UC Irvine
ICS Technical Reports

Title
Computing optimal static slowdown factors for periodic tasks under EDF scheduling

Permalink
https://escholarship.org/uc/item/9ss0n382

Authors

Jejurikar, Ravindra
Gupta, Rajesh

Publication Date
2002-01-25

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9ss0n382
https://escholarship.org
http://www.cdlib.org/

Computing optimal static slowdown
factors for periodic tasks under
EDF Scheduling

Ravindra Jejurikar and Rajesh Gupta

Notice: This Material

may be protected
by Copyright Law
IC S | (Title 17 U.S.C.)
TECHNICAL REPORT

Technical Report #02-02
January 25, 2002

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425

Information and Computer Science
University of California, Irvine

Computing optimal static slowdown factors for periodic tasks
under EDF scheduling

Ravindra Jejurikar Rajesh K. Gupta

Department of Information and Computer Science,
University of California at Irvine,
Irvine, CA 92697

E-mail: {jezz, rgupta}@ics.uci.edu

Technical Report #02-02
January 25, 2002

Abstract

Frequency scaling of a processor based on slowdown factors, gives considerable power savings. The
slowdown factors are computed from the task set executing on the processor. These factors are non-
trivial for periodic tasks with deadlines not equal to their period. This paper describes how to compute
static slowdown factors for a task set with an underlying earliest deadline first(EDF) scheduler. We
give a density slowdown method, which efficiently computes a constant slowdown factor. The constant
slowdown factor not being optimal, we compute the optimal slowdown factors by looking at all the jobs
up to the hyper-period of the task set. This is based on Yao’s optimal algorithm for non-periodic tasks.
Dynamic slowdown techniques further enhance the power savings. We show that dynamic slowdown
factors can be easily incorporated over these static slowdown factors, thereby increasing the total energy

savings.

Contents

1 Introduction 1

2 Preliminaries 2

2.1 SystemModel e e 2

2.2 Variable speed Processors L e 2

2.3 Motivationalexample e 3

3 Static Slowdown 4

3.1 Constantslowdownfactor. L 4

3.1.1 Deadline > period e 4

3.1.2 Deadline < period and Density Slowdown 4

3.2 Optimal slowdown algorithm L 5

3.2.1 Yao’s Optimal Schedule algorithm 5

322 Optimal Slowdownwhen D<p 5

3.2.3 Implementing within RTOS 6

4 Dynamic slowdown 6

5 Implementation 7

51 Simulator L e e e e e e 7

6 Experimental Results 8
6.1 Computationtime e e e 10 -

6.2 Dynamicslowdown L e 11

7 Conclusion 12

A Appendix 15

A.l Periodictasksetexamples 15

List of Figures

1 (a) Task arrival times and deadlines. (b) Slowdown s = 0.70, task 77 » misses deadline.
(c) Slowdown s = 0.75 and inherent slack. (d) Optimal speed schedule. (e) Optimal
slowdown function. 3
2 Algorithm for computing optimal power schedule under EDF scheduling 6
3 Generic simulator e e e e 7
4 Powerfunction f(s) Vs. 2 8
5 Examples with deadline varied as a percentage of original deadlines 9
6 percentage gains over the two algorithms 10
7 Dynamic Slowdown for INStaskset 11
8 Dynamic Slowdown for Avionics taskset 12
List of Tables
1 Computation time of optimalalgo 10

1 Introduction

Power is one of the important metrics for optimization in the design and operation of embedded
systems. Especially in portable battery operated devices, energy consumption of the device is a very
important factor. Reducing the frequency decreases the switching activity thereby minimizing power.
The quadratic dependence of power on voltage has led to voltage scaling techniques for energy savings.
In real-time systems we want to minimize energy while adhering to the deadlines. Power and deadlines
are often contradictory goals and we have to judiciously manage time and power to achieve our goal of
minimizing energy.

