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ABSTRACT OF THE DISSERTATION 

 

Assignment of Configuration Using Kinetic Resolution Reagents 
 

and 
 

Total Synthesis of (+)-Fastigiatine 
 

By 
 

Renzo Alexander Samamé 
 

Doctor of Philosophy in Chemistry 
 

 University of California, Irvine, 2015 
 

Professor Scott Douglas Rychnovsky, Chair 
 
 

 The first part of this thesis illustrates the application of kinetic resolution reagents for the 

determination of absolute configuration. A dual-catalytic approach based on ion pair recognition 

was explored using the combined action of 4-(N,N-dimethylamino)pyridine (DMAP) and a chiral 

thiourea receptor co-catalyst. After difficulties were encountered with a dual-catalytic mode, an 

alternative approach using enantioselective acyl transfer reagents was investigated. The new 

strategy led to a successful development of a new and efficient method to rapidly establish the 

absolute configuration of primary amines using mass spectrometry.  

 Part two of this thesis describes the development of a modular approach toward the 

synthesis of the Lycopodium alkaloids. A highly concise six-step total synthesis of the complex 

alkaloid (+)-fastigiatine was accomplished using a transannular Mannich reaction that generated 

two quaternary carbons at a late stage. The modular approach to fastigiatine will be expanded to 

other members of the family including himeradine A and lyconadin A. 
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Chapter 1 

Investigation of a Catalytic Approach to Determine Absolute Configuration 

 

I. Introduction: Determining the relative and absolute configuration of organic molecules is a 

critical aspect in the synthesis and isolation of organic compounds.1 Several methods have been 

developed to determine the absolute configuration of molecules including the circular dichroism 

exciton method,2 optical rotary dispersion,3 Kishi’s NMR spectroscopy method,4 Horeau’s 

method,5 the Mosher analysis,6 and X-ray crystallographic analysis.7 

 The Mosher analysis is a common technique used by chemists to determine the 

configuration of secondary alcohols and primary amines.8 With the Mosher analysis, the 

optically pure amine in question is derivatized to its 2-methoxy-2-phenyl-2-trifluoromethylacetyl 

(MTPA) amide with the treatment of (R) and (S) MTPA acid and the absolute configuration is 

established by measuring the chemical shift differences (Δδ’s) of the resultant diastereomers via 

1H NMR spectroscopy.  

 With X-ray crystallography, beams of X-ray are shot to a crystalline sample that 

generates a diffraction pattern. By measuring the intensities and angles of these diffraction 

patterns one can establish an electron density map. The substance in question is then correlated 

to fit the map in order to identify the absolute configuration. While these analyses are reliable, 

each has their limitation. The Mosher method requires significant material and time to conduct 

the derivatization, purification and spectroscopic measurements. X-ray crystallography requires 

the analyte to exist in its crystalline form with appropriate particle size and quality, which could 

take hours to months to grow. Because these analyses can be difficult and time-consuming 

processes, the development of a new method that could overcome such issues would be ideal. 
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II. Introduction to the Competing Enantioselective Conversion (CEC) Method: 

A new strategy that uses kinetic resolution catalysts to determine the absolute 

configuration of secondary alcohols was developed in our laboratory and was named the 

Competing Enantioselective Conversion (CEC) Method.9 Like kinetic resolution, this method 

relies on the difference in reaction rates between an enantioenriched alcohol 1.1 and enantiomers 

of a chiral catalyst 1.2 and 1.3 (Figure 1.1). The relative rate of the fast-reacting catalyst as 

observed in 1H NMR spectroscopy determines the absolute configuration of the enantioenriched 

alcohol. This new method facilitated routine assignment of chiral secondary alcohols using only 

a few milligrams (1-3 mg) of the alcohol without any purification or isolation of its derivative.  

 

Figure 1.1 Representative scheme of the CEC method. 

In theory, this technology can be extended to any functional group for which a kinetic 

resolution catalyst has been developed. Another class of functional groups of interest to the 

synthetic community are amines. We sought to extend this method for determining absolute 

configuration to primary amines, which seemed like a logical extension and since amines are one 

the most common functional groups in natural products and pharmaceuticals.10 One concern 

associated with the amines substrates is their high reactivity, which often results in high 

background reactions rates. In recognition of this, we opted to investigate a dual catalytic 

approach for our method development. Seidel developed a dual catalytic system with DMAP and 
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chiral thiourea for the kinetic resolution of benzylic amines11, propargylic amines12 and allylic 

amines.13 We envisioned using Seidel’s catalyst to develop a mnemonic for assigning the 

absolute configuration to primary amines as shown in Figure 1.2.  

 

Figure 1.2. Proposed determination of the absolute configuration of primary amines.14 

 

III. Results and Discussion: The first part of the project was to synthesize Seidel’s catalyst 

(1.6). Some of the steps were modified to use the least expensive starting materials (1.7 and 

1.17). The synthesis began with commercially available (±)-1,2-cyclohexanediamine (1.7), 

which was resolved using (L) and (D) tartaric acid to afford enantioenriched cyclohexanediamine 

tartrate salts 1.8 and 1.9 (Scheme 1).15 In order to determine the enantiomeric excess of the 

resolved amines, tartrate salts 1.8 and 1.9 were derivatized using m-toluoyl chloride in the 

presence of sodium hydroxide to provide bisamides 1.11-(R,R) and 1.11-(S,S). HPLC analysis of 

1.11-(R,R) and 1.11-(S,S) indicated 98% ee and >99% ee respectively.16  

Scheme 1.1. Kinetic resolution of trans-(±)-1,2-cyclohexanediamine. 
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With each enantioenriched diamine salt in hand, the salts were converted to the free 

amines under basic conditions (Scheme 1.2). However, due to sublimation and solubility issues, 

substantial loss of the diamine occurred during early attempts of isolation. Dissolution in a strong 

solution of sodium hydroxide, followed by rapid extraction using methylene chloride and 

evaporation at 0 °C in-vacuo afforded over 95% yield of the diamine 1.12. 

Scheme 1.2. Synthesis of disubstituted thiourea 1.14 and monothiourea 1.15. 

 

Monofunctionalization of the enantioenriched cyclohexanediamine was attempted to 

access cost-efficient and multigram scale production of the catalyst, but undesired disubstituted 

aminothiourea 1.14 was formed as the major product despite the slow addition of the 

isothiocyanate (Scheme 1.2). The free diamine 1.12 turned into an oil within hours of being 

generated, making its stoichiometric handling difficult. For easier handling, the mono-

hydrochloride diamine salt 1.16 was made using 1 equivalent of HCl in diethyl ether at 0 °C 

(Scheme 1.3).17 Slow addition of 3,5-bis(trifluoromethyl)isothiocyanate at low concentration to 

the mono-hydrochloride diamine salt 1.16 gave the desired mono substituted aminothiourea 1.15 

in a 57% yield (Scheme 1.3).  
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Scheme 1.3. Synthesis of monosubstituted aminothiourea 1.15. 

 

To install the amide moiety of Seidel’s catalyst, NHS-coupling reactant 1.21 was 

prepared by first carboxylating 1-bromo-3,5-bis(trifluoromethyl)benzene 1.17 with butyllithium 

to provide 3,5-bis (trifluoromethyl)benzoic acid 1.18. The use of n-butyllithium produced 1.18 in 

23% yield, along with with 1-butyl-3,5- bis(trifluoromethyl)benzene 1.19 as a side product in a 

51% yield. Replacement of n-butyllithium with sec-butyllithium provided 70–79% yield of the 

acid 1.18 on up to a 10-gram scale (Table 1.1). 

Table 1.1. Carboxylation of 1-bromo-3,5-bis(trifluoromethyl)benzene 1.17. 
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To circumvent this issue, an alternative method to couple the benzoic acid that employed 

an NHS-TFA adduct 1.25 was accessed by reacting N-hydroxylsuccinimide 1.20 with 

trifluoroacetic anhydride.19 NHS-ester 1.21 was observed by TLC chromatography, however 

extensive hydrolysis was observed during flash chromatography purification. To minimize 

decomposition, when the reaction mixture was completed as observed by TLC, quick soft acid-

base extraction followed by evaporation afforded NHS-ester product 1.21 in quantitative yield 

(Scheme 1.4).   

Scheme 1.4. NHS-ester bond formation 1.21. 

 

 Addition of NHS-ester 1.21 to aminothiourea 1.15 under basic conditions afforded the 

desired catalyst 1.6-(R,R) in a 90-95% yield (eq. 2). Its enantiomer 1.6-(S,S) was obtained in a 
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synthesis from inexpensive starting materials in a 37-40% overall yield.    
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Kinetic Resolution: Before testing the new method for determining configuration, catalyst 1.6 

was used to attempt to reproduce Seidel’s reported kinetic resolution 

conditions. In this catalytic system, a simple achiral acylpyridinium 

salt (ion pair I) formed in situ from a benzoic anhydride and DMAP 

is rendered chiral upon binding of the associated anion to thiourea 1 

to form ion pair II (Scheme 1.5). Ion pair II directs acylation to one 

enantiomer of the racemic amine, providing an efficient kinetic resolution. It is worth noting that 

although Seidel reported the chiral ion pair intermediate II, it was not reported how ion pair II 

induced chiral information on the acylation reaction when our investigations were conducted.  

Seidel reported selectivity factors in the range of 12-56 for benzylic amines, propargylic amines 

and allylic amines.11–13 Initial validation studies using (±)-phenylethylamine 1.26 and (±)-1-(1-

naphthyl)ethylamine 1.27 failed to give the reported selectivities, presumably due to insufficient 

formation of ion pair II prior to the addition of the amine or under the reaction conditions.  

Scheme 1.5. Seidel’s dual catalytic approach to the kinetic resolution of amines. 
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To ensure ion pair II formation, chiral thiourea 1.6 catalyst was added to the 

acylpyridinium salt (Ion pair I). The temperature was lowered to –78 ºC and stirred for a longer 

period of 25 minutes, followed by addition of the amine. Seidel’s procedure employed a 

methylmagnesium chloride (MeMgCl) addition to quench the remaining anhydride, however the 

side products generated from this method could not be fully separated by column 

chromatography. A methanolic ammonia quench reduced the formation of side products and 

allowed for the purification of the enantioenriched amide products. Control experiments using 

either MeMgCl or NH3/MeOH at fixed periods of time showed that both are effective quenching 

reagents.  

Scheme 1.6. Kinetic resolution of 1.26-rac and 1.27-rac. 

 

Kinetic resolution of substrates 1.26 and 1.27 afforded 1.28-(R) and 1.29-(R) in 56% and 32% 

yield, respectively. Chiral HPLC analysis of the resolved products 1.28 and 1.29 were in 

agreement with the literature values.11  

Method development: In our previous studies determining the absolute configuration of 

secondary alcohols, the absolute configuration of 1-(naphthalen-2-yl)propan-1-ol 1.30 was 

determined using Birman’s kinetic resolution catalysts 1.31.20 Birman’s 

(R)-homobenzotetramisole (R-HBTM) was the fast-reacting catalyst confirming the absolute 

configuration of the alcohol in question (Table 1.2).9 

NH2 HN

O

conversion = 56%
er = 82:18

(PhCO)2O (0.5 equiv)
DMAP (5 mol %)

(R,R  -1)  (5 mol %)

CH2Cl2, 4 Å MS
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NH2 HN

O
(PhCO)2O (0.5 equiv)

DMAP (5 mol %)
(R,R -1) (5 mol %)

CH2Cl2, 4 Å MS
–78 ºC, 2 h

conversion = 32%
er = 86:14

1.26-rac

1.27-rac

1.28
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Table 1.2. Configuration assignment of (S)-1-(naphthalen-2-yl)propan-1-ol 1.30. 

 

In order to demonstrate proof of concept with primary amines, three parallel reactions 

using optically pure (R)-phenylethylamine 1.26-(R) with different catalysts were conducted. In 

principle, the fast reacting catalysts 1.6-(R,R) would provide a matched scenario that would lead 

to a fast reaction (Figure 1.3). Alternatively, the slow-reacting catalyst 1.6-(S,S) would be a 

mismatched case and lead to slow reactivity. Lastly, the reaction of 1.26-(R) with DMAP in the 

absence of catalyst would result in even slower conversion to amide 1.28.  

 

Figure 1.3. Expected rates of acylation of amine 1.26. 

After 1 hour, the following yields were observed: 1.6-(R,R), 1.6-(S,S), and no chiral 

catalyst provided amide 1.28 in 83%, 66% and 89% yields, respectively (Table 1.3, entry 1). 

While a noticeable difference in conversion with the 1.6-(R,R) and 1.6-(S,S) catalysts occurred, 

the achiral reaction proceeded the fastest of the three reactions. Reaction times were reduced in 

search of the expected rate conversions. 

However, only minimal difference, in yields between 1.6-(R,R), 1.6-(S,S) and DMAP 

alone were observed (Table 1.3, entries 2 and 3). Since DMAP alone catalyzed the reaction faster 
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than with catalyst 1.6, the DMAP equivalent was reduced from 5 mol% to 1 mol%. Surprisingly, 

similar conversions were observed for these reactions (Table 1.3, entry 4). In order to confirm 

these results, optically pure (R)-1-(1-naphthyl)ethylamine 1.27, which showed higher selectivity 

in kinetic resolution, was examined.11–12  

Table 1.3. Studies on the acylation of 1.26 and 1.27. 
 

 

Entry Amine Time (h) Conversion (%) 
     (R,R-1)            (S,S-1)          DMAP alone 

1 1.26 1.0 83 66 89 
2 1.26 0.5 62 57 46 
3 1.26 0.25 60 57 38 
4 1.26 1.0 61 67 52 
5 1.27 1.0 37 32 13 
6 1.27 1.0 36 34 25 

a Percent conversions were determined by 1H NMR analysis of the crude mixture using 
4,4'-di-tert-butylbiphenyl (DBB) as an internal standard. b DMAP equivalent was reduced to 1 
mol %. c Benzoic  anhydride was reduced to 1 equiv.  

 
Using naphthyl amine 1.27-(R), three parallel reactions were investigated to understand 

the role of benzoic anhydride. One equivalent of benzoic anhydride using 1.6-(R,R) afforded 

37% conversion (Table 1.3, entry 5). The 1.6-(S,S) catalyzed reaction led to 32% conversion 

while DMAP alone provided 13% conversion. Two equivalents of benzoic anhydride using the 

1.6-(R,R) catalyst gave 36% conversion, the 1.6-(S,S) catalyzed reaction yielded 34% 

conversion, and DMAP alone gave 25% conversion (Table 1.3, entry 6). The absence of a 

distinct rate difference using each catalyst was again observed using naphthyl amine 1.27.  
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IV. Conclusions: Although we were able to reproduce Seidel’s kinetic resolution of primary 

amines, an adaptation of the system to assign absolute configuration was not successful. When 

this project was conducted, the mechanism for Seidel’s dual-catalytic system had not been 

reported, which made elucidating the difference in reactivity of racemic amines versus 

enantiopure amines challenging.28 A rationale for the lack of selectivity can be explained by the 

stoichiometric use of anhydride. During our previous studies in the determination of absolute 

configuration of secondary alcohols, the use of two equivalents of anhydride proved to be ideal 

for the method development. However, in the case of amine moieties, two equivalents may have 

led to significant background reactions.   

