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Abstract

The linear mixed-effects model (LME) is a versatile approach to account for depen-

dence among observations. Many large-scale neuroimaging datasets with complex

designs have increased the need for LME; however LME has seldom been used in

whole-brain imaging analyses due to its heavy computational requirements. In this

paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes

whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large

samples possible. We validate FEMA with extensive simulations, showing that the

estimates of the fixed effects are equivalent to standard maximum likelihood esti-

mates but obtained with orders of magnitude improvement in computational speed.

We demonstrate the applicability of FEMA by studying the cross-sectional and longi-

tudinal effects of age on region-of-interest level and vertex-wise cortical thickness,

as well as connectome-wide functional connectivity values derived from resting state

functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive

DevelopmentSM Study release 4.0. Our analyses reveal distinct spatial patterns for

the annualized changes in vertex-wise cortical thickness and connectome-wide con-

nectivity values in early adolescence, highlighting a critical time of brain maturation.

The simulations and application to real data show that FEMA enables advanced

investigation of the relationships between large numbers of neuroimaging metrics

and variables of interest while considering complex study designs, including repeated

measures and family structures, in a fast and efficient manner. The source code for

FEMA is available via: https://github.com/cmig-research-group/cmig_tools/.
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1 | INTRODUCTION

As neuroimaging studies have moved to large sample sizes, the size of

datasets and the complexity of relationships among observations

within these datasets pose several challenges to neuroimaging analy-

sis. For example, in the Adolescent Brain Cognitive DevelopmentSM

Study (ABCD Study®) (https://abcdstudy.org), the inclusion of twins

and siblings, in addition to a longitudinal design, make it necessary to

simultaneously consider multiple correlations among observations.

Similarly, other large-scale studies such as the UK Biobank include

repeated observations and other structures in the data that introduce

correlations among observations within the dataset (https://www.

ukbiobank.ac.uk). Mixed-effects models are a flexible method of

modeling such known patterns in the data. Within neuroimaging, lin-

ear mixed-effects models (LME) have previously been used to model

repeated measurements, family relatedness, and longitudinal observa-

tions (see, e.g., Beck et al., 2021; Bernal-Rusiel et al., 2013; Chen

et al., 2013; Dick et al., 2021; Fjell et al., 2021; Nyberg et al., 2021;

Stoffers et al., 2015; Varosanec et al., 2015).

Within an LME, study design and heterogeneity in the study pop-

ulation can be parameterized by specifying the covariance pattern for

the random effects; accounting for the actual correlations in the data

by means of random effects can lead to an increase in statistical

power and reduction of inferential biases (Bernal-Rusiel et al., 2013).

These statistical characteristics make the LME an increasingly impor-

tant tool in analyzing large-scale data with known structures. How-

ever, there has been limited use of LME in brain imaging studies,

especially when considering imaging analyses (e.g., vertex-wise, voxel-

wise, and connectome-wide). This is due to high computational

demands of LMEs and the relative lack of available methods that sup-

port performing LME estimation on whole-brain neuroimaging data.

Hence, the full potential of the massive large-scale imaging samples

currently collected, for example, to reveal more of the complexity of

human neurodevelopment, is yet to be realized.

The estimation of model parameters in LME is typically achieved

through the maximization of the likelihood or the restricted maximum

likelihood (REML). These iterative methods can easily become compu-

tationally prohibitive in the case of neuroimaging analyses, especially

when considering whole-brain voxel-wise, vertex-wise, or

connectome-wide analyses. This is because an LME method applied

to, for example, voxel-wise data will require repeated inversions or

solving for each voxel; this contrasts with ordinary least squares

(OLS), where a single inversion or solution can be found to estimate

the coefficients for all voxels simultaneously. Therefore, the computa-

tional efficiency of estimating many voxels using OLS is profound due

to efficient implementation of matrix operations, while voxel-wise

covariance matrices demand a much slower approach using loops.

Consider, for example, that fitting a simple LME model takes 0.5 s. A

typical 1.5 mm isotropic standard-space image has about 558,718

analyzable voxels. Therefore, fitting this model (serially) for all the

voxels would take about 3 days of computational time. If the same

model would have taken 30 seconds to fit per voxel (which is reason-

able for large samples with multiple random effects with many levels),

the total computational time would exceed 190 days (this timing can

be proportionally reduced with parallel computing, but the computa-

tional burden remains large). Thus, estimating model parameters of

these LMEs can be computationally prohibitive, to the extent that it

may be impossible to do some of these analyses on standard compu-

tational facilities. Therefore, there is a need for a fast and efficient

LME algorithm that is capable of handling large-scale imaging data.

The release of data from the ABCD Study® (Casey et al., 2018) makes

this unmet need more salient, as best practices for statistical analysis

are to control for cohort heterogeneity and relatedness due to the

inclusion of multiple siblings and twins in the sample, in order to cor-

rectly model cross-sectional and longitudinal measures (Dick

et al., 2021; Smith & Nichols, 2018).

As mentioned before, LMEs have been used for the analysis of

neuroimaging data. For example, the analysis of functional magnetic

resonance imaging (fMRI) data using statistical parametric mapping

(SPM) relies on a mixed-effects framework, either via a two-stage pro-

cedure (Holmes & Friston, 1998) or a full mixed model specification

(Friston et al., 2005). Another example is the LME toolbox for longitu-

dinal analyses released with Freesurfer (Bernal-Rusiel et al., 2013)

which performs cortical surface vertex-wise LME by segmenting verti-

ces into a smaller set of regions of interest (ROIs) that share similar

random effects and are geodesically close, thus reducing the number

of outcome variables and the size of the covariance matrix. However,

it currently lacks support for complex study design such as inclusion

of family members, and for imaging measures beyond cortical sur-

faces. A different example is the 3dLME tool (Chen et al., 2013) imple-

mented in AFNI which uses the lme4 and nlme packages in R along

with parallel computing to perform mixed-effects analyses. An alter-

nate approach to making mixed-effects modeling practical for neuro-

imaging is to fit only a marginal model and rely on a sandwich

estimator of standard errors to incorporate repeated measures covari-

ances. The SwE toolbox takes this approach, initially using OLS for

parameter estimation, followed by estimating intra-block covariances

when conducting inference (Guillaume et al., 2014). More recently,

the “Big” Linear Mixed Models (BLMM) tool has been developed

(Maullin-Sapey & Nichols, 2022) that relies on massive parallelization

and high-performance computing along with a novel Fisher scoring

procedure (Maullin-Sapey & Nichols, 2021) for solving LMEs. We

additionally refer to (Maullin-Sapey & Nichols, 2022) for a compara-

tive note on the software available for fitting mixed models using neu-

roimaging data, as well as details on the challenges when using mixed

models for neuroimaging data.
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In this paper, we present a fast and resource-efficient LME algo-

rithm, called the fast and efficient mixed-effects algorithm (FEMA),

that can perform whole-brain image-wise analyses on complex large-

scale imaging data in a computationally efficient manner. By using a

method of moments estimator, efficient binning of random effects

variance parameters, leveraging the sparsity of the random

effects design matrices, and vectorized operations, FEMA can perform

whole-brain voxel- or vertex-wise LME analyses within minutes, com-

pared to days or even months required using standard LME solvers. In

addition, by using the sparsity in the random effects design matrices,

FEMA also achieves memory efficiency. These features allow FEMA

to be run on an ordinary computer without the need for very large

memory capacity or extensive parallelization. The goal of this manu-

script is to introduce FEMA, discuss key aspects of the algorithm that

make it computationally efficient, and additionally document the

implementation of FEMA that will serve as a reference to readers.

Having described these in detail, we will demonstrate, using realisti-

cally simulated data, that the results from FEMA are consistent with

classical maximum likelihood (ML) at a substantially reduced computa-

tional burden. Finally, we will showcase the use of FEMA by applying

it to the longitudinal multimodal brain imaging data from the ABCD

Study® to uncover neurodevelopmental patterns of human brain

change during early adolescence in cortical thickness as well as resting

state functional connectivity.