Towards minimizing the energy consumption of an embedded system, a lot of work has been done at
various levels including hardware level [20], system design [16], compiler [3, 8, 17], operating system
[4, 13] and application level. In this paper we focus on the system level power management via com-
putation of static slowdown factors and dynamic factors. We assume a real-time system where the tasks
run periodically in the system and have deadlines. These jobs are to be scheduled on a single processor
based on a preemptive scheduler such as EDF [21] or rate monotonic scheduler(RMS) [6]. The percent-
age of time for which a processor is used is called the utilization factor. The processor speed can be
varied to minimize energy usage. This schedule of the processor speed is called a speed schedule. If the
speed schedule is a constant value over the entire time interval, it is called a constant slowdown factor.
The slowdown factor is the ratio of the scheduled speed to the maximum speed. If the jobs are scheduled
on a variable speed processor, the execution time of the job varies depending on the processor speed.
The goal is to have a speed schedule for the processor which minimizes the energy consumption while
meeting deadlines.

Shin and Choi [18] have presented a power conscious fixed priority scheduler for hard real time
systems. Due to the periodic nature of the jobs they know the arrival time of the next job. If there is only
one job in the ready queue, they slow down the processor so that the job finishes just before the next
job arrival. Further enhancements [19] were given, where the authors have exploited the idea of uniform
slowdown. They perform rate monotonic analysis on the task set to compute a constant static slowdown
factor for the processor. Gruian [7] observed that only one iteration was performed to compute the
constant slowdown factor. Performing more iterations gives better slowdown factors for the individual
task types.

Yao, Demers and Shanker [22] presented an optimal off-line speed schedule for a set of N jobs. The
running time of their algorithm is O(N?) and can be reduced to O(N log N) by the use of segment trees.
The analysis and correctness of the algorithm is based on an underlying EDF scheduler, which is an
optimal scheduler. An optimal schedule for tasks with different power consumption characteristics is
considered by Aydin, Melhem and Mossé [1]. These authors [2] have proven that the utilization factor
is the optimal slowdown when the deadline is equal to the period. Quan and Hu [15] discuss off-line
algorithms for the case of fixed priority scheduling. Devices like sensors are periodic in nature with a
response time smaller than the period. Thus we consider periodic tasks where the deadlines are less than
the period. In this paper we consider algorithms to compute the constant slowdown factor and optimal
slowdown factors.

The worst case execution time (WCET) of a task is not usually reached and there is dynamic slack
in the system. Pillai and Shin [14] recalculate the slowdown when a task finishes before its worst case
execution time. They use the dynamic slack while meeting the deadlines.

All the above techniques guarantee meeting the deadlines. Systems where it is critical to meet all the

deadlines are termed as hard real-time systems. On the other hand, we have systems like communication
devices and multimedia where we can afford to miss a few deadlines. Such systems are termed as soft
real-time systems. One can have aggressive power saving techniques for soft-real time systems. In
these systems the run time characteristics of the tasks can be exploited for more energy savings. Kumar
and Srivastava [10] extended the work by Shin [18] by predicting the execution time of the job. A
comprehensive work is done by Raghunathan and Srivastava [16] explaining a generalized framework
to incorporate static and dynamic slowdown factors.

Our contribution is as follows: We have considered the problem of scheduling periodic tasks under
EDF scheduling with the deadline less that the period. We compute the constant static slowdown factors.
When deadline is less than the period this constant factor is not optimal. We have given an off-line
algorithm to compute the optimal slowdown factors, which exploits Yao’s algorithm for scheduling non-
periodic tasks. Thus we compute an optimal speed schedule for the periodic tasks.

The rest of the paper is organized as follows: Section 2 formulates the problem with a motivational
example. In section 3, we explain the algorithms and prove their correctness. Section 4 deals with using
dynamic slowdown factors over the static slowdown factors. The implementation and experimental
results are given in section 5 and 6 respectively. We conclude in section 7.

2 Preliminaries

In this section we first introduce the necessary notation and formulate the problem. This is followed
by a motivational example.

2.1 System Model

We consider a set T = {11, ..., T,} of n periodic real time tasks. Each task T; is represented by a triplet
(pi, Di,e;) where p; is the period of the task, D; is the relative deadline, and e; is the WCET for the task.
The tasks are assumed to be independent and preemptive. The tasks are scheduled on a single processor,
which supports multiple frequencies. Every frequency level has a power consumption value, and is also
referred to as power state of the processor. Our aim is to schedule the given task set and the processor
speed, such that all tasks meet their deadlines and the energy is minimized.