Amines are notorious for their high levels of reactivity with simple acylating reagents 

(e.g., anhydrides); this reactivity obviates the need of a catalyst additive (e.g., DMAP) for the 

installation of an acyl group. In Seidel’s catalytic system, primary amines have the opportunity to 

react with three acylating sources: 1) benzoic anhydride, 2) acylpiridinium salt I and 3) ion pair 

II. It is possible that reducing the amounts of anhydride may have resulted in more pronounced 

rate differences for the reaction when using opposite enantiomers of the catalyst. However, the 

conditions of the system were not ideal (e.g., low temperatures, low concentrations and 

molecular sieves addition) for the development of a simple and straightforward method. Due to 

complications with the dual-catalytic system described in this chapter, we decided to investigate 

an alternative kinetic resolution system. The details on the development and successful 

application of kinetic resolution reagents to assign absolute configuration are described in the 

upcoming chapter of this thesis.  
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Supporting Information 

I. General Experimental Details  

All reactions were performed under an atmosphere of argon unless stated otherwise. All 

glassware was oven- or flame-dried and cooled under an inert atmosphere of argon unless stated 

otherwise. All commercially available reagents were used as received except the following: 

tetrahydrofuran, dichloromethane, toluene, and diethyl ether were degassed with argon and dried 

by vacuum filtration through activated alumina according to the procedure by Grubbs.21 

Triethylamine was distilled from CaH2 and 4-dimethylaminopyridine was recrystallized from 

distilled toluene prior to use. Benzoic anhydride was washed with Na2CO3 and extracted in 

dichloromethane prior to use. Molarities of organolithium reagents were determined by 

titration.22 Methylmagnesium chloride was titrated with I2 according to the procedure described 

by Krasovskiy and Knochel.23 Thin-layer chromatography (TLC) was performed on Whatman 

250 µm layer 6 Å glass-baked silica gel plates or Merck 250 µm layer 6 Å glass-backed neutral 

aluminum oxide plates. Eluted plates were visualized using UV light, iodine, vanillin, p-

anisaldehyde, Dragendorff’s reagent or potassium permanganate stains. Silica gel 

chromatography was performed according to the method by Still, Khan and Mitra.24 

 

II. Instrumentation 

Infrared spectra were recorded on a MIDAC Prospect FT-IR spectrometer. Optical rotations 

were measured on a JASCO DIP-370 digital polarimeter. 1H and 13C NMR spectra were 

recorded at 500 and 125 MHz, respectively. 1H NMR spectra were reported in ppm on the δ 

scale and referenced to tetramethylsilane (0.00 ppm) or residual solvent signal (CDCl3 at 7.26 

ppm, CD2Cl2 at 5.32 ppm). The data are presented as follows: chemical shift, multiplicity (s = 
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singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad, app = 

apparent), coupling constant(s) in Hertz (Hz), and integration. 13C NMR spectra were reported in 

ppm relative to CDCl3 (77.07 ppm) or CD2Cl2 (53.80). Unless otherwise stated, NMR spectra 

were collected at 25 ºC. Melting points were obtained using an electrothermal melting point 

appartatus and are uncorrected. Enantioselectivities were determined using an analytical HPLC 

instrument with DaicelTM chiralpack® column. High resolution mass spectrometry was peformed 

by the University of California, Irvine Mass Spectrometry Center. 
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N,N'-((1R,2R)-Cyclohexane-1,2-diyl)bis(3-methylbenzamide) (1.11). To a solution of  

tartrate diamine salt 1.8-(R,R) (0.200 g, 0.757 mmol) in Et2O (10 mL) was added a NaOH (2 M) 

solution (6 mL) at room temperature and stirred until the resultant biphasic mixture was clear. 

m–Toluoyl chloride (1.29 mL, 1.51 mmol) was added dropwise via syringe. Upon addition of the 

acid chloride, a precipitate formed. The resulting mixture was allowed to stir for 2 hours. The 

reaction was extracted with CH2Cl2 (3 x 10 mL). The combined organic extracts were dried over 

Na2SO4 and concentrated in vacuo to provide a white solid. The solid was purified via column 

chromatography (30:70 EtOAc/Hex), and the pure product was obtained in 98% yield (260 mg). 

mp = 197–198 ºC; Rf = 0.25 (30:70 EtOAc/Hex); 1H NMR (500 MHz, CDCl3) δ 7.53 (s, 2H), 

7.50 (app d, J = 7.0 Hz, 2H), 7.23–7.19 (m, 4H), 6.86 (app d, J = 5.0 Hz, 2H), 4.02 (s, 2H), 2.31 

(s, 6H), 2.21 (app d, J = 8.5 Hz, 2H), 1.84 (app s, 2H), 1.42 (app d, J = 6.5 Hz, 4H); 13C NMR 

(125 MHz, CDCl3) δ 168.6, 138.5, 134.4, 132.4, 128.6, 127.9, 124.1, 54.7, 32.6, 25.0, 21.5; IR 

(thin film) 3309, 3082, 2927, 2858, 1631, 1604, 1585 cm-1; HRMS (ESI/methanol) m / z calcd 

for C22H26N2O2Na (M + Na)+ 373.1892, found 373.1892; HPLC: Daicel chiralpak AD-H, i-

PrOH/n-hexane=10/90, flowrate = 1mL/min, UV = 254 nm, tR= 7.0 min (minor) and tR= 17.2 

min (major), 98 % ee. Spectral data were consistent with those previously reported.25 
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N,N'-((1S,2S)-Cyclohexane-1,2-diyl)bis(3-methylbenzamide) (6). Following the procedure for 

compound 1.8-(R,R) the product was obtained in 77% yield (189 mg). mp = 200–202 ºC; Rf = 

0.25 (30:70 EtOAc/Hex); 1H NMR (500 MHz, CDCl3) δ 7.54 (s, 2H), 7.49 (app d, J = 7.0 Hz, 

2H), 7.26–7.19 (m, 4H), 6.79 (app s, 2H), 4.01 (s, 2H), 2.32 (s, 6H), 2.22 (app d, J = 6.0 Hz, 

2H), 1.84 (app s, 2H), 1.43 (app s, 4H); 13C NMR (125 MHz, CDCl3) δ 168.6, 138.5, 134.4, 

132.4, 128.6, 127.9, 124.1, 54.7, 32.7, 25.0, 21.5; HPLC: Daicel chiralpak AD-H, iPrOH/n-

hexane=10/90, flowrate = 1mL/min, UV = 254 nm, tR= 7.0 min (major) and 17.3 (minor), >99% 

ee. Spectral data were consistent with those previously reported of compound 6 enantiomer.5 

 

 

 

3,5-Bis(trifluoromethyl)benzoic acid (1.18). Anhydrous diethyl ether (31 mL) was added to a 

solution of sec–BuLi (0.98 M) so that the final molarity was 0.5 M. The resultant solution was 

cooled to –78 ºC and 1-bromo-3,5-bis(trifluoromethyl)benzene 1.17 (5.0 g, 15.8 mmol) was 

added dropwise as a solution in diethyl ether (4.5 mL, 3.5 M). After 12 minutes, CO2 gas was 

bubbled through the solution for 25 minutes. The gas line was then removed and the mixture was 

allowed to warm to room temperature. Hydrochloric acid (25 mL, 1 M) was directly poured into 

NH HN
O O

1.11-(R,R)

NH3

NH3

OOC

OH

OH

OOC

1.8

2 M NaOH, Et2O
23 ºC, 2 h
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Cl

O



16 
 

the solution and stirred for 15 minutes. The mixture was extracted with CH2Cl2 (3 x 25 mL), 

dried over NaSO4 filtered and concentrated in vacuo to afford 1.18 in 77% yield (3.38 g). Rf = 

0.35 (45:55 EtOAc/Hex); mp = 142–144 ºC; 1H NMR (500 MHz, CDCl3) δ 12.30–11.70 (bs, 

1H), 8.58 (s, 2H), 8.15 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 169.8, 132.8 (q, JC-F = 34.0 Hz), 

131.5, 131.5, 130.8–130.2 (m), 127.7 (quint, JC-F = 3.7 Hz), 123.0 (q, JC-F = 271.2 Hz); IR (thin 

film) 2890, 2360, 1709, 1620 cm-1; HRMS (ESI/methanol) m / z calcd for C9H3F6O2 (M – H)– 

257.0037, found 257.0040.26 

 

 

 

2,5-Dioxopyrrolidin-1-yl 3,5-bis(trifluoromethyl)benzoate (1.21). Acid 1.18 (2.0 g, 7.72 

mmol) was suspended in a solution of pyridine and anhydrous CH2Cl2 (1.65 mL : 6.6 mL) and 

stirred to dissolution for 5 minutes. TFA-NHS27 ester 1.25 was added to the solution and stirred 

for 4 hours. Upon completion as observed by TLC, the mixture was quickly washed with 5% 

NaHCO3 (50 mL), washed with NH4Cl (50 mL), and extracted with CH2Cl2 (3 x 25 mL). The 

combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo to afford 

NHS-ester 1.21 in 99 % yield (0.678 g) for immediate use. Rf = 0.30 (45:55 EtOAc/Hex); 1H 

NMR (500 MHz, CDCl3) δ 8.58 (s, 2H), 8.19 (s, 1H), 2.88 (s, 4H); 13C NMR (125 MHz, 

CDCl3) δ 168.8, 159.9, 133.1 (q, JC-F = 34.3 Hz), 130.8, 130.8, 128.5 (q, JC-F = 3.6 Hz), 127.7, 

N
O

O

O

CF3

O

F3C

CF3

O

O
N

O

OPyr, CH2Cl2, rt,
 4 h

1.21

F3C

CF3

O

OH

1.18

1.25
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122.7 (q, JCF = 271.5 Hz), 25.9. Further characterization was not possible due to facile NHS–

ester bond hydrolysis.  

 

N-((1R,2R)-2-(3-(3,5-Bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-3,5 

bis(trifluoromethyl)-benzamide (1). Aminothiourea 9 (1.0g, 2.59 mmol, 1.0 equiv) was 

dissolved in anhydrous THF (2.6 mL, 0.1 M) and stirred for 5 minutes. NHS-ester 15 (1.38g, 

3.94 mmol, 1.5 equiv) was then added. Upon completion after 5 hours as observed by TLC 

(30:70 EtOAc/Hex), the mixture was concentrated in vacuo and purified via column 

chromatography (30:70 EtOAc/Hex) to afford thiourea 1 as a white solid in 90 % yield (1.48 g). 

mp = 145–147 ºC; Rf = 0.32 (30:70 EtOAc/Hex); [α]D
25 +20.5 (c 0.1, CHCl3); 1H NMR (500 

MHz, CDCl3) δ 8.58 (s, 1H), 8.24 (s, 1H), 7.95 (s, 1H), 7.66 (s, 2H), 7.63 (s, 2H), 7.21–7.06 (m, 

1H), 4.80–4.55 (m, 1H), 4.11–3.81 (m, 1H), 2.35–2.15 (m, 2H), 1.98–1.81 (m, 2H), 1.58–1.34 

(m, 4H); 13C NMR (125 MHz, CDCl3) δ 181.8, 165.9, 139.2, 135.9, 132.7 (q, JC–F = 33.9 Hz), 

132.6 (q, JC-F = 33.8 Hz), 127.6, 125.7, 124.1, 122.9 (q, JC–F = 272.4 Hz), 122.9 (q, JC–F = 272.40 

Hz), 119.6, 57.5, 56.9, 32.3, 24.8; IR (thin film) 3278, 3074, 2943, 2866, 1651, 1547, 1385, 

1281, 1180, 1134, 702 cm-1. HRMS (ESI/methanol) m / z calcd for C24H19F12N3OSNa (M + Na)+ 

648.0955, found 648.0952. Spectral data were consistent with those previously reported.11-13 
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General Procedure for the Kinetic Resolution of Primary Amines: 

A 250 mL round-bottomed flask was charged with benzoic anhydride (378 mg, 1.65 mmol) and 

4 Å MS (320 mg) which was followed by the addition of DMAP (5 mg, 0.04 mmol) as a solution 

in toluene (3.2 mL). Freshly distilled toluene was added to the mixture (68 mL) and the reaction 

mixture was placed in a dry ice/acetone bath at –78 ºC. After 15 minutes, thiourea catalyst 1 was 

added (25 mg, 0.04 mmol) as a solution in toluene (6.4 mL), and the solution allowed to stir for 

an additional 20 minutes. The primary amine (100 mg, 0.8 mmol) was added as a solution in 

toluene (3.2 mL) and the reaction mixture was allowed to stir for 2 hours before the addition of a 

7.0 M methanolic ammonia solution (2.4 mL, 16.0 mmol). The cooling bath was removed, and 

the reaction mixture was allowed to warm to room temperature over 30 minutes. The crude 

mixture was concentrated in vacuo, and purified via column chromatography (15:85 EtOAc/Hex) 

to afford desired enantioenriched amide product.  

 

 

 

(R)-N-(1-Phenylethyl)benzamide (21). Following the general procedure, compound 21 was 

obtained as white crystals in 56 % yield (104 mg). mp = 115–118 ºC; Rf = 0.33 (30:70 

EtOAc/Hex); 1H NMR (500 MHz, CDCl3) δ 7.77 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.25 Hz, 1H), 

7.43–7.35 (m, 6H), 7.28 (app t, J = 7.0 Hz, 1H), 5.35 (quint, J = 7.0 Hz, 1H), 1.61 (d, J = 6.5 Hz, 

3H); 13C NMR (125 MHz, CDCl3) δ 166.8, 143.3, 134.8, 131.7, 129.0, 128.8, 127.7, 127.1, 

126.5, 49.4, 21.9; IR (thin film) 3298, 3062, 2931, 2958, 2360, 2341, 1635, 1535, 1489 cm-1; 

HN

O

1.28
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HRMS (ESI/methanol) m / z calcd for C15H15NONa (M + Na)+ 248.1051, found 248.1060; 

HPLC: Daicel chiralpak OD-H, iPrOH/n-hexane=10/90, Flowrate = 1 mL/min, UV = 254 nm, 

tR= 14.4 min (major) and tR= 20.2 min (minor), e.r = 82:18. Spectral data were consistent with 

those previously reported in the literature.11 

 

(R)-N-(1-(Naphthalen-1-yl)ethyl)benzamide (22). Following the general procedure, compound 

22 was obtained as white crystals in 32 % yield (62 mg). mp = 192–194 ºC; Rf = 0.25 (30:70 

EtOAc/Hex); 1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 

7.83 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.0 Hz, 1H), 7.56–7.45 (m, 4H), 

7.40 (t, J = 7.8 Hz, 2H), 6.33 (d, J = 7.5 Hz, 1H), 6.14 (quint, J = 7.3 Hz, 1H), 1.79 (d, J = 6.5 

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 166.6, 138.3, 134.7, 134.2, 131.7, 131.4, 129.0, 128.8, 

127.1, 126.9, 126.2, 125.4, 123.7, 122.9, 45.4, 20.8; IR (thin film) 3298, 3059, 2978, 2927, 

1631, 1535 cm-1; HRMS (ESI/methanol) m / z calcd for C19H17NONa (M + Na)+ 298.1208; 

found 298.1202. HPLC: Daicel chiralpak OD-H, iPrOH/n-hexane=10/90, Flowrate = 1mL/min, 

UV = 254nm, tR= 12.8 min (major) and tR= 30.5 min (minor), e.r = 87:13. Spectral data were 

consistent with those previously reported.11 

HN

O

1.29
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Chapter 2 

Utilizing Kinetic Resolution Reagents to Assign Absolute Configuration 

I. Abstract:  Herein is described a new method to determine the absolute configuration of 

primary amines. Our strategy combines Mioskowski’s enantioselective acylation reagents with 

strategic deuterium incorporation and Electrospray Ionization-Mass Spectrometry (ESI-MS), 

which has produced a rapid and accurate approach to determine the absolute configuration of 

amines based on a mass difference.1 

 

II. Introduction: In 2004, Mioskowski and co-workers introduced the use of chiral 

bis(sulfonamide) 2.3-(S,S) for the kinetic resolution of primary amines (Scheme 2.1).2 These 

kinetic resolution reagents take advantage of the trans-1,2-diaminocyclohexane 2.4-(S,S) as a 

chiral scaffold and are effective on a broad scope of primary amines. Furthermore, the reagent’s 

stability to hydrolysis as well as long bench stability and ease of preparation attracted us to 

investigate its applications for assigning the absolute configuration of primary amines.  

Scheme 2.1. Mioskowski’s kinetic resolution method. 

 

 

III. Absolute Configuration Assignment of Primary Amines Using 1H NMR Spectroscopy 
Performed by Dr. Shawn M. Miler. 
 

The Rychnovsky group’s early attempts to assign the absolute configuration of primary 

amines via the Competing Enantioselective Conversion (CEC) method were performed by Dr. 
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Shawn Miller.4 Initial studies began with the preparation of Mioskowski’s kinetic resolution 

reagents 2.3-(R,R) and 2.3-(S,S) according to a literature procedure.2a Bistrifluoro-

methanesulfonylation of trans-cyclohexyldiamines 2.4-(R,R) and 2.4-(S,S) provided both 2.5-

(R,R) and 2.5-(S,S)-bis(sulfonamides) in 70 and 72% yield, respectively (Scheme 2.2). Acylation 

of the bis(sulfonamides) with acetyl chloride afforded reagents 2.3-(R,R) and 2.3-(S,S) in 57% 

and 71% yields, respectively. This reagent combination was used to develop effective reaction 

conditions for the selective acylation of amines.  

Scheme 2.2. Synthesis of enantiopure Miowskowski’s reagents. 

 

 

 The approach to determining the absolute configuration of primary amines using 1H 

NMR was conducted in a similar fashion to our reported method for secondary alcohols.5 Initial 

studies to determine the feasibility of the method involved two separate reactions of amine  

2.6-(R) with reagents 2.3-(R,R) and 2.3-(S,S) conducted in triplicates. Conversion to amide 

product in the reactions was measured by integration of the H atom adjacent to the amine or 

amide (Figure 2.1).   
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Figure 2.1. Kinetic studies using Mioskowski’s reagents. 

