>(Q), with ffh Vigv(z,y,2)dz =
0 and VyTy € L), for some q € (2,00), be two periodic functions, such that
they are even and odd in z, respectively. Then system (LI8)-(1L20), subject to the
boundary and initial conditions (I.21)-(1.23), has a unique global strong solution
(v, T), which is continuously depending on the initial data.

If we assume, in addition, that Ty € H*(Q), then (v, T) obeys the following addi-
tional reqularities

T e L0, T; H* Q)N C(0,T; H(Q)), o1 € L*0,T;H'(Q)),
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Vv € L*(0,T; H*(Q), 9.T € L*(0,T; H*(2)),
for any time T € (0, 00).

Remark 1.2. Generally, if we imposed more regqularities on the initial data, then
one can expect more reqularities of the strong solutions, and in particular, the strong
solution will belong to C>=(Q x [0,00)), as long as the initial datum lies in C>(2).
However, one can not expect that the solutions have as high reqularities as desired, if
the initial data are not accordingly smooth enough.

Remark 1.3. Thanks to Theorem [I1l, and recalling the results in [10-13, |16, |17],
one can conclude that the primitive equations are globally well-posed, as long as one
has the horizontal viscosity and either horizontal or vertical diffusivity.

The main difficulties for the mathematical analysis of system (I8)—(L20) come
from three aspects: the absence of the vertical viscosity in the horizontal momentum
equation, the lack of the horizontal diffusivity in the temperature equation, and
the “mismatching” of regularities between the horizontal momentum equations and
the temperature equation caused by the interaction between the lack of the vertical
viscosity and the absence of the horizontal diffusivity. Concerning the difficulties
caused by the absence of the vertical viscosity, |12, 13] provide us with some ideas. As
indicated in [12, [13], the absence of the vertical viscosity forces us to estimate ||v||%,
which appears as factors in the energy inequalities. To obtain this estimate, similar
to [12,13], we estimate the precise growth in g of the L? norms of v (see Proposition
B2]), based on which, by applying a logarithmic type Sobolev inequality (see Lemma
[2.4]), we can control the L* norm of v by logarithm of high order norms. However, in
the current case, because of the “mismatching” of regularities between the horizontal
momentum equations and the temperature equation (recall Remark [I[.1] (i)), we are
not able to obtain the appropriate estimates in the same way as in [12, [13]. Note
that in |12, [13] all energy estimates for the derivatives of the velocity are carried out
through multiplying the corresponding testing functions to the momentum equations
directly; however, for the current case, when working on the energy estimates for
the horizontal derivatives of the velocity, it is inappropriate to use the momentum
equations as the tested ones. To see this, let’s take the LX°(H!) kind estimate as
example: if trying to use the momentum equation to get the L°(L2) estimate on
V yv, one may multiply the momentum equation by —Agv and, thus, requires the a
priori L?(L2) type estimate on V5T, which is obviously not guaranteed by the system,
as we only have the vertical diffusivity in the temperature equation. To overcome this
kind of difficulties, we consider the horizontal curl and some appropriate combination
of the temperature with the horizontal divergence of v or its derivatives, which prove
to have better regularities than the horizontal derivatives of v or its derivatives. In
other words, the estimates on the horizontal derivatives of the velocity are achieved
indirectly through the corresponding estimates on the horizontal curls and some
appropriate combinations of the temperature with the horizontal divergences.



PRIMITIVE EQUATIONS HORIZONTAL VISCOSITY VERTICAL DIFFUSIVITY 9

For the a priori L{°(H]) type estimate on v, recalling the ideas mentioned above,
it is achieved by carrying out the L{°(L2) type energy estimates on (u,7,6), rather
than on (u, Vyv) directly, and using the precise L? estimates on v to dominate the
main part of ||v||«. These are carried out in Proposition 3.4l and Corollary 3.1l Note
that the following fact plays an important role in proving Corollary B.IL inequality

A'(t)+ B(t) < CA(t)log B(t) + “other terms”

guarantees the boundness of A(t) globally in time. The above inequality is a special
case of the general logarithmic type Gronwall inequality stated in Lemma 2.5
Based on the a prior L{°(H}) type estimate on v, one can obtain the a priori
L¥(H]) type estimate on u. Again, because of the same reason as before, this a
priori estimate is achieved through the L$°(L2) estimate on (9,u, ¢, 1), where

0=Vyg-u+T, =Vg-u, (1.26)

rather than directly on (0,u, Vyu).

Some higher order a priori estimates, especially those on the derivatives of the
temperature, are still needed to ensure the global well-posedness. When working on
the energy inequalities for the horizontal derivatives of T', caused by the absence of
the horizontal diffusivity in the temperature equation, one has to appeal to somehow
L™ estimate on Vv to deal with the worst term [, |V yv||VyT|%dzdydz. To deal
with this term, we decompose the velocity into a “temperature-independent” part and
another temperature-dependent part and then deal with them in different ways, by
using the logarithmic Sobolev inequalities of the Brézis-Gallouet-Wainger and Beale-
Kato-Majda types, respectively. The resulting corresponding energy inequalities are
of the type

A'(t) + B(t) < Cn(t)A(t)log B(t) + “other terms”,

where n is a locally integrable function on [0,00). Note that this inequality does
not necessary guarantee the boundness of the quantity A, in general; however, if it
happens that the following additional relationship holds

n(t) < CA°(t)

for some positive number «a, then it indeed implies the boundness of the quantity A,
see Lemma 2.5l Fortunately, it is the case in our higher order energy inequality, and
therefore, we are able to obtain the a priori higher order estimates, and furthermore
the global existence of strong solutions. The additional regularities stated in the
theorem follow from the energy inequality for the second order derivatives of T,
which is somehow standard.

The rest of this paper is arranged as follows: in the next section, section 2l we
collect some preliminaries which will be used throughout the paper. Section [3is the
main part of this paper, in which, by using the ideas obtained above, we establish
several a priori estimates for a regularized system, and the a priori estimates are



10 CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

independent of the regularization parameters. In section 4 based on the a priori
estimates obtained in section [3, we give the proof of Theorem [L.1]

Throughout this paper, the letter C' denotes a general positive constant, which
may vary from line to line.

2. PRELIMINARIES

In this section, we collect some preliminary results which will be used in the rest
of this paper.

Lemma 2.1 (see Lemma 2.1 in [12]). The following inequality holds:

/M </_Z |¢|dz) </_Z |s0w|dz) dady

1 1 1 1 1 1
<Clglliel3 (I3 + 17melld) 113 (113 + 19 mels )
for every ¢, v, and 1 such that the right hand sides make sense and are finite.

Lemma 2.2. We have the following inequalities

/ ( / h |¢|dz) ( / h |<P||¢|dz) dedy < ( / h ||¢||47Mdz) ( /h ||¢HiMdz); ”@b(!%l)
[ ([ iotiolaz) ([ 1etaz) asa

h 3 h 1 A
s(/_thblliMdz) (/_hngpniMdz) (/_h||¢||2,Mdz), (2.2)

for any functions ¢, and 1, such that the quantities on the right-hand sides make
sense and are finite.

and

Proof. By the Holder and Minkowski inequalities, we have

(L) (Lo
/M (/_};|¢|dz) (/_le|de)2 (/_};|¢|2dz)2dxdy

<
h 4 i L 5 1
< [/M </_h|¢|dz) dzvdy] [/M </_h|g0| dz) dxdy] 1|2
h h 1
< ([ votuna) ([ heta)” 1ot
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[ (f |¢||<P|dzl) (/ via:) i

o) ([ ) ([

(e ] 1, ]
[ (L) o]

([ 1ottaz) ([ vetiacz) " ([ ioiaeaz).

proving (2.1) and (2.2)). O

Lemma 2.3. The following inequalities hold

and

IA

IN

[NIE

IN

h 2 1 1
([ 1B waz) " < € (LIIvasi +1712).
—h

h ) f
| Wads < oVR(UAEIVAAE + 1112).

for any function f such that the right-hand sides make sense and are finite. As a
consequence, by the Poincaré inequality, the following holds

h 2 1 1
( / h||va||i,Mdz) < CIVafIEIvasIL,

h L B
/ Iuf s < OVEITufIIVAAE,

if moreover f is periodic in (z,y).

Proof. The conclusion follow easily from the Holder and Ladyzhenskay inequalities
and, thus, the proofs are omitted here. O]

The following logarithmic Sobolev inequality, which links the L® norm in terms of
the L? norms up to the logarithm of the high order norms. Some relevant inequalities
can be found in [9, [14, 19], where the two dimensional case are considered.

Lemma 2.4 (Logarithmic Sobolev embedding inequality, see Lemma 2.2 in [12]).
Let F € WYP(Q), with p > 3, be a periodic function. Then the following inequality
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holds true
¢ log ([F' [wree) +€),

|Flloe < Cya max{l,wp
r>2 T

for any A > 0.
The logarithmic type Gronwall inequality stated and proved in the following lemma
will be used in establishing the global a priori estimates with critical nonlinearities.

The first logarithmic type Gronwall inequality in the same spirit as stated here was
obtained by Li-Titi [28], see also Li-Titi [29] for some related inequalities.

Lemma 2.5 (Logarithmic Gronwall inequality). Given T € (0,00). Let A and
B be two nonnegative measurable functions defined on (0,7T), with A is absolutely
continuous on (0,7T) and is continuous on [0,T), satisfying

%A + B < [((t) +m(t) log(A + e) + n(t) log(A + B +e)|(A+e) + f(t),

where £, m,n, and f are all nonnegative functions on (0,T) belonging to L*((0,T)).
Assume further that there are two positive constants K and o, such that

n(t) < K(A(t) +e)”
for allt € (0,T). Then, we have the following estimate

A(t) + /t B(s)ds < (2Q(t) + 1)e?®

for allt € (0,7), where
Q(t) = e(oa-i—l)fot(m(s)-i-n(s))ds (log(A(O) +e)+ /t(ﬁ(s) + f(s) +1log(2K)n(s))ds + t) .
0

Proof. Setting Ay = A+ e and By = B+ A+ e, then
d

d
—A Bi=—A+B+ A
pr 1+ by pr +b+A+e

<[(t) +1+m(t)log(A+e)+n(t)log(A+ B+e)|(A+e) + f(t)
=(l(t) + 1+ m(t)log Ay + n(t)log B1)A; + f(t).
Dividing both sides of the above inequality by A; yields
f(®)
Ay(t)
<U(t) + 1+ f(t) +m(t) log A; + n(t) log By.

Noticing that logz < log(z + 1) < z for any z € (0,00), and recalling that n(t) <
K(A+e)* = KA, we deduce

n(t) log By =n(t) <log

d B
—log Ay + — <l(t) + 1+

log A log B
o m + m(t) log A1 + m(t) log By

By
W + (Oé + 1) log Al + log(QK))
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<n(t) "+ (a+1)log Ay + log(2K)
n — + ( 0 0
2K A¢T !

B

_—2A + (a+ 1)n(t)log A1 + n(t) log(2K).
1

Therefore, one has

%log A + % < (m(t) + (a+ 1)n(t)) log Ay + €(t) + 1+ f(t) + n(t) log(2K),
1
from which, by denoting G(t) = log A;(t) + ft Bl(s ds one obtains
G'(t) < (m(t) + (o + )n(t))G(t) + £(t) + 1 + f(t) + n(t) log(2K);
and, thus,

G(t) Sefg(m(s)“a“)"(s))ds (G(O) + /Ot(ﬁ(s) + f(s) +1log(2K)n(s) + 1)ds)

Se(a+1)f(§(m(8)+n(8))ds (/t(g(s) + f(s) + log(QK)n(s))dS + t)
0

+ (ot D) Jo (mls)tn(sDds 166 ( A(0) + €) =: Q(1).
Recalling the definition of G(t), it follows from the above estimate that
A, (t) < G < eQ(t)’
and further that

/0 By (s)ds :2/0 Ay(s )Qil(( ))ds = QOigEtAl( )/0 26111((83))0[8
<2eR0G(t) < 2Q(t)eR0.

Thanks to the above estimates and recalling the definitions of A; and B;, the con-
clusion follows. O

Remark 2.1. (i) A special form of the logarithmic Gronwall inequality in Lemma
reads as

d
£A+B < Alog(A+ B +e). (2.3)

Note that this is essentially different from the classic logarithmic Gronwall inequality
like d GA+ B < Alog(A+e). Noticing that the PDEs with dissipation, the quantities
represented by B in the above inequality usually have higher order norms than those
by A and, therefore, compared with the using of the usual logarithmic Gronwall in-
equality, by using (2.3), one can relax the regularity assumptions on the initial data
and may need only to carry out some lower order energy estimates, see Li-Titi [28].
(i1) Another special form of the logarithmic Gronwall inequality in Lemma[2.3 is

d
£A+B <n(t)Alog(A+ B +e),
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where n € L*((0,7T)). The above inequality does not necessary imply the boundedness
of A on (0,T) in general; however, as stated in Lemmal23, if n satisfies, in addition,
that n(t) < K(A(t)+1)%, for some positive constants K and o, then it indeed implies
the desired boundedness of A on (0,T).