Each invocation of the task is called a job and the j* invocation of task 7; is denoted as T; ;. The
density of a task is defined as the ratio of the execution time e over the minimum of period and deadline,
density(T;) = e;/min(p;, D;) The density of the system is defined as the sum of the densities of all the
tasks in the system and is denoted by A. The utilization factor for a task T; is defined as u; = e;/p; and
the processor utilization for a task set, U is the sum of the utilization factors for each task. U < 1is a
necessary condition for the feasibility of any schedule [21].

2.2 Variable speed Processors

A wide range of processors support variable voltage and frequency levels. Voltage and frequency
levels are in a way coupled together. When we change the speed of a processor we change its operating
frequency. We proportionately change the voltage to a value which is supported at that operating fre-
quency. The important point to note is, that when we perform a slowdown we change both the frequency
and voltage of the processor. We use the terms slowdown state and power state interchangeably.

2

We assume that the speed can be varied continuously from Sy, to the maximum supported speed
Smax. We can normalize speed to the maximum speed to have a continuous operating range of [Syin, 1],
where Syin = Smin/Smax-

We define a slowdown function f(t) over a time interval. A slowdown function over a time interval
[t5,¢/] is a function ¢ — s, from time to slowdown factor, where t € [t5,7¢], ¢ has integral values and
5 € [Smin, 1]. This function tells us the slowdown value at a time instance ¢. The slowdown function we
are considering has values at discrete time intervals. The speed cannot change within a time interval
[ti,2;+1]. A slowdown function is used to indicate changes in processor speed. The function f(#) can be
stored as a set of (#;,s;) pairs, where time #; indicates a change in the slowdown factor to value s;. We
define the size of the slowdown function as the minimum number of (z,s) pairs needed to represent the
slowdown function. The size of the slowdown function is also referred to as the size of the solution.

2.3 Motivational example

Consider a simple real time system with 2 tasks having the following parameters :

J1=4{2,2,1},J,={5,4,1} (1)
[s isthespeed
for the job
'L deadling deadljn
T 1 1
T[] [[]
0 1 2 3 4 5 6 7 B 9 10
? (l) time —
task
T 7]
X -missgd
b 07 1 o7 3
0 1 2 3 4 5 6 7 8 ig 10
® e —~
task i
% o |
idle
T 07511 o7 | g75i 1 o075 035
) 1 2 3 4 s 6 7 8 i9 {10
' © | fime
task
T o35] iz Cae]
07511 Cos Teg ee | rom]
0 1 2 3 4 5 6 7 i8 ig 10
(d) lime —
£
3
095 18
0 1 2 3 4 s 6 7 8 i 10
@© time ==

Figure 1. (a) Task arrival times and deadlines. (b) Slowdown s = 0.70, task T 2 misses deadline. (c) Slowdown s = 0.75

and inherent slack. (d) Optimal speed schedule. (e) Optimal slowdown function.

This task set is shown in figure 1(a). The jobs for each task are shown at their arrival time with their
WCET at full speed. We have explicitly shown the deadlines where they are different from the period.

3

The jobs are assumed to be scheduled on a single processor by an EDF scheduler, which is an optimal
scheduler [21]. The processor utilization U for this task set is (1/2+ 1/5) = 0.7 and there is a feasible
schedule at full speed. If the processor utilization U is used as a slowdown factor, it can be seen that job
J1,2 misses its deadline. This is shown in figure 1(b). Three units of work has to be done in first 4 time
units. At a slowdown of 0.7, it requires 3/0.7 = 4.285 time units and one task misses its deadline. It is
clear that the utilization cannot be used as a slowdown factor. For the above example the system density,
A= (1/241/4) =0.75. For a slowdown factor s = 0.75, we guarantee meeting all deadlines however
there is inherent slack in the system. The system remains idle in the time interval [9.33, 10] as shown in
figure 1(c).

We can utilize this slack to get improved slowdown factors. The slowdown values are a function
over time, f(¢). The optimal slowdown is shown in part(d) of figure 1. The slowdown factor is 0.75
in the interval [0,4] and 0.66 in the interval [4,10]. It is seen that there is one context switch at £ = 6.
If we lower the speed at any point, it will result in a deadlines miss. The slowdown function for the
optimal solution is shown in part(e). The slowdown function for the time interval [0, 10] is represented
as {(0,0.75),(4,0.66)} and has a size of 2.