 Dr. Miller’s initial experiments utilized 500.0 µL of chloroform solvent to ensure 

sufficient volume for the spectrometers to lock the sample. Earlier studies on secondary alcohols 

used a total concentration of 0.1 M, which proved sufficient for 1H NMR resolution and reaction 

rates. Because amines are inherently more nucleophilic, a concentration of 0.01 M of amine 

substrate 2.6-(R) was instead used. Lastly, three equivalent of reagents 2.3-(R,R) and 2.3-(S,S) 

were used to maintain pseudo-first-order kinetics. Analysis of the data determined that the faster 

reacting reagent was 2.3-(S,S) by a factor of 2.6 (Figure 2.1). Control studies using the opposite 

enatiomer, amine 2.6-(S), provided similar results with an expected switch in selectivity. With a 

selectivity demonstrated for both enantiomers of 2.6 as well as other primary amine substrates, a 

mnemonic was established to predict the absolute configuration of primary amines (Figure 2.2). 

The predictive mnemonic places the larger substituent to the left of the amine and the smaller 

substituent to the right. If the reagent 2.3-(R,R) reacts faster, the amine is facing forward. 

Alternatively, when the 2.3-(S,S) reagent reacts faster, the amine is back. 

NH2 HN

O

CH32.3-(R,R)

CDCl3, 25 ºC2.6-(R) 2.7-(R)
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Figure 2.2. Predictive mnemonic for primary amines. 

Conclusions: Dr. Miller demonstrated that 1H NMR could be used to assign the absolute 

configuration of primary amines after the side-by-side reactions with each enantiomer 

Mioskowski’s reagents. A variety of amine substrates were investigated for the method and a 

predictive mnemonic was established. While the approach of using NMR to determine the faster 

reaction was straightforward, a few limitations further prevented its use. The protocol required 

significant instrument time and sufficient amounts of material for the analysis. Furthermore, 

well-resolved 1H NMR signals were not always obtained, complicating the data analysis. A new 

approach that could circumvent these limitations was envisioned and its development is 

presented in the following section of this chapter.   

 

IV. Nanomole-Scale Assignment of Absolute Configuration of Primary Amines Using 

Electrospray Ionization Mass-Spectrometry  

 A new approach using mass spectrometry (MS) was envisioned to simplify the analysis. 

MS would allow for the rapid detection of species while only requiring small quantities of amine 

for the analysis. The new strategy featured the use of isotopically labeled pseudoenantiomers of 

Mioskowskiʼs enantioselective reagents. With the new approach, the amine 2.4 to be evaluated 

of “unknown” absolute configuration is treated with an excess of equimolar mixture of  

2.3-(R,R) and 2.3-(S,S)-d3 to afford a mixture of unlabeled acetamide 2.5-(M) and deuterium 

labeled acetamide 2.5-(M+3) (Figure 2.3A). By maintaining pseudo-first-order kinetics, the 

L S
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L S

NH2

2.3-(R,R)
 reacts faster

2.3-(S,S)
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relative ratios of the 2.5-(M)+ and 2.5-(M+3)+ peaks in the MS-ESI spectrum would then be used 

to determine which reagent reacted faster. If the relative abundance of (M)+ is higher than 

(M+3)+, then 2.3-(R,R) reacted faster (Figure 2.3B). Alternatively, if the (M+3)+ is more 

pronounced than (M)+ then 2.3-(S,S)-d3 reacted faster (Figure 2.3C). It is important to 

acknowledge that the work of my colleague, Dr. Shawn Miller, provided groundwork for the 

ESI-MS approach, which was presented in section II of this chapter. I joined the mass 

spectrometry project at an early stage of its development and our combined efforts are described 

here in. 

 

Figure 2.3. Proposed absolute configuration method of amines via mass-spectrometry. 

 

Results and Discussion: The project began with the preparation of isotopically labeled reagent 

2.3-(S,S)-d3 using a modified protocol.6 Initial experiments showed significant deuterium loss 

during the installation of the d3-acetyl group (Table 2.1, entries 1 and 2). The deuterium loss 

presumably occurs from the generation of a ketene intermediate formed in situ.  As an alternative 

to avoid ketene formation, catalytic amounts of DMAP as well as excess was employed (entries 

3 and 4), though no reaction was observed. After careful screening, it was found that pyridine 

and acetyl chloride-d3 yielded the desired reagent albeit with 5–22% deuterium loss (entry 5).  
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Table 2.1. Optimization of deuterated reagent 2.3-(S,S)-d3. 

 

 

 With the desired reagents 2.3-(R,R) and 2.3-(S,S)-d3 in hand, the method development 

using ESI-MS began. Initially, the reactions were run with 5.0 µmol of amine and 1.5 µmol of 

both 2.3-(R,R) and 2.3-(S,S)-d3 in a total volume of 500.0 µL. Due to the sensitivity of ESI-MS, 

reactions could be reduced in scale to 0.5 µmol with no observed change in rates.  

 

 Reactions were carried out in MS vials for 60 minutes, at which point the reaction was 

quenched with methanol and directly subjected to ESI-MS. As predicted, the selectivity of the 

reaction could be determined from the MS readout (Figure 2.4). The reaction of 2.10-(R) with 

2.3-(R,R) and 2.3-(S,S)-d3 showed a more intense (M+3)+ signal indicating a faster reaction with  

2.3-(S,S)-d3 (Figure 2.4A) 
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Figure 2.4. (A) MS spectra of the reaction with 2.10-(R). (B) MS spectra of the reaction with 
2.10-(S). 
 
 
 As a proof concept, the opposite enantiomer 2.10-(S) was subjected to the same 

conditions described previously (Figure 2.4B). Gratifyingly, the opposite selectivity was 

observed, therefore confirming that absolute configuration could indeed be assigned using mass 

spectrometry.  

 Because the acylated products of the reaction existed as both the protonated and sodiated 

ion species in MS-ESI, it was rationalized that generation of single ion-bound peaks (either 
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protonated or sodiated) would improve the analysis. During preliminary studies, quenching of 

the acylation reaction with methanol showed both of the protonated and sodiated species (Table 

2.2, entry 1). Initial attempts focused on suppressing the sodiated ions to generate the protonated 

species only. When the reaction was quenched with a solution of 10% formic acid in methanol 

(entry 2), both species continued to be observed in the readout. Increasing the acidity using 20% 

acetic acid in methanol resulted in minimal decrease of the sodiated ions (entry 3). Further 

increase in acidity may have eventually led to formation of protonated ions only, but concerns of 

decomposition or fragmentation during the analysis prevented further exploration. Instead, the 

use of 50 mM of NaOAc in methanol ensured full conversion to the sodiated ions.  

 

Table 2.2. Generation of sodium-bound peaks.a 

 

 

NH2

OH
HN

OH
CH3

O

HN
OH
CD3

O

entry Quenching
Source

M+

Intensity
(M+3)+

Intensity # trials / δ

1

:

1 4.55: 3 / 0.18
MeOH

1 2.87: 3 / 0.02Na+

H+

2 1 4.32: 3 / 0.01
10% HCO2H / MeOH

1 2.85: 3 / 0.12Na+

H+

3 1 3.02: 3 / 0.26
20 % AcOH / MeOH

1 2.80: 3 / 0.03Na+

H+

4
– –: –

50 mM NaOAc / MeOH
1 2.94: 3 / 0.05Na+

H+

+

2.12-(S) 2.13-(S) 2.13-(S)-d3

2.3-(R,R) (3 equiv)

2.3-(S,S)-d3 (3 equiv)
CHCl3 (50 µL), r.t

a) The alcohol group behaves as small groups therefore the  2.3-(S,S)-d3 reacts faster.
See Table 2.5
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 In the report by Mioskowski and co-workers, the amine to be resolved is present in two-

fold excess relative to the kinetic resolution reagent.2 Such amine excess creates a basic 

environment under the reaction conditions. With this in mind, a base additive was added to our 

reaction conditions in an attempt to optimize the methodology (Table 2.3). Three non-

nucleophilic bases were initially selected for the studies. Under standard conditions, the reaction 

of amine 2.10-(R) with 2.3-(R,R) and 2.3-(S,S)-d3 produced a more intense (M+3)+ signal with a 

selectivity factor of ~ 1 : 2.68 (Table 2.3, entry 1). When the reaction was conducted in the 

presence of Et3N, the selectivity factor decreased significantly to a 1:1.13 ratio that favored 2.11-

(R)-d3 (entry 2). A slight enhance in selectivity, however, was observed when 4-

methylmorpholine was employed as an additive (entry 3). Surprisingly, switching to Hünig’s 

base additive showed a reversal in selectivity that gave a relative ratio of ~ 1.51:1 that favored 

2.11-(R) (entry 4). Finally, analogous kinetic resolution conditions using sub-stoichiometric 

amounts of 2.3-(R,R) and 2.3-(S,S)-d3 were carried out without improvement of selectivity 

(entries 5 and 6).  

 It appears that increasing the basicity around the nitrogen atom of 2.10-(R) reduces the 

selectivity of the acylation process (entries 2, 4, 5 and 6). These observations maybe associated 

with an increase in nucleophilicity that affects the enantioselectivity of the reaction. While the 

use of 4-methylmorpholine showed a modest increase in selectivity, it was not significant enough 

to warrant adding an extra component to the reaction.  
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Table 2.3. Attempts at improving selectivity using base additives. 

 

 As discussed earlier, depending on the batch of synthesized of 2.3-(S,S)-d3, deuterium 

incorporation often results in less than 100%. As such, a correction factor to account for 

deuterium loss needed to be established in order to obtain accurate ratios of the (M)+ and (M+3)+ 

relative abundances. A correction factor was determined by reacting amine 2.10-(R) with reagent 

2.3-(S,S)-d3 under the established optimized conditions (Figure 2.5). Analysis of the MS readout 

revealed an (M+2)+ signal with an ion count of 2687, corresponding to 2.11-(R)-d2 and the 

(M+3)+ that belonged to 2.11-(R)-d3 signal with a count of 12444. The ratio of (M+2)+ to the 

(M+3)+ signal is the correction factor by which the peak (M+3)+ is increased. In this particular 

case, the true value of (M+3)+ is 15131 which results in a 22% increase to the raw data. This 
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entry Conditions
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Intensity
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1
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No Base 1 2.68: 5 / 0.08Na+

2 Et3N
1 1.13: 3 / 0.03Na+

3
1 2.84: 3 / 0.03Na+

+

N

O

(6 equiv)

(6 equiv)

4 1.51 1: 3 / 0.12Na+

(6 equiv)

Hünig's
Base

5 a 1 1.99: 2 / 0.01Na+
(0.5 equiv)

(R, R) : (S, S)-d3

6 b 1 1.90: 2 / 0.13Na+
(0.25 equiv)

(R, R) : (S, S)-d3

2.10-(R) 2.11-(R) 2.11-(R)-d3

2.3-(R,R) (3 equiv)

2.3-(S,S)-d3 (3 equiv)
CHCl3 (50 µL), r.t

a) 0.5 equiv. of each reagent 2.3-(R,R) and 2.3-(S,S)-d3 were employed. (b) 0.25 equiv.
of each reagent 2.3-(R,R) and 2.3-(S,S)-d3 were employed.
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correction factor was applied to the analysis of compounds shown on Table 2.4 that employed 

this particular 2.3-(S,S)-d3 batch.  

 

 

 

 

 

 

Figure 2.5. Determining a correction factor for loss of deuterium. 

 With optimized conditions at hand and a procedure to compensate for deuterium loss, the 

assignment of the absolute configuration of a variety of primary amines was undertaken. 

Multiple trials were conducted and the averaged ratios, as well as standard deviations, are listed 

on the Table 2.4.  

 As expected, enantiomeric pair 2.6-(S) and 2.6-(R) showed complimentary selectivities, 

although a small difference in ratios was observed (Table 2.4, entries 1 and 2). This small 

difference may result from mechanical errors such as the weighing of starting materials. The 

method was effective for amino ester derivatives in which the ester behaves as a larger group 

compared to the adjacent sp3 carbon (entries 5 and 6). Amines with remote substituents can also 

be analyzed using the CEC method (entries 7 and 8). 

NH2 HN CD3

O

2.3-(S,S)-d3 (3 equiv)

CHCl3 (50 µL)
1h, r.t

+
HN CHD2

O

2.10-(R) 2.11-(R)-d2 2.11-(R)-d3

(M+Na)+ = 188 (M+Na)+ = 189



33 
 

Table 2.4. Determination of the absolute configuration of primary amines.a 

 

 It worth noting that caution should be taken when encountering smaller selectivities 

during the analysis (entries 8 and 9). For example, ratio values of less than 1.2:1 are considered 

to be inconclusive and alternative methods for assigning the absolute configuration should be 

6

NH2

O

O

3 / 0.121:4.16

H2N

3 / 0.0031 : 1.03

NH2

N
1 : 1.10 3 / 0.028

9

NH2

3 / 0.021:1.447

NH2

OTBS

1.12 : 1 3 / 0.0110

amineentry

1

2

# trials / δ c

5 / 0.081 3.38:

NH2

5 / 0.033.13 1:

O
NH2 3 / 0.021:1.40

NH2

BnO 5 / 0.0061:1.22

5

NH2

O

O

3 / 0.041:3.67

3

4

M+

Intensityb
(M+3)+

Intensityb:

NH2

Bn

OH

2.6-(S)

2.6-(R)

2.14-(S)

2.15-(S)

2.16-(S)

2.17-(S)

2.18-(S)

2.19-(R)

2.20-(S)

2.21-(S)

2.3-(R,R) (3 equiv)

2.3-(S,S)-d3 (3 equiv)
CHCl3 (50 µL), r.t

L
∗∗

S

NH2

2.8
L

∗∗
S

HN

O

CH3

L
∗∗

S

HN

O

CD3

2.9-(M)+ 2.9-(M+3)+

(a) All reactions were run for 1h and analyzed by ESI-MS. (b) The sodium peaks 
were analyzed in all cases. (c) The standard deviation (δ) for multiple runs is included.

+



34 
 

considered. The method was also applied to substrates that contained additional protic moieties, 

such as the amino alcohols shown in Table 2.5. In the case of alcohols, they behave as small 

groups even when they carry substituents (entry 5).  

Table 2.5. Absolute configurations of α-amino alcohols.a 

 

 Based on these studies, a predictive mnemonic to assign absolute configuration using 

ESI-MS is presented in Figure 2.6. The mnemonic places the “large” group to the left and the 

“small” group to the right of the amine. If the reagent 2.3-(R,R) reacts faster, the amine is facing 

forward, and when reagent 2.2-(S,S)-d3 reacts faster, the amine is back. Carbonyl and aromatic 

groups, both which contain sp2 carbons, behave as large groups. Alcohols behave as small 

groups (Table 2.5), but when protected behave as bulky substituents (Table 2.4, entries 2.9 and 

2.10).  
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Figure 2.6. Mnemonic for assigning absolute configuration of primary amines. 

 The standard analysis uses 0.5 µmol of amine, which translates to ~75 µg of material, 

consumed. In order to further exploit the potential of ESI-MS for determining configuration, one 

additional experiment was performed (Scheme 2.3). Because amines that contained different 

functional groups afforded acylated products of different masses, it was rationalized that the 

analysis could be carried out in a single experiment as opposed to several experiments. With this 

in mind, a mixture containing 50 nmol (<10 µg) of each of the three amines was subjected to the 

optimized CEC conditions. After one hour, ESI-MS analysis of the crude mixture provided the 

absolute configuration of all three amines in a single experiment.  

Scheme 2.3. Configuration assignment of various amines in a single experiment. 

 

V. Conclusions: A new method for assigning absolute configuration was presented in this 

chapter. The new strategy uses a pseudoenantiomeric pair of kinetic resolution reagents and mass 

spectrometry to rapidly establish the absolute configuration of a variety of primary amines based 
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on mass differences of the acylated products. Based on the experimental data, a predictive 

mnemonic was established. Furthermore, the analytical tool developed in this chapter was 

effective on micromole down to nanomole-scale and was applied to mixture of amines. Finally, 

other members of the Rychnovsky group are expanding the core concepts of this methodology to 

secondary amines.    
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Supporting Information 

VI. General experimental and laboratory conditions: 

All glassware was flame- or oven-dried and cooled under argon unless otherwise stated. All 

reactions and solutions were conducted under argon unless otherwise stated. All commercially 

available reagents were used as received, unless otherwise stated. Toluene (PhMe), 

tetrahydrofuran (THF), dimethylformamide (DMF), diethyl ether (Et2O) and dichloromethane 

(CH2Cl2) were degassed and dried by filtration through activated alumina under vacuum 

according to the procedure by Grubbs.7 Diisopropylamine (DIPA), acetonitrile (MeCN), 1,3-

Dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone (DMPU) were distilled from CaH2 prior to use. All 

reactions involving LiDBB were conducted with glass stirbars. Thin layer chromatography 

(TLC) was performed with Millipore 60 F254 glass-backed silica gel plates and visualized using 

potassium permanganate, Dragendorff-Munier, ceric ammonium molybdate (CAM) or vanillin 

stains. Flash column chromatography was performed according to the method by Still, Kahn, and 

Mitra8 using Millipore Geduran Silica 60 (40-63 µm).  