2 | MATERIALS AND METHODS

In this section, we will introduce the framework of mixed-effects

models as implemented in FEMA. First, we present an overview of the

approach. Then, we will introduce the model and the notation which

we will use throughout this paper. Next, we will go into the details of

the FEMA approach to estimating the mixed model parameters. Spe-

cifically, we will present how the coefficients for the fixed effects and

the variance components for the random coefficients are estimated

(details on the implementation in FEMA are mentioned in the Imple-

mentation details section of the Supplementary Materials). Finally, at

the end of this section, we will present realistic simulation scenarios

for testing FEMA as well as the empirical application of FEMA using

data from the ABCD Study®.

2.1 | Outline

The estimation of fixed effects and variance components of the ran-

dom effects in FEMA follows the following steps: first, we estimate

the fixed effects using an OLS solution. Then, we compute the

squares and products of residuals for pairs of observations and write

it out as a vector (with some sparsity); this vector is treated as the

outcome variable with the random effects as the predictor variables.

We employ a method of moments (MoM) estimator to obtain an esti-

mate of the variances associated with these random effects (equiva-

lent to an OLS solution with an additional non-negativity constraint).

Having estimated the variance components, we re-estimate the fixed

effects by implementing a generalized least squares (GLS) solution,

resulting in an updated estimate of the fixed effects. In case of multi-

ple outcome variables, we employ a binning strategy prior to imple-

menting the GLS – for all outcome variables that have similar random

effects, the same covariance matrix is used for implementing the GLS.

The GLS estimator for fixed effects is unbiased and consistent, and

the MoM approach for the estimation of variances of the random

effects is also consistent. Further, the GLS estimator is more efficient

(i.e., has smaller variance) than the OLS estimator. Additional on the

theoretical background and statistical properties of different estima-

tors (ML, OLS, and GLS) can be found in (Demidenko, 2013, chap. 3;

Fitzmaurice et al., 2011, pp. 92–94; Zou et al., 2017). In the next sec-

tions, we describe each aspect of FEMA in detail.

2.2 | Model set up

Let a dataset contain N observations indexed by i�1…N and J imaging

measures indexed by j�1…J. Let X denote a matrix of p covariates

(or fixed effects) where the columns of the matrix are individual cov-

ariates and entry Xi refers to the value(s) of the covariate(s) for ith

observation. Let y denote the outcome variables, with entry yij indi-

cating the value of the ith observation for the jth imaging measure.

Then, the additive linear relationship between the outcome variables,

y, and fixed effects, X, can be written as

yij ¼Xiβjþεij ð1Þ

where βj represents the weights associated with the fixed effects for

the jth imaging measure and εij represents random variations for the ith

observation for the jth imaging measure. We follow a mass univariate

approach where we will not attempt to model the dependence

between the J imaging measures, but we will combine information

across the measures to obtain reliable variance parameter estimates.

In the fixed effects only setting (e.g., general linear model), εij

accounts for measurement errors for each imaging variable, uncorre-

lated across observations i. For a marginal model (e.g., generalized

estimating equations), arbitrary dependence is captured in some com-

bination of a working covariance and a robust “sandwich” standard

error. The LME, on the other hand, explicitly models both the uncorre-

lated measurement error and correlations among observations attrib-

utable to the known structure in the data (“random effects”). For
every imaging measure j, we assume that εj (measurement error

for the jth imaging variable across i observations) is normally distrib-

uted with zero mean and variance Vj:

εj �N 0,Vj

� � ð2Þ

with the total residual variance σ2j ¼ trace Vj

� �
=N. For example, given a

longitudinal study design that includes family members, the random

intercepts for subject and family induce a marginal variance structure

Vj that can be parameterized as the variance attributable to living in

the same family (F), repeated measures from the same subject (S), and

random errors (E); the total normalized covariance is decomposed as
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Vj=σ
2
j ¼ σ2j,FZFZ

T
F þσ2j,SZSZ

T
S þσ2j,EI ð3Þ

where, generically, Z is an indicator matrix expressing the random

intercepts with row Zi specifying the membership of the ith observa-

tion and each column corresponding to a different level of the random

factor, ZF for families and ZS for subjects, each with a corresponding

variance parameter, σ2j,F and σ2j,S, respectively; I is an identity matrix

with dimensionality equal to number of observations and a corre-

sponding variance parameter σ2j,E , which is the variance of the random

uncorrelated measurement error (or unmodeled residual variance,

uncorrelated across observations). A visual example of three different

experimental designs is shown in Figure S3.

The main computational bottleneck here is the estimation of Vj

for every imaging outcome measure. As noted in (Gao &

Owen, 2020), the cost of computing the likelihood for a given value of

parameters requires O n3=2
� �

time, where n is the number of observa-

tions. Therefore, when the number of imaging measures, J, is large,

such as in voxel-wise analyses, using a likelihood-based solver for

every single measure would be computationally infeasible. In the fol-

lowing sections, we discuss how our algorithm overcomes this compu-

tational limitation.

2.3 | Estimating the variance components

To overcome the computational bottleneck of estimating the parame-

terized covariance matrix, Vj , we implement MoM estimator to obtain

the values of σ2j,F , σ
2
j,S, and σ2j,E for each imaging variable j. The MoM

estimator is fast and consistent though at the cost of statistical effi-

ciency. Let the OLS solution for the fixed effects be:

bβj ¼ XTX
� ��1

XTyj ð4Þ

Then, the residuals can be computed as

byresj ¼ yj�Xbβj ð5Þ

with the total residual variance bσ2j estimated as
P byresj

� �2
= N�pð Þ.

Then, for a given imaging variable j, and for each pair of observations

i, i0
� �

, the expected value of the product of corresponding residuals

byresi,j and byresi0 ,j is

Ε byresi,j �byresi0 ,j

h i
=bσ2j ≈ σ2j,F ZFZ

T
F

� �
i,i0 þσ2j,S ZSZ

T
S

� �
i,i0 þσ2j,E ð6Þ

where the Ε operator represents the expectation with respect to ran-

dom effects, and ZZT� �
i,i0 denotes the i, i0

� �
element of the ZZT matrix

(see Supplementary Materials and Figure S1 for an intuition behind

Equation 6). This implies n� nþ1ð Þð Þ=2 elements with three unknown

parameters (σ2F , σ2S , and σ2E ), allowing us to estimate the variance

parameters using a non-negativity constrained OLS (see Supplemen-

tary Materials for details on non-negativity constrained OLS and

Figure S2 for a demonstration); the values in the first column of the

design matrix are determined by ZFZ
T
F

� �
i,i0 , the second by ZSZ

T
S

� �
i,i0 ,

and the last column of 1's for the error variance. Importantly, the OLS

estimates can be expressed as a simple matrix expression allowing us

to simultaneously obtain the variance parameters for all J imaging var-

iables in a single computation. In addition to using MoM for estimat-

ing variance components, users also have the option of selecting a ML

estimator, instead of the MoM estimator (see Implementation details in

the Supplementary Materials for details).

2.4 | Estimating fixed effects

Once the variance parameters are estimated for each j, the covariance

matrix Vj can be composed as per Equation (3). Then, the fixed effects

can be estimated using the GLS solution:

bβj ¼ XTV�1
j X

� ��1
XTV�1

j yj ð7Þ

with variance

Var bβj
� �

¼ XTV�1
j X

� ��1 ð8Þ

The test statistic for individual fixed effects can be computed as

Wald's ratio, Zj ¼
bβj

se bβj� �. For an arbitrary contrast estimate Cj ¼ cTbβj,
Wald's ratio is computed using Var Cj

� �¼ cTVar bβj
� �

c. The two-tailed p

value for the fixed effects is then calculated as

pj ¼2�Φ �jZjj
� � ð9Þ

where Φ is the cumulative distribution function of a standard normal

distribution, and j Zj j is the absolute value of the Wald's ratio Zj.

To further speed up calculations, instead of separately computing

Vj for each imaging measure, we group them on a regular multidimen-

sional grid according to the value of estimated random effects. To

clarify, depending on the grid size K (where K� J), we create a multi-

dimensional grid (spaced by a factor of 1=K). Then, using the esti-

mated values of the variance parameters of the random effects, we

bin the outcome variables – variables that have very similar random

effects will have the same bin value (see Implementation details in the

Supplementary Materials for details on binning and Figure S4 for a

visual explanation of the binning strategy). In a series of simulations,

we will show that a finite number of gridded bins is sufficient to cap-

ture the variance components for all input imaging measures while

dramatically reducing the required computational time.