3 Static Slowdown

We compute optimal slowdown factors for a system with EDF as the scheduling policy. We first talk
about computing a constant slowdown factor, followed by computing the optimal slowdown factors.

3.1 Constant slowdown factor

A constant slowdown for the processor is a desired feature. There is an overhead associated with
changing power states and a constant slowdown is preferred as it eliminates this overhead.

3.1.1 Deadline > period

It is known [21] that a system of independent, preemptive tasks with relative deadlines equal to their
respective periods can be feasibly scheduled on a resource (processor) if and only if their total utilization
(U) is less than or equal to 1. Given a task set with D = p, we can slowdown the processor by a factor
of U [2]. This slowdown will increase the processor utilization to 1. We can schedule the task set at this
slowdown state and guarantee feasibility. This is the optimal slowdown factor for the task set.

For the case deadline greater than the period, setting the slowdown factor to U will ensure the com-
pletion of the jobs by the end of their period. As D > p, none of the deadlines are missed. Furthermore,
the processor utilization is a lower bound on the slowdown factor (by definition of utilization factor),
This implies that s = U is optimal for the case D > p.

Thus for the case of D > p, s = U is optimal and can be efficiently computed.

3.1.2 Deadline < period and Density Slowdown

For the case D < p, a necessary and sufficient condition for the task set to be schedulable is not known.
The task set is schedulable if the density of the system, A <1 [21].

If A < 1, we set the slowdown factor s = A, else (A > 1) we let the processor run at full-speed, s = 1.
In other words the slowdown of the system is s = min(A,1). We call this constant slowdown as the

density slowdown.

Lemma 1 Under EDF scheduling, slowing down the processor speed to s = min(A, 1) will not introduce

any deadline misses.

Proof 1 We lower the speed of the processor, only for the case A < 1. After slowdown, the new density of
the system increases to 1. As the system is schedulable when A < 1, the task set will be schedulable and

will not introduce any deadline misses. Thus slowing down the processor does not introduce deadline

misses.
3.2 Optimal slowdown algorithm

Given a task set, we are interested in computing the optimal slowdown function f(¢). In the previous
section we have seen that the constant static slowdown factors are optimal for the case D > p. In this
section we compute optimal slowdown for D < p, based on Yao’s optimal off-line scheduling algorithm
for aperiodic tasks [22].

3.2.1 Yao’s Optimal Schedule algorithm

Given a set of N jobs with their arrival times and relative deadlines, the optimal slowdown for this job set
can be computed by Yao’s Optimal schedule algorithm [22]. In the algorithm the jobs are represented
as intervals called job intervals. A job interval is represented as (a;, €;,d;), a; being the arrival time of
the job, d; the deadline and ¢; the number of cycles (workload) of the job. The solution is a slowdown
function based on an EDF scheduler. The algorithm runs in time polynomial in N. The details and the
correctness of the algorithm are given in [22]. The algorithm takes as an input a set of jobs over a time
period and returns a slowdown function f(¢) over this time period.

3.2.2 Optimal Slowdown when D < p

The procedure to compute the optimal slowdown factors when D < p is shown in figure 2. In line(1) of
figure 2, we compute the hyper-period, the least common multiple (Icm) of the periods of all the tasks.
For each task T;, consider all jobs up to the hyper-period. Form job intervals for all these jobs. This
is done in lines(4 — 6) in figure 2. We compute the optimal slowdown factors for this job set by Yao’s
algorithm, which is line(8). It computes a slowdown function f(#), giving optimal slowdown values in
the interval [0, hyperperiod — 1].

Yao’s algorithm is optimal for the given set of jobs i.e. all jobs up to the hyper-period in our case. The
same job sequence will be repeated in every future hyper-period interval. The same slowdown function is
used in every hyper period interval. As the same job sequence is repeated, we have an optimal slowdown

function.