 

Instrumentation 

All data collected at ambient temperature unless noted. 1H NMR spectra were taken at 500 or 

600 MHz, calibrated using residual NMR solvent or TMS and interpreted on the δ scale. Peak 

abbreviations are listed: s = singlet, d = doublet, t = triplet, q = quartet, pent = pentet, dd = 

doublet of doublets, ddd = doublet of doublet of doublets dt = doublet of triplets, ddt = doublet of 

doublet of triplets, dq = doublet of quartets, m = multiplet, app = apparent, br = broad. 13C NMR 

spectra were taken at 125 MHz, calibrated using the NMR solvent, and interpreted on the δ scale. 
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N-((1R,2R)-2-(trifluoromethylsulfonamido)cyclohexyl)-N-(trifluoromethylsulfonyl) 

ethanamide (2.3-(R,R)) Freshly distilled acetyl chloride (94.4 µL, 1.32 mmol) was added 

dropwise to a stirred solution of 1,2-bis(trifluoromethanesulfonamide) cyclohexane (0.50 g, 1.32 

mmol) and triethylamine (276 µL, 1.98 mmol) in tetrahydrofuran (10 mL) at –20 oC. The 

resulting mixture was allowed to stirred for 5 hours at 0 oC. Upon completion after 5 hours as 

observed by TLC (15:85 EtOAc/Hex), the mixture was concentrated under vacuo and purified 

via column chromatography (8:92 EtOAc/Hex) to afford the desired compound as a white solid 

in 57 % yield (0.32 g). 1H NMR (500 MHz, CDCl3) δ 5.01 (d, J = 10.0 Hz, 1H), 4.27 (br s, 1H), 

3.76 (br s, 1H), 2.51 (s, 3H), 2.49–2.42 (m, 1H), 2.27–2.23 (m, 1H), 1.86–1.83 (m, 2H), 1.81–

1.75 (m,1H), 1.45–1.18 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 170.2, 119.7 (q, JC–F = 318.5), 

119.6 (q, JC–F = 318.4), 67.2, 54.7, 35.5, 29.3, 27.1, 25.7, 24.6; IR (thin film) 3301, 2949, 2868, 

1716, 1457, 1388, 1195, 1148, 1131, 1071, 1015, 971, 941, 919, 896, 862, 729; HRMS 

(ESI/methanol) m / z calcd for C10H14F6N2O5S2Na [M+Na]+ 443.0146, found 443.0141; mp = 

107–109 oC; Rf = (15:85 EtOAc/Hex). 
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N-((1S,2S)-2-(trifluoromethylsulfonamido)cyclohexyl)-N-(trifluoromethylsulfonyl) 

ethanamide-d3 (2.3-(S,S)-d3) Acetyl chloride-d3 (121 µL, 1.65 mmol) was added dropwise to a 

stirred solution of 1,2-bis(trifluoromethanesulfonamide)cyclohexane (0.50g , 1.32 mmol) and 

freshly distilled pyridine (1.06 mL, 13.2 mmol) in diethylether (20 mL) at –20 oC. The mixture 

was allowed to stirred overnight at room temperature. Upon completion as observed by TLC 

(15:85 EtOAc/Hex), the mixture was concentrated under vacuo and purified via column 

chromatography (8:92 EtOAc/Hex) to afford the desired compound as a white solid in 71 % 

yield (0.40 g). 1H NMR (500 MHz, CDCl3) δ 5.11 (s, 1H), 4.27 (br s, 1H), 3.76 (br s, 1H), 2.55–

2.38 (m, 1H), 2.28–2.21 (m, 1H), 1.90–1.83 (m, 2H), 1.81–1.74 (m,1H), 1.44–1.18 (m, 3H); 

13C NMR (125 MHz, CDCl3) δ 170.2, 119.6 (q, JC–F = 318.5), 119.5 (q, JC–F = 318.4), 67.2, 

54.7, 35.6, 29.3, 27.1, 25.7, 24.6; IR (thin film) 3299, 2948, 2867, 1712, 1458, 1415, 1383, 

1194, 1146, 1131, 1074, 1000, 955, 919, 818, 792, 740; HRMS (ESI/methanol) m / z calcd for 

C10H14F6N2O5S2Na [M+Na]+ 446.0337, found 446.0347; mp = 110–112 oC; Rf = (15:85 

EtOAc/Hex). 
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Chapter 3 

Lycopodium Alkaloids: Background and Synthesis Strategies 

I. Introduction: The Lycopodium alkaloids are a diverse group of structurally complex natural 

products isolated from the Lycopodium club mosses.1 Over 250 Lycopodium alkaloids had been 

reported and many were shown to possess interesting biological activities ranging from 

neurotropic to anticancer properties.2,3 Initial studies by Bödeker in 1881 led to the isolation of 

lycopodine (3.1) from the Lycopodium complanatum.4 Since then, the Lycopodium alkaloid 

family has attracted extensive attention from the scientific community.  

 

Figure 3.1. Structural classes of the Lycopodium alkaloids. 

 

The Lycopodium alkaloids are classified into four structural classes: the lycopodine, the 

lycodine, the fawcettimine, and the miscellaneous class (Figure 3.1).1e The lycopodine class is 

the largest class of the family with over 79 isolated compounds. In terms of structural features, 

the lycopodines contain a tetracyclic core composed of four connected 6-membered rings (e.g., 

lycopodine (3.1)). The lycodine structural class contains a modified tetracyclic core where the 

αN and C1 are connected forming an annulated pyridine or pyridinone ring (e.g., lycodine (3.2)). 
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The fawcettimine class also contains a tetracyclic ring system with a migrated C4-C13 bond that 

forms a C4-C12 linkage (e.g., fawcettimine (3.4)). Any remaining alkaloids that do not belong to 

the first three groups are classified under the miscellaneous class, with phlegmarine being a 

representative case (3.4). Structural numbering of the Lycopodium alkaloids is presented in 

accordance to Conroy’s biogenetic proposal.5  

 

II. Proposed Biosynthesis: The biogenetic origin of these intriguing molecules has attracted the 

attention of several groups in the past. However, due to unsuccessful cultivation and limited 

access to in-vitro propagation, the biosynthesis of these molecules has not been fully 

established.1f Through 14C and 13C feeding studies a proposed biosynthesis was reported 

(Figure 3.2).6 Initially, the amino acid lysine (3.5) is decarboxylated to form cadaverine (3.6), 

which then undergoes an oxidative cyclization to form piperideine (3.7). Coupling of piperideine 

(3.7) with dicarboxylic acid (3.8), or its bisCoA ester (3.9), followed by decarboxylation forms 

pelleterine (3.11), a key intermediate in the biosynthesis of the Lycopodium alkaloids.6b 

Pelleterine (3.11), or some derivative thereof, then dimerizes via an intermolecular aldol reaction 

to form dimer 3.12. Oxidation of 3.12 provides intermediate 3.13, which upon cyclization 

produces the phlegmarine skeleton 3.14. Studies suggest that the phlegmarine skeleton is a found 

in all Lycopodium alkaloids and serves as common intermediate in the biosynthesis of the 

family.6c Tricycle 3.14 undergoes an intramolecular Mannich reaction to form the C13–C4 bond 

of compound 3.15, which reacts further to produce lycodine (3.2). Cleavage of αN–C1 and 

rearrangement of 3.15 forms the lycopodine (3.1). Skeletal rearrangement of C13–C4 bond to 

form a new C4–C12 bond allows access to Fawcettimine (3.3).7 



43 
 

 

Figure 3.2. Proposed biosynthesis of the Lycopodium alkaloids. 

 

Strategies for synthesizing the Lycopodium alkaloids: Numerous approaches towards making 

these molecules led to the discovery of new and efficient synthetic methods. In the following 

sections of this chapter four selected total syntheses will be discussed to provide background of 

the strategies that motivated us to pursue our studies described in chapter 4. 

 

III. Highlights of Stork’s Synthesis of (±)-Lycopodine: In 1968, Stork and coworkers reported 

the first total synthesis of lycopodine (3.1), which was developed on the basis of a Mannich 

reaction variant.8 The synthesis began with a 1,4-addition reaction of an organocuprate reagent 
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with the correct stereochemistry to afford trans 3.17 in 90% yield. Condensation of acrylamide 

with pyrrolidinenamine of 3.17 produced quinolone 3.18 in 20% yield, along with its undesired 

regioisomer, which was purified via recrystallization. Stork postulated that upon reaction with 

acid, 3.18 could produce either of the protonated species 3.19 or 3.20; however, only one of the 

two reversibly protonated species would cyclize with the appended aromatic ether. This idea 

proved to be correct, and treatment of 3.18 with acid at room temperature led to amidoalkylation 

product 3.21 in 55% yield. The authors argued that the appended aromatic nucleophile exists in 

the equatorial conformation in isomer 3.19 and axial conformation in isomer 3.20. The 

acyliminium ion 3.20 can undergo Mannich cyclization due to proper orbital overlap whereas 

cyclization of 3.19 is geometrically unfeasible. Further elaboration of the aromatic unit in 3.21 

afforded lycopodine (3.1) in 17 steps with a 1.1% overall yield resulting in the first total 

chemical synthesis of a member of the Lycopodium alkaloids. 

Scheme 3.1. Stork Synthesis of  (±)-lycopodine (3.1). 
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IV. Highlights of Heathcock’s Synthesis of (±)-Lycodine: In 1978, Heathcock and coworkers 

reported a direct approach for the construction of lycodine (3.2) which also utilized a Mannich 

reaction as a key step.9 Heathcock’s efforts began with a conjugate addition of the cuprate 

derived from the anion of hydrazone 3.22 to afford diketone 3.24 as an equimolar mixture of C12 

epimers. It was later shown that the stereochemistry at C12 would be inconsequential during the 

intramolecular Mannich reaction that formed the core of (3.2). Formation of the diketal, followed 

by reduction of the nitrile provided amine 3.25 in 85% yield. The core of (3.2) was then 

assembled in a single chemical operation. Exposure of 3.25 to aqueous HCl triggered a cascade 

reaction that involved: ketal deprotection, iminium condensation, and Mannich cyclization to 

deliver tricycle 3.26. An additional one-pot procedure yielded Lycodine (3.2) in 11 total steps 

with an overall 3.2% yield. Heathcock’s synthesis reiterated that the 1,4-addition reaction 

proceeds anti to the C16 methyl group and that epimers at C12 are inconsequential. Heathcock’s 

endeavors led to a highly concise synthesis that gave access to the lycodine class of Lycopodium 

alkaloids using conceptually similar bond disconnections to Stork’s lycopodine synthesis.  

Scheme 3.2. Heathcock’s synthesis of (±)-lycodine (3.2).
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V. Highlights of Smith Synthesis of (+)-Lyconadine A: Since Stork’s inaugural synthesis of 

lycopodine (3.1), many other syntheses have been reported and new members of the family have 

been isolated. Lyconadin A (3.32), which belongs to the miscellaneous class, contains an 

unprecendeted pentacyclic framework with an embedded 7-membered ring.10 In 2007, Smith and 

coworkers reported the first total synthesis of lyconadin A (3.32).11 The Smith synthesis featured 

an impressive cascade reaction that involved: (1) an intramolecular aldol condensation that 

formed eneone 3.28 and (2) a 7-endo-trig conjugate addition that forged the embedded 7-

membered ring system in (3.32) (Scheme 3.3). Unfortunately, while the 7-membered formation 

proceeded with the desired C7 stereochemistry, protonation of enol 3.29 resulted in the exclusive 

formation of the undesired trans-fused ring 3.31 and not the expected product 3.30. 

Stereochemical correction at C12 and further elaboration led to the first total synthesis of 

lyconadin A. 

Scheme 3.3. Smith’s synthesis of (+)-lyconadine A (3.27). 
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and 3.36 introduced the cyclohexane moiety found in the natural product with the correct 

stereochemistry at C10. Next, the authors installed the appended αN in three steps: (1) alkylation 

with 1-chloro-3-idopropane, (2) SN2 displacement of chloride with azide, and (3) 

decarboxylative cleavage with TBAF to furnish 3.38 in good yields. In four additional steps, the 

cascade precursor 3.40 that contained the C5–C6 linkage was formed.  

Scheme 3.4. Shair’s synthesis of enamine 3.40. 
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Mannich reaction upon exposure to elevated temperatures forming 3.46. Further functional group 

manipulation afforded fastigiatine (3.47) in 15 steps from intermediates 3.34 and 3.36.  

Scheme 3.5. Completion of (+)-fastigiatine (3.47). 
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Chapter 4 

Total Synthesis of (+)-Fastigiatine 

I. Abstract: A modular approach towards the fastigiatine-type alkaloids is described herein. A 

concise synthesis of fastigiatine was accomplished using a biomimetic transannular Mannich 

reaction that generated two quaternary carbons at a late stage. The strategic approach described 

in this chapter should be applicable to other members of the Lycopodium family. 

 

II. Introduction: Fastigiatine (4.1) was first isolated from the Lycopodium Fastigatum in 1986 

by MacLean and coworkers.1 Its structure was solved by X-ray analysis of its free base, which 

allowed for the determination of a pentacyclic ring system that contained two fully substituted 

carbons and six stereogenic centers. Although the biological relevance of (4.1) has not been 

described, the newly isolated congeners (4.2)2 and (4.4)3,4 were described to possess interesting 

pharmacological properties (Figure 4.1). Himeradine A (4.4) contains a scaffold similar to 

fastigiatine, but features an appended quinolizidine fragment connected via a methylene linker. 

Biological studies of himeradine A by Kobayashi and coworkers showed modest cytotoxicity 

against murine lymphoma L1210 cells (IC50 = 10 µg/mL). The structural complexity and 

biological activity of these molecules inspired us to develop a modular approach toward this 

series of alkaloids.  

 

Figure 4.1. Fastigiatine and related alkaloids. 
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III. Proposed Biosynthesis: The biogenetic origin of (4.1) was first proposed by MacLean, and 

is illustrated in figure 4.2.1 Tricycle 4.5, derived from phlegmarine, undergoes an intramolecular 

Mannich reaction that forges the C4–C13 linkage. An enzyme-mediated oxidation of tetracycle 

4.6 at the C10 position installs the necessary leaving group on 4.7 for the subsequent ring 

formation. MacLean argues that an intramolecular SN2 reaction stitches together the C4–C10 

linkage, thereby forming the core structure of fastigiatine (4.1). Inspired by the original work of 

Heathcock5 and Shair,4a a modular approach towards 4.1 was initiated, with the goal of 

eventually applying the developed route towards himeradine A and the lyconadin alkaloids. 

During the course of these studies, Shair and co-workers disclosed the first total synthesis of 

himeradine A.4b 

 

Figure 4.2. MacLean’s proposed biosynthesis of fastigiatine. 

The overall strategy was designed around a transannular Mannich ring closure 

proceeding through intermediate 4.9, which leads to a dramatic simplification of the pentacyclic 

scaffold as shown in the retrosynthesis plan (Figure 4.3).6 Diamine 4.10 was envisioned to be 

accessed from cis benzo[7]annulene 4.13 via cross coupling with 4.11, although more complex 

fragments could be introduced as part of the himeradine synthesis. Conjugate addition with 

organometallic 4.12 would then provide precursor 4.10. Different protecting groups and reaction 

sequence was considered at this stage, and if necessary, protection of C13 and C15 carbonyls 

was contemplated. Enone 4.13 contains twelve of the carbon atoms and three of the stereogenic 
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the lyconadin and himeradine A targets. The hypothetical compound 4.13 could be prepared by a 

Diels-Alder reaction and ring expansion from known cyclohexenone 4.14.  

 
 

Figure 4.3. Retrosynthesis plan for fastigiatine. 

 

IV. Results and Discussion: Initial work consisted on the preparation of known enone 4.14 

using a slightly modified protocol as outlined in Scheme 4.1.7 The synthesis begins with a large-
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Scheme 4.1. Synthesis of cyclohexenone 4.12. 
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Scheme 4.2. Preparation of bromo enone 4.21. 
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successful, making the C13 carbonyl as a ketal would prevent any undesired epimerization 

during the subsequent reaction sequence. To test this idea, a model system was developed, using 

achiral enone 4.23 as an inexpensive building block. Ketalization of 4.23 using Noyori’s 

conditions led to Diels-Alder precursor 4.25 in excellent yield.13 Cycloaddition of coupling 

partners 4.25, and more robust TBS-modified enol ether 4.27, in the presence of a Lewis acid led 

to produce 4.29, proceeding via intermediacy of oxonium ion 4.26. A variety of conditions were 

investigated to increase the formation of 4.29, with unsuccessful results. While this approach was 

attractive because addition and removal of ketal could proceed in two steps, the low yields 

obtained for the cycloaddition reaction discouraged us to further pursue this strategy. 