(111) In the spirit of the system version of the (classic) Gronwall inequality exploited
in Cao—Li-Titi [12], one can also exploit the corresponding system version of the
logarithmic Gronwall inequality stated in Lemma [Z.3.

We also need the following Aubin-Lions compactness lemma.

Lemma 2.6 (Aubin-Lions Lemma, see Simon [38] Corollary 4). Assume that X, B
and 'Y are three Banach spaces, with X —<— B < Y. Then it holds that
(i) If F is a bounded subset of LP(0,T;X), where 1 < p < oo, and & =
{%Lf € F} is bounded in L*(0,T;Y), then F is relatively compact in LP(0,T; B);
(i) If F is bounded in L>(0,T; X), and %—f is bounded in L"(0,T;Y), where r > 1,
then F is relatively compact in C([0,T]; B).

3. SYSTEM WITH FULL VISCOSITIES AND FULL DIFFUSIVITY

In this section, we are concerned with energy estimates for the strong solutions to
the following regularized system, with both full viscosities and full diffusivity,

O + (v Vg)v +wdv — Agv — ed?v

- z
+f0 k xw + vH < s(l',y,t) - f_h T(ZL’, Y, ga t)d§> = 07 (31)
f_hh Vg -v(r,y,zt)dz =0, (3.2)
KT +v-VyT +wd, T — AT — *T = 0, (3.3)

with w given by (ILIT), subject to the boundary and initial conditions (IL2T])—(T23]).
For any periodic functions vy, Ty € H?(f2), which are even and odd in z, respec-

tively, there is a unique strong solution to the above system, subject to the boundary

and initial conditions (L2I))-(L.23]), and in fact, we have the following proposition.

Proposition 3.1. Suppose that the periodic functions vy, Ty € H?*(Q2) are even and
odd in z, respectively, with ffh V- vo(x,y,z)dz = 0. Then for any ¢ > 0, there is
a unique global strong solution (v,T) to system (31)-(3.3), subject to the boundary
and initial conditions (L.21)-(1.23), such that

(v.7) € Li([0,00); H*(€2)) N C([0, 00); H'(9)),

loc

(v,T) € Li([0,00); H*(Q)), (v, 8T) € Lig ([0, 00); H' ().
Proof. The proof can be given in the same way as in [10] (see Proposition 2.1 there),
and thus we omit it here. O

The strong solutions satisfy the following estimates.
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Proposition 3.2. For any 0 < T < oo, we have the following:
(i) Basic energy estimate:

-
oi?%“(”’ﬂ“g“”/o (Y0, 0.7, VeVuT)|3dt < Ce7 (||voll3 + |1 To13),

where C' is a positive constant depending only on h;
(i1) L™ estimate on T':

S0 [ Tlee(t) < M1 To
(i1i) L7 estimate on v:

sup |[|vll¢(t) < Cy/q, for every q € [4,00),
0<t<T

for a positive constant C' depending only on h, T, and ||(vo, To)|| co-

Proof. (i) Multiplying equations (3.I]) and (3.3) by v and T', respectively, summing
the resulting equations, and integrating over (2, it follows from integration by parts,
using (3.2), and the Holder and Young inequalities that

1d

2dt Jq

+/ <|VHU|2 + £|0,v)? + | VuT|* + |82T|2>dxdydz
0

__ /Q ( /_ h ng) Vi - vdadydz

1
<CTlIVavls < SIVavlls + CITIS,

(| + |T)?)dzdydz

and thus
d
ﬁll(v,T)lli +[(Viv,0.T, ed.v,/eVyT)|3) < C||T]]3,

from which, by the Gronwall inequality, one obtains (i).
(i) Multiplying equation [B.3) by |T'|97T, with ¢ € [2,00), and integrating the
resultant over ), it follows from integration by parts and using (3.2)) that

1d
“ZTNe <0
ST <o,

which implies supy<,<7 |T|l4 < ||Tol|4- The conclusion follows by taking ¢ — oo and
using the fact that ||T]|; — ||T]|ee, as ¢ — 0o.

(iii) This has been proven in (iii) of Proposition 3.1 in [12] (note that the diffusivity
plays no role for the proof of (iii) there) and, thus, we omit the details here. O
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3.1. A priori L°(H]) estimate on v. In this subsection, we establish the a priori
estimates a priori L°(H]) estimates of v. As it will be seen below, we achieve the a
priori L°(H}) on v not through performing directly the energy inequalities to v, but
by carrying out the corresponding L°(L2) estimates for u,n and 6 defined below:

w:=0u, n:=Vg-v+® O:=Vg-uv, (3.4)
where V§ = (—9,,0,) and ® is given by
z 1 h z
byt = [ Taweni- o [ ([ Twyena)d @)
_h 2h J_;, \J_s
Differentiating equation (B.I]) with respect to z yields
O+ (v - Vi)u+wiu — Agu — £0%u
+ fok xu+ (u-Vy)v— (Vg -v)u—VgT =0. (3.6)
The functions 1 and 6 satisfy (see Appendix A for the derivation)
om — Apgn —ed*n=—Vy-[(v-Vg)v+wdv+ fok x v] + (1 — £)0,T
—wT — / (Vg - (vT) —eAyT)dE + f(x,y,t) (3.7)
~h
and
0,0 — A — 0?0 = —V3; - [(v- Vi) +wdv + fok x ], (3.8)
respectively, with the function f = f(z,y,t) given by
1 h z
F 1) :%/ (/ (Vi - (0T) —aAHT)d£+wT) i

—h —h

I —
+ 55 Vi (Va-(vev)+ fok xv)dz (3.9)
~h

For the convenience, we first prove the following proposition which will be used
later:

Proposition 3.3. Let n and 6 be as in (34). The following estimates hold:

I+ 61 < COIVavil3+ D).
IVl < CllnlE+ 1013 + 1),
h 2 ) )
([ 19ulats) < (10n0BITat0.00 + 100 +1).

h . )
[ Wt < € (1m0 IVa(. 05 + 1.0+ 1)

h

where C' is a positive constant depending only on || Tyl and h.
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Proof. By Proposition[3.2] and recalling the definition of ®, we have ||®||oc < C||T|00 <
C||To||s- The first conclusion follows directly from the definitions of 7,0, and ®. By
the elliptic estimates, we have

IVaoll; <CUIVE -l +1VE - vl3) < Cnllz + 1913 + [121]2)
<C(|Inll3 + llel3 + 1),

proving the second estimate. For the third estimate, by the elliptic estimates and
Lemma 2.3 we have

h h
/ vl s < C / (U ol + 1V ol )t

h
< 0 [ U0+ 1910

< (IO IVHm. O3 + 10,0l + 1),

while the last inequality follows by applying the Holder inequality to the third one.
O

The energy inequality for (u,n, ) is contained in the next proposition.

Proposition 3.4. Given T € (0,00) and assume that € € (0,1). Let n,0 and u be
as in (3.4). We have the following energy inequality:

d ul|d
5 (1000002 + L8 19000, 0018 5 11l + 1200, 01

<C(lvl% + 1Vaollz + DA I + llulli + 1) + Cll0:T, VeV T)ll3

foranyt € (0,7T), where C' is a positive constant depending only on h, T, and ||To||c-

Proof. Multiplying equation ([3.6]) by (|u|?+1)u and integrating the resulting equation
over (2, it follows from integration by parts, Proposition [3.2] and using the Young
inequality that

d (lul3 | lluli / 2 2
dt( 5 + 4 + Q[|VHU| +a\8zu|

+ [P (IVgul? + 2|V glu||* + €]0.ul? + 2¢|0.|u||*)|dzdyd=

:/[VHT + (Vg -v)u— (u-Vg)v]- (Jul* + Dudzdydz

Q

SC’/[|T|(|u|2 + 1)|Vaul + |v|(Ju]* + 1) |u||V gu||dedydz
0

1
§§/(|u|2+1)|VHu\2dxdydz+C/(\u\2+1)(|T\2+\U|2\u\2)dxdydz
0 0
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1
<5 /(|U|2 +1)|Vyul*dedydz + C(1 + [Jv]|2) ([[ulli + 1),
Q

which gives

4 (Il ,

o (Bl o) s 90, 19, B0
1

< OO+ o)l + )+ (Tl + Vsl (310

Multiplying equation (3.8]) by # and integrating the resulting equation over £, it
follows from integration by parts that

L1z + (v o, \/5829)||§:/((U~VH)v+wazv+f0?xv)-Vﬁ@dxdydz. (3.11)

2dt o

By Propositions [3.2] and B.3], it follows from the Young inequality that

— 1
/Q((v Va)v+ fok xv)- Vybdrdydz < §||VH9||§ + O[5V avll3 + [v]3)

—_

< <IVEOIE + Cllvllz + DU, 012 + 1)3.12)

oo

By Lemma 2.2 Proposition B3] (LI7), and the Holder and Young inequalities, we
have

/w&v Vi0dzdydz

/(/ |VHU|dZ) </ |U||VH9|dz>datdy
h 3
é(/ ¥iloards) ([ lulfads) 1l
_h _h

<C (10,0315 1,013 + 1n, )2 + 1) lulls |V 611
<SI9s0 OIE + Cln, )l + (1, 6)13 + 1) ]
<SI9s0 O3 + COV ol + Dl + 1), (3.13)
Substituting BI12) and [BI3) into (BII) yields
0N + (T, VD) <ol + o3+ 1)1, O3 + e + 1)

+ Z(HVHnH% +[IVro]3). (3.14)
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Recalling the definitions of  and ® and using (3.2), one has

/h n(z,y, z,t)dz = /h (Vg -v) 4 ®]dz = 0.

—h —h
On account of this, multiplying equation (B3.7) by 7, and integrating the resultant
over {2, it follows from integration by parts that
1d
2 dt
:/ {((1 — )0, T —wT)n + (/ (vT — 6VHT)d§) : VHn] dxdydz
Q _

h

1112 + 1V anllz + ello=nll3

+ /[(U : VH)U + w@zv + f()%> X U] : VHﬂd(L’dde (315)
Q
Same arguments as for (8.12)) and (B3.13) yield
/[(v -Vg)v+wo,v + fO? x v] - Vgndzdydz
Q

1
<3 IVu, 0I5+ Clols + IVaells + DU, O3 + fulls +1)-

By Propositions and [3.3], it follows from the Holder and Young inequalities that

/Q [((1 —&)0.T — wl)n + < /_ T — 5VHT)d§) . an] dedyd-

h
<1 = ell9:Tll2 + 1T l|ss [[wli)Inll2 + CUT loollvll2 + el VaT]|2) IV an]l2

<C(10:Tll2 + IVavl)lnlls + C(L+ [ VaT2) [ Van]l

1

< IVamnllz + CUOTI + IV aollz + VATl + lInllz + 1)
1

<gIVanllz + CUOTI + el VaTlls + lInlls + 1015 + 1).