Optimal-EDF-Schedule({task set T):
{
(1) hyper-period = lcm(all p; in T)
(2) Job set J=0; (empty set)
(3) for each task T; in T {
(4) Ji = all J;j, j=0,1,..hyper-period/p;—1
(5) job interval for J;; is
(j*pi,ei, j*pi+Di);
(6) J =J +
(7) }
(8) Yao’'s Optimal-Schedule(J);
(9) return optimal slowdown function;

}

Figure 2. Algorithm for computing optimal power schedule under EDF scheduling

We look up to the hyper-period to compute the optimal-schedule. This can potentially have an ex-
ponential number of jobs and result in a large computation time. However this computation is done
off-line.

3.2.3 Implementing within RTOS

The computation to find the solution could be large, depending on the example. However for imple-
menting the optimal slowdown policy in an RTOS, we only need the slowdown function. The important
metric for this technique is the size of the solution, which indicates the voltage changes along the time
line. We have seen in our experiments that the size of the solution is small. On a average the size is only
of the order of tens. We store the solution in the operating system and the memory overhead is only a
few hundred bytes.

4 Dynamic slowdown

The worst case execution time of a job is rarely reached. This results in the dynamic slack in the
system. We can use this dynamic slack to further slow down the processor to have more energy savings.
Dynamic slowdown factors computation techniques [16, 14] are of two types. One which guarantees
meeting all deadlines [14] and the other where we are allowed to miss some deadlines [10]. In the
first type, the WCET is always assumed and the present dynamic slack is utilized. Some techniques

[10] anticipate the coming slack to perform aggressive power management. These methods can end up
missing a few deadlines.

We use the technique given by Kumar and Srivastava [10] to compute dynamic slowdown factors.
This technique is meant for soft real-time systems. In this technique a history of the execution times
of the jobs is maintained and this information is used to predict the next execution time. The WCET
is divided into slots, each indicating a window of the execution time. At the completion of each job,
the slot referring to its execution time is incremented. The prediction is the weighted average of these
slots. The dynamic slowdown factor s as a function of the predicted execution time epq is given as
54 = epreq/ei- We use dynamic slowdown factors over the static factors. We can incur some deadline

misses due to wrong predictions.

5 Implementation

We have written a simulator in parsec [11], a C based discrete event simulator. We have implemented
the scheduling techniques and algorithms in this simulator.

5.1 Simulator

We have implemented a generic simulator to enable us use the same simulator for all the scheduling
algorithms. The simulator is as shown in figure 3. It consists of two entities, the task manager and
the Real Time operating system(RTOS). The task manager has the information of the entire task set. It
generates jobs for each task type depending on its period and sends it to the RTOS entity.

Task Mamanger

Knobs Knobs RTOS —
Prediction
Task Execution Time Scheduling history tables

- Worst case EDF/fixed priosity

- Random time
- random distribution static Slowdown Methods
= density

=10 slowdown
Task T, —— s = optimal EDF Resource

5 = rale manotonic analysi:
(processor)
Dynamic slowdown

NO / Prediction

L]
Task T,
Profile Static speed
I:] Mager Repior

[PARSEC Simultion Platform |

Figure 3. Generic simulator

The RTOS is the heart of the simulator. It schedules the jobs on the resource(processor) and checks
for deadline misses. It changes the processor from one slowdown state to another to minimize the energy
consumed. The operating system supports APIs to change the scheduling policy and to select a particular
static and dynamic slowdown algorithm. For the implementation of our optimal EDF slowdown tech-
nique, we also need a static speed regulator. The slowdown function is stored here and this entity issues
commands to change the speed of the processor. It changes the speed according to the solution. The
profile manager profiles the energy consumed by each task and calculates the total energy consumption
of the system. It keeps track of all the relevant parameters viz. energy consumed, missed deadlines,

voltage changes and context switches. The OS also manages the history tables needed in predicting
execution times of tasks.

6 Experimental Results

We use the power model as given in [16, 10]. The power P as a function of slowdown is given by

P = f(s) = 0.248 % 57+ 0.225 % 5>+ 0.0256 % 5+ v/311.16 % 52 + 282.24 * 5% (0.0064 % s +-0.014112 x 52).

The above equation is obtained by substituting V;; = 5V and V;;, = 0.8V and equating the power and
speed equations given below. The speed s is the inverse of the delay. The details are given in [16].