Scheme 4.3. Synthesis of protected decalin 4.29. 
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expansion of TBS-ether 4.31 with dibromocarbene followed by exposure to silver (I) salt 

allowed for the mild formation of bromo enone 4.35 on gram scale.15  

Scheme 4.4. Preparation of bromoenones 4.35 and 4.36. 
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transformation.16 Unfortunately, a competing 1,2-addition pathway led to alcohol 4.42 as the 

major product on several occasions (Scheme 4.6, Eq. 1). In order to suppress the ketone addition, 

various conditions were investigated including portion-wise addition of palladium, allylindium 

generation protocols, and different temperatures, but the reaction remained problematic and 

unreliable. As an alternative, sp2-sp3 Suzuki coupling with a protected allylamine to introduce 

the three-carbon chain was simultaneously investigated (Scheme 4.6, Eq. 2).17 Fortunately, 

coupling of bromo enone 4.35 with the borane 4.43 derived from N-Boc allylamine allowed for 

the direct installation of the three-carbon chain, to afford amide 4.44 in high yields and gram-

quantities.  

Scheme 4. 6. Cross-coupling reaction of bromo enone 4.35. 
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acetylide 4.48 would generate mixed cuprate 4.49,20 which could then engage in a conjugate 

addition. 

Investigations began with nitrile 4.52 and model substrate 4.50 (Scheme 4.7, Eq. 2).21 

Nitrile 4.52 did not afford the desired product, but instead underwent a 1,2-addition reaction to 

produce alcohol 4.55. This suggested that reductive decyanation is not facile with primary 

nitriles, as alpha deprotonation occurs first, precluding nitrile cleavage and therefore undergoes a 

1,2-addition reaction. The 1,4-addition reaction, however, proceeded when alkyl chloride 4.53 

was used, albeit in low yields. This suggested its potential towards the formation of 4.51.22 

Unfortunately, carbamate 4.53 proved to be quite unstable to air and handling, therefore 

preventing us from its further use. In the search of a bench-stable reagent that could still 

participate in the required chemistry, I elected to investigate sulfide 4.54.23 Gratifyingly, the 

thioether 4.54 performed remarkably, producing compound 4.51 in great yields.  

Scheme 4.7. Development of cuprate reagent 4.49. 
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4.56; and 2) the C13 substituent might influence the stereochemical outcome of the reaction. It 

was soon discovered that axial TBS ether 4.44 led to dicarbamate 4.57, favoring the desired beta 

adduct (~1:2.5), whereas equatorial 4.58 gave product 4.59 with reversed selectivity (~4:1). 

While the reactions proceeded in high yields, their diastereoselectivities remained moderate. 

Equally important was the identification of 4.44 as a better substrate for the desired beta attack 

transformation. At this junction, the factors controlling the selectivity remain unclear, and further 

experimentation should address these questions. A deprotection and oxidation of compounds 

4.57 and 4.59 led to cascade precursor 4.60 in 61% and 68% yield, respectively.  

Scheme 4.8. Conjugate addition of mixed cuprate 4.49. 

 

The overall strategy for synthesizing fastigiatine was designed around a transannular 
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Imine formation 4.63 followed by a retro-aldol reaction would allow for iminium condensation 

4.9 setting the stage for the transannular Mannich reaction to form the core 4.65. The sequence 

of events may occur in a different fashion, but Scheme 4.9 provides an overview of the assembly 

and follows precedent of Shair’s work.4  

Scheme 4.9. Cascade cyclization of fastigiatine (4.1). 
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series of rearrangements to afford the natural product (4.1) as shown in Scheme 4.10. Upon 

deprotection, diketone 4.66 would cyclize to enamine 4.67, which could equilibrate in-situ to cis-

isomer 4.64 and participate in the cascade previously described.25  

Scheme 4.10. Alternative cascade toward fastigatine. 
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Scheme 4.11. Epimerization studies of benzo[7]annulene. 
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4.11. While it is clear that decalin 4.30 could be driven towards trans 4.71 upon epimerization, 

this situation became more complex for benzo[7]annulene 4.69, as diastereomeric 4.70 (1:1.5) 

always resulted from a thermodynamically controlled process. Furthermore, the C13 unprotected 

synthetic sequence poses a serious concern, since the desired cis fusion continuously erodes, and 

generation of epimeric 4.69 and 4.70 cannot be separated nor equilibrated to a single C12 

diastereomer.  

Scheme 4.12. Suzuki coupling on diketones. 
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Scheme 4.13. Generation of tricycle products 4.74 and 4.75. 
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Scheme 4.14. Conjugate addition-transannular aldol reaction. 
 

 

VI. A Six-Step sequence to fastigiatine: With a good understanding of the C13 protecting 

group free route, the total synthesis of fastigiatine was accomplished in six steps (Scheme 4.15). 
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cis isomer. Suzuki coupling led to a thermodynamic mixture of 4.69 and 4.70 in excellent yield. 

Conjugate addition led to a complex mixture that was simplified by working up the reaction with 

K2CO3 and methanol to afford tricycle 4.75, isolated as ca. 1:1 mixture with its C10 epimer in 

high yield. Compound 4.75 contains the correct C10 configuration needed for the Mannich 

cyclization and can be taken forward directly to the cascade cyclization. Treatment of 4.75 with 

CSA in o-DCB removed the two Boc protecting groups, and set up a retro-aldol equilibrium that 

permitted the formation of intermediate 4.9 en route to a transannular Mannich reaction. 

Acylation of the crude reaction mixture produced fastigiatine (4.1) in excellent yield. 
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Scheme 4.15. A six-step sequence to fastigiatine (4.1) 

 

 

VII. Attempts at Improving the Conjugate Addition: During the course of our studies, 

MacMillan and coworkers reported the photon-induced decarboxylation of α-amino acids to 

produce Michael donors that participated in conjugate addition reactions.26,27 Inspired by these 

new protocols, we set out to explore the photoredox coupling of N-Boc amino acid 4.78 into 

model acceptor 4.50 using photocatalyst 4.79 with visible light (Scheme 4.17). After reaction 

optimization, the addition underwent with operational ease and in excellent yield.  
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Table 4.2. Decarboxylative conjugate addition. 
 
 

 

 With an alternative protocol to install the requisite methylene amine fragment of 

fastigiatine, the addition was next performed onto a mixture of 4.69 and 4.70. Preliminary results 

demonstrated high yields for the reaction, however the selectivity remained moderate when 

applied to a diastereomeric mixture of 4.69/4.70. Further applications of the photoredox coupling 

to the Lycopodium alkaloids are underway and will be reported in due time. 

Scheme 4.17. Decarboxylative conjugate addition into diastereomeric 4.69 /4.70. 

 

 

VIII. Conclusions on the Total Synthesis of fastigiatine 

 In conclusion, a new synthesis of fastigiatine was accomplished by two different 

methods. The first approach employed protection of C13 carbonyl group to avoid isomerization. 

A second-generation route proved challenging, as C12 stereochemistry underwent 

configurationally changes, but a transannular aldol reaction corrected the configuration at a late-

stage, obviating the need for protecting groups. A novel phenylthio carbamate reagent for 
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conjugate additions was developed and applied to the synthesis of (4.1). Further investigations 

utilized photoredox chemistry to incorporate a glycine derivative as an alternative approach of 

the “methylene amine” synthon. The strategic approach developed for fastigiatine is currently 

being expanded to himeradine A and the lyconadin alkaloids. The landmark syntheses by 

Heathcock and Shair served as groundwork for our investigations.   
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IX. General experimental and laboratory conditions 

All glassware was flame- or oven-dried and cooled under argon unless otherwise stated. All 

reactions and solutions were conducted under argon unless otherwise stated. All commercially 

available reagents were used as received, unless otherwise stated. Toluene (PhMe), 

tetrahydrofuran (THF), dimethylformamide (DMF), diethyl ether (Et2O) and dichloromethane 

(CH2Cl2) were degassed and dried by filtration through activated alumina under vacuum 

according to the procedure by Grubbs.28 Diisopropylamine (DIPA), acetonitrile (MeCN), 1,3-

Dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone (DMPU) were distilled from CaH2 prior to use. All 

reactions involving LiDBB were conducted with glass stirbars. Thin layer chromatography 

(TLC) was performed with Millipore 60 F254 glass-backed silica gel plates and visualized using 

potassium permanganate, Dragendorff-Munier, ceric ammonium molybdate (CAM) or vanillin 

stains. Flash column chromatography was performed according to the method by Still, Kahn, and 

Mitra29 using Millipore Geduran Silica 60 (40-63 µm).  

 

 

Instrumentation 

All data collected at ambient temperature unless noted. 1H NMR spectra were taken at 500 or 

600 MHz, calibrated using residual NMR solvent or TMS and interpreted on the δ scale. Peak 

abbreviations are listed: s = singlet, d = doublet, t = triplet, q = quartet, pent = pentet, dd = 

doublet of doublets, ddd = doublet of doublet of doublets dt = doublet of triplets, ddt = doublet of 

doublet of triplets, dq = doublet of quartets, m = multiplet, app = apparent, br = broad. 13C NMR 

spectra were taken at 125 MHz, calibrated using the NMR solvent, and interpreted on the δ scale. 
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Some samples were analyzed above room temperature to minimize line broadening due to 

rotamers. 

General procedure for preparation of LiDBB stock solution. 

A round-bottom flask equipped with a glass stir bar was charged with 4,4’-di-tert-

butylbiphenyl (1 equiv) and the flask was flame-dried under vacuum until 4,4’-di-tert-

butylbiphenyl melted, at which point it was cooled to room temperature under argon. Lithium 

wire (10 equiv) was clipped in a stream of argon. Dry THF (0.5 M) was added and the solution 

stirred to give a dark green solution within 2-3 min. The mixture was cooled to 0 °C and stirred 

for 5 h to produce lithium di-tert-butylbiphenyl (LiDBB) at full molarity. 

 

  

tert-butyl methyl((phenylthio)methyl)carbamate (4.54): Dry toluene (149 mL) was added to a 

500 mL round-bottom flask containing tert–butyl methyl carbamate S1 (5.86 g, 0.044 mol, 1 

equiv), paraformaldehyde (1.55 g, 0.051 mol, 1.15 equiv) and magnesium sulfate (15 g) at room 

temperature. After 5 min, TMSCl (16.9 mL, 0.134 mol, 3 equiv) was added dropwise via 

syringe. The solution was allowed to stir for 15 min and then thiophenol (5.07 mL, 0.025 mol, 

1.1 equiv) was added, and the resulting mixture was allowed to stir until starting material was 

consumed as observed by TLC. After 5 h, the crude reaction mixture was filtered, concentrated 

and purified via chromatography (15% EtOAc in hexanes) to afford product 4.54 (10.62 g, 94%) 

as a crystalline white solid. 1H NMR (500 MHz, CDCl3, 65 °C) δ 7.49 (d, J = 7.0 Hz, 1H),  

7.31–7.20 (m, 3H), 4.75 (s, 2H), 2.90 (s, 3H), 1.33 (s, 9H); 13C NMR (125 MHz, CDCl3, 65 °C) 

N
H

tBuO

O
Me NtBuO

O
Me

SPh

paraformaldehyde
TMSCl, PhSH

PhMe, 25 °C
5h, 94%S1 4.54
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δ 155.0, 134.5, 133.4, 129.0, 127.6, 80.2, 55.5, 33.3, 28.3; IR (thin film) 2972, 2929, 1699, 

1478, 1443, 1389, 1265, 1230, 1172, 1133, 1052, 869, 745 cm–1; HRMS (ESI/methanol) m / z 

calcd for C13H19NO2SNa (M + Na)+: 276.1034, found: 276.1029. mp = 60–63 °C; TLC (20% 

EtOAc in hexanes) Rf = 0.42 (KMnO4 stain). 

 

tert-butyl methyl((3-oxocyclohexyl)methyl)carbamate (4.51): A round bottom flask 

containing 4.54 (211 mg, 0.83 mmol) and 1,10-phenanthroline (2-3 crystals) was dried by 

azeotroping three times with freshly distilled benzene. The flask was then equipped with a glass 

stir bar and THF (15 mL) was introduced under Ar. The mixture was cooled to –78 °C and  

n–BuLi/hexanes (2-3 M) was added until a brown dark color persisted (~0.3–0.4 mL). This 

procedure was performed to quench adventitious proton sources. LiDBB (4.7 mL, 1.86 mmol, 

2.2 equiv) was then added dropwise over 10 min at –78 °C until a dark-green color persisted, and 

the mixture was allowed to stir for 20 min. A separate flask containing 1-hexynyl copper (240 

mg, 1.67 mmol) and tetrahydrofuran (3 mL) was cooled to –78 °C and trimethyl phosphite (0.44 

mL, 3.75 mmol) was introduced; the mixture was stirred until a clear solution developed. The 

resulting homogeneous solution was added via syringe to the organolithium reagent down the 

flask wall over 3 min and stirring was continued for 1 h to produce 15 as deep red solution. The 

cyclohexenone (40 mg, 0.42 mmol) was added as a solution in THF (0.3 mL) with freshly 

distilled TMSCl (263 µL, 2.08 mmol).  The resulting mixture was stirred at –78 °C for 24 h and 

quenched with 10% concentrated ammonium hydroxide/saturated ammonium chloride (20 mL), 
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followed by warming to room temperature. After 1 h, the organic layers were separated and the 

aqueous layers were extracted with ethyl acetate (20 mL) three times. The organic layers were 

combined, dried and concentrated under vacuum. The resulting mixture was filtered through a 

plug silica with 20% CH2Cl2 in hexanes to remove excess of 4,4’-di-tert-butylbiphenyl, at which 

point ethyl acetate was used to flushed the plug. The material was concentrated under vacuum. 

The mixture was concentrated, loaded onto silica gel with DCM and purified by column 

chromatography, eluting with 25% EtOAc/hexanes gradient, to afford 4.51 (89.2 mg, 89%).  

 

1H NMR (500 MHz, CDCl3) δ 3.24–3.03 (m, 2H), 2.84–2.74 (m, 3H), 2.39–2.28 (m, 2H), 

2.27–2.18 (m, 1H), 2.11–1.90 (m, 3H), 2.67 (s, 3H), 1.88–1.75 (m, 1H), 1.67–1.53 (m, 1H), 1.40 

(s, 9H), 1.38–1.27 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 211.3, 210.9, 156.2, 155.8, 79.8, 

79.6, 54.5, 53.9, 45.8, 45.7, 41.5, 38.5, 38.1, 35.2, 29.1, 28.5, 25.3, 25.2; HRMS (ESI/methanol) 

m / z calcd for C13H23NO3Na (M + Na)+: 264.1576, found: 264.1572; TLC (25 % EtOAc in 

Hexanes) Rf = 0.33 (CAM stain). Spectral data matched those reported in the literature.30  

 

(3R,4aS,8aR)-6-((tert-butyldimethylsilyl)oxy)-3-methyl-3,4,4a,5,8,8a-hexahydronaphthalen-

1(2H)-one (4.30): A round-bottom flask was charged with (+)-5-methylcyclohex-2-en-1-one 

(2.01 g, 18.26 mmol) and 2-tert-butyldimethylsiloxy-1,3-butadiene (4.68 g, 25.44 mmol) and 
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purged 4 times via vacuum/argon cycles. Dry toluene (75 mL) was added and the solution was 

cooled to 0 °C. Diethyl aluminum chloride (19.1 mL, 1.0 M in toluene 19.1 mmol) was then 

added dropwise over a 10 min period. The resulting mixture was allowed to reach room 

temperature with stirring.  After 1.5 h, the mixture was cooled to 0 °C and the reaction was 

quenched by addition of saturated NaHCO3 (250 mL) and 10% potassium sodium tartrate (20 

mL). The aqueous layer was separated and extracted with Et2O (3 x 200 mL). The combined 

organic layers were washed with saturated NaHCO3 (3 x 200 mL), brine (3 x 200 mL), dried 

over Na2SO4 and concentrated under reduced pressure. Volatile materials were removed under 

high vacuum (ca. 1 Torr) overnight to afford the desired product 4.30 (4.91 g, 91%) as light 

yellow oil. 1H NMR (500 MHz, CDCl3) δ 4.81–4.78 (app. m, 1H), 2.61 (t, J = 5.8 Hz, 1H), 

2.57–2.48 (m, 2H), 2.39 (ddd, J = 13.5, 4.8, 2.0 Hz, 1H), 2.25–2.17 (m, 1H), 2.20–1.95 (m, 2H), 

1.86 (app. dd, J = 8.0, 1.5 Hz, 2H), 1.80 (d, J = 14.5 Hz, 1H), 1.64 (ddd, J = 13.5, 11.5, 4.0 Hz, 

1H), 1.03 (d, J = 6 Hz, 3H), 0.89 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 211.1, 148.2, 102.0, 49.7, 47.0, 38.2, 36.1, 31.9, 30.8, 25.9, 22.6, 22.2, 18.1, -4.1, -4.4; 

HRMS (ESI/methanol) m / z calcd for C17H31O2Si (M + H)+: 295.2093, found: 295.2095. TLC 

(10% EtOAc in hexanes) Rf = 0.60 (CAM Stain). Spectral data were consisted with those 

reported in the literature.10 
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(3R,4aS,8aR)-6-((tert-butyldimethylsilyl)oxy)-3-methyl-1,2,3,4,4a,5,8,8a-

octahydronaphthalen-1-ol (S2) and (S3): To a solution of decalin 4.30 (2.95 g, 10.03 mmol) in 

absolute ethanol (33 mL, 0.3 M) at 0 °C was added sodium borohydride (1.89 g, 50.13 mmol) in 

three portions over 30 minutes. Upon completion as observed by TLC, the reaction mixture was 

partitioned between EtOAc (50 mL) and H2O (50 mL) and allowed to reach room temperature. 

