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Quantitative Decoding of Interactions in
Tunable Nanomagnet Arrays Using First
Order Reversal Curves
Dustin A. Gilbert1, Gergely T. Zimanyi1, Randy K. Dumas1, Michael Winklhofer2, Alicia Gomez3,
Nasim Eibagi1, J. L. Vicent3,4 & Kai Liu1

1Dept. of Physics, University of California, Davis, California, 95616, USA, 2Dept. of Earth & Environmental Sciences, Ludwig-
Maximilians-Universität München, Germany, 3Dept. Fisica Materiales, Universidad Complutense, 28040 Madrid, Spain,
4IMDEA-Nanociencia, Cantoblanco 28049, Madrid, Spain.

To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically
impacting their technological acceptance. This paper reports the experimental, numerical and analytical
investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC)
technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed
features: a shift of the non-interacting FORC-ridge at the low-HC end off the local coercivity HC axis; a
stretch of the FORC-ridge at the high-HC end without shifting it off the HC axis; and a formation of a
tilted edge connected to the ridge at the low-HC end. Changing from flat to Gaussian coercivity
distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest
neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach
provides a comprehensive framework to qualitatively and quantitatively decode interactions in
nanomagnet arrays.

N
anomagnet arrays are basic building blocks1 for key technologies such as ultrahigh density magnetic
recording media2–4, magnetic random access memory (MRAM)5,6, and logic devices7–9. Interactions
within the arrays critically affect the functionalities of the nanomagnets as well as enable new device

concepts. For instance, dipolar interactions may trigger an analog memory effect in nanowire arrays10, enable
digital computation in magnetic quantum-dot cellular automata systems7,8,11, lead to frustrations in artificial ‘‘spin
ice’’12–14, or adversely affect thermal stability and switching field distribution in magnetic recording media or
MRAM elements5,15–17. Probing and managing these interactions is often difficult because they are long-ranged,
anisotropic, and configuration-dependent17.

The first-order reversal curve (FORC) method18,19 has provided detailed characterization for a variety of
magnetic20–27 and other hysteretic systems28,29. However, a coherent framework to interpret the features of the
FORC diagrams and extract quantitative information is still lacking despite decades of effort by numerous groups.
In this work, using the FORC method we have quantitatively investigated tunable interactions in model systems
of single domain nanomagnet arrays. With mean-field level simulations, supplemented with a cluster extension,
we have reproduced all features and trends of the experimental FORC diagrams quantitatively and identified their
physical origins. Our approach decodes interactions in nanomagnet arrays, even disordered arrays, and also
presents a pathway to evaluate (de)stabilizing interactions in other hysteretic systems.

Results
Rectangular arrays of polycrystalline Co ellipses were fabricated with varying center-to-center spacing by mag-
netron sputtering, in conjunction with e-beam lithography and lift-off. Details are presented in Methods. The
ellipses have major/minor axes of 220/110 nm, with a structure of Ta(1 nm)/Co(9 nm)/Ta(1 nm), forming 50 3

50 mm2 arrays. In arrays A1/2/3 the minor-axis spacings of 150/200/250 nm are less than the major-axis spacing
of 500 nm. Thus the mean dipolar interactions are demagnetizing, favoring anti-parallel alignment. In arrays B1/
2/3 the minor-axis spacing of 500 nm exceeds the major-axis spacings of 250/300/350 nm. Therefore, the mean
dipolar interactions are magnetizing, favoring parallel alignment. Scanning electron microscopy (SEM) and
magnetic force microscopy (MFM) images, at remanence after DC demagnetization, of arrays A1 and B1 are
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shown in Figs. 1 and 2, respectively. MFM image contrast indicates
the out-of-plane stray fields and confirms the ellipses’ single domain
state.

FORC measurements were performed to obtain magnetization
M(H, HR) under different reversal field HR and applied field
H. The FORC-distribution is then extracted18, r H, HRð Þ:

{
1

2MS

L2M H, HRð Þ
LHLHR

, where MS is the saturation magnetization.