Substituting the above two inequalities into (B.15) yields

1d
5 7z Il + 1(Vm, Vedan)l; <CUVavlls + [lvlZ + DU, O + [lulls + 1)
1
+ C(10:TI5 + el VaTl3) + 71V (0, 0)I3,
which, summed with (310) and (3.14), yields the conclusion. O

Thanks to Proposition 3.4 and using the logarithmic type Gronwall inequality, i.e.
Lemma 25, we can obtain the a priori L{°(L2) estimate on (u,,6). In fact, we have
the following corollary:
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Corollary 3.1. Given T € (0,00) and let € € (0,1). Let n,0, and u be as in (3.4).
The following a priori estimate holds:

.
(1m0, w)13(t) + lulli (1)) +/0 IV (. 0, w)ll3 + [ ul|V rul;

+[1VE0:(n, 0,u)|l2)dt < C

for a positive constant C' depending only on h, T, ||(ve, To)|| s, and ||V guvo|l2+||0-vol|4;
in particular, C' is independent of € € (0,1).

sup
0<t<T

Proof. Denoting

Ay = 110113 + [Inll3 + llull3 + ”"2”3 +e, (3.16)
By = ||V (8,n,u)|5+ [|Ved.(n,0,u)]]3, (3.17)
one obtains
d
G2+ B2 < CllvllZ, + IVavllz + 1) Ay + C([|0.T3 + eI VHT3) (3.18)

for t € (0, 7) and for a positive constant C' depending only on h, T, and ||T]| -
By (iii) of Proposition and applying Lemma 2.4, we have

o\, s
MMSCWMﬁﬁm togt (ol + ¢)
52 \/a ()

<Clog? (|[v]lwraq) + €)- (3.19)

Recalling the definitions of n and # and using the elliptic estimate, it follows from
the Sobolev embedding inequality that

Vol <CUIVa - vlla + 1V - vlla) < CUlnlla + 0]l + 1[la)
<C(lInlla+110lla + 1) < CInllm @) + 10110 +€)
<C(llnllz + 10112 + [[Vanllz + [Vabll2 + [|0:9]]2 + [[0:0]]2 + 1)
<C(nllz +10ll2 + [V anlle + IV ablls + Vi - u+Tll2 + [V - ulla + 1)
<C(lnllz + 10llz + [IVenllz + [VaOl2 + [ Vaull2 + 1).
Therefore, by Propositions Bl and B3], one has
[ollwra@) <C([[vlls + [0:0]la + [[Vavlls) < Clv][m1@) + 10:0]l4 + [[VEV]4)
<C(lvllz + [[Vavllz + [|0:0]]2 + 10:0]la + |V Hv]|4)
<C([[vll2+ lInll2 + [10ll2 + 1+ [lulls + [Julls + [[Vav]la)
<O+ Inlla + 1012 + lulla + l[ulls + IV anllz + [VEO|2 + [V aull2)
<C(Ay + By).
With the aid of the above inequality, it follows from (3.19) that
[o]2, < Clog(4s + By) (3.20)
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and, consequently, by (3.I8)), we obtain

d
— Az + By < C(|[ Vol + 1+ log(As + B2))As + C(||0.T I3 + £l| VT 3)-

dt
Applying Lemma to the above inequality and using Proposition 3.2, one obtains
the conclusion. O

3.2. A priori L°(H}) estimate on u = 0,v. In this subsection, we perform the a
priori L*°(H]}) estimate on u. As it will be shown below, the a priori L°(L2) estimate
on 0,u can be achieved through performing the energy estimates for u directly, while
the desired estimate on Vzu is done by carrying out the corresponding estimates for
(¢, 1) defined, below, in ([3.24]). We first carry out the L{°(L2) estimate for 0, u.

Proposition 3.5. Given T € (0,00) and assume ¢ € (0,1). Then, the following a
priori estimate holds:

i
sup [[9.ull2(t) + / |(V 0o, v/20%0) 2t < C
0

0<t<T

for a positive constant C depending only on h, T, ||(vo, T0)||ec, |V EV0|2 + ||O2v0||l4 +
102vo]|2; in particular, C' is independent of € € (0,1).

Proof. Multiplying equation (3.6) by —d?u and integrating the resultant over Q, it
follows from integration by parts and the Holder inequality that

1d
ol + Vsl + o2l

= / [(v-Vi)u+wdu+ (u- V) — (Vg -v)u— VgT] - ?udrdydz
0
=— / 2(u-Vg)u—2(Vy -v)0,u+ 0,u-Vygv— (Vg - u)u] - O,udrdydz
0
- / 0. TV y - 0, udxdydz
0

1
S?)/(\UHVHUH&ZM + [V avllo.uf?)drdydz + 0.7+ [ Vudulf.  (3.21)
Q

We need to estimate the terms [, [u||V gu||0.u|dzdydz and [, |V gv]|0.ul*dzdydz.

Noticing that
h

IV, y, . 8)] < / IV e, y, = )| d=.
h

it follows from Lemmas and and the Holder and Young inequalities that

3/ |ul|V gul|0u|dedydz
Q
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h h
SC’/ (/ |VH8Zu|dz) (/ |u||8zu|dz) dxdy
M —h —h

h h 3 h
sc( / ||vHazu||2,Mdz) ( / ||u||i,Mdz) ( JNCE
—h —h —h

1 1
<CIIVndulaluls (10-ull2 + 10-ul3 1V no-ul3 )
1
<51V ud.ul3 + Cluli + Dllo.ul?
Noticing that
1 h h
Wity 2] < oy [ Vanlds+ [ [ ulde
2h J_p —h
it follows from Lemmas and and the Young inequality that

3 / |V v||0.u|*dwdydz
Q

gg/M (/_Z(\vmﬂvw\)dz) </_Z|8zu\2dz> dady

<3([[Vavll2 + [V all2) (/_Z HazuH?l,Mdz)
<C([Vyvllz + IV rull2) (10:ul3 + |0:ull2[|V 0-ull2)
S%HvHazqu + C(IVaol; + [Vaullz + 1)|0:ull3.
Substituting (3.22]) and (3:23)) into (3.21]), one obtains
Lo, + 17 0.l + <l o2l
<C(IVrollz + IVaullz + l[ulli + Dl|:ull; + Cl10.T 3.

)%

(3.22)

(3.23)

Applying the Gronwall inequality to the above inequality and using Proposition B.1

and Corollary B.1] the conclusion follows.

Before proceeding to obtain estimate on V yu, we define

0 =Vyg-u+T, 1:=Vp5-u

O

(3.24)

Equations satisfied by (¢, ) are derived as follows. Applying the horizontal diver-

gence operator divy, or V-, to equation (B.6) and noticing that
VH((UVH)U) = U'VH(VH'U)—l-VHUI (VHU)T,
V- (wiu) = wd,(Vyg-u)+ Vyw- d,u,

Vi (K xu) = Vi-ut=-Viu=-y,
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one has
8t(VH . u) +v- VH(VH . u) + w&Z(VH . u) — AH(VH U+ T) — 583VH U
= fo’l/f —Vg- ((U : VH)U - (VH : v)u) — Vg (VHU)T —Vyw - 8zu
Adding the above equation with (B3]) yields
O +v-Vgp +wd,p — App —edp
= fo—Vg-(u-Vg)v— (Vg -v)u) +eAyT + (1 —€)0*T
~Vuv: (Vygu)' — Vgw - 0,u. (3.25)
Applying the operator V- to equation (3.6) and noticing that
Vi ((v-Vg)u) = v-Vg(Vg-u)+Vgv: (Vgu)®
= v-Vgy+ Vﬁv (Vgu)T,
Vi - (wou) = wo, (Vg -u)+ Viw - 0.u = wdy + Viw - 0.u,
Vfl(?xu) = Vg -ut=Vy-u,

where ut = (—u?,u'), one obtains

Ob +v -V +wdap — Apgih — e0*p
= —foVu-u—Vg-((u-Vy)v— (Vg -v)u)
—Vgv : (Vyu)' — Vgzw - d,u. (3.26)
A priori L°(L2) estimate on (g, ) is stated in the next proposition.

Proposition 3.6. Given T € (0,00) and assume that ¢ € (0,1). Let ¢ and v be
given in (3.24). Then, the following a priori estimate holds:

!
s e IR0 + / (V0 Vs, /2010, /E0.10) |2t < C
SisS 0

for a positive constant C' depending only on h, T, ||(vo, To)|lcos |Vavoll2 + ||02v0 || g5
in particular, C' is independent of € € (0,1).

Proof. Multiplying equation (3.25) by ¢ and integrating the resulting equation over
Q, it follows from integration by parts that
1d
2dt
= / [(fo +eAxT + (1 —€)0*T)p + ((u- Vy)v — Vi -vu) - Vyeldedydz
Q

lellz + IIVEellz + ello:ell;

- /[VHU S (Vau)' + Vyw - 0.u]pdrdydz. (3.27)
0
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Noticing that [|0.¢2 < [[VuO:ullz + [|0:T|2 and [|(@, )3 < C([Vaul3 + 1), it

follows from integrating by parts and the Holder and Young inequalities that

/[f0¢ + AT + (1 — 2)0?T)pdrdydz
0
<O(IVaulls + 1) + e VaT |2 Vaellz + 10Tl (IV #0:ulls + 10.T2)]

1
< IVaels ++CEIVATI; + IVadauly + 10:T15 + | Vaulz +1).  (3.28)

Noticing that |u(z,y, z,t)| < f_hh |0, u(z,y, z,t)|dz, by Lemmas and 2.3, Proposi-
tion 3.3l and using the Young inequality, we have

/[(u -Vg)v—Vg-vul - Vygedrdydz
Q

h h
§2/ (/ \8zu|dz) (/ |VHUHVHSO|dz) dxdy
M —h —h
h h 1
< ( / H&zull4,Mdz) ( / ||vHvr|i,M) Vsl
—h —h

<C (03 9 ndull3 + 19-ul2) (lnll2 + o1l
+ (nllo + 18]2)* 1V slls + [V 161)* + 1) [ Vil

1
<z IVuells + Cll0:ulls + Inllz + 10121V ud-ullz
+IVanllz + 1VE0I) + 1(0:u,n,0)[3 + 1] (3.29)

and

- / Vv : (Vgu) odedydz
Q

h h
S/ (/ \VH82u|dz) (/ \VHU||g0|dz) dxdy
M —h —h
h h 3 h 3
s( / ||vHazu||z,Mdz) ( / ||vHv||iMdz) (/ ||¢||3,Mdz)
—h —h —h

<ClIVndzulls (I O3V (n, 0)13 + 11n, 0)ll2 + 1) (Il IVl + Il

1
<z IVaelz + Clllm OV e (n, 01z + (0, )12 + 1) llellz + [V adoullz] - (3.30)
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Applying Lemmas and and Proposition 3.3 it follows from integrating by
parts and the Young inequalities that

— / Vgw - O,updrdydz
Q

w(Vy - d,up + 0.u - Vyge)drdydz

/ ([ avtte) ([ 10uoalol + 01 Ve )
(] (" hottatz) 19
)( N0l =) 1Vl
<C (||<n, NIV, 0)13 + 13,0112+ 1) [ (IeI31Vael +l1l2)

% [V udeulls + (10-ul3 |V ud-ul3 + 0-ull) [Vl
<C (1(0-1,m, 0) 311V 1 (010, m, 0) I3 + 1010, m, 0) 13 + 1) (ell3 + 1)

1
+ gIIVaells + ClIVad-ull; (3:31)

Substituting (3.28)—(B3.31]) into (B3:27)) yields

d
Zels +1IVaells +£l10:¢1;

<C([1(0zu, 1, 0) 1311V (9w, m, O)I2 + 11 (B, m. O)[|2 + 1) ([l I3 + 1)
+ C((Vau, Vudu, 8.T,\/eVyT)|5 +1). (3.32)

||vHv||4Mdz)
h

Multiplying equation (3.26]) by 1 and integrating the resultant over €, it follows
from integration by parts that

Sl + Il + 0.0
:/[—fOVH curp+ (u- Vv — Vi - o) - Viodedydz
Q
/ (Vi (Veu)! + Viw - 0,u)dedydz. (3.33)
Q
The same arguments as for (3.29)—(3.31)) yield the estimates

/ (u- Vv —Vy-ou) - Vydrdydz
Q
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1
< GIValls + OO0 m O 121V (Do m, O)] + 11Dz, m, O) Iz + 1),

—/QV#(VHU)TWMW < C (It OV Em, O3 + 1tn, )l + 1) 12113

1
+2 IV atlls + OV rd:ul,
and
—/ Viw - 0 updrdydz
Q
< C(10:u,m, 01V # (-1, m, 013 + (O, 0) 13+ 1) (I¥]15 + 1)
1
5l Va3 + CIV -l

Thanks to the above estimates, we obtain from (3.33]) that

d
Zls + IV adlls + <00l

<C(I1(0=u,n, )3V (0, m, O)5 + 1| (Dot m, O) I + ) ([[5 + 1)
+ C((Vgu, Vgd.u)|lz + 1).
Summing the above inequality with (3.32)) yields

d
pric2 D3+ 1(Vae, Vi, Vedap, Ve )3

<CN o, 1. OV (D, )+ 1D, m, O+ 1o, + 1)
+ C((Viu, Vgou, .1,/ eVuT)|3+ 1),

from which, by the Gronwall inequality, and using Proposition [3.1] Corollary [3.1] and

Proposition [3.5 one obtains the conclusion.

3.3. Energy inequalities for (Vyn, Vy0). In this subsection, we are concerned
with deriving energy inequalities for (Vgn, Vy0), where n and 6 are given in (3.4]).
It should be noticed that the energy inequalities for (Vyn, Vg6) do not yield the a
priori estimates of themselves, without appealing to the energy inequalities for VT

As a preparation, we prove the following:

Proposition 3.7. Let 1,60, and u be given in (34), and ¢ and ¢ as in (3.24). The

following estimates hold:

h % 1 1
( | ||vHu||iMdz) < ¢ (e EIVre, )13 + e, ¥) 2 +1).

h L )
| Witz < € (I 0I Va0 + 1)l +1).

h
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h 3 ) .
([ Iulesdz)” < (b + 1o 03IVt 0013 + i 0l +1)

for a positive constant C' depending only on || To||e and h, in particular it is indepen-
dent of ¢ € (0,1).