The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 50 mL). 

The combined organic layers were washed with brine, dried over Na2SO4 and concentrated in 

vacuo to give a colorless oil. Purification by column chromatography (10% EtOAc in hexanes) 

afforded a mixture of separable diastereomers S2 and S3 (2.79 g, 94%) as yellow oil 

(~1.4:1 ax/eq mixture of C13 epimers). 

 

1H NMR (500 MHz, CDCl3) δ 4.86 (app. s, 1H), 3.99 (app. s, 1H), 2.41–2.27 (m, 1H),  

2.22–2.13 (m, 1H), 2.12–2.01 (m, 4H), 1.98–1.87 (m, 1H), 1.85–1.73 (m, 1H), 1.65–1.67 (m, 

1H), 1.27–1.12 (m, 1H), 0.94 (d, J = 6.5 Hz, 3H), 0.91 (s, 9H), 0.12 (d, J = 5.1 Hz, 6H); 13C 

NMR (125 MHz, CDCl3) δ 151.8, 102.1, 72.8, 39.7, 37.2, 34.9, 31.0, 26.0, 21.6, 18.2, -4.1, -4.2; 
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IR (thin film) 3393, 2926, 2856, 1674, 1462, 1378, 1250, 1192, 1176, 1084, 1013, 881, 834, 777, 

679 cm–1; HRMS (ESI/methanol) m / z calcd for C17H32O2SiNa (M + Na)+: 319.2069, found: 

319.2061; TLC (10% EtOAc in hexanes) Rf = 0.41 (CAM Stain); [α]24
D = +29 (c 2.94, CHCl3). 

 

1H NMR (500 MHz, CDCl3) δ 4.77 (app. d, J = 5.7 Hz, 1H), 3.57 (ddd, J = 15.2, 10.6,  

4.5 Hz, 1H), 2.42 (dd, J = 17.6, 5.8 Hz, 1H), 2.23–2.16 (m, 1H), 2.15–2.08 (m, 1H), 1.98 (app. d,  

J = 11.6 Hz, 2 H), 1.86–1.76 (m, 2H), 1.52 (d, J  = 14.0, 2H), 1.45 (ddd, J = 10.9, 5.4 Hz, 1H), 

1.31–1.24 (br. s, 1H), 1.18 (td, J = 13.3, 4.8 Hz, 1H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (s, 9H), -0.12 

(d, J = 5.8 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 141.1, 101.7, 67.7, 54.1, 45.1, 41.8, 39.1, 

33.7, 31.7, 26.6, 25.9, 24.2, 22.5, 18.2, -4.1, -4.3; IR (thin film) 3373, 2926, 1701, 1666, 1513, 

1463, 1365, 1250, 1171, 1103, 1058, 835, 774 cm–1; HRMS (ESI/methanol) m / z calcd for 

C17H32O2SiNa (M + Na)+: 319.2069, found: 319.2076; TLC (10% EtOAc in hexanes) Rf = 0.31 

(CAM Stain); [α]25
D = -4.0 (c 1.57, CHCl3). 

 

(((1S,3R,4aS,8aR)-3-methyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene-1,6-

diyl)bis(oxy))bis(tert-butyldimethylsilane) (4.31): To a solution of S2 (1.48 g, 5.0 mmol) in 

CH2Cl2 (7.1 mL) at –78 °C was added 2,6-lutidine (1.16 mL, 9.98 mmol, 2 equiv) and TBSOTf 
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(1.38 mL, 5.99 mmol, 1.2 equiv). The mixture was stirred for 8 h, and the reaction was quenched 

with Et3N (0.84 mL, 5.99 mmol, 1.2 equiv) and NaHCO3 (15 mL) at –78 °C. The organic layer 

was separated and the aqueous layer was extracted with CH2Cl2 (3 x 15 mL). The combined 

organic layers were washed with brine, dried over Na2SO4 and concentrated in vacuo to give a 

yellow oil. Purification by column chromatography (5% CH2Cl2 in hexanes) gave product 4.31 

(1.98 g, 97%) as a clear oil. 1H NMR (500 MHz, CDCl3) δ 4.77 (s, 1H), 3.94 (dt, J = 8.9, 4.2, 

1H), 2.23–2.12 (m, 1H), 2.09–1.98 (m, 4H), 1.88–1.78 (br. s, 2H), 1.69 (ddd, J = 13.9, 9.5, 5.1 

Hz, 1H), 1.61 (ddd, J = 14.1, 10.5, 4.7 Hz, 1H), 1.28 (dt, J = 13.6, 3.8 Hz, 1H), 1.06 (dt, J = 13.3, 

4.1 Hz, 1H), 0.97 (d, J = 7.3 Hz, 3H), 0.90 (s, 9H), 0.86 (s, 9H), 0.11 (s, 6H), 0.01 (s, 6H);  

13C NMR (125 MHz, CDCl3) δ 151.2, 149.2, 109.7, 102.3, 68.5, 41.3, 38.7, 36.0, 35.5, 34.8, 

30.6, 30.4, 28.3, 26.13, 26.06, 25.9, 20.5, 18.9, 18.4, 18.32, 18.26, 18.2, 15.9, 7.03, 6.98, 5.3, 

-4.0, -4.3, -4.4, -4.5, -4.6; IR (thin film) 2955, 2911, 1673, 1461, 1360, 1255, 1180, 1152, 1097, 

1068, 1005, 963, 892, 859, 835, 773, 745 cm–1; HRMS (ESI/methanol) m / z calcd for 

C23H46O2Si2H (M + H)+: 411.3115, found: 411.3128; TLC (5% CH2Cl2 in hexanes) Rf = 0.36 

(CAM Stain). 

 

(((1R,3R,4aS,8aR)-3-methyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene-1,6-

diyl)bis(oxy))bis(tert-butyldimethylsilane) (4.32): To a solution of S3 (286 mg, 0.97 mmol) in 

CH2Cl2 (1.4 mL) at –78 °C was added 2,6-lutidine (0.22 mL, 1.93 mmol, 2 equiv) and TBSOTf 

(0.29 mL, 1.26 mmol, 1.3 equiv). The mixture was stirred for 7 h, and the reaction was quenched 
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with Et3N (0.17 mL, 1.26 mmol, 1.3 equiv) and NaHCO3 (5 mL) at –78 °C. The organic layer 

was separated and the aqueous layer was extracted with CH2Cl2 (3 x 5 mL). The combined 

organic layers were washed with brine, dried over Na2SO4 and concentrated in vacuo to give a 

yellow oil. Purification by column chromatography (5% CH2Cl2 in hexanes) gave the product 

(364 mg, 92%) as a clear oil. 1H NMR (500 MHz, CDCl3) δ 4.76–4.72 (m, 1H), 3.58–3.50 (m, 

1H), 2.37 (dd, J = 16.2, 5.6 Hz, 1H), 2.21–2.13 (m, 2H), 2.06–1.93 (m, 2H), 1.88–1.72 (m, 3H), 

1.52–1.45 (m, 2H), 1.15 (td, J = 12.8, 4.5 Hz, 1H), 1.00–0.95 (m, 6H), 0.94–0.85 (m, 16H), 

0.70–0.62 (m, 4H), 0.12 (d, J = 9.3 Hz, 2H), 0.03 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 

149.0,102.2, 101.6, 68.4, 45.4, 41.8, 39.2, 33.7, 31.7, 26.5, 26.1, 25.9, 24.4, 22.6, 18.3, 18.2, 7.0, 

5.2, -3.9, -4.0, -4.3, -4.5, -4.6; IR (thin film) 2954, 2910, 1670, 1461, 1362, 1250, 1170, 1100, 

1090, 1065, 1001, 961, 895, 831, 771, 744 cm–1; HRMS (ESI/methanol) m / z calcd for 

C23H46O2Si2H (M + H)+: 411.3115, found: 411.3132; TLC (5% CH2Cl2 in hexanes) Rf = 0.24 

(CAM Stain); [α]23
D = -8.0 (c 1.80, CHCl3). 

 

(1S,3R,4aS,9aR)-7-bromo-1-((tert-butyldimethylsilyl)oxy)-3-methyl-1,2,3,4,4a,5,9,9a-

octahydro-6H-benzo[7]annulen-6-one (4.35): To a solution of compound 4.31 (1.24 g, 3.03 

mmol) in petroleum ether (16 mL) at –20 °C was added KOt-Bu (1.02 g, 9.08 mmol) and freshly 

distilled bromoform (0.79 mL). The reaction mixture was allowed to stir at –20 °C until starting 

material was consumed as observed by TLC. After 1h, the mixture was poured into 12 mL of 

water. The organic layer was separated and the aqueous layer was extrated with EtOAc (3 x 20 
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.
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mL). The combined organic layers were dried over Na2SO4 and concentrated under vacuo. The 

residue was dissolved in acetone (33 mL), to this solution was added calcium carbonate (1.51 g, 

15.14 mmol) and silver perchlorate monohydrate (3.14 g, 15.14 mmol), and the mixture was 

stirred at 25 °C overnight, during which time a dark precipitate developed. The mixture was 

quenched by addition of Et3N (2.11 mL, 15.14 mmol) and silica gel (~1.0 g), and the mixture 

concentrated under vacuo. The resulting crude mixture was flushed through a plug of silica using 

Et2O. Purification by column chromatography gave the product (0.96, 82%) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δ 7.23 (dd, J = 9.8, 4.8 Hz, 1H), 3.89–3.84 (m, 1H) 3.05 (dd,  

J = 15.5, 11.0 Hz, 1H), 2.58 (ddd, J = 15.7, 11.1, 4.7 Hz, 1H), 2.51 (dd, J = 16.0, 3.0 Hz, 1H), 

2.37 (ddd, J = 15.8, 9.7, 4.3 Hz, 1H), 2.24–2.1(app. m, 1H), 1.95–1.85 (app. m, 1H), 1.80 (dq,  

J = 10.0, 4.0 Hz, 1H), 1.70–1.62 (app. m, 1H), 1.56 (dt, J = 13.7, 3.9 Hz, 1H), 1.31 (ddd, 

J = 13.8, 9.0, 5.3 Hz, 1H), 1.21–1.14 (app. m, 1H), 0.91 (d, J = 7 Hz, 3H), 0.85 (s, 9H), 0.02 (s, 

3H), -0.02 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 197.8, 145.9, 125.6, 69.9, 47.0, 40.7, 40.4, 

38.6, 31.0, 28.1, 26.0, 23.4, 21.1, 18.1, -4.4, -4.8; IR (thin film) 2952, 2926, 2852, 1681, 1462, 

1253, 1059, 834, 735 cm–1; HRMS (ESI/methanol) m / z calcd for C18H31BrO2Si (M + NH4)+: 

404.1620, found: 411.1613; TLC (40% CH2Cl2 in hexanes) Rf = 0.34 (CAM Stain); [α]23
D = +45 

(c 0.9, CHCl3). 
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(1R,3R,4aS,9aR)-7-bromo-1-((tert-butyldimethylsilyl)oxy)-3-methyl-1,2,3,4,4a,5,9,9a-

octahydro-6H-benzo[7]annulen-6-one (4.36): To a solution of compound 4.32 (364 mg, 0.89 

mmol) in petroleum ether (4.7 mL) at –20 °C was added KOt-Bu (297 mg, 2.66 mmol) and 

freshly distilled bromoform (0.23 mL). The reaction mixture was allowed to stir at –20 °C until 

starting material was consumed as observed by TLC. After 1.5h, the mixture was poured into 5 

mL of water. The organic layer was separated and the aqueous layer was extrated with EtOAc  

(3 x 5 mL). The combined organic layers were dried over Na2SO4 and concentrated under vacuo. 

The residue was dissolved in acetone (9.9 mL), to this solution was added calcium carbonate 

(444 mg, 4.44 mmol) and silver perchlorate monohydrate (993 mg, 4.44 mmol), and the mixture 

was stirred at 25 °C overnight, during which time a dark precipitate developed. The mixture was 

quenched by addition of Et3N (0.62 mL, 4.44 mmol) and silica gel 

(~0.5 g), and the mixture concentrated under vacuo. The resulting crude mixture was flushed 

through a plug of silica using Et2O. Purification by column chromatography gave the product 

(311 mg, 91%) as a yellow oil. 1H NMR (500 MHz, CDCl3) δ 7.16 (dd, 

J = 9.3, 6.2 Hz, 1H), 3.47 (td, J = 10.6, 4.4 Hz, 1H), 2.78 (ddd, J = 15.3, 9.0, 5.8 Hz, 1H), 2.63 

(dd, J = 17.0, 11.0 Hz, 1H), 2.46 (app. d, 15.5 Hz, 1H), 2.33–2.26 (m, 1H), 2.09 (ddd, J = 14.9, 

10.3, 6.3 Hz, 1H), 1.85–1.79 (m, 1H), 1.73 (tt, J = 9.5, 6.3 Hz, 1H), 1.57 (dd, J = 13.5, 2.0 Hz, 

1H), 1.51–1.39 (m, 1H), 1.30–1.19 (m, 2H), 1.06 (q, J = 11.7 Hz, 1H), 0.91 (d, J = 6.5 Hz, 1H), 

0.88 (s, 9H), 0.06 (s, 3H), 0.04 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 197.7, 143.9, 126.0, 

73.6, 45.4, 44.2, 41.6, 40.6, 32.8, 32.3, 26.9, 26.0, 22.3, 18.2, -3.6, -4.5; IR (thin film) 2957, 
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2925, 2852, 1681, 1456, 1253, 1101, 1064, 834, 772 cm–1; HRMS (ESI/methanol) m / z calcd for 

C18H31BrO2Si (M + NH4)+: 404.1620, found: 411.1623; TLC (40% CH2Cl2 in hexanes)  

Rf = 0.28 (CAM Stain).  

 

tert-butyl(3-((1S,3R,4aS,9aR)-1-((tert-butyldimethylsilyl)oxy)-3-methyl-6-oxo 

2,3,4,4a,5,6,9,9a-octahydro-1H-benzo[7]annulen-7-yl)propyl)carbamate (4.44): To a solution 

of tert–butyl allylcarbamate (239 mg, 1.51 mmol) in degassed THF (2.5 mL) was added a 

solution of 9-BBN (0.5 M in THF, 4.3 mL, 2.13 mmol) at room temperature. After stirring for 4 

h, the solution was treated with degassed water (365 µL, 20.25 mmol) for 20 min. In a separate 

Schlenk flask, bromo enone 4.35 (391 mg, 1.01 mmol), CsCO3 (725 mg, 2.23 mmol), AsPh3 

(124 mg, 0.41 mmol), and Pd(dppf)Cl2 (296 mg, 0.41 mmol) were degassed via high-

vacuum/argon cycles (4x) and diluted in degassed DMF (6.5 mL). The resulting mixture was 

then stirred for 15 min before the borane solution was added. The reaction was stirred for 4 h at 

80 °C, at which point the mixture turned black. The mixture was cooled to room temperature, 

diluted with Et2O (15 mL) and filtered through a plug of alumina. Concentration in vacuo 

followed by purification via flash column chromatography (eluent, gradient 15% EtOAc in 

hexanes) the desired product (419 mg, 89%) as a colorless oil. 1H NMR (500 MHz, CDCl3) δ 

6.39–6.21 (m, 1H), 4.80–4.55 (br. s, 1H), 3.88–3.83 (m, 1H), 3.09–3.02 (br. s, 2H), 2.91–2.84 

(m, 1H), 2.52–2.42 (m, 1H), 2.33–2.27 (m, 1H), 2.26–2.21 (m, 1H), 2.20–2.10 (m, 1H), 

1.94–1.86 (m, 1H), 1.73–1.67 (m, 1H), 1.65–1.60 (m, 1H), 1.56–1.49 (m, 3H), 1.41 (s, 9H), 
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1.31–1.23 (m, 1H), 1.21–1.14 (m, 1H), 0.91 (d, 7.0 Hz, 3H), 0.84 (s, 9H), 0.00 (s, 3H), -0.02 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 206.7, 156.2, 142.5, 140.6, 79.1, 70.0, 48.6, 41.7, 40.2, 

40.1, 38.3, 31.1, 29.9, 29.7, 28.6, 26.0, 25.9, 23.9, 21.0, 18.2, -4.4, -4.7; IR (thin film) 3362, 

2925, 2857, 1694, 1515, 1451, 1410, 1388, 1364, 1299, 1251, 1166, 1105, 1050, 636, 775, 676 

cm–1; HRMS (ESI/methanol) m / z calcd for C26H47NO4SiNa (M + Na)+: 488.3172, found: 

488.3174; TLC (15% EtOAc in hexanes) Rf = 0.31 (CAM Stain); [α]23
D = +34 (c 0.83, CHCl3). 