2.5 | Simulations

To evaluate the validity of our algorithm and demonstrate that esti-

mates from FEMA are accurate, we performed a series of simulations.

We simulated realistic data with different covariance structures for a

large number of outcome variables and examined the validity and reli-

ability of the parameter estimates and the computational time

required by FEMA. We also performed comparisons with a standard
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mixed model implementation (fitlme or fitlmematrix in MATLAB). In all

estimations involving FEMA, we used the MoM estimator for random

effects and used a GLS solution for fixed effects. For all simulations,

we used MATLAB R2023a (The MathWorks, Natick, USA). Note that

MATLAB's fitlme (and fitlmematrix) report the estimates and confi-

dence intervals for random effects in standard deviation units, while

FEMA reports the estimates and confidence intervals in variance

units. Therefore, we squared the MATLAB derived values before com-

paring them with FEMA derived values. Additionally, for all variance

components obtained from FEMA, we rescaled them back to their

original scale before comparing them with MATLAB (i.e., the variances

are reported as such and not as proportions of the residual variance in

the data).

2.5.1 | Simulation 1: Binning and parameter
recovery

In the first experiment, we had two objectives: first, find an optimal

value of binning and second, demonstrate that the recovered parame-

ters (slopes for the fixed effects and variance parameters of the ran-

dom effects) were comparable to the parameters used for generating

the data (the ground truth). In this simulation experiment, we gener-

ated 2000 y variables for 10,000 observations, with different values

of family effect Fð Þ and longitudinal effect Sð Þ for each y variables.

Each family was allowed to have between one and five individuals

with up to five repeated observations, totaling 10,000 observations.

There were five fixed effects in the simulation. The forward model

was based on:

yij ¼Xiβjþ εij ð10Þ

Xi �N 0,1ð Þ ð11Þ

εj �N 0,Vj

� � ð12Þ

Vj ¼ σ2j,FZFZ
T
F þσ2j,SZSZ

T
S þσ2j,EI ð13Þ

where the notations are the same as introduced in the preceding sec-

tions. To define the ground truth, we sampled the fixed effects param-

eters from a uniform distribution: βj �U �0:02,0:02½ �. The random

effects were sampled from a uniform distribution, while satisfying the

following conditions:

σ2j,F þσ2j,S ≥0:2 ð14Þ

σ2j,E ≥0:2 ð15Þ

σ2j,F þσ2j,Sþσ2j,E ¼1 ð16Þ

In other words, the minimum variance of the unmodeled error

term Eð Þ was 0.2, while the variance parameters of the other

random effects ranged between 0 and 0.8. These parameter ranges

were chosen based on the observations reported in large-scale

imaging analyses, that is, small effect sizes and evident effects of

family and repeated measures (Dick et al., 2021). The total residual

variance in the data (residual variance after removing the effect of

fixed effects or the variance explained by the random effects) was

set to 1.

Effect of binning

Having defined the ground truth, we simulated 50 different sets of X

and y variables with different underlying ZF and ZS structures, that is,

for every simulation, a new family structure with different number of

repeated observations was generated (henceforth referred as repeats

and denoted with r). We performed parameter estimation for 20 dif-

ferent values of bins: five bins from 1 to 5 (spaced by 1), five bins from

10 to 50 (spaced by 10), and 10 logarithmically spaced values

(rounded to their nearest integer values) between 102 and 103:3010,

where 3.3010 is log102000 (the number of y variables). For every bin,

for every y variable, for every fixed effect p, we calculated the mean

squared error (MSE) as the average (over the 50 repeats) of the square

of the difference between the parameter estimate bθ and the simulated

ground truth θtrue:

MSEbin
p,y ¼

1
r

X50
r¼1

bθbinp,y �θtruep,y

� �2
ð17Þ

This resulted in an MSE value for each of the 20 bins, five fixed

effects, and 2000 imaging variables. Then, we summed the MSE value

across the 2000 imaging variables (total MSE) and examined this as a

function of bin size. Finally, to select an optimal value for the number

of bins, we averaged the total MSE (average total MSE) across the five

fixed effects and selected a bin value where the average total MSE

was comparable to the minimum of the average total MSE.

Accuracy of parameter estimates

Next, we examined the accuracy of the estimated parameters from

FEMA. For this comparison, we plotted (against the simulated ground

truth) the estimated parameters for the five fixed effects for all 2000

imaging variables, across the 50 repeats. Additionally, we plotted the

mean (over 50 repeats) estimated parameter for each fixed effect and

imaging variable. Similarly, we examined the plots of estimated ran-

dom effect parameters against the simulated ground truth.

2.5.2 | Simulation 2: Comparison with fitlme

Next, we compared the estimated parameters from FEMA with that

of a standard implementation of mixed models (fitlme in MATLAB; the

same model can also be estimated with fitlmematrix function). We fol-

lowed the same data generation model as simulation 1 but restricted

ourselves to 50 imaging variables because of the high computational

demand for solving mixed models. The simulated data for 10,000
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observations included the effect of five fixed effects (an intercept

term and four additional fixed effects) as well as the random effects –

F, S, and E. These mixed-effects model can be specified as (note that

the error term 1jEð Þ is implicitly included):

y�1þX1þX2þX3þX4þ 1jFð Þþ 1jSð Þ ð18Þ

To estimate the model parameters using fitlme, we used the

default ML estimation method. For estimating the parameters using

FEMA, we set the bin value to 20. To directly compare the confidence

intervals for the random effect, we additionally ran 100 permutations

of wild bootstrap in FEMA and then calculated the 2.5 and 97.5 per-

centiles of the permuted parameter estimates to get the 95% confi-

dence intervals on the random effects.

2.5.3 | Simulation 3: Performance comparison

Next, we compared the performance of FEMA with that of fitlmema-

trix in MATLAB. We opted to use fitlmematrix instead of fitlme for this

set of comparison because fitlme requires a table type variable while

fitlmematrix can work with matrices directly (similar to FEMA).

Computational time as a function of number of observations

To examine the computational time required as a function of

increasing number of observations, we varied the sample size from

2000 to 20,000 observations (in steps of 2000 observations) keep-

ing the number of imaging variables fixed at 50. The number of

fixed effects were five. As before, we only used one bin value of

20 when running FEMA but did not perform any permutations to

estimate the confidence intervals on the random effects. We fol-

lowed a similar data generation scheme as simulation 1 with the

key difference that the data generation model included the genetic

relatedness matrix (GRM) as an additional random effect. To clar-

ify, some of the variance in the data was now additionally attrib-

uted to how (genetically) similar individuals were within a family.

In this synthetic data situation, the genetic relationship within the

family was centered at 0.5 with a small amount of noise and

the genetic relationship between repeated observations would be

1. The rationale for including the additive genetic variance, A effect

as a random effect was so that we could showcase the computational

time needed by FEMA under a variety of common model specifica-

tions of varying levels of complexity. Having already established the

accuracy of the model parameters, for this analysis we were primarily

interested in comparing the computational time necessary for estimat-

ing different model parameters. Therefore, we generated the data

from a F, A, S, and E specification and then recovered the parameters

(using fitlmematrix in MATLAB and FEMA) for: (a) F and E; (b) S and E;

and (c) F, S, and E random effect specification. Additionally, we

recovered the parameters using FEMA for the following random

effects specifications: (a) A and E; (b) F, A, and E; (c) S, A, and E; and

(d) F, A, S, and E. For the latter four models, we did not specify the

models in MATLAB because it is uncertain whether a continuous

valued N�N matrix can be specified as a single random effect using

fitlmematrix.1

We note that several functions implemented in MATLAB are

multithreaded by default. The benefits of multithreaded operation

will apply to the functions internally called by MATLAB's fitlmema-

trix, as well as FEMA. However, one could argue that conventional

mixed models could be sped up further by using parallel processing.

Therefore, in addition to comparing the time required by FEMA and

fitlmematrix (when serially looping over y variables), we also calcu-

lated the time needed for fitlmematrix using parallel computing.