Proof. By Proposition[3.2] it follows from the elliptic estimate that for any z € (—h, h)

CUIVE - ul, 2)lape + V5 ul, 2)l|a00)
ClleC ) lans + 1T 2) lang + [190C 2)llam)
ClleCs 2 laar + 19 2)lan +1)

for a positive constant C' depending only on ||7p||-. Thanks to the above, it follows
from Lemma 2.3 that

h 2 h 2
(/[ 19mulez) sc[( [ o) +1
—h —h

< C (I IV D + e 0l + 1),

IVau(:, 2)|lam

IANIACIA

proving the first inequality, while the second one follows from the first one by applying
the Holder inequality. For the third inequality, by the Sobolev embedding inequality
and the Hoélder inequality, and using the first conclusion, we have

h 3 h 3
( / ||u||zo,Mdz) <c ( [+ ||vHu||i,M>dz)
1 1
< C (llulls + e, DIF IV a2, 013 + s + 1),
proving the third inequality. 0

We have the following proposition about the energy inequality for (Vgn, Vg0):

Proposition 3.8. We have the following estimate

d
21V (0,9) 15+ (A, Apb, VeV 50, eV .0)|I3

<C([vll% + lulld + 1o, V)21V (e, )12 + (0, ) Iz + 1)
< [V (n,0, Tz + CUI(n,0,,9)I2 + ulli+1)
< (IVan.0,0. )5+ 10Tz + 1) + Ce*| Ax T3,

where C' is a positive constant depending only on h and ||To||eo; in particular, C' is
independent of € € (0,1).
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Proof. Multiplying equation (4.4]) by —Ag6 and integrating the resultant over €, it
follows from integration by parts that

1d

2dt

:/ Vi (v- Vv 4w+ fok x v)Agfdrdydz
Q

IV a0l + | Anb]l2 + €| V0012

1
<5 1An0IE + ol Vavll+ [ (0ol + Vol
+ |w||Vgu| + |V gw||u|)|Agb|dzdydz. (3.34)

We estimate the terms in ([3:34) as follows. First, for [, |v||V{v||Ag0|dedydz, by
using (B.4) and the Young inequality, we have

/ 0[[V2 0| Abldzdydz < [[o]lo]| Asv]a]| Aubl,
Q

= [0l Va(Vi - v) = VE(VE - 0) 2| Arfl2
= [vllocll Vir(n + @) — V50ll2| Anb]2
< Cllollooll Vi (0, 8, T) |2l Arbll2

1
< 7l Aubllz + ClIlIS Ve (. 0, ). (3.35)

Then, for the term [, |V yv|*|Ag6|dzdydz, recalling that

1 h h
IVyo(z,y,z,t)| < ﬁ/ |VHU\dz+/ |V yuldz,
—h —h

we deduce by Lemma 2.2] Propositions 3.3 and B.7, and the Young inequality that

/(\vHU\2|AH9| ]|V | A ) dadyd
Q

4 h
SC/ (/ (IVHv|+|VHuI)dz> (/ |VHU||AH9|dz) dxdy
M —h h
h h
—I—/ </ |VHv|dz) (/ |VHu||AH6’|dz> dxdy
M —h _h

h h %
SC(/ IIVH(v,u)I|4,Mdz) (/ ||VHU||Z7Mdz) 1AL
_h _n
h h %
([ 19l ) ([ 19mala) 18u61:
_h _h

<C (Il(n. 0, 2, V)2V (0, 0.0, 0) |2 + (0, 0,0, 0[5 + 1) | Ab] 2
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<76 | Aubl3 + C(I(m. 6. 0 3+ DIV a(n, 6,0, D)3 + D). (3.36)
Finally, for the term [, |V yw||u||An6|dzdydz, thanks to (LI7), B.4)-(B3), we have

/ |V pwl||u||Agf|dzdydz
Q

=3 ( /h<|an|+|vHT| )( / |u||AH9|dz) dudy.  (337)

For the term C' [}, (f (|Vun| + \VHT|)dz) (f_h \uHAH9|dz) dxdy, by Lemmas 2.2
and and using the Holder and Young inequalities, we have

h
C/ (/ (IVanl +[VuT|)d )(/ |u||AH9|dz) dxdy
M —h
h h 1
<c ([ 19mmlosz) ( [ ||u||i,Mdz) I
- —h

<CIVaml3IV3ml ulla| Anblle < 2IIAH(U,@)II%+C||VH77||§H7~LH$ (3.38)

For the term [, (f_hh \VHT|dz> (f_hh \uHAH9|dz> dxdy, we estimate it as follows.
Using the Holder and Young inequalities and applying Proposition B.7, we deduce

0/ (/h IVHT|dz> (/ |u||AH9|dz) dady l
<0/ (/ \VHTIdz) (2/ uidz)z (/hAHﬁ%llz)zdxdy
/M(/_};WHTMZ) dxdyr (/_}; ||u||c2>07Mdz)2||AH9||2

h 2
<0 ([ ko) 1808107
—h
<O (12 I 11l +1) BT

<3 ||AH9||2 + Clllull + [, Dl (IVa (2, 9) [l + 1) + U VETf3. (3.39)
Thanks to ([3:38) and (3.39), we obtain from (3.37) that
/ |V yw||u||Ag8|drdydz
Q

<C

1
<7618 O + Clulli + (o, )lI2lV (e, )]z
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+1Ie. V)2 + DIVETE + CIIVanlillul. (3.40)
Combining (3:35), (8:36]) and (3:40), we obtain

/(|U||V%{U| + Vol + [wl|Vgul + [V gwl|u)) | Agb|dedydz
Q
<O([[vll3 + lull + 1o, )21V i (o, )12 + (0, )12 + DIV (0,0, T3
3
+C(I 0,0, 0z + el + DIV a (.0, 0,0)5+ 1) + 75 1Au (0,05 (341)

Therefore, recalling that ||V govl|3 < C(||nl|3 + [|0]|3 + 1), guaranteed by Proposition
B3] it follows from (3.34)) that

Ld
2dt
1

<7 12um, 0)llz + CUWIE + llulli + 160, )21V (e, )l

+ [, D)5+ DIVa®n,0, )3+ C([(n,0, 0,913
+lulls + D(IVa(,n,0,0,0)]+1). (3.42)

Recall that f_hh n(z,y, z,t)dy = 0, which implies

IV 013 + | ARbll2 + £l V.03

/ flz,y, ) Apn(z,y, z, t)dedydz = 0,
Q

where f(x,y,t) is given by (8.9). Multiplying equation (B.7]) by —Apgn and integrating
the resultant over €2, it follows from integration by parts, Proposition 3.2 and the
Holder inequality that

1d

ST wnl3+ 1A sl3 + €V 0l

:/ {VH~ [(’U~VH)U—|—U)8ZU—|—fO? xv] = (1 —¢)0.T
Q

+wT + </Z (Vg - (vT) — EAHT)d§> + f(a:,y,t)}AHndxdydz
—h

:/ {VH- (v Vi)v+wd.v] + foVg - (? xv)—(1—¢)0, T+ wT

+ (/ (Vi -0)T+v-VyT — 5AHT)d§) }AHndxdydz
—h
<C([Vavlz + 10:Tll2 + vl VT2 + e[| AuT[|2) | A2

+ / V- [(v -Vyg)v+ w@zv]AHnda:dydz. (3.43)
Q
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Same arguments as for (3.41)) yield

/ V- [(U -Vy)v+ w@zv} Apndxdydz
Q

< / ([l Vil + [V aol* + ]| Vil + [V gwl||u])| Apn|dedydz
Q

<C(Ill% + llulli + 10, D)l Vi (e, 9)ll2 + (0, )13
+DIVE®,0. T3+ Cl(n,0, 0, 9)3 + [lulld + 1)

3
< (IVa(n,0,0,9)5+1) + 1g18u 0, 0)l3.

Thanks to this estimate, it follows from (3.43]) and the Young inequality that
1d
2dt
1

<7120, )iz + CAIIE + llulls + (e, )12V (e, )l
Tl )2 + DIV (0, TE + CUlI(m, 8,0, ) |2 + [l
+1)(IVu(v,n,0,0,9)5+ [0.T5 + 1) + C*||ApT3,

which, summed with (3.42]), yields the conclusion. O

IV el + [1Azmll3 + el Vo]

Note that VT is involved in the energy inequality of Proposition B.8 and, thus, it
does not yield the a priori estimate for (Vgn, Vy#). Therefore, we need to combine
the energy inequalities for (V gn, V g6), which have already been stated in Proposition
[B.8 with those for V5T, which will be stated in the next subsection.

3.4. Energy inequality for V7. In this subsection, we are concerned with per-
forming the energy inequalities for the first order derivatives of T

Define the function w(x,y, z,t) as follows: for any z € (—h,h) and t € (0,00),
w(-, z,t) is the unique solution to the two-dimensional elliptic system subject to
horizontal boundary conditions

{ V- w(z,y,2,t) = @(x,.y,z,t) — ﬁ [y @@, y, 2, t)dedy, in Q, (3.44)
Vi w(z,y,2,t) =0, inQ, Sy @@y, 2, t)dedy = 0,
where ® is the function given by ([B.). Define a function ¢ as

C(x,y,2,t) =v(x,y, 2,t) + w(z,y, 2, 1), (3.45)
then, recalling the definitions of n and 6, one can easily check that

1
VH-CZU—M M(IDd:zdy, Vi-C=0. (3.46)

The following proposition will be used later.
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Proposition 3.9. Let n and 6 as in (3.4), w as in (3.44), and ¢ as in (3.45). Then,
the following inequalities hold:

h
/_hIIVHC(~,z,t)!|oo,Mdz < CUIVanllz(t) + [[Vabll2(t) + 1)

xlog? (e + [[Anlla(t) + [ Aub]|a(t)),

Sup |[Vu@ (2 t)llor < Clogle +[IVAT[o(1)), g € (2,00),

for a positive constant C' depending only on h,q, and ||To||o-

Proof. Recall the two-dimensional version of the Brézis-Gallouet-Wainger inequality
(see, e.g., [5,16])
1
19llocns < C(L+ gl (ary) Log? (€ + [l gl 2 (ar))

for any ¢ € H?(M). By the aid of this, recalling ([3.48]), it follows from the two-
dimensional elliptic estimates, the Poincaré, Holder and Jensen inequalities that

h h
/ IV € lloenrd < C / (IVaCllman + 1) logt (e + IV aCll e )d=
_h _

h

h
SC/h(H(Vﬁ GV QOllon + Dlog2 (e + [[(Vi - ¢, Vi - Ol 2 dz

h
<c / (V¥ - €,V Vi - Ollaar + 1) log? (e + |Au (Vh - ¢, Vit - ) lonr)dz
—h

h
SC/ UIVEDll20 + V0|20 + 1) log? (e + [ Annlloar + [|AE0]|2,a0)d2
—h

' : " dz 2
<C (/h ||VH(77,9)||§,M)dz + 1) (/ log(e + ||AH(17,9)||27M)%>

—h

dz

h 3
<COVanll + 19t + 1) g ([ (e 18mmlass + 18n01003; )
—h

<C(IVanllz + [Vabll2 + 1) log? (e + [| Apmllz + | Anb]l2),
proving the first conclusion.
Recall the following logarithmic Sobolev type inequality (see, e.g., [3]), for any
function g = (g', ¢%) € WH(M), q € (2, 50),
IV illoonr < CUIVE - glloo,sr + Vi - glloo,ar + 1) log(e + [lgllwraqan)-
By the aid of this, recalling (3.44) and [|T]|o < ||70||co, and applying the elliptic
estimates, one has

sup ||Va@(-, 2,t)|lo,nm
—h<z<h
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<C sup (Vi @2 8)loonr + Vi - @(, 2,8 [loonr + 1)
—h<z<h
x log(e + [[Vaw (-, 2, t)[wrean)

<C :Llp<h10g(€ + ||VJI§ ’ w('? th)Hleq(M) + ||VH ) w('v zvt)HWl'q(M))

=C sup log(e+ ||V - @(-, 2 t)|lwraan)
—h<z<h

<C sup logle+ ||VuVy - -w(-,z1t)|4m)
—h<z<h

=C sup logle+||Vu®(-, z,)|4nm)-
—h<z<h

Recalling the definition of ®, (3.0), one can easily check that
IVa®(, 2, g0 < CIIVET( 1)l
and, therefore, we have

sup [|[Vaw (-, 2,1)|loc, s < Clogle + [[VaTly),
—h<z<h

proving the second conclusion. O
Energy inequality for VT is stated in the next proposition.