 

tert-butyl(3-((1R,3R,4aS,9aR)-1-((tert-butyldimethylsilyl)oxy)-3-methyl-6-oxo-

2,3,4,4a,5,6,9,9a-octahydro-1H-benzo[7]annulen-7-yl)propyl)carbamate (4.58): To a solution 

of tert–butyl allylcarbamate (131 mg, 0.83 mmol) in degassed THF (1.4 mL) was added a 

solution of 9-BBN (0.5 M in THF, 2.3 mL, 1.16 mmol) at room temperature. After stirring for 4 

h, the solution was treated with degassed water (199 µL, 11.08 mmol) for 20 min. In a separate 

Schlenk flask, bromo enone 4.36 (214 mg, 0.55 mmol), CsCO3 (397 mg, 1.22 mmol), AsPh3 (50 

mg, 0.17 mmol), and Pd(dppf)Cl2 (122 mg, 0.17 mmol) were degassed via high-vacuum/argon 

cycles (4x) and diluted in degassed DMF (3.6 mL). The resulting mixture was then stirred for 15 

min before the borane solution was added. The reaction was stirred for 4 h at 80 °C, at which 

point the mixture turned black. The mixture was cooled to room temperature, diluted with Et2O 

(15 mL) and filtered through a plug of alumina. Concentration in vacuo followed by purification 

via flash column chromatography (eluent, gradient 15% EtOAc in hexanes) the desired product 

(209 mg, 81%) as a colorless oil. 1H NMR (500 MHz, CDCl3) δ 6.38–6.33 (m, 1H), 4.70-4.62 
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(br. s, 1H), 3.46 (td, J = 10.6, 4.4 Hz, 1H), 3.11–3.04 (m, 2H), 2.70 (ddd, J = 14.7, 9.8, 6.0 Hz, 

1H), 2.52 (dd, J = 17.3, 11.6 Hz, 1H), 2.35–2.27 (m 1H), 2.26–2.19 (m, 2H), 2.17–2.09 (m, 1H), 

2.01–1.93 (m, 1H), 1.82–1.76 (m, 1H), 1.67–1.59 (m, 1H), 1.58–1.50 (m, 4H), 1.43 (s, 9H), 1.22 

(dt, J = 13.0, 5.2 Hz, 1H), 0.99 (q, J = 11.8 Hz, 1H), 0.90 (d, J = 6.6 Hz, 3H), 0.88 (s, 9H), 0.05 

(s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 207.0, 156.2, 142.6, 137.8, 79.2, 74.0, 46.7, 

44.4, 41.7, 40.8, 40.2, 32.9, 30.6, 30.0, 29.7, 28.6, 27.0 26.0, 22.4, 18.2, -3.6, -4.5; IR (thin film) 

3373, 2926, 1701, 1665, 1512, 1463, 1364, 1249, 1171, 1103, 1058, 835, 774 cm–1; HRMS 

(ESI/methanol) m / z calcd for C26H47NO4SiNa (M + Na)+: 488.3172, found: 488.3181; TLC 

(15% EtOAc in hexanes) Rf = 0.30 (CAM Stain); [α]23
D = +22 (c 1.14, CHCl3). 

 

(3R,4aS)-7-bromo-3-methyl-3,4,4a,5,9,9a-hexahydro-1H-benzo[7]annulene-1,6(2H)-dione 

(4.21) and (4.22): To a solution of decalin 4.30 (1.21 g, 4.12 mmol) in petroleum ether (110 mL) 

at –20 °C was added potassium tert-butoxide (1.39 g, 12.37 mmol) in 3 portions. The 

heterogeneous mixture turned yellow within 2 min. After 2 min, freshly distilled bromoform 

(1.08 mL, 12.37 mmol) was added dropwise in petroleum ether (20 mL) over 4 min. The reaction 

mixture was allowed to stir at –20 °C until starting material was consumed as observed by TLC. 

After 45 min, the mixture was removed from the cooling bath and filtered through a silica plug 

with 25% EtOAc in petroleum ether. The filtrate was concentrated under vacuum and the 

resulting yellow oil was dissolved in acetone (45 mL). Calcium carbonate (2.06 g, 20.63 mmol) 

and silver perchlorate monohydrate (1.85 g, 8.25 mmol) were added. The reaction was allowed 
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to stir at 25 °C for 9 h, during which time a dark precipitate developed. The reaction was 

quenched by addition of Et3N (1.15 mL, 8.25 mmol) and silica gel (1.5 g), and the mixture 

concentrated under vacuo. The resulting crude mixture was flushed through a plug of silica using 

Et2O. The material was concentrated under vacuo and purified via chromatography (eluent, 

gradient 15% → 25% EtOAc in hexanes) to afford a mixture of diastereomers 4.21 and 4.22 

(0.57 g, 51%) as yellow oil (~3:1 cis/trans mixture of C-12 epimers). A small sample of the 

mixture was purified by MPLC to separate the cis and trans isomers for characterization. 

 

1H NMR (500 MHz, CDCl3) δ 7.24 (dd, J = 10.5, 4.8 Hz, 1H), 2.75–2.65 (m, 3H), 2.57–2.46 

(m, 3H), 2.4 (dd, J = 16.3, 10.3 Hz, 1H), 2.07 (t, J = 12.8 Hz, 1H), 1.97–1.87 (m, 1H), 1.84 (dt, J 

= 13.5, 3.3 Hz, 1H), 1.75 (ddd, J = 14.8, 11.5, 4.3 Hz, 1H), 1.05 (d, J = 6.5 Hz, 1H); 13C NMR 

(125 MHz, CDCl3) δ 209.8, 195.7, 144.1, 125.6, 49.7, 47.4, 45.3, 39.4, 34.7, 29.9, 27.0, 22.1; IR 

(thin film) 3444, 2955, 2924, 1705, 1685, 1600, 1452, 1379, 1231, 1111, 1041, 916 cm–1; 

HRMS (ESI/methanol) m / z calcd for C12H15BrO2Na (M + Na)+: 293.0153, found: 293.0161; 

TLC (20% EtOAc in hexanes) Rf = 0.33 (CAM Stain). 
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1H NMR (500 MHz, CDCl3) δ 7.22 (dd, J = 8.3, 4.3 Hz, 1H), 2.92 (dd, J = 14.0, 6.0 Hz, 

1H), 2.87–2.78 (m, 1 Hz), 2.60 (dd, J = 14.0, 5.5 Hz, 1H), 2.53–2.36 (m, 3H),  

2.27–2.21 (m, 1H), 2.18 (d, J = 13 Hz, 1H), 1.94 (td, J = 13.0, 4.8 Hz, 1H), 1.68 (d,  

J = 14.5 Hz, 1H), 0.98 (d, J = 7Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 209.4, 195.3, 145.3, 

125.9, 54.9, 48.0, 46.9, 38.3, 35.6, 29. 8, 28.4, 20.0; IR (thin film) 3437, 2957, 2826, 1602, 

1711, 1687, 1459, 1385, 1238, 1090, 912 cm–1; HRMS (ESI/methanol) m / z calcd for 

C12H15BrO2Na (M + Na)+: 293.0153, found: 293.0161; TLC (20% EtOAc in hexanes) Rf = 0.32 

(CAM Stain). 

 

tert-butyl (3-((3R,4aS)-3-methyl-1,6-dioxo-2,3,4,4a,5,6,9,9a-octahydro-1H-benzo[7]annulen-

7-yl)propyl)carbamate (4.70/4.69): To a solution of tert–butyl allylcarbamate (402 mg, 2.56 

mmol) in degassed THF (4.3 mL) was added a solution of 9-BBN (0.5 M in THF, 7.2 mL, 3.58 

mmol) at room temperature. After stirring for 4 h, the solution was treated with degassed water 

(615 µL, 34.14 mmol) for 20 min. In a separate Schlenk flask, bromo enone 4.21/4.22 (461 mg, 

1.71 mmol), CsCO3 (1.22 g, 3.76 mmol), AsPh3 (157 mg, 0.51 mmol), and Pd(dppf)Cl2  

(375 mg, 0.51 mmol) were degassed via high-vacuum/argon cycles (4x) and diluted in degassed 
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DMF (11 mL). The resulting mixture was then stirred for 15 min before the borane solution was 

added. The reaction was stirred for 4 h at 80 °C, at which point the mixture turned black. The 

mixture was cooled to room temperature, diluted with Et2O (15 mL) and filtered through a plug 

of alumina. Concentration in vacuo followed by purification via flash column chromatography 

(eluent, gradient 30% → 40% EtOAc in hexanes) afforded inseparable diastereomers (494 mg, 

83%) of 4.70 and 4.69 as a colorless oil (~ 3:2 trans/cis epimers at C-12). 1H NMR (600 MHz, 

CDCl3) δ 6.50–6.40 (m, 1H), 4.67–4.55 (br. s, 1H), 3.13–3.01 (app. m, 2H), 2.83–2.73 (app. m, 

1H), 2.66–2.60 (m, 0.5H), 2.59–2.54 (m, 1H), 2.49–2.40 (m, 2.5H), 2.34–2.25 (m, 2.5H), 

2.20–2.11 (m, 2H), 2.03 (t, J = 12.5 Hz, 0.5H), 1.97–1.87 (m, 1H), 1.82–1.75 (m, 0.5H),  

1.73–1.69 (m, 0.5H), 1.68–1.64 (m, 1H), 1.54 (p, J = 5.9 Hz, 2H), 1.42 (s, 9H), 1.02  

(d, J = 6.5 Hz, 1.5H), 0.97 (d, J = 7.0, Hz, 1.5H); 13C NMR (125 MHz, CDCl3) δ 211.1, 210.5, 

204.6, 204.1, 156.2, 142.6, 139.5, 138.4, 79.3, 55.6, 53.3, 49.8, 49.1, 48.0, 47.04, 46.99, 40.5, 

40.1, 39.5, 39.0, 38.3, 36.0, 34.8, 30.5, 29.99, 29.97, 29.92, 29.6, 28.6, 26.7, 25.6, 22.1, 20.1; IR 

(thin film) 3373, 2953, 2921, 2881, 1708, 1664, 1517, 1454, 1391, 1363, 1252, 1173, 875 cm–1; 

HRMS (ESI/methanol) m / z calcd for C20H31NO4Na (M + Na)+: 372.2151, found: 372.2157; 

TLC (40% EtOAc in hexanes) Rf = 0.32 (CAM Stain). 

 

Tricycle 4.75 and its C10 epimer: A round bottom flask containing 4.54 (0.62 g, 2.44 mmol) 

and 1,10-phenanthroline (2-3 crystals) was dried by azeotroping three times with freshly distilled 

benzene. The flask was then equipped with a glass stir bar and THF (27 mL) was introduced 
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under Ar. The mixture was cooled to –78 °C and n–BuLi/hexanes (2-3 M) was added until a 

brown dark color persisted (~0.3–0.4mL). This procedure was performed to quench adventitious 

proton sources. LiDBB (12.8 mL, 5.12 mmol, 2.1 equiv) was then added dropwise over 10 min 

at –78 °C until a dark-green color persisted, and the mixture was allowed to stir for 20 min. A 

separate flask containing 1-hexynyl copper (0.71 g, 4.94 mmol) and tetrahydrofuran (6.2 mL) 

was cooled to –78 °C and trimethyl phosphite (1.8 mL, 14.6 mmol) was introduced; the mixture 

was stirred until a clear solution developed. The resulting homogeneous solution was added via 

syringe to the organolithium reagent down the flask wall over 3 min and stirring was continued 

for 1 h to produce 15 as deep red solution. The carbamate 10 (213 mg, 0.61 mmol) was added as 

a solution in THF (0.5 mL) with freshly distilled TMSCl (0.39 mL, 3.05 mmol).  The resulting 

mixture was stirred at –78 °C for 24 h and quenched with 10% concentrated ammonium 

hydroxide/saturated ammonium chloride (120 mL), followed by warming to room temperature. 

After 1 h, the organic layers were separated and the aqueous layers were extracted with ethyl 

acetate (40 mL) three times. The organic layers were combined, dried and concentrated under 

vacuum. The resulting mixture was filtered through a plug silica with 20% CH2Cl2 in hexanes to 

remove excess of 4,4’-di-tert-butylbiphenyl, at which point ethyl acetate was used to flushed the 

plug. The material was concentrated under vacuum. The crude product was dissolved in 

methanol (15 mL) with potassium carbonate (627 mg, 4.54 mmol) and stirred for 4 h. The 

mixture was concentrated, loaded onto silica gel with DCM and purified by MPLC, eluting with 

20% to 40% EtOAc/hexanes gradient, to deliver tricycle 4.75 (126.1 mg, 42%) and its C10 

epimer (134.5 mg, 45%). 
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1H NMR (500 MHz, tol-d8, 85 °C) δ 4.46–4.37 (br s, 1H), 3.42–3.27 (br s, 1H), 3.10 (m, 

2H), 2.77–2.72 (m, 1H), 2.71–2.68 (m, 1H), 2.67 (s, 3H), 2.63–2.52 (m, 1H), 2.25 (ddd, J = 13.5, 

11.2, 7.6 Hz, 1H), 2.01 (d, J = 17.5 Hz, 1H), 1.87 (app d, J = 13.6 Hz, 1H), 1.85–1.80 (m, 1H), 

1.76–1.67 (m, 1H), 1.66–1.56 (m, 5H), 1.45 (s, 18H), 1.37–1.29 (m, 2H), 1.12–1.00 (br s, 1H), 

0.86 (q, J = 13.7 Hz, 2H), 0.70 (d, J = 6.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3, 25 °C) δ 

213.5, 213.3, 156.5, 156.3, 155.8, 80.1, 79.6, 79.3, 65.4, 48.4, 48.0, 47.1, 43.7, 43.2, 43.0, 42.7, 

41.8, 41.1, 35.5, 35.3, 34.5, 34.2, 32.1, 29.9, 29.8, 29.6, 28.7, 28.6, 26.0, 25.5, 24.5, 22.9, 22.5, 

14.3 ; IR (thin film) 3364, 2962, 2925, 1686, 1519, 1482, 1451, 1393, 1367, 1247, 1163, 1043, 

870, 771 cm–1; HRMS (ESI/methanol) m / z calcd for C27H46N2O6Na (M + Na)+: 517.3254, 

found: 517.3261; TLC (44 % EtOAc in Hexanes) Rf = 0.34 (CAM stain); [α]24
D = –74 (c 1.23, 

CHCl3). 

 
1H NMR (500 MHz, tol-d8, 85 °C) δ 4.51–4.43 (br s, 1H), 3.75 (dd, J = 13.3, 11.3 Hz, 1H), 

3.17 (dd, J = 13.8, 4.3 Hz, 1H), 3.12–3.05 (m, 2H), 2.71 (s, 3H), 2.29 (dd, 

J = 16.5, 8.0 Hz, 1H), 2.17 (ddd, J = 12.8, 7.0, 5.3 Hz, 1H), 2.03–1.96 (m, 1H), 1.91–1.85 (m, 

1H), 1.79 (d, J = 16.5 Hz, 1H) 1.74 (dd, J = 14.0, 4.5 Hz, 1H), 1.69–1.64 (m, 1H), 1.61–1.51 (m, 

NHBoc

N

Me

OH

O

BocMe

4.74

10

NHBoc

N

Me

OH

O

BocMe

4.75
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4H), 1.46 (s, 9H), 1.43 (s, 9H), 1.34–1.26 (m, 3H), 1.06–1.00 (br s, 1H), 0.83 (td, J = 12.8, 3.0 

Hz, 1H), 0.73 (t, J = 13.0 Hz, 1H), 0.65 (d, J = 6.0 Hz, 3H), 0.51–0.43 (br s, 1H); 13C NMR 

(125 MHz, CDCl3, 25 °C) δ 214.4, 214.2, 156.8, 156.4, 156.22, 83.9, 83.8, 79.75, 79.66, 79.12, 

79.06, 65.2, 65.1, 52.6, 51.7, 48.0, 43.0, 42.1, 41.9, 41.3, 40.7, 35.4, 35.3, 34.9, 32.1, 31.9, 31.6, 

29.9, 29.8, 29.5, 28.6, 25.6, 22.9, 22.7, 21.8, 14.3; IR (thin film) 3380, 2957, 2920, 1961, 1514, 

1456, 1393, 1362, 1252, 1168, 1033, 876, 771 cm–1; HRMS (ESI/methanol) m / z calcd for 

C27H46N2O6Na (M + Na)+: 517.3254, found: 517.3234; TLC (44 % EtOAc in Hexanes)  

Rf = 0.38 (CAM stain); [α]24
D = –41 (c 1.82, CHCl3).   