P, switching =~ Ce ff Vg%df (2)

kVaa 1

__ad_ " 3
(Vaa — Vin)? ch ®

Delay =

/
/
08 / .
/
J

Power(P)
o
=)

T
L

o
kS
T

L

0.2 i

0 . .
0 0.2 0.4 0.6 0.8 1
slowdown factor(s)

Figure 4. Power function f (S) vs. 52

The plot of the power function in shown in figure 4. It can be seen that it tracks s> closely. The power
and speed relation is accurately derived from the switching capacitances and the relation between gate
delay and the operating voltage and frequency. A detailed explanation is given in the referred papers.

‘We compare the processor energy usage for the following techniques:

e Density slowdown: This valgorithm sets a constant slowdown factor s = min(A, 1).

e Optimal slowdown : Here the optimal slowdown factors are computed by looking at jobs up to
the hyper-period of the task set.

e RMA slowdown : The algorithm to compute slowdown factors for each task is given by Gruian
[7]. It computes the static factors by performing Rate Monotonic Analysis (RMA), looking at a
window size of the maximum of the task periods. The case of D < p is also considered. This
algorithm has good results in practice.

Avionics

Es = density
Hs =RMA
Os = optimal

100% 95% 90% 85% 80% 5%
deadline varied as a percentage of original deadline

INS

s = density,
Bs = RMA
{|Os = optimal

100% 95% 80% 85% 80% 5%

1 deali;

deadline varled asa p t of ori

CNC

@s = density
Hs = RMA
Ds = optimal

100% 95% 80% 85% 80% 75%
deadiine varled as a percentage of original deadiine

Figure 5. Examples with deadline varied as a percentage of original deadlines

The above algorithms were used on three application sets, Avionics task set [12], INS (Inertial Navi-
gation Control) task set [5] and CNC(Computer numerical control) task set [9], which are the task sets
used in [10, 18].

Since we are considering the case D < p, we have generated new task sets by decreasing the deadlines
of the original task sets. Almost all the task sets in the examples have deadlines equal to period. We have
obtained the new examples by decreasing the deadline as a percentage of the original deadline. In the
new examples the new deadlines are set to 100%, 95%, 90%, 85%, 80% & 75% of the original deadline.
We ran the simulation up to the hyper-period of the task set and have computed the energy consumed
in this time period. The results of each example are shown in their respective graphs in figure 5. The
percentage gains obtained by the optimal algorithm over the density algorithm and the RMA algorithm
is shown in figure 6. It can be seen that the percentage gains increase as the deadline is further decreased.

We have as much as 45% gains over density slowdown and 38% gain over the RMA slowdown. We
have an average savings of 20%. The percentage gains in the INS example are not very high. In this
example there is little workload with big deadlines. Even after decreasing the deadlines, the processor

9

% savings of Optimal over density slowdown

% Energy savin
AN W

cowochonsh

95% 85% 5%
deadline variation

Bavionics Elcne Dlnsl

% Savings of Optimat over RMA slowdown

% Energy savings
cad3aBR88ES

95% 85% 75%

deadline variation

Davioinics Bcnc Oins

Figure 6. percentage gains over the two algorithms

Table 1. Computation time of optimal algo

Deadline(D) Avionics INS CNC
D =1.00%Dypjg | 1.3846 sec | 1610.34 sec | 1.472 sec
D =0.90%Dyg | 4.6817 sec | 1633.32 sec 2.9515 sec
D = 0.85%Dyig | 4.6653 sec | 1642.31 sec | 2.9541 sec
D =0.80%Dyjg | 4.6654 sec | 2123.24 sec | 3.383 sec
D = 0.75% Dyrig | 8.7276 sec | 3542.03 sec | 3.4105 sec

usage is not increased and there is less slack compared to the other algorithms. This has resulted in small
gains. We achieve more gains as the deadline is further decreased. In all the other examples the energy
savings are clearly seen.

The optimal slowdown has about 40% gains compared to the other two algorithms we have consid-
ered. These are large gains and will make the device energy efficient and increase the battery life if the
deadlines are less than the period.

6.1 Computation time

The computation time for the optimal algorithm is of higher order magnitude compared to the density
slowdown and RMA slowdown algorithms. Computation time depends on the number of jobs arising
from the hyper-period (V). This could be exponentially large. We ran the experiments on a sparc SUNW,
Sun-Blade-100 running SunOS. The computation time for the examples are given in table 1.