Proposition 3.10. Letn and 0 be as in ({3.4). Then, the following energy inequalities
hold:

dt 2 +_H(8311'§7H6%jn7\/EZXLﬂT)Hg

<Co(IVau(n, 0)lI; + DUV HTIl + 1) log(e + | Au (0, 6) 2 + [V Tlly)
+ Co(llvllz + DUNVTIS + Il + 1) + o (1Aunl3 + IVa0:T15)

for any ¢ > 0, if ¢ € (2,4], where C, is a positive number depending only on
h,q, ||To||s, and o; and

d (2 a_ 2
a (ganTnz + ||vHT||§) +IVud. T3+ |IVaTF Vad.T ||

4 (15712 , 15T

dt
<C(IVum, 03+ 1)(IVaT||2 + 1) log(e + [[Annllz + |Aubl2 + [VaTllq)
+ C(| A3 + IVl + 1) (IVET||E + 1),
if ¢ € (4,00), where C' is a positive number depending only on h,q, and ||Ty]s-

Proof. Integration by parts and using the Holder inequality yield
/ 0.T| dvdydz = — / 0.(10.T|?0.T)Tdxdydz < 3||T||0||0>T||21|0. T3,
) )

which implies
10.TN13 < 31T ||cl|O2T 2. (3.47)
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Multiplying equation (B.3) by —0*T and integrating the resultant over Q, it fol-
lows from integration by parts, Proposition B.2], (3.47), and the Holder and Young
inequalities that

14,

2 dt

_ / (v- VT + wd. T)OTdwdyd-
Q

[0-T5 + 102715 + £ VrO.T3

1
= / (v-VyTO*T + i(VH - 0)|0.T*)dxdydz
0
1
= / (v-VygTO*T + 5(n — ®)|0,T*)dxdydz
0
<C([0ll[IV T[0T (|2 + (|l [0:T[I3 + 11]l2]|0-T[13)
<CWIlIVaT 00T Iz + | @llcll0-T 12 + 111l Tl 02T ||2)
<ol|O2T (I3 + Co ([0l 3 IV Tl + [10:T113 + [|n1]3)
<ol|02T (I3 + Co([[v]l5% + VIV T3 + 0TI + [Inll3 + 1), (3.48)
for any o > 0 (to be chosen later) and for some C, > 0.

Recalling the definitions of n and ®, ([B.4) and (B.5), respectively, then by the
Holder inequality, one can easily check

IV 0.wlls, [Vawle < CUIVanllz + [VaTlls).

Thanks to the above inequality, multiplying equation (B3] by —AxT, and integrating
the resultant over €2, it follows from integration by parts, Proposition B2 and the
Holder and Young inequalities that
1d
2dt
= / (v-VyT +wd, T)AgTdxdydz
Q

IVeTI; + Vad. T3 + | AuT|3

= /Q(VHT -Vyv+ 0, TVyw) - VyTdxdydz

— /Q VuT - Vv -VuT — (Vyo,w - VyT + Vyw - 0,V yT)T|dedydz

< /Q V0| |VaTPdedydz + C(||V gd.wl||V T |ls + | Vaw|s|[ V0. T|l2)
< /Q V|| VT Pdedydz + C(IVanlle + [VaTll2) (IVaT ||z + |V 2.T||2)

<o|Vud.TIE + ColIV amls + IV TIE) + / Vool |V TPdedydz, (3.49)
Q
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for any o > 0 (to be chosen later) and for some C, > 0.
Multiplying equation [33) by —divg(|VgT|* 2V yT), for ¢ € (2,00), integrating
the resultant over €2, and noticing that ||T||cc < ||70]|c0, it follows from integration

by parts, (LI7), (3:4), and (3.3), that
1d
SVl [ Va2V a0.TP + (¢ - DIoVaT?
Q
+e|VET? + (¢ — 2)e|Vu|VuT||?)dedydz

— / \VuT|" (VT - Vv + 0, TV gw) - VyTdrdydz
Q

- / (VT VT - Vv - VT —T|VuT|"*Vg0.w - VT
Q
+ TV gw - 0,(|VyT|" 2V 5 T)|dzdydz

h
<C/ (/ |Via(n— <I>)|dz) (/ |VHT\q_2|VH8ZT\dz) dxdy
—h

+0/ (IV a0l [VaTl? + [Via(n — ®)|V Tl dedyd:,
Q

which, summed with ([8.49) and using the Young inequality, gives
d (IVaT]| + IVuTll;

dt q 2
<o|[Vud.T|; + Co([Vanllz + IVaT3)

)+ [wurti ot 19 w01+ T

—I—C/|VHU|(|VHT|q+1)da:dydz+C’/|VH(77—(I>)||VHT|q_1dxdydz
Q

h
—l—C'/ (/ \Vi(n— q))\dz) (/ \VHT|q_2\VH82T\dz) dxdy
—h

=0||Va0.T|; + Co(lIVunllz + IVaTlz) + C(Ji + J2 + J). (3.50)

We have to estimate the terms Jy, Jo, and J; in ([8.50). First, we show that J, <
(¢ — 1)J;. In fact, since T is odd and periodic with respect to z, one has T'|,—_), =
T|,—p = —=T|,——n = 0. Therefore, we have

h
|VHT($ayaZ>t)|q_l S (q - 1)/ |VHT(x>y>Zat)|q_2|vHazT(x>y>zat)|dZ
—h
and, thus,

Ja= [ 19ty - )| Va1 dadyds
Q

h h
<(g—1) /M/h |Vg(n— <I>)|dz/h |VuT|* %V y0,T|dzdrdy = (g —1)Js.
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Next, we estimate J3. By the Holder and Minkowski inequalities, we have

o = /M ( |an|dz)
s/ < |Vm7ldz)
| o

< (/_ ||an||quz)

<0 ([ 1anlasate ) 19717 W]

\VHT|"‘2\VH82T|dz) dady

3/ rh 3
|VHT|q_2dz> (/ |VHT|q_2|VH82T|2dz> dxdy
—h

(/
( ;
( |VHT|q‘2dz) 2
(/
)

H|VHT|%—1VH6ZTH2

2q
—5.M

||VHT||ZJ§0lz)é IR

and, similarly,

h h
Jya = / ( / \VHT|dz) ( / |VHT\q‘2\VH82T\dz) dedy
M —h —h

h o .
<C ([ 19Tyt ) 1V |91 007
—h

Therefore, we have by the Holder and Young inequalities that

.

q 2
<o ||IVaTl ' Vad.T |+ Co|VuTl (3.51)

Jso <IIVuT ) |1V aT 21V 40,7

for any ¢ > 0 (to be chosen later) and for some C, > 0. Moreover, from the above
and by the Gagaliardo-Nirenberg and Holder inequalities we have

h
h <0 ([ 1@l ) IVaT 1 | Tl Vaouz]
—h

h 5 -
<(/ h||an||5,M||AHn||2,M )||vHT||q [1waristv 0.

<CIV i Amnly “IVaTla® |IVaTlE w01

We further estimate Js;, in accordance with two different ranges, by the Young
inequality as follows:

q_ 2 a2
Jyi <o (H|VHT|2 . T| + ||AHn||§) + Col VamlBI VT ™ *
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q 2
<o (HIVHT|5—1VH82TH2 + IIAHnIIS) L GV BV T2 + 1),
if ¢ € (2,4], and
g 2
J31 <o H‘VHT|§—1VH8ZTH2 + CU(HAHUH%HVHTHZ + IV aml2),

if ¢ € (4,00), for any ¢ > 0 and for some C, > 0. Recalling (3.51]) and noticing that
LB S J&1+-J12,“@ have

q_ 2
i <o (|Iat a0t Nl ) + Co (Tl + VAT + 1), (352
if ¢ € (2,4], and
a_ 2
Js <o [ IVa T Vud. ||+ CollAmml3 + IVuml + DOVATI+ 1), (3.53)

if ¢ € (4,00), for any o > 0 and for some C, > 0.
Finally, we estimate the term J;. Recalling the decomposition v = ( — w, we have

Ji :/ \Vo|(1+ |VyT|")dzdydz
Q

< / (IVaC| + [V am]) (1 + |V T |9 dzdydz
Q

h
s( / HVHCHoo,Mdz)( sup ||vHT<~,z,t>r|z,M+1)
—_h —h<z<h

. ( sup ||va<-,z,t>||oo,M) (VT2 +1).

—h<z<h

Recalling that T'|,—_j, = 0, it follows from the Holder inequality that

sup [[VaT( 2 8)1y = sup / VT (-, )|t dedy
M

—h<z<h —h<z<h

=q sup /(/ |VHT|"_2VHT-VH02T0Z§> dxdy
M

—h<z<h —h
h
<o [ [ VuT V0. dz2dudy
M J—h

aq
<q||VuT|]

|VHT|%‘1VH(9ZTH2.

With the aid of the above inequality, applying Proposition 3.9, and using the Young
inequality, we obtain

h
( / ||vH<||oo,Mdz)( sup ||vHT||3,M+1)
—h —h<z<h
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<C(IVanlls + | Vabllz + 1) log? (e + | Amnllz + [ Anb])
< (IVaTl} |1 vur)t - Vao.r| +1)

q_ 2
<o ||[VaTE V01| + (1Tl + Va6l + 1)
X (Il + 1) log(e + [ Annlla + | Ant2)

for any o > 0 and for some C, > 0, and

( sup ||V, Z,t)llqu) (IVaT][§+1) < C(IVaT|§+ 1) logle + [VaTllg)-

—h<z<h

Therefore, we have

q 2
D1 <0 |IVaTIE Va0 T+ ColIVmmll3 + IV 13 + DIV T3 + 1)
< log(e + [ Aunlla + | Aublls + [V Tl,) (3.54)

for any o > 0 and for some C, > 0.
Thanks to the estimates for J; and J3, i.e. (352)—(B3.54), and recalling that J, <
(g — 1)J3, it follows from (B3.50) that

d ||VHT||3Jr IVuT|3
dt q 2

q 2
) + Va0 T3+ |IVaTIE Vo, T|| + el ATl

q 2
<o <HVH8ZT||§ + llamml + H\vHTw—lvHazTyL) + Co(I 9 (n, B)[3+ 1)
% (IVaT 2+ 1) log(e + [ Aunlls + [Aubll> + [V uTl,) (3.55)

for any o > 0 and for some C, > 0, if ¢ € (2, 4], and

d (2 q_ 2
& Crvatly + 19471 ) + 1900718 + 971007

dt \ q
<C(IVu(n,0)l5 + V(IVuTIlf + 1) log(e + [Amnllz + [Anbllz + [ VaTl,)
+CAE + Vel + DUIVAT]]+ 1), (3.56)
if g € (4, 00).
The first conclusion follows from summing (3:48) and (3.55), and the second one
follows from (B.50]). O

3.5. A priori estimates on (Vyn, Vg0, VT). Combining the energy inequalities
established in the previous two subsections and applying the logarithmic type Gron-
wall inequality, i.e., Lemma [2.5] we are able to obtain the required a priori estimates
on Vgn, Vgb, and VT'. In fact, we have the following proposition.
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Proposition 3.11. Given T € (0,00). There is a positive number €q € (0,1) de-
pending only on h and ||Ty||s, such that, for any € € (0,20) and any q € (2,00), we
have the following estimate:

.
sup (|V(n, 0)|3 + [IVT|3 + IIVHT||3)+/ (A&, )13
0<t<T 0

+ (2T, V g 0. )3 + el (V 501, V0.0, AyT)dt < C,

where C' is a positive constant depending only on h, T, and ||vo|l g2 + || Tollzrar~ +
IV uTolly; in particular, C' is independent of € € (0, &).