In loose analogy to the Preisach model, the FORC-distribution in
certain simple cases can be interpreted as the 2-dimensional dis-
tribution of elemental hysteresis loops with unit magnetization
called hysterons on the (H, HR) plane, or on the corresponding
(HC, HB) plane, defined by local coercivity HC 5 (H-HR)/2 and
bias/interaction field HB 5 (H1HR)/2.

Good agreement between measured and simulated FORC-distri-
butions was obtained for all studied arrays [e.g., Figs. 1(c) and (d) for
array A2]. All demagnetizing FORCs A1/2/3 exhibited a ridge with
the high-HC end on the HC axis and the low-HC end shifted in the
1HB direction30. Increasing interactions in A3RA2RA1 increased
the low-HC shift and the length of the ridge. In addition, an edge
emerged from the low-HC end towards negative HB, highlighted by
the arrows, forming a ‘‘wishbone’’ or boomerang structure24. A nega-
tive feature is observed at negative HB values near the high-HC end.
Similarly, FORC distributions for the magnetizing arrays also exhibit
a ridge with the high-HC end on the HC axis, but with the low-HC end
shifted towards 2HB [e.g., Figs. 2(c) and (d) for array B2]. Increasing
interactions again increase the low-HC shift, but reduce the length of
the ridge30. A negative feature below the ridge is more prominent
than that in the demagnetizing case.

Non-interacting case. A FORC gives a non-zero contribution to
r(H, HR) only if dM/dH along the FORC depends on HR. We first
show that in the non-interacting case r coincides with the coercivity
distribution D(HK), spread along the HC axis. Indeed, particle Pi with
coercivity HK

i down-flips at Hdn
i 5 2HK

i and up-flips at Hup
i 5 HK

i.
Therefore, on a FORC starting at HR . 2HK

i, Pi starts out up-flipped
and remains so, not contributing to dM/dH nor r.

In contrast, on FORC(H, HR 5 2HK
i), Pi is the last to down-flip

along the major loop, and has the highest coercivity among the
down-flipped particles. Therefore, Pi is the last to up-flip as H
increases past HK

i on the same FORC, causing a dM/dH . 0 jump.
Since this dM/dH jump is unmatched by the neighboring FORC(H,
HR . 2HK

i), dM/dH exhibits a dependence on HR, making d(dM/

dH)/dHR non-zero. dM/dH increases as HR decreases, making a pos-
itive contribution to r at (H 5 HK

i, HR 5 2HK
i).

For all subsequent FORCs at HR , 2HK
i, Pi starts out down-

flipped but still up-flips at H 5 HK
i. The dM/dH jumps on these

FORCs are matched since they occur at the same field on each
FORC(H, HR , 2HK

i). Thus dM/dH is independent of HR, and
doesn’t contribute to r. This reasoning highlights that only dM/dH
jumps on individual FORCs that are unmatched by neighboring
FORCs contribute to r. Each particle Pi contributes to r only once,
at (H 5 HK

i, HR 5 2HK
i) or equivalently at (HC 5 HK

i, HB 5 0). The
contributions of all particles gives rise to a ridge along the HC (HR 5

2H) axis, which reflects D(HK).

Interacting case. Next, we introduce interactions between nano-
magnets on the mean-field level by including an interaction field
Hint 5 aM(H), where a,0 for demagnetizing systems and a.0 for
magnetizing ones21. Fig. 3(a) shows a sequence of FORCs for a
demagnetizing system with a rectangular D(HK), and a zoom-in
view of the boxed region (right panel). The three FORC segment-
pairs (1)/(2)/(3) show that the last dM/dH jump on each FORC(H,
HR 5 2HK

i-aM(HR)) - caused by the last up-flipping particle P(HK
i)

- is unmatched by the neighboring FORC(H, HR . 2HK
i-aM(HR)).

Fig. 3(b) shows that with interactions the unmatched dM/dH
jumps still generate the ridge, but at shifted HB values.
Importantly, on the mean-field level all particles experience the same
interaction field and thus the order of flips continues to be governed
by the order of the coercivities: along the major loop the particles
down-flip in the order of their coercivities, lowest (highest) coercivity
particle P(HK

min) first [P(HK
max) last]. Starting at the low-HC end, the

lowest coercivity particle P(HK
min) down-flips at Hdn

min 5 2HK
min-

aMS, as no other particles have flipped yet: M(Hdn
min) 5 MS.