When using parallel processing, one needs to ensure that there is an

optimal usage of resources so that there is no bottleneck. To ensure

a (reasonably) fair comparison between FEMA and fitlmematrix (with

and without parallel processing), we ran the entire simulation as a

slurm cluster job on a high-performance cluster (HPC). To clarify, the

calls to FEMA and fitlmematrix (with and without parallel processing)

were part of the same script that was run on the HPC with the fol-

lowing settings: CPUs per task= 40 and memory per CPU= 20GB

(the HPC cluster consisted of AMD EPYC™ 7702 64-core proces-

sors, resulting in 128 available cores with a maximum memory avail-

ability of 3955GB, out of which we used a maximum of 40 CPUs

and 20GB of RAM per CPU). Further, when initializing a parallel pool

in MATLAB, we set the number of parallel workers to 20. When

using parallel processing in MATLAB, MATLAB defaults to 1 thread

per worker. We changed this specification to 2 threads per worker

for the timing comparison. In addition, since parallel processing

would invoke multiple MATLAB instances in the background (which

would remain idle when using FEMA or doing serial processing), we

closed the parallel pool immediately after the parallel processing was

completed (for each number of observation). The reported time

taken does not include the timing overhead for creating or closing a

parallel pool, overheads associated with parsing the returned

MATLAB model to extract relevant parameters, or time taken for ini-

tializing or saving variables.

Computational time as a function of number of imaging variables

We additionally examined how the computational time increased as a

function of increasing number of imaging variables. For this simula-

tion, we fixed the number of observations to 10,000. The number of

fixed effects were five and the random effects were F, S, and E. We

varied the number of imaging variables from 100 to 5000 (step size of

100 variables). Similar to the previous comparison, we calculated the

time taken for estimation of the parameters for fixed and random

effects by FEMA (bin value of 20), fitlmematrix, and a call to fitlmema-

trix wrapped in a parallel for loop (with the same cluster settings as

before).

1We note that it may be possible to specify such a matrix using the fitlmematrix function in

MATLAB. However, preliminary testing in this regard was deemed unsuccessful, as the

computation never finished even after several days. We also note that it may be possible to

reparametrize the GRM which might make the computation tractable, although we have not

examined this aspect (see, e.g., Hunter, 2021; McArdle & Prescott, 2005; Rabe-Hesketh

et al., 2008; Wang et al., 2011).
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2.5.4 | Simulation 4: Type I error rate

Having demonstrated parameter recovery (via simulation 1), general

similarity to a standard mixed model solver (via simulation 2), and

computational efficiency (via simulation 3), we examined the type I

error rate for fixed effects using FEMA (bin value of 20) and compared

it with MATLAB's fitlmematrix. Specifically, we simulated 10,000 total

observations with 100 fixed effects and F, S, and E random effects for

50 imaging variables. The variance parameters for the random effects

were the same as simulation 1, but the slopes for the fixed

effects were set to zero (i.e., the simulated data had no contribution

from the X variables). Then, we estimated the slopes for the fixed

effects and the variance components for the random effects using

FEMA and fitlmematrix. We repeated this process 100 times. For

every repeat, we counted the number of times the p values for the

fixed effects were smaller than four threshold values of

α¼0:05,0:01,0:001, and 0:0001, for every outcome variable. Then,

for every repeat, we summed the number of false positives (FPs)

across the outcome variables to get total number of FPs for that

repeat (at that threshold value of α). Finally, to get an aggregate num-

ber across the 100 repeats, we calculated the mean of the total num-

ber of false positives and rounded it toward positive infinity (i.e., a ceil

function). Since there were 50 imaging variables with 100 fixed

effects each, at each of these threshold values, we did not expect

(on average) more than 250, 50, 5, and 1 FPs (for α¼0:0001, the

number of FPs is 1 because we are rounding the average toward posi-

tive infinity).

2.5.5 | Simulation 5: Effect of number of
observations

As an additional analysis, we examined the effect of number of obser-

vations on parameter recovery for both the fixed effects and the ran-

dom effects. Since FEMA is designed for large sample size situations,

we examined how the estimates from FEMA converged to the esti-

mates from an ML-based solver. Specifically, for this simulation, we

examined parameter recovery as a function of 16 increasing sample

sizes: 50, 10 sizes between 100 and 1000 (spaced by 100) and five

sizes between 2000 and 10,000 (spaced by 2000). Note that here we

are interchangeably using the terms sample size and number of obser-

vations. Similar to other simulations, we specified five fixed effects

with true effect uniformly distributed between �0.2 and 0.2; there

were two random effects – family effect and subject effect, and the

simulated data had up to five family members within a family and up

to five repeated observations for a given subject. We simulated

500 outcome variables and ran five repeats of this experiment (i.e., for

every repeat, for every sample size, we created fresh draws of fixed

and random effects). For each of these simulated datasets, we fit LME

models using FEMA (at a bin value of 20) and ML estimator using fitl-

mematrix function in MATLAB. Then, for every sample size, for every

repeat, we examined the squared difference between the estimates

from FEMA and the ground truth; similarly, we estimated the squared

differences between the estimates from fitlmematrix and the ground

truth. Then, we averaged these squared differences across the five

repeats and summed these squared differences across the 500 out-

come variables. We similarly performed the same calculations for the

variance parameter estimates for the random effects.

2.5.6 | Simulation 6: Type I error rate as a function
of bin value

As a final simulation, we examined the rate of FPs as a function of the

bin value. We simulated 10,000 observations with 100 fixed effects

and F, S, and E random effects for 500 imaging variables. The variance

parameters for the F and S random effects were set to be between

0.3 and 0.4 – this narrow range ensured that several outcome vari-

ables would be evaluated together (i.e., they would be binned together

for computing V when GLS solution for fixed effects is implemented),

thereby allowing us to examine if binning had any adverse effect on

FPs. Similar to simulation 4, when simulating the data, we set the

slopes for the fixed effects to zero (i.e., the simulated data had no con-

tribution from the X variables). Then, we estimated the slopes for the

fixed effects using FEMA at bin values 1 to 30. We repeated this pro-

cess 100 times. For every repeat, for every bin value, we counted the

number of times the p values for the fixed effects were smaller than

α¼0:05 for every outcome variable. Then, for every repeat, for every

bin value, we summed the number of FPs across the outcome vari-

ables to get total number of FPs for that repeat and that bin size.

Finally, we averaged this number (rounded to positive infinity) across

repeats to get an average number of FPs for each bin value. Since

there were 500 imaging variables with 100 fixed effects each, we did

not expect (on average) more than 2500 FPs at α¼0:05.

2.6 | Empirical application

To demonstrate the utility of FEMA, we applied FEMA to the ABCD

Study® (data release 4.0) to examine the longitudinal changes in imag-

ing measures during adolescence. The ABCD Study® is a longitudinal

study of brain development in adolescents in the United States. The

ABCD Study® protocols were approved by the University of Califor-

nia, San Diego Institutional Review Board, and data was collected

after taking informed consent from the parent/caregiver's as well as

child's assent. The multimodal imaging acquisition in the ABCD

Study® includes T1- and T2-weighted structural scans, multishell diffu-

sion scans, and resting and task fMRI (see, (Casey et al., 2018) for

details on image acquisition and (Hagler et al., 2019) for details on

image processing and analyses methods). Release 4.0 includes two

scans – one at baseline and the second scan after two years from the

baseline.

Most standard neuroimaging analyses can be formulated to be

one of the following categories – voxel-wise analyses (e.g., NIfTI

images), vertex-wise analyses (e.g., GIfTI images), ROI-wise analyses

(tabular data), or connectome-wide analyses (high-dimensional flat-

tened tabular data). In addition, most nonimaging variables can be

structured as tabular data type with rows being observations and
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columns being the variable(s) of interest. To show the use-cases of

FEMA for these data types, we present the results from the longitudi-

nal analyses of two measures – cortical thickness derived from T1-

weighted structural images (ROI-wise and vertex-wise analyses) and

connectome-wide functional connectivity (high dimensional flattened

tabular data). We have previously demonstrated the applicability of

FEMA to voxel-wise data, analyzing restricted spectrum imaging

parameters derived from diffusion weighted images (Palmer

et al., 2022), and to nonimaging tabular data, analyzing cognitive vari-

ables (Smith et al., 2023). These analyses were run on MATLAB

R2023a on a server having 48 Intel® Xeon® E5-2680 CPUs, 12 CPUs

per socket (2 sockets), and 2 threads per core; the server had 512 GB

of RAM. Prior to running the analyses, we standardized each y vari-

able to have zero mean and unit standard deviation. Similar to the

simulation experiments, we squared the fitlmematrix derived standard

deviation values before comparing them with FEMA derived variance

values. Additionally, we report all variances from FEMA as such and

not as proportions of the residual variance in the data.