Proof. We first consider the case that g € (2,4]. By Proposition B.8 and Proposition
[3.10, where we choose o = %, we have

=

d
IV (00113 + 1A, Aut, VEV RO, VEVHO.)3

<C(Ilvll% + llulld + 10, D)l Vi (0, 9)ll2 + (0, )13 + 1)
< [V (n,0, T3+ CI(n,0,0,9)I3 + lulli+1)
< (IVr(v,n,0,0,9)ll2 + 10:T|lz + 1) + C*| A T]J3,

where C'is a positive constant depending only on A and |7, and

2
CUIVEMm, 02+ DUVHTIG + 1) log(e + |Am (0, )]l + [V ETIl,)

1
+ C(llvll% + DIVTIE + Clvlz + Dl + 1) + 7 (1Amnllz + [ Vad:T13)

T3 IVaT|?
% (IIV I3, 2 Hq)+||<agT,vHazT,¢EAHT>||§

provided g € (2,4], where C is a positive number depending only on h, ¢, and ||75||c-
Choose a small positive number €5 € (0, 1) depending only on h and ||Tp]|« and let
e € (0,&0). Summing the above two inequalities and denoting

Ay = V(. )3 + 715 + 122,
= $1(Aun. Aub. VEV 500, VEV O:0) 3 + (02T V0. T AT,
£a(0) = (Wl + ull + 1, )l Vo, ) + (o, )R + 1
na(t) = Va3 + 1, (t) = (leliZ(0) + DIl + 1),

one obtains

Recalling (3:20), i.e., |[v]|%, < log(As+ By), where A, and By are given by (3.16) and
BI1), respectively, and noticing that log z < log(1 + 2) < z, for 2 > 0, we have by
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Corollary 3.1] that

T T T
/ |2t < C / log(As + By)dt < C / (As+ By)dt < C. (3.58)
0 0 0

With the aid of this, and applying Corollary B.1] and Proposition [3.6, we have

/ " 0) + molt) + fo(t))dt <

for a positive constant C' depending only on h, T, || (v, Tb) /oo, and ||V gvolla+|| 0. vo || 1 -
Thanks to the above and noticing that ng < Az, one can apply Lemma 2.5 to (3.57))
and obtains .
sup As(t) +/ Bs(t)dt < C, (3.59)
0<t<T 0
where C'is a positive constant depending only on h, 7, and ||vo|| gz + [|Tol|mrinr= +
|V uTo||,- This proves the conclusion for the case ¢ € (2,4].
We now consider the case when ¢ € (4,00). Thanks to what we have proven in

3359), we have
sup (I, 0)[30) + IV TIR() + [V aTI4®))
o<t<T
g
4 / (1 2u(n, O + (52T, Vud.T)|2)dt < C. (3.60)
0

where C' is a positive constant depending only on h, T, and |[vo| gz + | To||minre~ +
IVuTo|ls. One still need to show the a priori L>(0,7; L?) estimate on Vg1, for
q € (4,00). By Proposition BI0 and noticing that

log(e + |Aunll2 + |Aub|l2 + [[VaTllg)
<log[(e + [VaTllo)(X + [[Aunll2 + [Anb]2)]
<log(e + [VuTllq) +log(1 + [[Ann2 + [[Anb]2)
<log(e + [VaTll) + [|Aunllz + | Aub|2,
we have, for ¢ € (4, 00),
% Crwarly+ 19atig) + 19m0.718
<C(IVu(n, )5+ D(IVaT|+ 1) log(e + [|[VaT]l,)
+C(IVan, 0 + D ([Aunls + [Aubl)(IVaT||E+ 1)
+ O A3+ Vel + D([VaT||g+ 1),
from which, denoting
Ay =2|VuT i+ VT3, Ba=|IVu0.Tlf3,

a(t) = UIVam, 03 + DAz + |AR0)2) + | A3 + [ Vanlls + 1,
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ma(t) = [Vu(n.0)[3 + 1,
one obtains
Al + By < C(Ly(t) + my(t) log Ag) Ay.
Thanks to (8:60) and applying Lemma to the above inequality, we have

sup [[VuT,(t) < C,
0<t<T

where C' is a positive constant depending only on h, 7T, and ||vo|| gz + |70l grrr= +
IV uTo|l,- Thus, this proves the case that ¢ € (4, c0). O

3.6. A priori estimates on V?7. This subsection is devoted to establishing the a
priori estimates on the second order spatial derivatives of T', which is stated in the
following proposition:

Proposition 3.12. Given a positive time T € (0,00), let g9 € (0, 1) be the constant
given in Proposition[3.11), and assume thate € (0,e0). The following a priori estimate
holds:

-
sup ||V2TH§(75)+/ (10-V2T||3 + e[ Vu VT |[5)dt < C
0<t<T 0

for a positive constant C depending only on h, T, and ||(vo, To)||m2; in particular, C

is independent of € € (0,&p).
Proof. By virtue of (8.2]), one can easily check that

h
IVH ' U(zayaz>t)| S/ IVH u(zayagat)|d§
—h

By the aid of this inequality, differentiating equation (B3] with respect to z, mul-
tiplying the resulting equation by —93T, and integrating over 2, it follows from
integration by parts and using the Holder inequality that

1d

2 di

_ / 0.(v - VT + wd. T)O Tdwdyd-
Q

02T 13 + 102T 13 + el V02T I3

= / (v-Vgd, T+ 0v-VyT — (Vg -v)0.T + wd*T)Tdrdydz
Q
1
= / [(v-Vyd, T +u-VuT — (Vi -v)0.T)OT + 5(VH -0)|02T || dxdydz
Q

= / [(v- V. T +u-VyT — (Vi -0)0.T)T —v - Vyd>TOT)dvdydz
Q

<01l [IV 0 Tll2 + IV TIDNEET N2 + 0]l ooV 02T [|2[|02T |2
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h h
+/ (/ \VH-u\dz) (/ \azTHa;”ﬂdz) dxdy. (3.61)
M —h —h

By Lemma 2.2] and Lemma 2.3 and recalling that |7/ < ||7b]|s, guaranteed by
Proposition [3.2] it follows from the Holder inequality that

/M (/_};IVH.WZ) (/_Z|azT||a§T|dz) dady
S/M (/_Z(le +|T|)dz) (/_Z|8ZT||8§T|dz) ddy

h h 3
< ( [ ||<¢,T>||4,Mdz) ( [ ||azT||i,Mdz) 15T

1 1
<C (IlpI3 Va2l + lplle + 1) 10Tl Tl (3.62)

Recalling (3.47), i.e.,
18.TN13 < 31T ||| 02T - (3.63)

Similarly, we have
IVaT| < 31Tl AnT]l2. (3.64)

It follows from integration by parts and the Holder and Cauchy-Schwarz inequali-
ties that

/\VHazT\2d:cdydz:/AHTagTda:dydz
Q Q

<|ART102T )2 < S (IART5 + 102T13)

1
2
and, similarly, [|[V50?T|3 < L(|02T)|3 + |Aw0.T||3). On account of these facts
and recalling that |7« < [|70]|c, guaranteed by Proposition B.2] it follows from

B61)—([B:64) and using the Young inequality that
1d
2dt

<[Vl IV 0TIz + V3[Julla | T3 AT 3) 02T |15

1 1 1
+ 1ol IV n2TINI62T 2 + C (Il IV mpll3 + llella + 1) 62T 3 12T

IOZT(13 + 1027115 + el V2T |13

1
<7 UETI5 + 1Ar0.T(13) + CllelsVaels + Nl +1
+ (vllz + el DUWAT 3 + [|02T |5 + 1)]
and, thus,
1d

3
SIOPTIE + SNOET IS + |V 2T 3
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1
<712u0.T1l; + CllelzI Vel + llellz + 1
+ (lol% + 1D UAHTIS + 102T]5 + 1))- (3.65)

Applying the horizontal gradient Vy to equation (B.3]), multiplying the resulting
equation by —VyAgT, and integrating over €, it follows from integrating by parts
and the Hoélder inequality that

Ld

2dt

=— / Ag(v- VT + w0, T)AgTdxdydz
Q

IART| + [[ARO.TI5 + el VuAuT|l3

_ /Q (@Yo V4T + Ao - VT + 2V gw - Vid,T + Agwd.T)AyTdrydda
_ /Q (@Viv - V4T + Apv - Vi T)AyTdedydz

+2 /Q (=V (Vi -v) - VaTAET + Vyw - VyTAd. T)dxdydz

+ /Q(—AH(VH ) TART + AgwTAg0,T)dxdydz
<2 /Q |V io||[VET | dedydz + 3 /Q |V2,0| |V e T||AgT |dedydz

+ 2/ (/ IVu(Vy - v)|d§) IVuT||Ay0.T|dxdydz
Q \J-n
T oo ([ A (Vi - ) [21AET (|2 + [[Agw][2| Ap0.T])2). (3.66)
Next, we are going to estimate the terms on the right-hand side of the above
inequality. Recalling that T'|,—_, = 0, we have

h

‘AHT<$7y7Z7t)| S/ ‘AHT(xuyagut”dg
h

Recalling the definitions of 7,0 and &, ([3.4) and (B.3), it follows from the two-
dimensional horizontal elliptic estimates, the Ladyzhenskaya and Poincaré inequali-
ties that

IVEvlIE 0 <ClARVIE Y = ClIVEVE v = VEVE - vlliy
<CUIVu(Vu o)l + IVE(Va )l ar)
<CUIVmnlliar + IVa @3 ar + IV 1015 0r)
<C(IV(n, O)l2adll A (0, O)ll2ns + IV Pl a).



44 CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

On account of the above inequality, applying Lemma 2.2 recalling that ||T|. <
|70 |l00, and using ([B.64)), it follows from the Holder and Young inequalities that

3 / V20|V 5 T||AgT |dedydz
Q

h h
SC’/ (/ |V%IUHVHT\dz) (/ |AH82T|dz) dxdy
M —h —h
h 3 h 3 h
sc(/ ||vHTr|i,Mdz) ( / ||v%{vr|i,Mdz) ( / HAHazTuz,Mdz)
—h —h —h

h
<CIVATla| [ A0 O)laarlAur. s + 901|180,

(SIS

<CITISNALTNZ WV, DN N Au (0, 013 + IVaT )| An0:T 2
SCITNNAETIZ IV e, O3 1A (0,13 + 1T AET ) AT

1
<75 l8u0:Tlz + CUVa . O)I31Au ()5 + 126 T13). (3.67)

By Lemma 2.2l and Lemma 23] it follows from (3.64)) and the Holder and Young
inequalities that

2/ </ |VH(VH'U)|CZ§) \VuT||Apd.T|dxdydz
o \J-n

h
§4/ (/ (IVan| + |VuT|)d )(/ \VHT||AH8T\dz> dxdy
M _

h h 3
<4 ( / <||an||4,M+||VHT||4,M>dz) ( / ||vHT||iMdz) TNEX L
—h

—h

<C(IVanlz 1Aunll; + [VaTl)IVaT sl And:T|l2

1
—6||AHa T3+ CUIVuT|l: + IV anll3lAunll3)
1
_16HAH8 T3+ CUALT|; + IV anll3 Il Aun|3)- (3.68)

Recalling the definitions of n and ®, (3.4) and (33), respectively, and using the
Young inequality, one has

1Tl ([AE (Vi - )2 AaT |2 + [[Agw][2| An0:T]|2)
<ClUAanl2 + [AETIDNAET |2 + ([Amn[l2 + AT DI ALO.T]|,]

1
<76l Au0:Tll2 + C(1Aunllz + [AT]3)- (3.69)
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Recalling that AgT|,—_; = 0, we have

sSup ||AHT(727T')H§,M = Ssup / |AHT(x7y727t)|2dxdy
M

—h<z<h —h<z<h
=2 sup / / AHTAHaZTdSL’dydg S 2HAHT||2HAH8ZT||2
—h<z<hJ—-hJM

Thanks to the above, recalling the decomposition of v, i.e. (345, it follows from
Proposition and the Young inequality that

2/ |V 0| |V, T Pdrdydz
0

h
<2 /h(IIVHéHoo,M H Ve oo p) IVET (13 1142

h
<2 ( / ||vH<||oo,Mdz)( sup ||AHT<-,z,t>||§,M)
—h —h<z<h

+2( sup Hva<~,z,t>r|oo,M) |AnTI

—h<z<h
<ClIART |2l AT 21V 5 (0, 0) 12 + 1) log? (e + [ As (1, 6)|2)
+ CllART |3 1og(e + VT ],)
1
<7elAud.Tl5 + CU+ [Van, O Au T
x log(e + 18w (1, 0)ll2 + |V uTl4),

from which, noticing that logz < log(1 + z) < z, for z > 0, and using the Young
inequality, one obtains

1
/ Vuvl| VHT Pdedydz <L l|An0: T3 + C(L+ [Va(n, 0)l2) [ Au T3
Q
< (L+ 1A, 02 + IVaT ). (3.70)
Substituting (3.67)-(3.70) into ([3.66) yields
1d 3
L a3+ 210 AuT I + < VT
<CQL+ [V ORI+ | A 0)[3+ [T 1) (1 AaTI + 1)
Summing the above with ([3.65) yields
d
SN@T AT)(S + (02T, 0.A5T, VEVHOT, VEV AR T)|

<C[A+ Va2 + 1Az 02 + IVaTlla) + [z + [ulli]
< (IATI3 + 1027115+ 1) + CUlel3IVaells + llellz + 1),
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from which, by Corollary B.1] Proposition [3.6] Proposition B.I1] recalling (8.58]), and
using the Gronwall inequality, one obtains

-
sup_[[(0:T, AHT)H%@)“‘/ (02T, 0.-Au T, /eVyO:T,VeVuApT)|3dt < C
0

0<t<T

for a positive constant C' depending only on h, 7, and ||(vg, 1p)||z2. The conclusion
follows from the above estimates by the elliptic estimates. O

3.7. Uniform a prior estimates. With the aid of the energy inequalities estab-
lished in the previous subsections, we can obtain the uniform estimates, which are
independent of the regularization parameter ¢, stated in the following proposition.