Increasing H along FORC(H, HR 5 Hdn
min), P(HK

min) up-flips at
Hup

min 5 HK
min-aMS, causing a positive jump dM/dH . 0 as shown

by the lower FORC(H, HR 5 Hdn
min)-segment of pair (1). This jump,

caused by P(HK
min), is absent on the upper FORC(H, HR . Hdn

min)-
segment and is thus unmatched, contributing to r at (H 5 HK

min-
aMS, HR 5 2HK

min-aMS), or similarly at (HC 5 HK
min, HB 5 2aMS),

defining the low-HC end. These flipping fields are shifted from their
non-interacting values, as shown by the arrow set (1) in Fig. 3(b).
Since P(HK

min) defines the low-HC end of the FORC-ridge, one con-
cludes that interactions shift the low-HC end of the FORC-ridge to
the 1HB direction by 2aMS (recall a , 0), but leave its HC coord-
inate un-shifted at HC 5 HK

min.

Figure 1 | Demagnetizing Arrays: (a) SEM and (b) MFM image of the DC-

demagnetized A1 array. Dashed ovals outline single ellipses, while the

dashed box outlines an example of the checkerboard pattern. (c)

Experimental and (d) simulated FORC distributions for the A2 array.

Figure 2 | Magnetizing Arrays: (a) SEM and (b) MFM image of the

DC-demagnetized B1 array. Dashed ovals outline single ellipses.

(c) Experimental and (d) simulated FORC distributions for the B2 array.

www.nature.com/scientificreports
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FORC-segment pairs (2)/(3) in Fig. 3(a) illustrate the up-flip of
higher coercivity particles P(HK

i). P(HK
i)s create unmatched dM/dH

jumps on FORCs where they were the last to down-flip at Hdn 5

2HK
i-aM(HR) [vertical arrows in Fig. 3(b)] and also are the last to

up-flip at Hup 5 HK
i -aMS [horizontal arrows in Fig. 3(b)], since

M(Hup
i) 5 MS when P(HK

i) up-flips.
The high-HC end of the FORC-ridge is defined by P(HK

max) that is
the last to down-flip when the rest of the system is already negatively
saturated (M 5 2MS), thus Hdn

max 5 2HK
max-(2aMS). P(HK

max) up-
flips along the FORC(H, HR 5 Hdn

max) only after the rest of the
system is positively saturated: Hup

max 5 HK
max-aMS. Accordingly,

the unmatched dM/dH jumps caused by P(HK
max) contributes to r

only at (H 5 HK
max-aMS, HR 5 2HK

max1aMS), or similarly at (HC 5

HK
max-aMS, HB 5 0), defining the high-HC end. As observed before,

the high-HC end of the FORC-ridge remains on the HC axis24, but
stretched along the HC axis by 2aMS (a,0).

Note that interactions shift the FORC ridge feature in H uniformly
[Fig. 3(b)], i.e., the resultant projection of FORC distribution onto
the H-axis is only displaced from its intrinsic values, but not dis-
torted. This H-projection therefore mirrors the non-interacting case,
where HUp 5 HC 5 H, reflecting the intrinsic coercivity distribution,
simply displaced by 2aMS. Thus the intrinsic coercivity distribution
can be - without distortion from interactions – directly identified
from the FORC distribution.

Figs. 1(c,d) and 3(b,c) show that besides the ridge, r exhibit an
edge as well with interactions27. As discussed earlier, in the absence of
interactions, the dM/dH jumps along a FORC(H, HR 5 2HK

i) are
matched by the jumps on the subsequent FORC(H, HR , 2HK

i)s,
not contributing to r. The arrows of Fig. 3(a) show that the interac-
tions destroy this matching specifically at the low-HC end by shifting
the first up-flip field Hup

min of each FORC, caused by P(HK
min), by

2aM(HR). These shifts make the dM/dH jumps misaligned, see
FORC-segment-pairs (4) and (5) (above and below), thus contrib-
uting to r at (H 5 HK

min-aM(HR), HR). These unmatched jumps give
rise to the edge in Fig. 3(c). The end-points of the edge are (H 5

HK
min-aMS, HR 5 2HK

min-aMS) and (H 5 HK
min1aMS, HR 5

2HK
max1aMS), or alternatively (HC 5 HK

min, HB 5 2aMS)
and (HC 5 (HK

min1HK
max)/2, HB 5 aMS1(HK

min-HK
max)/2).