2.6.1 | Outline of image processing

As mentioned previously, details of the ABCD multimodal image

acquisition can be found in (Casey et al., 2018), and a detailed descrip-

tion of image processing pipeline can be found in (Hagler et al., 2019).

Additionally, the current analyses use data from ABCD data release

4.0; the details of changes between the image processing pipeline as

reported in (Hagler et al., 2019) for data release 2.0.1; and data

release 4.0 can be found in modality specific documentation with the

release notes at the National Institute of Mental Health Data Archive

(NDA): https://nda.nih.gov/study.html?id=1299. For completeness,

we provide a brief overview of the structural and functional prepro-

cessing below.

Broadly, the T1-weighted (T1w) images were corrected for gradi-

ent distortion using scanner-specific nonlinear transformations, fol-

lowed by bias correction using a novel bias correction algorithm. The

bias-corrected T1w was then segmented using Freesurfer 7.1.1 and

different morphometric features like cortical thickness computed for

different atlases. For the purpose of this study, we used the average

cortical thickness across 68 ROIs from the Desikan-Killiany atlas

(Desikan et al., 2006).

For resting-state fMRI data, the first step in the preprocessing

pipeline was to perform motion correction using AFNI's (Cox, 1996)

3dvolreg. Next, the motion-corrected images were corrected for B0

distortion using FSL's TOPUP v5.0.2.2 (Andersson et al., 2003; Smith

et al., 2004), followed by gradient distortion correction (Jovicich

et al., 2006). The distortion corrected images were then rigidly aligned

with T1w images based on registration of the field maps with T1w

images. Following these, dummy scans and first few time points were

removed, and voxel-wise time series were normalized by the voxel-

specific mean of the time series (i.e., each voxel's time series was

scaled by that voxels' average BOLD signal over time). The normalized

time series was demeaned and multiplied by 100. The denoising step

consisted of performing a linear regression on the time series with the

independent variables being the quadratic trends, six motion parame-

ters (their derivatives and squares), mean time series from white mat-

ter, ventricles, and the whole brain, and their first-order derivates.

Additionally, the motion time courses were temporally filtered to

attenuate signals linked to respiration (Fair et al., 2020). Time points

that had a framewise displacement >0.3 mm were excluded during

regression (Power et al., 2014). These values were replaced by linear

interpolation (after regression and residualization), followed by band-

pass filtered between 0.009 and 0.08 Hz (Hallquist et al., 2013). This

denoised time series was then projected to subject-specific cortical

surfaces and ROI-specific time series was calculated as the average

(across vertices) time series within each ROI. For the purpose of this

study, we used the Fisher transformed (inverse hyperbolic tangent)

functional connectivity matrices within and between the Desikan-

Killiany et al. (2006), the Destrieux et al. (2010), and Gordon et al.

(2016) cortical parcellation schemes, as well as selected subcortical

regions from the Freesurfer “aseg” whole-brain segmentation (Fischl

et al., 2002) (see section Connectome-wide functional connectivity).

2.6.2 | Cortical thickness

ROI-level cortical thickness

For the first demonstration using real data, we used the average corti-

cal thickness across 68 ROIs from the Desikan-Killiany atlas (Desikan

et al., 2006) and compared the estimates obtained from FEMA (at a

bin value of 20) with those obtained from using fitlmematrix in

MATLAB. The goal of this analysis was to show that the parameter

estimates at a bin size of 20 were similar to the ones obtained from a

standard implementation. We calculated the confidence intervals for

random effects using 100 permutations of wild bootstrap. For this

analysis, we only considered those subjects who had an image at both

the baseline as well as the follow-up and that both images passed

quality assurance (i.e., the variable imgincl_t1w_include, defined in the

NDA data dictionary, was equal to 1). The sample size was 6314 sub-

jects (in each visit) across 5387 families. The cross-sectional age was

between 107 and 133 months (mean ± SD = 118.82 ± 7.45 months),

and the follow-up age was between 127 and 166 months (mean

± SD = 143.28 ± 7.78 months).

The fixed effects (covariates) included: intercept, the age of the

participants at the time of recruitment (agerecruitment, in months),

the change in age between baseline and the follow-up visit (agedelta),

dummy-coded sex variable (two levels; retained one level),

dummy-coded scanner device number (31 levels; retained 29 levels),

dummy-coded scanner software version number (17 levels; retained

15 levels), dummy-coded household income level (three levels;

retained two levels), dummy-coded parental education level (five

levels; retained four levels), and the first 20 genetic principal compo-

nents (which would account for the population structure in the data)

derived using the GENESIS package (Gogarten et al., 2019). In total,

there were 74 covariates out of which the covariates of interest were

agerecruitment and agedelta. Note that we dropped two levels from the

various dummy-coded variables so that the matrix of covariates was

not rank deficient. In addition, to model the within-family and within-
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subject variances (not explained by the fixed effects), we specified the

F and S random effects. This model (for each imaging variable) can be

written as (note that the error term 1jEð Þ is implicitly included):

y�1þagerecruitmentþagedeltaþ sexþ scannerþ software

þ incomehouseholdþeducationparentalþPCsgeneticþ 1jFð Þþ 1jSð Þ

where, agerecruitment would remain the same for baseline visit as well as

follow-up visit, while agedelta would be zero for baseline visit and be

equal to the difference between the agefollowUp and agerecruitmemt.

Vertex-wise cortical thickness

Using the same model as for the ROI-level analyses, we examined the

vertex-wise association of cortical thickness with agerecruitmemt and

agedelta. The sample size was the same as the ROI-level analysis, and

the total number of analyzable vertices were 18,742.

2.6.3 | Connectome-wide functional connectivity

For the second demonstration of the use of FEMA, we analyzed the rest-

ing state functional connectivity between 582 ROIs, resulting in a total

of 169,071 pairs of connectivity values (see (Hagler et al., 2019) for

details on the denoising of the time series and subsequent calculation of

the connectivity values). These 582 ROIs consisted of 68 ROIs from the

Desikan-Killiany parcellation scheme (Desikan et al., 2006), 148 ROIs

from the Destrieux parcellation scheme (Destrieux et al., 2010), 333 ROIs

from the Gordon parcellation scheme (Gordon et al., 2016), and 33 ROIs

from the aseg parcellation scheme (Fischl et al., 2002) (not including

lesion and vessal parcellations). The Gordon parcellation scheme further

consisted of 13 network communities – default, somatomotor hand and

mouth, visual, frontoparietal, auditory, cingulo-parietal and cingulo-

opercular, retrosplenial temporal, ventral and dorsal attention, salience,

and none. For performing connectome-wide analysis, we followed the

same model as cortical thickness. We only included subjects who had a

resting state scan at baseline and at the follow-up visit and that both the

images passed quality assurance (i.e., the variable imgincl_rsfmri_include,

defined in the NDA data dictionary, was equal to 1). The sample size was

4994 subjects (in each visit) across 4375 families, and the number of

connectivity values was 169,071. The cross-sectional age was between

107 months and 133 months (mean ± SD = 119.10 ± 7.52 months), and

the follow-up age was between 127 months and 166 months (mean

± SD = 143.58 ± 7.86 months).

3 | RESULTS

3.1 | Simulation 1: Binning and parameter recovery

3.1.1 | Effect of binning

For every bin value, we calculated the total MSE across 2000 imaging vari-

ables for the five fixed effects. Then, we calculated the averageMSE across

these five fixed effects to get an overall estimate of the total MSE for each

bin value.We observed that the minimum average of the total MSEwas at

a bin value of 100 (totalMSE = 0.13247); however, theMSE at a bin value

of 20was comparable to thisminimum (totalMSE = 0.13255), at a fraction

of the computational time required (Figure 1). Therefore, we opted to

report all subsequent results at a bin value of 20.