 

 

 (+)-Fastigiatine (4.1): A 10 mL Schlenk flask was charged with tricycle 4.75 (57.1 mg, 0.12 

mmol) and purged three times with argon/vacuum. Freshly distilled and degassed  

1,2-dichlorobenzene (5.9 mL) was introduced and the solution cooled to 0 °C, at which point 

(+)-10-camphorsulfonic acid (402.5 mg, 1.73 mmol) was added. The reaction was removed from 

the ice bath and warmed to 165 °C in a sealed atmosphere for 1 h. The mixture was cooled to  

0 °C, quenched with saturated NaHCO3 (5 mL) and extracted with CHCl3 (5 mL) two times. The 

combined organic layers were dried over Na2SO4 and concentrated to remove CHCl3. To the 

resulting solution were added Et3N (0.16 mL, 1.16 mmol) and Ac2O (0.11 mL, 1.16 mmol), and 

the mixture was stirred for 5 h. The reaction was quenched by addition of methanol (2 mL). 

Concentration under vacuum and purification by silica gel chromatography (gradient 1% → 10% 

NHBoc

N

Me

OH

O

BocMe

i) (+)–CSA
1,2-dichlorobenzene

165 °C

ii) Ac2O, Et3N
CH2Cl2, 25 °C

90 %

4.75

N

NMe

Me
O

H
H

(+)-fastigiatine (4.1)
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MeOH in CHCl3 with 0.5% Ammonium hydroxide) afforded (+)-fastigiatine (34.6 mg, 90% 

yield) as a white crystalline solid. The data for the synthetic natural product matched that 

reported by Shair.4 

 

1H NMR (500 MHz, CDCl3, 25 °C) δ 5.19 (d, J = 5.5 Hz, 1H), 3.82 (dt, J = 11.5, 

6.0 Hz, 1H), 3.30–3.21 (m, 2H), 2.42–2.37 (m, 1H), 2.32 (s, 3H), 2.19 (d, 9.0 Hz, 1H), 2.18–2.16 

(m, 1H), 2.15 (s, 3H), 2.07 (br. app. d, J = 14.5 Hz, 1H), 2.06–1.96 (m, 1H), 1.93–1.89 (m, 1H), 

1.81–1.72 (m, 1H), 1.68 (dd, J = 14.0, 4.5 Hz, 1H), 1.63–1.53 (m, 3H), 1.43–1.32 (m, 2H), 1.20 

(app. t, J = 12.0 Hz, 1H), 1.02 (app. dt, J = 12.8, 3.3 Hz, 1H), 0.91 (d, 6.5 Hz, 3H); 13C NMR 

(125 MHz, CDCl3, 25 °C) δ 170.5, 139.6, 123.6, 65.7, 60.0, 55.4, 45.9, 45.8, 40.6, 38.7, 37.8, 

35.4, 35.0, 34.3, 25.9, 23.4, 22.7, 22.0, 21.6; HRMS (ESI/methanol) m / z calcd for 

C19H28N2ONa (M + Na)+: 323.2099, found: 323.2106; TLC (10 % MeOH in CHCl3) Rf = 0.33 

(UV or KMnO4); ); [α]24
D= +310 (c 1.32, CHCl3). 

N

NMe
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O

H
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A 2 mL oven-dried dram vial equipped with a magnetic stirrer was charged with 4.78 

(75 mg, 0.40 mmol),32 cyclohexenone (25 mg, 0.26 mmol), K2HPO4 (78 mg, 0.45 mmol), 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (11.8 mg, 0.01 mmol) and distilled DMF (0.66 mL, 0.4 M). The 

reaction mixture was degassed by bubbling argon for 15 min and the vial was sealed and 

irradiated with (2 x 34 W blue LED lamps) for 24 hours. The crude mixture was purified via 

column chromatography to afford the desired product 4.51 (61.2 mg, 96%) as a yellow oil. 

Spectral data matched those reported in the literature.30 

O
CO2HN

Me

Boc

K2HPO4, DMF, 
23 °C, blue light

O
N

Me Boc

+

4.50 4.514.78

Ir[dF(CF3)ppy]2(dtbbpy)PF6
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Z−restored spin−echo 13C spectrum
 with 1H decoupling
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 with 1H decoupling
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PC                 4.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          500.2200305 MHz
SI                65536
F2 − Processing parameters

SFO1        500.2235015 MHz
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P1                 7.50 usec
NUC1                 1H
======== CHANNEL f1 ========

MCWRK        0.01500000 sec
MCREST       0.00000000 sec
D1           0.10000000 sec
TE                298.0 K
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AQ            5.0998774 sec
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PULPROG            zg30
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              18.55
Date_          20110725
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 1
NAME           RAS_1_52
USER             samame
Current Data Parameters
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8.0

7.5
7.0

6.5
6.0

5.5
5.0

4.5
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3.5
3.0

2.5
2.0

1.5
1.0

0.5
0.0

ppm

2.729
2.875
2.879
2.949
3.076

7.255
7.256
7.260

8.190

8.492
8.576

4.016

1.000

2.036
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PC                 2.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          125.7803988 MHz
SI                65536
F2 − Processing parameters

p16             1000.00 usec
p15              500.00 usec
GPZ2              50.00 %
GPZ1              30.00 %
GPY2               0.00 %
GPY1               0.00 %
GPX2               0.00 %
GPX1               0.00 %
GPNAM2         SINE.100
GPNAM1         SINE.100
====== GRADIENT CHANNEL =====

SFO2        500.2225011 MHz
PL12              24.60 dB
PL2                1.60 dB
PCPD2            100.00 usec
NUC2                 1H
CPDPRG2         waltz16
======== CHANNEL f2 ========

SPOFF2             0.00 Hz
SPOFF1             0.00 Hz
SPNAM2      Crp60comp.4
SPNAM1   Crp60,0.5,20.1
SP2                3.20 dB
SP1                3.20 dB
SFO1        125.7942548 MHz
PL1               −1.00 dB
PL0              120.00 dB
P12             2000.00 usec
P11              500.00 usec
P1                15.50 usec
NUC1                13C
======== CHANNEL f1 ========

P2                31.00 usec
MCWRK        0.01500000 sec
MCREST       0.00000000 sec
d17          0.00019600 sec
D16          0.00020000 sec
d11          0.03000000 sec
D1           0.25000000 sec
TE                298.0 K
DE                 6.00 usec
DW               16.500 usec
RG               2580.3
AQ            1.0813940 sec
FIDRES         0.462388 Hz
SWH           30303.031 Hz
DS                   16
NS                  224
SOLVENT           CDCl3
TD                65536
PULPROG  SpinEchopg30gp.prd
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              19.01
Date_          20110725
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 2
NAME           RAS_1_52
USER             samame
Current Data Parameters
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ppm

25.605
25.862

76.977
77.231
77.486

121.600
123.772
127.710
128.421
128.450
128.479
130.774
130.796
132.675
132.949
133.225
133.498

159.884

168.835
168.844

Z−restored spin−echo 13C spectrum
 with 1H decoupling
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PC                 4.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          500.2200324 MHz
SI                65536
F2 − Processing parameters

SFO1        500.2235015 MHz
PL1                1.60 dB
P1                 7.50 usec
NUC1                 1H
======== CHANNEL f1 ========

MCWRK        0.01500000 sec
MCREST       0.00000000 sec
D1           0.10000000 sec
TE                298.0 K
DE                 6.00 usec
DW               62.400 usec
RG                  7.1
AQ            5.0998774 sec
FIDRES         0.098043 Hz
SWH            8012.820 Hz
DS                    2
NS                    8
SOLVENT           CDCl3
TD                81728
PULPROG            zg30
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              11.35
Date_          20111029
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 1
NAME       RAS_1_77pure
USER             samame
Current Data Parameters

9.5
9.0

8.5
8.0

7.5
7.0

6.5
6.0

5.5
5.0

4.5
4.0

3.5
3.0

2.5
2.0

1.5
1.0

0.5
0.0

ppm

−0.002
0.069

1.253
1.403
1.458
1.477
1.506
1.531

1.903

2.225
2.248

3.960
3.982

4.685

7.135
7.260

7.628
7.659

7.951

8.239

8.577

4.251

2.387

2.077

1.041

1.000

0.955

2.045
1.903

1.033

2.042

0.967
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PC                 2.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          125.7803997 MHz
SI                65536
F2 − Processing parameters

p16             1000.00 usec
p15              500.00 usec
GPZ2              50.00 %
GPZ1              30.00 %
GPY2               0.00 %
GPY1               0.00 %
GPX2               0.00 %
GPX1               0.00 %
GPNAM2         SINE.100
GPNAM1         SINE.100
====== GRADIENT CHANNEL =====

SFO2        500.2225011 MHz
PL12              24.60 dB
PL2                1.60 dB
PCPD2            100.00 usec
NUC2                 1H
CPDPRG2         waltz16
======== CHANNEL f2 ========

SPOFF2             0.00 Hz
SPOFF1             0.00 Hz
SPNAM2      Crp60comp.4
SPNAM1   Crp60,0.5,20.1
SP2                3.20 dB
SP1                3.20 dB
SFO1        125.7942548 MHz
PL1               −1.00 dB
PL0              120.00 dB
P12             2000.00 usec
P11              500.00 usec
P1                15.50 usec
NUC1                13C
======== CHANNEL f1 ========

P2                31.00 usec
MCWRK        0.01500000 sec
MCREST       0.00000000 sec
d17          0.00019600 sec
D16          0.00020000 sec
d11          0.03000000 sec
D1           0.25000000 sec
TE                298.0 K
DE                 6.00 usec
DW               16.500 usec
RG               4597.6
AQ            1.0813940 sec
FIDRES         0.462388 Hz
SWH           30303.031 Hz
DS                   16
NS                  784
SOLVENT           CDCl3
TD                65536
PULPROG  SpinEchopg30gp.prd
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              11.41
Date_          20111029
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 2
NAME       RAS_1_77pure
USER             samame
Current Data Parameters
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24.811

32.324

56.853
57.496

76.975
77.228
77.482

119.591
121.770
123.940
123.983
124.073
125.646
127.605
132.491
132.576
132.761
132.847
135.939
139.153

165.917

181.758

Z−restored spin−echo 13C spectrum
 with 1H decoupling
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PC                 4.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          500.2200319 MHz
SI                65536
F2 − Processing parameters

SFO1        500.2235015 MHz
PL1                1.60 dB
P1                 7.50 usec
NUC1                 1H
======== CHANNEL f1 ========

MCWRK        0.01500000 sec
MCREST       0.00000000 sec
D1           0.10000000 sec
TE                298.0 K
DE                 6.00 usec
DW               62.400 usec
RG                    8
AQ            5.0998774 sec
FIDRES         0.098043 Hz
SWH            8012.820 Hz
DS                    2
NS                    8
SOLVENT           CDCl3
TD                81728
PULPROG            zg30
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              10.00
Date_          20111025
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 1
NAME      RAS_1_90_PURE
USER             samame
Current Data Parameters

9.5
9.0

8.5
8.0

7.5
7.0

6.5
6.0

5.5
5.0

4.5
4.0

3.5
3.0

2.5
2.0

1.5
1.0

0.5
0.0

ppm

0.004

1.259

1.604
1.617
1.681

5.316
5.330
5.345
5.359
5.373

6.373
6.385

7.260
7.269
7.283
7.297
7.345
7.361
7.375
7.391
7.405
7.419
7.434
7.476
7.491
7.505
7.766
7.782

3.020

1.010

0.970

1.008
5.958
1.024

2.000

1H spectrum

 HN
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PC                 2.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          125.7804025 MHz
SI                65536
F2 − Processing parameters

p16             1000.00 usec
p15              500.00 usec
GPZ2              50.00 %
GPZ1              30.00 %
GPY2               0.00 %
GPY1               0.00 %
GPX2               0.00 %
GPX1               0.00 %
GPNAM2         SINE.100
GPNAM1         SINE.100
====== GRADIENT CHANNEL =====

SFO2        500.2225011 MHz
PL12              24.60 dB
PL2                1.60 dB
PCPD2            100.00 usec
NUC2                 1H
CPDPRG2         waltz16
======== CHANNEL f2 ========

SPOFF2             0.00 Hz
SPOFF1             0.00 Hz
SPNAM2      Crp60comp.4
SPNAM1   Crp60,0.5,20.1
SP2                3.20 dB
SP1                3.20 dB
SFO1        125.7942548 MHz
PL1               −1.00 dB
PL0              120.00 dB
P12             2000.00 usec
P11              500.00 usec
P1                15.50 usec
NUC1                13C
======== CHANNEL f1 ========

P2                31.00 usec
MCWRK        0.01500000 sec
MCREST       0.00000000 sec
d17          0.00019600 sec
D16          0.00020000 sec
d11          0.03000000 sec
D1           0.25000000 sec
TE                298.0 K
DE                 6.00 usec
DW               16.500 usec
RG              11585.2
AQ            1.0813940 sec
FIDRES         0.462388 Hz
SWH           30303.031 Hz
DS                   16
NS                  350
SOLVENT           CDCl3
TD                65536
PULPROG  SpinEchopg30gp.prd
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              10.01
Date_          20111025
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 2
NAME      RAS_1_90_PURE
USER             samame
Current Data Parameters
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155
150

145
140
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ppm

21.922

49.410

76.978
77.232
77.486

126.454
126.464
127.119
127.672
128.744
128.752
128.761
128.939
128.946
128.956
131.680
134.763

143.299

166.770

Z−restored spin−echo 13C spectrum
 with 1H decoupling
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PC                 4.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          500.2200323 MHz
SI                65536
F2 − Processing parameters

SFO1        500.2235015 MHz
PL1                1.60 dB
P1                 7.50 usec
NUC1                 1H
======== CHANNEL f1 ========

MCWRK        0.01500000 sec
MCREST       0.00000000 sec
D1           0.10000000 sec
TE                298.0 K
DE                 6.00 usec
DW               62.400 usec
RG                  6.3
AQ            5.0998774 sec
FIDRES         0.098043 Hz
SWH            8012.820 Hz
DS                    2
NS                    8
SOLVENT           CDCl3
TD                81728
PULPROG            zg30
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time               9.44
Date_          20111025
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 1
NAME      RAS_1_89_PURE
USER             samame
Current Data Parameters

9.5
9.0
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8.0

7.5
7.0

6.5
6.0

5.5
5.0

4.5
4.0

3.5
3.0

2.5
2.0

1.5
1.0

0.5
0.0

ppm

0.001

1.583
1.788
1.801

6.122
6.137
6.151
6.324
6.339
7.260
7.374
7.389
7.405
7.454
7.468
7.484
7.499
7.515
7.518
7.525
7.528
7.542
7.545
7.558
7.596
7.610
7.726
7.741
7.822
7.838
7.874
7.890
8.169
8.186

3.000

1.009

0.969

1.977
3.963
0.996
1.982
0.986
0.993

0.986

1H spectrum
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PC                 2.00
GB                    0
LB                 0.00 Hz
SSB                   0
WDW                  no
SF          125.7804025 MHz
SI                65536
F2 − Processing parameters

p16             1000.00 usec
p15              500.00 usec
GPZ2              50.00 %
GPZ1              30.00 %
GPY2               0.00 %
GPY1               0.00 %
GPX2               0.00 %
GPX1               0.00 %
GPNAM2         SINE.100
GPNAM1         SINE.100
====== GRADIENT CHANNEL =====

SFO2        500.2225011 MHz
PL12              24.60 dB
PL2                1.60 dB
PCPD2            100.00 usec
NUC2                 1H
CPDPRG2         waltz16
======== CHANNEL f2 ========

SPOFF2             0.00 Hz
SPOFF1             0.00 Hz
SPNAM2      Crp60comp.4
SPNAM1   Crp60,0.5,20.1
SP2                3.20 dB
SP1                3.20 dB
SFO1        125.7942548 MHz
PL1               −1.00 dB
PL0              120.00 dB
P12             2000.00 usec
P11              500.00 usec
P1                15.50 usec
NUC1                13C
======== CHANNEL f1 ========

P2                31.00 usec
MCWRK        0.01500000 sec
MCREST       0.00000000 sec
d17          0.00019600 sec
D16          0.00020000 sec
d11          0.03000000 sec
D1           0.25000000 sec
TE                298.0 K
DE                 6.00 usec
DW               16.500 usec
RG              11585.2
AQ            1.0813940 sec
FIDRES         0.462388 Hz
SWH           30303.031 Hz
DS                   16
NS                  350
SOLVENT           CDCl3
TD                65536
PULPROG  SpinEchopg30gp.prd
PROBHD   5 mm CPTCI 1H−
INSTRUM         cryo500
Time              10.01
Date_          20111025
F2 − Acquisition Parameters

PROCNO                1
EXPNO                 2
NAME      RAS_1_90_PURE
USER             samame
Current Data Parameters
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21.922

49.410

76.978
77.232
77.486

126.454
126.464
127.119
127.672
128.744
128.752
128.761
128.939
128.946
128.956
131.680
134.763

143.299

166.770

Z−restored spin−echo 13C spectrum
 with 1H decoupling
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