Accordingly, the tilt and asymmetry of the edge provide a direct
measure of the width of coercivity distribution D(HK) 5 HK

max-

HK
min. In the extreme case of nearly identical nanomagnets with

D(HK) 5 HK
max-HK

min<0, the edge is vertical in the HC –HB plane,
at HC 5 HK and HB within 6 aMS, as observed experimentally in Ni
nanowire arrays10.

In short, on the mean-field level the FORC-distribution of a sys-
tem with demagnetizing interactions exhibits an edge and a ridge,
shifted by the unmatched first and last dM/dH jumps along each
FORC. The FORC-distribution vanishes between them for the con-
sidered flat coercivity distribution, because jumps between the first
and the last jumps along each FORC are matched by jumps on the
neighboring FORCs. Here, the matched jumps are not caused by the
same particles, as in the non-interacting system, but rather by dif-
ferent particles whose up-flipping fields were shifted into alignment
by the interactions. Still, the jumps are matched because the values of
the aligned jumps are the same on neighboring FORCs for a flat
distribution D(HK). Visibly, the flat coercivity distribution on the
mean-field already reproduces most features of the measured
FORC-distribution.

To improve our model we introduce a more realistic Gaussian
D(HK) to elucidate the origin of the negative features, which repres-
ent a clear distinction between FORC and a literal Preisach inter-
pretation. A Gaussian breaks the matching of jumps as now shown
by examining the set of particles {P(HK

Cent)} around the center of the
coercivity distribution. A P(HK

Cent) particle is the last to down-flip at
HR 5 2HK

Cent, where M(HR) 5 0, and the last to up-flip on the
FORC(H, HR 5 2HK

Cent), contributing to r at (H 5 HK
Cent-aMS,

HR 5 2HK
Cent). On FORC(H, HR , 2HK

Cent)s P(HK
Cent) is no longer

the last to up-flip. On subsequent FORCs, up-flip jumps from dif-
ferent particles get shifted into alignment with this jump. For the flat
distribution, the number of particles shifted into alignment is steady,
making the match complete and thus zero contribution to r.
However, for the Gaussian distribution, the particles shifted into
alignment come from the decreasing slope of the Gaussian, leading
to dM/dH jumps with a decreasing magnitude, providing only a
partial-match and generating a negative contribution to r. Fig. 3(d)
shows the FORC-distribution for a Gaussian model that indeed
develops a negative region specifically tracking the decreasing slope
of the Gaussian, highlighted by the dashed line. Analogous argu-
ments show that a Gaussian D(HK) also bends the ridge and broadens
the edge.

Figure 3 | (a) Schematic illustration of family of FORCs for arrays with a flat coercivity distribution and mean-field demagnetizing interactions,

with bold lines and numbers indicating unmatched dM/dH jumps. Calculated FORC distributions are shown in (b) illustrating the construction of the

ridge and (c) the edge. (d) FORC distribution with the same interactions, but a Gaussian coercivity distribution; emergent negative feature is indicated by

the dashed boundary. Similar panels are shown in (e–h) for the magnetizing case.

www.nature.com/scientificreports
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Nearest-neighbor correlations. The last unaccounted feature of the
measured r is the segmenting of the FORC-ridge into separate low-
HC and high-HC ends, with different amplitudes. To explain this we
include the nearest-neighbor interaction fields Hnn

i(conf) as the first
terms of a systematic cluster-expansion.