3.1.2 | Accuracy of fixed effects and random
effects

For each of the fixed effects, the average (over 50 repeats) estimated

parameters were comparable to the ground truth (see Figure 2a). The

five fixed effects showed a similar pattern of variation around the mean

with no obvious outliers. Similarly, for the random effects, we observed

comparable average (over 50 repeats) estimated parameters to the sim-

ulated ground truth (see Figure 2b). Between the three random effects,

the family effect F had the least amount of variation in the estimated

parameters, while the subject effect S and the unmodeled error term

E had relatively larger variation in the estimated parameters across

the 50 repetitions. We did note that the family effect F had relatively

larger variation around the ground truth at larger values.

3.2 | Simulation 2: Comparison with fitlme

When we compared the fixed-effects estimates from FEMA to that

obtained from calling the fitlme function in MATLAB, we found that the

results were identical with similar point estimates and standard errors

for all imaging variables for all five fixed effects (Figure S5). When

examining the random effects, the point estimates for all imaging vari-

ables for the three random effects were comparable between FEMA

and fitlme, albeit some differences in the 95% confidence interval range,

which is likely because of different methods of estimation of the confi-

dence intervals (nonparametric wild bootstrap in FEMA vs. ML-based

calculation in fitlme; Figure S6). We additionally quantified the squared

difference between the parameter estimates from FEMA and fitlme and

summed it across fixed (or random) effects and outcome imaging vari-

ables. This total squared difference for the fixed effects was 9.2573e-

06 showing that the point estimates were identical, and for the random

effects was 7.14 showing small differences in the point estimates (as is

visually evident from examining Figure S6).

3.3 | Simulation 3: Performance comparison

3.3.1 | Computational time as a function of number
of observations

We compared the time taken by FEMA and MATLAB to estimate

model parameters (slopes for the fixed effects and variance compo-

nents of the random effects) for 50 imaging variables as a function of

number of observations. Generally speaking, FEMA was several times

faster than the fitlmematrix implementation in MATLAB. For the F and

E model specification, FEMA was between 3.8 and 12.6 times faster
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than MATLAB's fitlmematrix and between 2.1 to 8.7 times faster than

the fitlmematrix called in parallel (Figure 3a). For the S and E model,

FEMA was between 5.6 and 9.5 times faster than fitlmematrix and

between 1.3 and 2.4 times faster than fitlmematrix called in parallel

(Figure 3b), and for the F, S, and E model, FEMA was between 14 and

27.1 times faster than fitlmematrix and between 2.2 and 3.7 times fas-

ter than fitlmematrix called in parallel (Figure 3c). Therefore, in all sim-

ulation circumstances, FEMA outperformed a standard LME solver in

terms of computational time, and the computational speed of FEMA

(run without parallel processing) was evident even when the standard

LME solver was called in a parallel computing environment. When we

examined the time taken by FEMA for other random effects configu-

ration, we found a similar trend with the maximum time of about 5.3 s

for 20,000 observations (for the F, A, S, and E model) (Figure S7).

Therefore, even after including the additive genetic effect as a random

effect in FEMA, we did not see a substantial increase in computational

time for a large number of imaging variables.

3.3.2 | Computational time as a function of number
of imaging variables

When we examined the computational time needed by FEMA and

MATLAB as a function of increasing number of imaging variables,

we observed that the amount of time taken by FEMA was more or

less steady while the time taken by MATLAB increased linearly

with increasing number of imaging variables (Figure 4). This is

likely due to the fact that fitlmematrix is not designed to handle

multiple imaging variables and therefore there is a computational

overhead when repeatedly calling fitlmematrix using a loop; this is

not the case with FEMA because it is designed to handle a large

number of outcome variables with vectorized operations that scale

well to a large number of outcome variables. We also found a simi-

lar linear increase in computational time when calling fitlmematrix

in parallel (Figure 4), with FEMA being several times more efficient

(between 40.2 and 1020.6 times faster than fitlmematrix and 7.3

and 125 times faster than fitlmematrix being called in parallel).

Extrapolating from this linear model, the time taken by fitlmematrix

to fit a mixed-effects model for 558,718 voxels for 10,000 obser-

vations would be about 5.4 days, while parallel implementation of

fitlmematrix would take about 15.4 h. On the other hand, the

extrapolated timing for FEMA to fit the same model would be

about 3.4 min.

3.4 | Simulation 4: Type I error rate

On comparing the type I error rate for fixed effects estimation

between a standard mixed model solver and FEMA, we observed

comparable number of FPs across different threshold values of false

F IGURE 1 The effect of binning on mean squared error (MSE) of parameter estimates of fixed effects. We simulated 2000 imaging variables
with five fixed effects (10,000 observations). Then, using 20 different bin values, we estimated the parameters using FEMA and calculated the
mean (over 50 repeats) squared error of the parameter estimates. The dotted black lines in panel (a) indicate the total MSE (across the 2000
imaging variables) for each of the five fixed effects, while the solid orange line indicates the average of this total MSE across the five fixed effects.
We observed that the minimum total MSE was at a bin value of 100 (indicated by the green line), while a bin value of 20 (indicated by the purple
line) showed a comparable MSE; panel (b) shows the computational time required for each bin value (averaged across 50 repeats); the
computational time for bin value of 20 (purple line) is a fraction of computational time required for bin value of 100 (green line). Note that the x-
axis is nonlinear for both the panels.
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positive rates, demonstrating that FEMA did not have any inflation of

FPs. We observed comparable values to the expected average num-

ber of FPs (see Table 1), and these numbers were similar to the ones

reported by fitlmematrix (see Figure S8 for a detailed look at the num-

ber of FPs at 5% false-positive rate threshold).

3.5 | Simulation 5: Effect of number of
observations

When examining the differences between ground truth and estimated

parameters from FEMA and fitlmematrix as a function of number of

observations, we found that the fixed effects estimates converged to

ML-based estimates at a few hundred observations (Figure S9), while

for the random effects variance parameter estimates, FEMA estimates

converged to ML-based estimates at a few thousand observations

(Figure S10).

3.6 | Simulation 6: Type I error rate as a function
of bin values

On examining the type I error rate, we did not find any influence of

the bin value on the number of FPs. On average, for every bin, the

number of FPs was comparable and did not exceed the 5% FP rate

threshold (Figure S11).

F IGURE 2 Comparison of estimated parameters against the simulated ground truth for (a) fixed effects and (b) for random effects. The light
purple and light green dots indicate the estimated parameters for 2000 imaging variables at 50 different repetitions for the fixed and random
effects respectively, while the dark purple and dark green dots indicate the average (over 50 repetitions) of these parameters for the 2000

imaging variables for the fixed and random effects respectively.
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3.7 | Empirical application

3.7.1 | Cortical thickness

ROI-level cortical thickness

When examining the ROI-level cortical thickness data, we found com-

parable slope estimates and comparable 95% confidence intervals

between MATLAB's fitlmematrix and FEMA (at a bin value of 20) for

both the cross-sectional effect of age (agerecruitmemt, Figure S12) as

well as the longitudinal effect of in age (agedelta, Figure S13). Although

the random effects were not of interest in this study, we compared

the variance estimates and the confidence intervals of the random

effects with fitlmematrix derived estimates for completeness. The p-

values for most ROIs survived a Bonferroni correction for multiple

comparison correction (α¼0:05=68) except for bilateral temporal

pole, left superior temporal, bilateral precuneus, right parahippocam-

pal, bilateral entorhinal, and left caudal middle frontal (for

agerecruitment), and bilateral entorhinal and right temporal pole (for

agedelta). Similarly, for random effects, the FEMA estimated variance

components and their confidence interval values were comparable to

the estimates from MATLAB (Figure S14). The general pattern

F IGURE 3 Comparison of time
taken to fit different models using
FEMA (green), fitlmematrix in
MATLAB (orange), and
implementation of fitlmematrix using
parallel computing (purple) as a
function of increasing number of
observations for 50 imaging
variables and five fixed effects. The

random effects included in each
model are indicated at the top of
each panel: family effect F, subject
effect S, and the unmodeled
variance term E.

F IGURE 4 Comparison of time
taken by FEMA (green), MATLAB's
fitlmematrix (orange), and
implementation of fitlmematrix using
parallel processing (purple) as a
function of increasing number of
imaging variables for fitting a model
with 10,000 observations, five fixed
effects, and the family effect F,
subject effect S, and the unmodeled
variance term E, specified as random
effects. Note that the y-axis is
nonlinear.