The computation time for the density slowdown method is almost negligible, as we only need to

10

execute n division and n addition operations. The RMA algorithm takes time of the order of tens of
milliseconds. From the table it is seen that the off-line computation cost increases with the reduction
of the deadline. However this extra computation cost is compensated by higher energy savings. For the
INS example the hyper-period is equally large as the other examples. However there is a task with a
small period, which results in a large number of jobs (N) up to the hyper-period. As the running time is
a function of N, the running time is large.

6.2 Dynamic slowdown

We performed experiments with dynamic slowdown techniques to utilize the dynamic slack. We used
the execution time prediction technique [10] to calculate the dynamic factors. Similar to the work in
[10] and [18], we vary the best case execution time (BCET) of a task as a percentage of its WCET. Tasks
were generated by a Gaussian distribution with mean, p= (WCET +BCET)/2 and a standard deviation,
0 = (WCET — BCET) /6. 1t is seen that the deadline misses are comparable to the other techniques and
we have more energy savings. We continue to save about 20% more energy.

dynamic slowdown for INS

E; 120 Bs = density
g 100 Hs = RMA
w go Os = optimal
60
40 1 o
20 g
o 48 g . i
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
BCET variation as a % of WCET
Comparison of deadline misses
4,
3.
—¢—s = density
~@—s = RMA

—4&—s = optimal

% of deadline misses

e b n ¢ 3
cCuUu~uvNOWwWO AT

S

BCET variation as a % of WCET

Figure 7. Dynamic Slowdown for INS task set

We show the energy consumption and the percentage of missed deadlines in figures 7 and 8. Figure 7
is a comparison for the INS task set where the deadline is reduced to 90% of the original deadline. It is
seen that as we increase the BCET, the energy consumption increases. As we generate task sets with a
Gaussian distribution with p and ¢ proportional to the BCET, their workload increases with BCET and
in more energy usage. It can be seen that the optimal algorithm continues to be the most energy efficient
one. It is clear that we will end up missing some deadlines as we are always operating at the critical
point. Any misprediction will lead to a deadline miss. However it can be seen that percentage deadline
misses is very close to that of the RMA algorithm. As the BCET increases the percentage of deadline

11

dynamic slowdown for avioncs

Els = density
Es = RMA
Os = optimal

,\6’\" qsg\a '§§.\o §\o (o“o\‘ @o\e ’\Qo\o %S\o ng\a \QQ@\a

BCET variation as a % of WCET

Comparison of deadline misses

w

oW a Nt e o s

—¢—s = density
—a—s =RMA
—&— s = optimal

N

-

% of deadline misses

o

o

g de e S g o b s e e
N A I S e

BCET variation as a % of WCET

Figure 8. Dynamic Slowdown for Avionics task set

misses keeps decreasing and all the algorithms have almost no deadline misses. Thus for higher BCET
values we get the energy gains for free. To support our claims we also show the results for the Avionics

task set with the deadlines reduced to 80%. It is shown in figure 8.

7 Conclusion

In this paper, we have given an algorithm to computed the optimal slowdown factors for a periodic
task set on a variable speed processor. Experimental results show that we save as much as 30%-40%
energy compared to known techniques. This will have a great impact on the energy utilization of portable
and battery operated devices. Though the computation of the optimal factors can take long, the solution

is generally small and can be stored in the system.
We would like to find out whether the optimal speed schedule can be computed faster. We have com-

puted optimal slowdown factors for an EDF scheduler. In future, we would be interested in computing
optimal schedules for other scheduling policies. We will also be implementing the techniques in a RTOS

like eCos and compare the results.

References

[1] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Determining optimal processor speeds for

periodic real-time tasks with different power characteristics. In Euromicro Conference on Real-

12

Time Systems, Delft, Holland, June 2001.

[2] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In Real-Time Systems Symposium, London, England,

December 2001.

[3] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt, A. Nicolau, and A. Veidenbaum. Architec-
tural and compiler strategies for dynamic power management in the copper project. In IWIA 2001

International Workshop on Innovative Architecture, Maui, Haiwai, January 2001.

[4] L. Benini and G. De Micheli. System-level power optimization: techniques and tools. In Proceed-

ings of the International Symposium of Low Power Electronics and Design, 1999.