Proposition 3.13. Given a positive time T € (0,00) and let ¢g € (0,1) be as in
Proposition [311. Suppose that (vo, Ty) € H*(QY) and € € (0,&¢). Let (v,T) be the
unique global strong solution to system (31)-(3.3), subject to the boundary and initial

conditions (L21)-(L23), and u,n and 6 the functions defined by (34). Define two
quantities Q1 and Qs as follows

Qi = [[vollfz + 1ol + IVaTollg + 1 Toll%, Q2 = llvollz + 1 TollZe,

where q € (2,00).
Then, for any € € (0,e0), we have the following a priori estimate:

OiltlfT(HvHifz(t) + T () + IV a T3 + 1sllzn e + 1T155)

-
+/0 IV aullz + 10:-Tl5n + 10wz + 10713

+nllze + 10172 + 10mlz + 10:0]3)dt < C1,

for a positive constant Cy depending only on h, T, and the upper bound of Q1, but is
independent of ¢ € (0,¢), and

T
sup | 772 (1) +/ (IVavliz + 10T 72 + 10T | F)dt < Co,
0<t<T 0

for a positive constant Cy, depending only on h, T and the upper bound of Qs, but is
independent of €.

Proof. By Proposition[3.2] Corollary[3.1l Proposition 3.5, Proposition 3.6l and Propo-
sition B.I1l we have the following

[vl[zee0.7:22) + 1T Lo (0,70) + [[(V v, 0.T) | L20,7:22) < C, (3.71)
17, O oo o,7522) + |l zoo(o,719)

H(VEn, Vb, Vi, /e0.u)| 120722 < C, (3.72)

10:ull oo 0,7 22) + 1(VHO:u, VED2U) | L20,7:22) < C, (3.73)

(2, V)| L0, 7:02) + (Ve VEY)| 120, 7302) < C, (3.74)
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IVT || pooo,7522) + (VT || oo (0,75 19)
(02T, V. T, /EArT)|| 20722 < C, (3.75)
I(Vun, Vi) oo o7:L2) + [(Amn, Aub, /2020, /2020) || 20702y < C, (3.76)
where the constant C' depending only on h, ¢, T, and Qp, but is independent of ¢.
Thanks to (B.7I)—(B.70), and recalling the definitions of 7,0, ¢, and v, it follows
from the two-dimensional horizontal elliptic estimate that
]| Lo 0,712y SC (V]| zoo(o,m522) + | AV Lo 0,7:02) + |00l oo 0,7:22))
<C(1+ [[Agv||e,7:L2))
=C(L+[|VaV v = V5V - vleo7.2)
<SCA+|Vun,0,T)||=o7:22) < C, (3.77)
IV zull 2.7y =NVaulegrine + 1IVadoulaorie + IVEUlT207,02)
:HVHUH%?(O,T;L?) + ||vHazu||%2(0,T;L2) + ||AHU||%2(O,T;L2)
=V (u, 0:0) 720722y + IVaViE - u—= V5V - ullfaerre
<V (at,0.0) 7z + CUV (.0, Doz < € (379)
and
1, Ol 20,7120 <C(0, 0)lz20,7502) + 1A (M, O)|[ 1200, 7:22) + 182 (n, 0)|z2(0,7522))
<C(A+9:Vuullr20,7:02) + 10T r200,7:22) < C, (3.79)
where the constant C' depending only on h, ¢, T, and Qp, but is independent of ¢.

With the aid of (LI7), (3.4), B3], (B11), and (3.72)), it follows from the Sobolev

inequality, two-dimensional horizontal elliptic estimates, and the Holder inequality
that

z h
/ <vH-v>d§H < [ 19l
h o0 _h’

ol =]

h h
< / (Il + @l )z < € / (Il + [9]0)

h
SC/h(H'szz,M + 1 Amnll20s + ([ @lloc,ar)dz

<C(lnllz + 1Aunlz + [®ll) < CA+[|Annll2), (3.80)

where the constant C' depending only on h, ¢, T, and Qp, but is independent of ¢.

Thanks to (3.73), (B.77), and (B.80), it follows from equation (3.3]) and using the
Sobolev embedding inequality that

0.1 <(IENVETIE + [wlZ 0T 15 + 02T 13 + e*| AnT13)
<CllllFIVaTIIz + 1+ [AmnlI)0:T1; + 02T 113 + e*| AuT 3]
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<C(L+ | Amnlz + 10T + | ArTI2)
and, thus, recalling (8.75) and (3.79), we have
10: [ 20,7522 < C, (3.81)

where the constant C' depending only on h,q,7, and Q;, but is independent of ¢.
Recalling that ps(x,y,t) satisfies (see Appendix A (5.3]))

- z
~Aups = 5 Vi [N (Vi 08V + ok xv - [7, VaTde) dz,
Joy ps(z,y, t)dedy =0, p, is periodic in x,y.

By elliptic estimates, Poincaré inequality, and recalling ([B.75) and (8.77), we have
lpslznary = (lpslzar + 1V apsl300)
<ClIVupslon < CUVHTIZ + Vi - (v @ 0)5+ [[0]3)
<C(IVuTI; + o[l Vavl3 + lv]3) < CA+ [lvlf2) < C (3.82)

where the constant C' depending only on h,q, 7, and Qp, but is independent of
e. Therefore, recalling (B.70), B.1717), ([B.80), it follows from (BI) and the Sobolev
inequality that

18:0]3 <C[0l3NV aoll3 + wl 3100113 + [|Amv]l3 + e[| 2v]3
+ [[0ll3 + [ Vapsll3 + IV aT3)
<C([vllfz + 1+ [ Amnlla) < C(L+[[Amm]l3),
which, recalling (3.79), gives
10w 20,7522 < C, (3.83)

where the constant C' depending only on h, ¢, T, and Qp, but is independent of ¢.
For simplifying the notations, we introduce S and R as follows

z

S:(U-VH)ijwazv%—fO?xv, R:/ (Vg - (0T) — eAxT)dE.

—h
By the Holder and Sobolev embedding inequalities, we have

/|VHw|2|azv|2datdydz
Q
h 2 h
SC’/ (/ (|VH77|+|VHT|)dz) (/ |u|2dz) dxdy
M —h —h
h h
<c| [ ke avamntg1vani < [ ol
—h —h

h
SC/h(IIU||§,M + 1 Agull3 p)dz < Cll(u, Agu)llz

oo, M
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<O+ [|[Vgul3n).
Thanks to the above and recalling (B.75), (8.77), and (B.80), it follows from the
Sobolev inequality that
IVaSIE < [ (ol V0l + Virol? + [’ 0.0
Q

+ | Vyw?10.0]* + £V gv|?)drdydz
<C([o[I3 V[ + IVavlls + w2 Vadoll + 1+ IV au|F)
<C([oll + [Aanl3 + 1+ [[VaullFn)
<C+ [ Aunl; + IV aulFm) (3.84)
and
IR|l; <C([Va - (T3 + *[|AuT]]3)
<CUITNZNVaol3 + 0% IVaT; + 2| AaT])
<C(1+ ol + |ART|3) < C(A+ [[VeAuT|3), (3.85)

where the constant C' depending only on h,q,7, and Q;, but is independent of e.
Recalling the expression of f(z,y,t) in ([3.9), one can easily check that

h
f= %/_h(VH-SjLR—I—wT)dz,
and thus
113 <CUIVESIE+ 1RI5 + IV avll2)
<C(1+ [[(Amn, VeArD)|3 + IVaulFn), (3.86)
where the constant C' depending only on h, ¢, T, and Qp, but is independent of ¢.

Thanks to (3.73), (3.0), (B.171), and (B.80), it follows from equation ([3.6]) and the

Sobolev and Holder inequalities that
10cullz <C(IlZNIV rullz + wl3N0ulls + [Amull3 + *]|0Zull3
+ [l + ulZ IV ol + IV aT3)
<Clllollz + Q@+ 1AanlR)lvliFe + [|Amulls +e*|0Zu3 + 1]
<O+ [ Amnlls + IV rullipn + [[VERull3), (3.87)
where the constant C' depending only on h,q,7, and Q;, but is independent of €.

Using ([B.84)—(3.86]), and recalling (3.75) and ([B.77), it follows from equations (B.7))—
(.8) and the Sobolev and Hélder inequalities that

100112 <IAROIIS + *[[ 026113 + Va3
<C(I(Aud, VERO)5 + 1+ | Amnl3 + I Viulz) (3.88)
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and
18l <NAmnl3 + 210205 + IV eS| + (1 = e)*[0.T5 + [lwT|5 + | R[5 + [ £112
<C((Amn, Ved2n, VeAuT)|5 + 1+ |Viullzn) (3.89)
for a positive constant C' depending only on h, ¢, T, and Q;, but is independent of ¢.

Thanks to (B.73), B.75), B.10), 3.78), B.81), (383), and using the elliptic esti-
mates, it follows from (B.87)(3.89) that

HatTH%?(O,T;L?) + ||atv||%2(0,T;H1) = [|(&:T, v, Opu, 8tVHU)||%2(O,T;L2)
<[0T, 8w, Beu) 720,712y + CUIV i - O3 + IV - Opv]3)
S H (agT, 8151), 8{&) ||L2(0,T;L2) + CH (8#], 8tT, 8t9) H%2(077~;L2) S C

for a positive constant C' depending only on h,q, T, and Oy, but is independent of ¢.

The first conclusion follows from the above inequality, (B.71)), B.75), B.710)—B.79),

and (3.82).
We now prove the second conclusion. By Proposition [3.12], one has

-
sup ||V2Ty|§(t)+/ (10.V*T||5 + | Vu VT |3)dt < C (3.90)
0<t<T 0

for a positive constant C' depending only on h, T, and ||(vg, To)|| z2, but is independent
of €. Recalling the expressions of 17 and @, it follows from the elliptic estimates that

IVavlize < CUIVa - vllie +11VE - vlli) < CU0NE + InlE: + 1T1E2)  (3.91)

for a positive constant C' depending only on h, but is independent of €. Recalling
(B:80) and the first conclusion, it follows from equation (3.3]), the estimate (3.90),
and the Holder and Sobolev inequalities that

IVo.T|; S/(IUIQIV?{T|2+|VHv|2||VHT|2+ W[V #0.T|*
Q

+ IVgw|?|0. T 4+ |VO*T > + 2|V A T|?)dzdydz
<O NVETIE + Vo EIVaTll: + w2 Vad. T3
+IVrwl 0. T|IF + [IVOET |3 + [ VARTI3)
<OlllollZ=IT 1 + (1 + 1 Aunl)IT | F
F Vel fel Tl e + 110:Tl5e + |V aAuT])3]
<O+ [[Amnlls + Vaollze + 10T + e VaAuTI3) (3.92)
for a positive constant C' depending only on h, T, and ||(vo, To)|| 2, but is independent

of . Combining this inequality with (3.90)-(3.91), as well as the first conclusion,
yields the second conclusion. O
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4. PROOF OF THEOREM [1.1]

In this section, we consider the system with only horizontal viscosities and only
vertical diffusivity, i.e., system (LI8)—(L20), subject to the boundary and initial
conditions (L2I)—(T23), and establish the global well-posedness of strong solutions.
In other words, we prove our main result, Theorem [Tl

Proof of Theorem[1.1. Global existence. As in Proposition B.13], we set
Q1 = |lvollz + 1 Tollzn + IV ETollg + [ Toll2

with ¢ € (2,00). Thanks to the regularities and spatial symmetries of vy and Tp, one
can choose periodic functions voe and Tp., which are even and odd in z, respectively,
such that vy, € H*(Q), Ty. € H?*(),

/ Vi v0e(2,9,2)dz = 0, |Toclloe < I Tolloos

and
voe — vo in H*(Q), Toe — Ty in HY(Q), VyTo. — VT in LY(Q).