TABLE 1 Comparison of type I error rate for fixed effects
estimation between FEMA and fitlmematrix function from MATLAB.

Avg. #FP
α = 0.05

Avg. #FP
α = 0.01

Avg. #FP
α = 0.001

Avg. #FP
α = 0.0001

FEMA 246 49 5 1

fitlmematrix 258 53 6 1

Note: We performed 100 repetitions of simulating 10,000 observations

for 50 imaging variables, with each imaging variable associated with 100 X

variables (having zero effect); family and subject effects were specified as

random effects. At each threshold of false positive (FP), we counted the

number of times we observed a statistically significant p value at that

threshold and summed it across the 50 imaging variables to get total FP

for every repeat; the reported counts are averages of the total FPs across

100 repeats, rounded to nearest infinity (i.e., using ceil function).
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showed (relatively) small variances being explained by the family

effect and a larger contribution (albeit with larger confidence inter-

vals) of the subject effect for all ROIs. The unmodeled variance term

was relatively small for most regions.

Vertex-wise cortical thickness

Vertex-wise analysis of cortical thickness revealed widespread nega-

tive effect of both cross-sectional effect of age as well as longitudinal

effect of age on cortical thickness. The peak negative effect of age

was in the bilateral rostral middle frontal regions and the left isthmus

cingulate region. A small fraction of vertices (812 vertices out of the

total 18,742) showed a small positive effect of age and these were

primarily located in the bilateral precentral regions (Figure S15). The

longitudinal effect of age was prominently distributed across most of

the cerebral cortex and was predominantly negative, with the largest

negative effect size in bilateral cuneus and precuneus regions. A small

number of the vertices (349 vertices out of the total 18,742) showed

a positive effect of the longitudinal effect of age and these were pri-

marly located in the bilateral precentral regions (Figure 5). Performing

whole-brain vertex-wise analysis (for 6314 subjects with two data

points and across 18,742 vertices) with F, S, and E model random

effects specification with FEMA took about 11 s.

3.7.2 | Connectome-wide functional connectivity

On examining the effect of age on connectome-wide pairs of connec-

tivity values derived from resting state fMRI, we found both positive

and negative effects of the cross-sectional effect of age, although the

effects were small with the Z scores ranging between �4.05 and 4.78.

About 55% of the 169,071 pairs of connectivity values showed a posi-

tive effect of the cross-sectional effect of age, and the effects were

well distributed across the atlases and parcellation communities

(Figure S16). On the other hand, the longitudinal effect of age was

more pronounced in both the positive and the negative direction, with

Z scores ranging between �23.70 and 20.07. About 59% of the

169,071 pairs of connectivity values showed a negative effect of the

longitudinal effect of age with effects well distributed within and

across the atlases/parcellation communities (Figure 6). Performing

connectome-wide analysis (for 4994 subjects with two data points

and across 169,071 pairs of connectivity values) with F, S, and E ran-

dom effects specification with FEMA took about 54 s.

4 | DISCUSSION

In this paper, we have introduced a novel method, FEMA, for perform-

ing mixed-effects analyses for whole-brain large-scale samples. In the

first part of the paper, we have described the problem statement and

how FEMA finds the solution to estimating model parameters in a

computationally efficient manner. Next, through extensive simula-

tions, we have shown that the estimates (for both fixed effects as well

as random effects) obtained from FEMA are comparable to simulated

ground truth as well as estimates obtained from a standard ML-based

solver, at a fraction of computational time. Importantly, these simula-

tions revealed that the computational performance of FEMA was effi-

cient even when compared against a standard LME solver called

within a parallel computing environment. Further, we have shown that

F IGURE 5 Unthresholded vertex-wise Z scores for the longitudinal effect of age (agedelta), performing whole-brain vertex-wise analysis using
FEMA took about 11 s.
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FEMA performs these estimations without any inflated type I error

rate. Finally, in the third part of this paper, we have demonstrated

three applications of FEMA – first, at an ROI level, where we exam-

ined the cross-sectional and longitudinal effect of age on cortical

thickness; second, at whole-brain vertex-wise level, of the effect of

age on cortical thickness; and finally, at connectome-wide level, of the

effect of age on functional connectivity derived from resting state

functional MRI. These demonstrate the applicability of FEMA on three

types of data formats – summary tabulated data, surface data

(or GIfTI images), and high-dimensional tabular data (connectome-

wide). In addition, as previously mentioned, we have demonstrated

the use of FEMA with voxel-wise data or NIfTI images (Palmer

et al., 2022), and non-imaging tabular data (Smith et al., 2023).

FEMA achieves computational efficiency owing to the following

factors: (i) implementation of a sparse random effects design; (ii) an

efficient binning strategy that speeds up estimation of fixed effects;

(iii) using a method of moments estimator for random effects; and

(iv) use of vectorized operations for scalability across variables. While

this is not the first time that method of moments has been used for

estimating model parameters in a mixed model setting (see,

e.g., (Gao, 2017; Gao & Owen, 2017, 2020) and some of the refer-

ences cited therein), to the best of our knowledge, this is the first time

that such a scalable solution has been presented in the context of

solving mixed models for neuroimaging data in large samples. Our

solution additionally circumvents the need for parallel computing or

high memory requirements. Through the results of simulation 1, we

F IGURE 6 Distribution of Z-scores for the longitudinal effect of age (agedelta) across 582 ROIs; the ROIs were defined using a combination of
Desikan-Killiany atlas, Destrieux atlas, Gordon parcellation, and the aseg atlas; the Gordon parcellation is further divided into 13 communities;
performing connectome-wide analysis using FEMA took about 54 s.
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have shown that using a small number of bins (such as bin value of

20) is adequate for the accurate estimation of the fixed and random

effects, while keeping the computational time low. Further, through

simulations 1 and 2, we have shown that these estimates are similar

to the simulated ground truth as well as comparable to estimates from

a standard ML-based mixed model solver. In terms of computational

efficiency, through simulation 3, we have shown that the time

required by FEMA is a fraction of the time taken by MATLAB's built-

in functions. Even when engaging parallel computing for MATLAB's

fitlmematrix, the time taken by FEMA was always lesser than

MATLAB, demonstrating the benefits of the implementation in FEMA.

In addition, the results of simulation 3 also show that the time taken

by FEMA does not grow appreciably with increasing number of

imaging variables (a benefit of vectorized operations that scale well to

multiple imaging variables), thereby allowing fast and efficient whole-

brain analyses to be completed in a matter of seconds to minutes as

opposed to prohibitively long computational time using a standard

solver. We also note that FEMA is computationally efficient even

when adding genetic relatedness as a random effect. While it may

appear (from Figures 3 and 4) that it may be possible to exploit parallel

processing to an extent that solving whole-brain mixed models no lon-

ger takes a long time, we highlight two aspects of this comparison:

one that when benchmarking the performances, we purposefully used

a highly powered parallel configuration with a large amount of com-

puting resources with 20 parallel workers and 2 threads per worker

and large memory resources; this is more computational power than is

available to many groups and thus depending on the computational

resources that a researcher has (and other factors like whether there

are additional processes running), this time may be substantially lower

than practically realizable for many labs. Second, running a large num-

ber of parallel jobs is also memory intensive and thereby requires the

availability of such computing facility. Recently (Maullin-Sapey &

Nichols, 2022) developed the “Big” Linear Mixed Models (BLMM)

toolbox which uses a combination of novel closed form solutions, vec-

torized computing, and distributed processing on clusters (while keep-

ing the memory requirement in check) for solving mixed models.

While we have not compared the computational performance of

FEMA with BLMM, we highlight that FEMA is fast and computation-

ally efficient and one could complete whole-brain analyses on a regu-

lar laptop/workstation within a short time (as long as the data fits in

the memory), thereby circumventing having dedicated computing

clusters for such analyses. Finally, we note that these computational

advantages do not come at the cost of an inflated type I error, as dem-

onstrated by the results of simulation 4 and simulation 6, where we

saw that the average type I error rate was controlled at 5%.