Decreasing the field from positive saturation, the weakest coercivity
particles down-flip first. For demagnetizing interactions, Hnn

i(conf) of
these down-flipped particles stabilize their nearest-neighbors in their
up state. Therefore, for a sufficiently narrow D(HK), the magnetiza-
tion decreases towards zero by developing a checkerboard pattern
[Fig. 1(b)]. The checkerboard naturally forms defects where the
sequence of increasing coercivities selects third-nearest neighbor part-
icles to down-flip. Still, the dominant reversal mechanism for nearly
half of the particles is the checkerboard formation: down-flipping with
all-up neighbors. Accordingly, the (nearly) half of the FORC ridge
with HK

i , HK
Cent gets shifted along the 1HB axis by Hnn

i(up), where
Hnn

i(up) is the interaction field for the all-neighbors-up configuration.
Once the checkerboard pattern is formed, the rest of the particles flip
with neighbors in various intermediate configurations. Therefore, the
HK

i . HK
Cent half of the ridge is broken into several pieces, shifted by

varying Hnn
i(conf) fields. Consequently, the nearest neighbor interac-

tions manifest as segmenting of the ridge30.
To reiterate, the demagnetizing interactions (a , 0) (1) shift the

non-interacting FORC-ridge at the low-HC end to the 1HB direction
by 2aMS; (2) stretch the non-interacting FORC-ridge at the high-HC

end along HC by 2aMS without shifting it off the HC axis; and (3)
form a tilted edge connected to the ridge at the low-HC end.
Changing from flat to Gaussian D(HK) distribution (4) produces a
negative feature, bends the ridge, and broadens the edge. Finally, (5)
nearest neighbor interactions segment the FORC-ridge.

Magnetizing interactions. Adapting the above arguments for
magnetizing interactions (a . 0): (1) the low-HC end is shifted in
the 2HB direction, and (2) the high-HC end is compressed without
shifting it off the HC axis [Fig. 3(f)]. (3) Regarding the edge, the first
up-flip along each branch is shifted by interactions in the opposite
direction as the demagnetizing case [Fig. 3(e) right panel]. Therefore,
the first dM/dH jumps are unmatched, decreasing in magnitude with
more negative HR, thus negatively incrementing the FORC, forming a
negative edge [Fig. 3(g)]. Changing from flat to Gaussian D(HK)
distribution (4) the negative edge gets pressed towards the positive
ridge, and the FORC-ridge becomes curved [Fig. 3(h)]. The inclusion
of nearest neighbor terms leads to (5) an avalanche reversal,
collapsing the FORC-ridge to a single-value31.

Quantifying Interaction Fields. Finally, we demonstrate the quan-
titative predicting power of the above considerations. The lowest HK

i,
which is shifted in HB by aMS, is extracted from the FORC ridge by
selecting an HC(threshold) such that 10% of the particles have HK

i ,

HC(threshold), and averaging r over the HC 5 0RHC(threshold)
range. The averaged (dM/dHB)’ are shown in insets of Figs. 4(a)
and 4(b). The HB shift is determined by linearly extrapolating

(dM/dHB)’ at the high jHBj end to zero. The interaction field is
calculated by a finite element method (using the NIST OOMMF
code) for the nearest and next nearest neighbors, and treating the
remainder of the array as point dipoles. The experimental HB shifts
and the calculated interaction fields agree remarkably well (Fig. 4),
confirming the validity of the mean-field description of the FORC-
distribution and its quantitative predictive power, making the FORC
technique a tool to extract numerical values of interaction fields. This
is particularly important for disordered arrays where calculations of
interactions are not easily achievable.

Discussion
In this work, systems of interacting nanomagnets were examined
experimentally, numerically, and analytically, using the FORC
technique. A mean-field analysis based on the concept of unmatched
jumps accounted for all experimentally observed features of the
FORC diagram, including its shifted ridge-and-edge structure and
negative features. The tilting, shifting, and stretching of these struc-
tures were identified as tools to extract quantitative information
about the system, demonstrating the predictive power of the FORC
technique. Construction of the FORC distribution through unmat-
ched jumps, and recognizing the (de)magnetizing interactions as a
particular case of (de)stabilizing interactions, presents an approach
which can be used to evaluate any hysteretic system with the FORC
technique.