[5] A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-time fixed priority
schedulers. In IEEE Transaction on Software Engineering, volume 21, May 1995.

[6] C.L.Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real time environ-

ment. In Journal of the ACM, pages 46-61, 1973.

[7] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors. In

International Symposium on Low Power Electronics and Design, pages 46-51, 2001.

[8] C.-H. Hsu, U. Kremer, and M. Hsiac. Compiler-directed dynamic voltage/frequency scheduling

for energy reduction in microprocessors. In International Symposium on Low Power Eletronics

and Design, August 2001.

[9] N. Kim, N. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual assesment of visual real-time

systems: a case study on cnc controller. In IEEE Real-Time Systems Symposium, Dec. 1996.

[10] P. Kumar and M. Srivastava. Predictive strategies for low-power rtos scheduling. In Proceedings
of IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages

343-348, 2000.

[11] P. C. Laboratory. Parsec: A c-based simulation language. University of Califronia Los Angeles.

http://pcl.cs.ucla.edu/projects/parsec.

13

[12] C. Locke, D. Vogel, and T. Mesler. Building a predictable avionics platform in ada: a case study.
In Proceedings IEEE Real-Time Systems Symposium, 1991.

[13] T. Pering and R. Brodersen. Energy efficient voltage scheduling for real-time operating systems. In
Proceedings of the 4th IEEE Real-Time Technology and Applications Symposium RTAS 98, Work

in Progress Session, June 1998.

[14] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating

systems. In Proceedings of 18th Symposium on Operating Systems Principles, 2001.

[15] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable

voltage processors. In Proceedings of the Design Automation Conference, pages 828833, June

2001.

[16] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive power-fidelity in energy aware wireless

embedded systems. In IEEE Real-Time Systems Symposium, 2001.

[17] D. Shin and J. Kim. A profile-based energy-efficient intra-task voltage scheduling algori thm for

hard real-time applications. In International Symposium on Low Power Electronics and Design,

August 2001.

[18] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems. In

Proceedings of the Design Automation Conference, 1999.

[19] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable

speed processors. In Proceeding of the International Conference on Computer-Aided Design, pages

365-368, 2000.

[20] J. Tschanz, S. Narendra, Z. Chen, S. Borkar, M. Sachdev, and V. De. Comparative delay and energy
of single edge-triggered & dual edge-tri ggered pulsed flip-flops for high-performance micropro-

cessors. In International Symposium on Low Power Electronics and Design, August 2001.

[21] J. W.S.Liu. Real-Time Systems. Prentice-Hall, 2000.

[22] F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In IEEE
Symposium on Foundations of Computer Science, pages 374-382, 1995.

14

A Appendix

A.1 Periodic task set examples

The examples used in the experiments are given below. These are periodic task sets and the periods,

deadlines and WCETs are specified.

INS (Inertial Navigation Control) task set
Period Deadline WCET

2500 2500 1180

40000 40000 4280

625000 625000 10280

1000000 1000000 20280

1000000 1000000 100280

1250000 1250000 25000

CNC (Computer numerical control) task set
Period Deadline WCET

2400 2400 35

2400 2400 40

2400 2400 165

2400 2400 165

9600 4000 570

7800 4000 570

4800 4800 180

4800 4800 720

15

Avionics task set
Period Deadline WCET
200000 5000 3000
25000 25000 2000
25000 25000 5000
40000 40000 1000
50000 50000 3000
50000 50000 5000
59000* 59000* 8000
80000 80000 9000
80000 80000 2000
100000 100000 5000
200000 200000 1000
200000 200000 3000
200000 200000 1000
200000 200000 1000
200000 200000 3000
1000000 1000000 1000
1000000 1000000 1000

* Slight modification in Avionics example
Note : In the avionics task set there is a task with period 59000. This causes the hyperperiod of the task
set to be very large and the number of jobs to be considered increases drastically. We tried to compute
the optimal slowdown factors with no modification. However the process did not complete till a few
days. So we decreased the period of that task. This will ensure the correctness of the slowdown factors
and we compute the optimal slowdown factors for the modified task set. We set the new period and

deadline for that particular task to 50000. The WCET is left unchanged. We ran the experiments with

this modification.

16