Applying FEMA to real ABCD Study® data revealed interesting

patterns of the cross-sectional and longitudinal effect of age on corti-

cal thickness and functional connectivity values. The comparative

results from our application of FEMA to the ROI-level cortical thick-

ness data and fitting the same model in MATLAB confirmed

(in conjunction with the simulation results) that the parameter esti-

mates from FEMA (at a bin value of 20) were accurate and similar to

the estimates using an ML estimator in MATLAB. On further

examining the vertex-wise distribution of the effect of age, we found

widespread negative effect of both the cross-sectional effect of age

as well as longitudinal effect of age. Similar findings of the negative

effect of age on cortical thickness have been previously reported (see,

e.g., (Brown & Jernigan, 2012) for a review). A recent comprehensive

analysis of cortical thickness changes across the lifespan found that

cortical thickness across most brain regions achieved a maximum

value between 3 and 10 years of age, followed by a decline in cortical

thickness (Frangou et al., 2022). However, these findings are not with-

out contradiction, and as reviewed and discussed in (Walhovd

et al., 2017), multiple factors can lead to differing results. We hope

that FEMA applied to large-scale dataset will allow careful modeling

of various fixed and random effects, leading to more consistent find-

ings in a dramatically shorter time. In contrast to cortical thickness,

when we applied FEMA to connectome-wide pairs of functional con-

nectivity values, we found both positive and negative effect of cross-

sectional and longitudinal effect of age. A recent study (Edde

et al., 2021) synthesized the functional connectivity literature across

the human lifespan and found that adolescence was marked with

more subtle changes in brain organization. It was also interesting to

note that both cortical thickness and functional connectivity values

had a stronger association with longitudinal age than with cross-

sectional age. Since the goal of the current manuscript was merely to

demonstrate the utility of FEMA, we have not provided an in-depth

examination of these fixed effects or examined the spatial patterns of

different random effects. Examining and comparing these patterns

of changes in the brain during these transitory adolescent periods will

lead to insights into the neurobiology of brain development and may

possibly also shed new light on normal and pathological brain

trajectories.

4.1 | Limitations and future directions

FEMA allows analyzing mixed models in a computationally efficient

manner that opens new possibilities of performing large-scale studies

at fine-grained voxel-level or vertex-level data. The FEMA code is

highly parallelizable where computation across bins can be spread

across multiple parallel workers, thereby allowing almost real-time

processing (see Implementation details section in the supplementary

materials). We also note that FEMA has wrapper functions allowing

for permutation testing using the PALM toolbox (Winkler et al., 2014)

and calculation of TFCE statistics (Smith & Nichols, 2009) for both

voxel-wise and vertex-wise data. However, our work is not without

its limitations. First, FEMA uses a moment-based estimator and there-

fore is based on the law of large numbers. While we have performed a

simulation examining the effect of number of observations on param-

eter recovery and our simulations suggest that a few hundred samples

are adequate for having comparable fixed effect estimates to ML-

based solver (Figure S9), we cannot give a general recommendation

on how large sample sizes should be, as this would depend on the

intricacies and nuances of the data itself. Since our implementation of

FEMA additionally includes ML-based estimation, it can be considered
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as a safer choice, albeit at the cost of increased computational time.

Second, the current implementation of FEMA assumes that the out-

come variables are continuous variables (i.e., FEMA currently cannot,

e.g., account for categorical outcome variables). Third, in its current

form, we do not account for the covariances between different ran-

dom effects (although it is possible to do so). Fourth, we only estimate

the variance components of the random effects and not the estimates

of best linear unbiased predictors of random effects at each level of

the grouping variables. Finally, we note that the calculation of the p

values for the fixed effects is based on the standard normal

distribution – we assume that since the sample size is large, there

would be no difference between the p values derived from a standard

normal distribution versus a T distribution with n�k degrees of free-

dom (where n is the sample size and k are the number of fixed effects;

this ‘residual’ degrees of freedom is the default method of calculating

p values in MATLAB). However, this issue is not without differing

points of view and we point the readers to (Kuznetsova et al., 2017;

Maullin-Sapey & Nichols, 2021, Maullin-Sapey & Nichols, 2022) and

the references cited therein for a discussion on degrees of freedom

and calculating p values in linear mixed models.

Future work will explore the application of FEMA on large-scale

datasets like the ABCD Study® and UK Biobank where we will explore

different modeling strategies and hope to uncover new insights about

the changes in multimodal properties of the brain. We have previously

demonstrated the equivalence of FEMA and OpenMX and applied

FEMA on cognitive variables from the ABCD Study® (Smith

et al., 2023). Similarly, in (Palmer et al., 2022), we have shown the

applicability of FEMA on voxel-wise age-related changes in white

matter and subcortical regions. In a different use-case of FEMA, in

(Zhao et al., 2023), we show how the beta estimates for the fixed

effects from FEMA could be used for the next steps in the study

(in this case, for eventual prediction of behavioral outcome). Depend-

ing on the study dataset, future FEMA applications will additionally

incorporate genetic similarity between the study participants, account

for the shared in-utero environment in twins, and other factors like

shared home environment; these, and examination of the spatial pat-

terns of different random effects are exciting avenues to explore, that

will form the basis of future FEMA applications. In addition, we are

currently incorporating another estimator for random effects into

FEMA. This is the iterative GLS (IGLS) estimator proposed by Gold-

stein (1986). The formulation is similar to Equation (4) with the key

difference that the random effects are estimated using the GLS solu-

tion (which we use for estimating the fixed effects). The procedure is

repeated (hence the name iterative) until the coefficients do not

change appreciably. Goldstein (1986) showed that in the normal case,

using IGLS would be equivalent to using ML for estimation of the ran-

dom effects. This method is slower than using a single iteration of

MoM but is faster than using ML. Further details on the IGLS can be

found in various sources (see, e.g., (Goldstein, 2004, chap. 2;

Goldstein, 1986)) and details of a REML equivalent of the IGLS, the

restricted IGLS, can be found in (Goldstein, 1989). We also note, in

passing, that an implementation of the IGLS was previously used

in the context of neuroimaging variables in (Lindquist et al., 2012). We

are also working on extending FEMA to perform genome-wide associ-

ation analyses, which will enable performing streamlined imaging-

genetics analyses. In parallel, FEMA is being packaged and deployed

as part of the Data Exploration and Analysis Portal (DEAP) 2.0, which

will enable users to examine and perform analyses on the ABCD

Study® data via a graphical user interface. Additionally, deploying the

parallel version of FEMA on DEAP 2.0 will speed up the computation

to the extent that it will enable users to test hypotheses in real time.

Finally, FEMA is available to the public as a MATLAB-based toolbox

with added applications that allow volume and surface

visualizations – combining this with the Multi-Modal Processing

Stream (MMPS) package (Hagler et al., 2019) will allow the users to

have an end-to-end pipeline that allows image preprocessing, mixed

model analyses, as well as visualization of results.

4.2 | Usage notes

Here, we briefly recap the most salient information for using FEMA

(more detailed description of these points can be found under the

heading Implementation details in the Supplementary Materials).

Currently, the following random effects are supported within FEMA:

family effect, subject effect, additive genetic effect, dominant genetic

effect, maternal effect, paternal effect, twin effect, and the home

effect. Within FEMA, there are two estimators available for estimating

these variance components: an MoM estimator and an ML estimator.

Generally speaking, if the random effects by themselves are not partic-

ularly of interest, we suggest using MoM estimator as it will be signifi-

cantly faster to compute, without sacrificing the accuracy of the fixed-

effects estimates; on the other hand, if the random effects are of inter-

est, a user may want to use ML to estimate the variance parameters of

the random effects. Additionally, the accuracy of fixed effects will be

determined by the number of bins. As shown in the results on simu-

lated data (Figure S5) and from the results of ROI-level cortical thick-

ness data (Figures S12 and S13), a bin value of 20 is a reasonable

choice that balances computational time and accuracy of the fixed

effects. On a related note, the number of iterations can, theoretically

speaking, improve the estimation accuracy of the coefficients, although

in practice we have only seen minor changes in the estimates with

higher number of iterations. A final usage information is the reporting

of the random effects – we report the variance components as propor-

tions of the total residual variance and separately report the total resid-

ual variance. Therefore, interested users have the option of scaling the

variance components to their original estimated values.
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