Methods
Arrays of Co ellipses were fabricated by DC magnetron sputtering, in a vacuum
chamber with a base pressure of 1 3 1028 Torr and Ar sputtering pressure of 2 3 1023

Torr, on Si (100) substrates, in conjunction with electron beam lithography and lift-
off techniques. Magnetic hysteresis loops were measured at room temperature using
the magneto-optical Kerr effect (MOKE) magnetometer with a 632 nm HeNe laser
having a 30 mm spot-size, capturing the reversal behavior of ,5,000 ellipses32. The
magnetic field was applied parallel to the major axis of the ellipses. Each measurement
was averaged over ,103 cycles at a rate of 11 Hz. The arrays were coated with a 60 nm
ZnS layer to improve the signal-to-noise ratio33. FORC measurements were per-
formed as follows22: from positive saturation the magnetic field is swept to a reversal
field HR, where the magnetization M(H, HR) is measured under increasing applied
field H back to saturation, tracing out a FORC. The process is repeated for decreasing
reversal field HR

30.
Ellipses were modeled as dipoles oriented parallel to their major axes. The inter-

dipole spacing and magnetic moment per dipole in the 100 3 100 array were rep-
resentative of the experimental system. Each dipole i was assigned an intrinsic
coercivity HK

i with a distribution experimentally determined from the sample having
the weakest interactions, A3. The Hint

i dipolar interaction fields at dipole i were
calculated on the mean-field level as aM(H), where a was calibrated such that aMS

equals the analytically calculated Hint at saturation. This mean-field formulation was
extended by the first term of a cluster expansion, representing the nearest neighbor
dipole interaction Hnn

i explicitly: Hint
i 5 aM(H)1Hnn

i. At each field step (DH 5 1Oe)
the total field Htot

i 5 H1Hint
i was compared to HK

i, down-flipping occurred when
H1Hint

i , 2HK
i and up-flipping occurred when H1Hint

i . HK
i, until all dipoles

became stable.
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reversal curve measurements of the metal-insulator transition in VO2: Signatures
of persistent metallic domains. Phys. Rev. B 79, 235110 (2009).

29. Krivoruchko, V., Melikhov, Y. & Jiles, D. Relationship between hysteretic behavior
of magnetization and magnetoresistance in half-metallic ferromagnets. Phys. Rev.
B 77, 180406(R) (2008).

30. Supplemental material includes family of FORCs and FORC distributions for all
arrays, as well as DC-demagnetized configurations for systems with mean-field
and nearest neighbor interactions.

31. Beron, F., Menard, D. & Yelon, A. First-order reversal curve diagrams of magnetic
entities with mean interaction field: A physical analysis perspective. J. Appl. Phys.
103, 07D908 (2008).

32. Dumas, R. K., Gredig, T., Li, C.-P., Schuller, I. K. & Liu, K. Angular dependence of
vortex-annihilation fields in asymmetric cobalt dots. Phys. Rev. B 80, 014416
(2009).

33. Gibson, U. J., Holiday, L. F., Allwood, D. A., Basu, S. & Fry, P. W. Enhanced
Longitudinal Magnetooptic Kerr Effect Contrast in Nanomagnetic Structures.
IEEE Trans. Magn. 43, 2740 (2007).

Acknowledgments
This work was supported by NSF (ECCS-0925626, DMR-1008791, ECCS-1232275) and
BaCaTec (A4 [2012-2]). Work at UCM and IMDEA was supported by the Spanish
MINECO grant FIS2008-06249 and CAM grant S2009/MAT-1726.

Author contributions
D.A.G. obtained the experimental and simulation results, and wrote the first draft of the
paper. G.T.Z. and M.W. participated in the simulation design. R.K.D., A.G., N.E., J.L.V. and
K.L. participated in the experimental design, fabrication and characterization. K.L. and
G.T.Z. designed and coordinated the whole project. All authors contributed to analysis,
discussion and revision of the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Gilbert, D.A. et al. Quantitative Decoding of Interactions in
Tunable Nanomagnet Arrays Using First Order Reversal Curves. Sci. Rep. 4, 4204;
DOI:10.1038/srep04204 (2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4204 | DOI: 10.1038/srep04204 5

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	Figure 1 
	Figure 2 
	Figure 3 
	References
	Figure 4 Calculated (open symbols) and experimentally determined (solid symbols) interaction field for (a) demagnetizing arrays A1/2/3 and (b) magnetizing arrays B1/2/3.