Note that such vy, and Ty, can be chosen as the standard mollification of vy and T,
respectively. Set

1 = [lvoell3r2 + [ Toc 17 + 11V Tocll§ + 1 Toe 12
then Q. < 209y, for sufficiently small €. By Proposition [3.1] there is a unique global

strong solution (v.,7:) to system (B.I)—(B3.3), subject to the boundary conditions

(C21)—-(T22) and the initial condition
(ve, T2)[i=0 = (voe, Toe)-
By Proposition B.13] the following uniform estimate
021;-57_(”7)6”%{2 HITel + IVATENG + 1Vaplz + 1 TH15)

-
+/ IV auellin + 10N + ez + 10:T2 7 + 10|13
0

+ [100e 13 + 19re | + 1102 l30) < €, (4.1)

for a positive constant C' depending only on h, 7, and Q; and, thus, is independent
of e, here u., 1., 0. are the associated functions defined by (B4 and p. = p.(x,y,t)
is the associated pressure function determined by ([L24]).

On account of the above a priori estimates, by the Aubin-Lions lemma, i.e. Lemma
2.6 there is a subsequence, still denoted by (va, .), and (v, T'), such that

v. = vin C([0,T]; H(Q)), T.— T in C([0,T]; L*(Q)),
v = vin L®(0,T; H*(Q)), Ow. — dw in L*(0,T; H'(Q)),
T. > Tin L0, T; H(Q)), 0T, — 6T in L*(0,T; L*(2)),
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Viue = Vyuin L*(0,T; H'(Q)), 8.1, — 0.T in L*(0, T; H'(Q)),
Vil = VyT in L*(0, T LQ)), p. — ps in L*(0,T; H'(M)),
0. — 0 in L*(0,T; H*(Q)), 00. — 0,0 in L*(0,T; L*(2)),
e —nin L2(0,T; H*(QY)),  Ome — Om in L*(0, T5 L*(2)),
where — and = denote the weak and weak-* convergences, respectively. Due to these

convergences, one can take the limit ¢ — 0 in systems [B.1))-(3.3) and (B.6)-(3.9), to
show that (v, T") satisfies system ([LI8)-(L20), and (u, 7, ), defined by ([B.4)), satisfies

Ou+ (v-Vy)u+wi,u — Agu+ fok X u

+ (u-Vg)v— (Vg -v)u—VyT =0, (4.2)
om—Agn=—Vg-[(v-Vg)v+wd,v+ fok X v]
4.7 — wT — / Vi - (0T)dE + [, y,0), (4.3)
—h
00 — Apf = — Vi - [(v- Vi)v + wdow + fo K x ], (4.4)
in the sense of distribution, where the function f = f(x,y,t) is now given by

f 1/h</_ZhVH'(’UT)d§+wT+VH'(VH'(U®U)—|—f0?XU))dZ. (4.5)

“2h ),

Moreover, by the weakly lower semi-continuity of the norms and recalling that (v., 7%)
satisfies the a priori estimate (4.1]), we can see that (v,T') still satisfies the same a
priori estimate as (4.I). This implies the regularity properties stated in Definition
[[1] and, as a result, systems (LI8)—(L20) and ([A2)—(4.4) are satisfied a.e.in Q X
(0, 7). Furthermore, recalling the first line of the previous convergences, one can
easily show that (v, T') satisfies the initial condition (L23]) and, therefore, (v, T') is a
strong solution to system (LI8)—(L20), subject to the boundary and initial conditions
(C21)-@.23).

Now, if we assume, in addition, that Ty € H?(Q2), then the mollification T, con-
verges strongly to Ty in H?(Q). As a result, the quantity Q. = |Jvge||32 + [|Toc |5
is bounded by 2Qs = 2(||vo||3;2 + || T0]|%2) for small e. By Proposition B.I3] for small
g, we have the following uniform estimate

-
sup || T2][72 (1) +/ (IVavelfe + 10Tl 32 + [|0:Te| 70 )dt < ©
0<t<T 0
for a positive constant C' depending only on h, 7T, and Q,, but is independent of
e. This a priori estimate, by the weakly lower semi-continuity of the norms and the
Aubin-Lions lemma, implies the additional regularities as stated in the theorem. This
completes the proof of the existence part of the theorem.

Continuous dependence on the initial data. Let (v;,77) and (vq,T3) be
two strong solutions to the same system with initial data (ve1, To1) and (ve2, Toe),
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respectively. Denote v = vy — vy, w = wy; — we, and T = T} — T». Then, (v, T)
satisfies

o+ (v1 - Vg)v+ wid,v — Agov + fOE> X v+ Vups(x,y,t)
= / VHT(xvyvé-vt)dg - (U : VH)U2 — w0, vy, (4-6)
—h
OT +v, - VuT +w 0. T — 0*T = —v - VT — wd, Ty, (4.7)

with initial data (v, Ty) = (vo1 — vo2, To1 — To2). Recalling the regularities of strong
solutions stated in Definition [I1] it is clear that all terms the above equations are
well defined pointwisely.

Note that

1t h
|V uve(z,y, 2,t)] < ﬁ/ |VHU2(x,y,z,t)|dz+/ |V y0.va(x,y, z,t)|dz.
—h —h

Recalling the regularities of (v,T"), multiplying equation (4.6) by v and integrating
the resultant over €2, it follows from integration by parts, the Holder inequality, and
Lemma [2.1] that

1d
5@”””% + Vgl

:/ {VH </Z Td&) —(v-Vg)vy — w@zvg} ~vdxdydz
Q “h

_ /Q K /_ ) ng) (Vi 0) + (v Vir)os + w0evs) ~v] drdyd:

h

h
<CITIeIVnvl +C | [W ( [ (19u0al + |vHv2|>dz)
Q —h

h
+ </ V- v|dz) |8ng||v|} dxdydz
—h
h h
<ONTIaATilo+C [ ( / |v|2dz) ( [ (9l + |vHazv2|>dz) dudy
M —h —h

h h
—|—C/ (/ \VHU|dz) (/ \8zv2||v\dz> dxdy
M \J-h ~h

<O\ T2/ Vavll2 + Cllvll2(v]l2 + [Vav|l2) ([ VEV2 |2 + |V EHO2||2)
+ OV ol -vsl|2 (100312 + [V vl ) 0l2 (J0]12 + 1V s0]2)

<LVl + CUTIZ + (1 + [V mall2 + [V a0l 0]
100213100113 + 1V 0.0 13 1013
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1
<SIVavlz + CO+ Ve ll2)* (1 + IVad-va ) (1115 + llo]l2)
and, thus,
d
el +1Vavls < CO+ (Vo [2)° (1 + [V rdva )T + [l]l2) (4.8)
for t € (0,7).
Recalling the regularities of (v,7T"), multiplying equation (.20) by 7', integrating

the resulting equation over €2, and noticing that [|T5]|c < ||702/|00, it follows from
integration by parts, (2.I]), and the Ladyzhenskaya inequality that

1d

5EHTH; + 0.7 = — /Q(v -V uTy +wd,Ty)Tdrdydz (4.9)

Noticing that ||T5]|c0 < [|T02]|0o, it follows from integration by parts and the Young
inequalities that

/w@zTgTd:zdydz = —/Tg(ﬁsz+w0ZT)da:dydz
Q Q
Z/((VH )T — w0, TTh)drdydz < ||Ta||oo([[Vav|[2| T2 + ([0 T'[|2]|w]l2)
Q
1
<Ozl [Vavll2(1T |2 + 10:T']]2) < ZHalelg +C(IVaoll3 +IT)3).  (4.10)

Note that T'|,—_, = 0, we have |T'| < ffh |0,T|dz. With the aid of this, by the Holder,
Minkowski, Gagaliardo-Nirenberg, and Young inequalities, we deduce

h h
— / v-VTyTdrdydz < / (/ \U||Vva|dz) (/ \8ZT\dz> dxdy
Q M —h —h
h 2 h 3 h
S/ (/ |v|2dz) (/ |VHT2|2dz) (/ |82T|dz) dxdy
M —h —h —h
h 3 h 3 h
(/ |v\2dz) (/ \V;ﬂ}ﬁdz) H/ 10.T|d=
—_h _h _h

h 2 h 2 h
< ([ Wl tz) ([ 19uttzats) ([ 10 )
—h q—2’ —h —h

" 2 2(g-2) 4 3
<C | [ (Wl + 10157 19 ) 2] 19l

<

2,M

2
q,quM q,M

=2 2
<C (||v||2+ [[o]]," IIVHUHS) IV 5 Tl 0- T
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1 2
<L00.TIR+ [Vael) +C (IVuTalz + VATl ) 1l ()

Substituting (£I0) and ([EI) into (£9) yields

d 2,
ZITI5+ [10:TZ < ClIVaol5 +C (1 VALl + Ve ) (3 + 1T113).

(4.12)
for t € (0,7).
Multiplying (4.8) by a sufficiently large positive constant A, and summing the
resulting inequality with (£.12) up yiedls
d

1
Al +IT1E) + S AVl + IT13)

<c [(1 T IVl22( + [ Vadseal?) + (HvHTznz ; ||vHT2||s_2)] T2+ o],

from which, by the Gronwall inequality, one obtains

t
sup ([|v[[5(s) + [ T1[5(5)) +/ (IVaol3 + 10:T3)ds
0<s<t 0

2q
I (1+||w2||§>2(1+||vHazv2||§>+(nwnn%nwnn?

e

ﬂds(nvong + 1 Tol13)

for any ¢t € (0,7). This proves the continuous dependence of the strong solutions
on the initial data, in particular the uniqueness. This completes the proof of the
theorem. n

5. APPENDIX A: EQUATIONS FOR 77 AND ¢

In this appendix, we present the details of the derivation of the equations for n
and 6, where n and 6 are the same functions as defined by (3.4), i.e.,

z 1 h z
n:VH"U“_/hT(Iayafat)df_%/_h </_hT($,y,€,t)d€) dZ,

0=Vyg-v, Vi = (=0,,0.),
with (v,T) being a strong solution to system (BI)—(B3]), subject to the boundary

and initial conditions ((C2I)—(T23).
Applying the operator V- to equation (3.1), and noticing that V# - Vgps = 0,
one obtains

010 — Ayl — 0?0 = —V3 - [(v-Vi)v +wdv + fok x ], (5.1)

obtaining the equation for 6.



56 CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

Applying the operator V-, i.e., divy, to equation (3.1]), one gets

at(vH ' U) - AH (vH -+ / T(SL’, Y, é-v t)dé- - ps(xv Y, t)) - Eﬁg(vH ’ U)
—h
=—Vg-[(v-Vg)v+wd,v+ fok x v]. (5.2)
Integrating the above equation with respect to z over the interval (—h, h), and notic-
ing
h

/_h[(v-VH)erwazv]dz:/h[(U.VH)U+(vH.U)U]dz:/ Vi (0@ 0)dz,

h —h —h

and (recalling ffh Vi -vdz =0)

/h [8t(VH : U) — AH(VH : U) — 8§(VH . v)]dz = O,

—h

we obtain
h

1 z
— Apps = ﬁVH . / (VH (v ®v)+ fok xv— / VHng) dz. (5.3)
—h —h
Substituting (5.3)) into (5.2), one has

8t(VH-v)—AH(VH~v+/_ Tdﬁ——/ / Tdfdz) —e0*(Vy -v)

=—Vg-[(v-Vg)v+wd,v+ fok X v] +—/ V- (Vu-(v®@v)+ fok xv)dz

from which, recalling the definition of 7, one arrives at
o — Agn —ed?n=—Vyg-[(v-Vy)v+wdv+ fok X v] — 0, T
FL [V (Vi (0@ ) + fok X v) + 0, (fjh Tde— L " [7 ngdz) (5.4)

We compute the last term on the right-hand side of (5.4) as follows. On account of
equation (B3.3]), we have

/Z oTdé = — /Z (Vi - (0T) + 0. (wT) — eAyT — 0*T)d¢
—h —h

=— / (Vg - (vT) — eAgT)dé — wT + 0.7 + (wT — 0,T)|,=—p,
—h

/ atng—— / / O, Td¢dz

_ / (Vi - (0T) — eAgT)dE — wT + 0.7
—h

and thus
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1 h z 1 h
+ 55 » (/_h(VH - (vT) — 5AHT)d§) dz + T wl'dz.

Substituting the above equality into (5.4)) yields
om— Ayn—ed*n=—Vy-[(v-Vy)v+wdv+ fok x v]+ (1 —¢)d.T — wT

— /_Z (VH . (UT) — 5AHT)d§ + f(l’, Y, t)> (55)

h

with function f = f(x,y,t) given by

f:%/h (/Z(VH-(vT)—gAHT)d§+wT)dz

—h —h

1 h
‘l'—/ VH'(VH'(U®U)+ka5XU)dZ.
2h |,
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