UC Irvine UC Irvine Previously Published Works

Title

DDRE-50. INVESTIGATING THE ROLE OF LonP1 IN GLIOBLASTOMA TUMOR PROGRESSION

Permalink

https://escholarship.org/uc/item/9ss7r7ff

Journal

Neuro-oncology, 23(Suppl 6)

ISSN

1522-8517

Authors

Douglas, Christopher Bota, Daniela Di, Kaijun <u>et al.</u>

Publication Date

2021-11-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

NEURO-ONCOLOGY

DDRE-50. INVESTIGATING THE ROLE OF LONP1 IN GLIOBLASTOMA TUMOR PROGRESSION

Christopher Douglas¹, Daniela Bota², Kaijun Di¹, Bhaskar Das³, and Javier Lepe¹; ¹University of California, Irvine, Irvine, CA, USA, ²Department of Neurology, University of California, Irvine, Irvine, CA, USA, ³Long Island University, Bronx, NY, USA

Glioblastoma (GBM), a WHO grade IV brain cancer, exhibits strong treat-ment resistance and a high rate of reoccurrence, which gives it a dismal prognosis, a 5% survival rate in the first 5 years. LonP1, a mitochondrial master regulator, can drive metabolic transformation, cytokine production, EMT, and treatment resistance in various cancer types, but its role in GBM remains unexplored. Our research group has previously shown that LonP1 is overexpressed in human malignant gliomas, particularly glioblastoma, and that this is associated with disease prognosis. Here, we present findings that demonstrate that LonP1 seems to drive enhanced tumor progression, invasiveness, angiogenesis in different high grade glioblastomas based TCGA-subtype. on Furthermore, in collaboration with Professor Bhaskar Das, we have validated a lead compound, BT317, with on-target inhibition of LonP1 protease activity. BT317 has enhanced activity against glioma stem cell lines (GSC) and has demonstrated low toxicity and efficacy in an intracranial xenograft model. This preliminary data highlights the potential of using combinatorial, pharmacological LonP1 and proteasome inhibition as a novel strategy for targeting specific subtypes of GBM.