
UC Irvine
ICS Technical Reports

Title
Decomposition of timed decision tables and its use in presynthesis optimizations

Permalink
https://escholarship.org/uc/item/9st2s1kp

Authors
Li, Jian
Gupta, Rajesh K.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9st2s1kp
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Decomposition of Timed Decision Tables and its Use in
Presynthesis Optimizations

Jian Li
Department of Computer Science

University of Illinois, Urbana-Chcimpaign
Urbana, Illinois 61801

Abstract

Rajesh K. Gupta
Information & Computer Science

University of California, Irvine
Irvine, California 92697

In this paper we introduce the decomposition of Timed Decision Tables (TDT), a tabular

model of system behavior. The decomposition can be used in system partitioning or in HDL

code restructuring to improve synthesis results. The TDT decomposition is based on the kernel

extraction algorithm. By experimenting using named benchmarks, we demonstrate how TDT

decomposition can be used in presynthesis optimizations. Presynthesis optimizations transform a

behavioral HDL description into optimized HDL description that results in improved synthesized

circuits.

1 Introduction

Presynthesis optimizations have been introduced in [1] as source-level transformations that produce

"better" HDL descriptions. For instance, these transformations are used to reduce control-flow

redundancies and make synthesis result relatively insensitive to the HDL coding-style. They are

also used to reduce resource requirements in the synthesized circuits by increasing component

sharing at the behavior-level [2].

The TDT representation consists of a main table holding a set of rules, which is similar to the

specification in a FSMD [3], an auxiliary table which specifies concurrencies, data dependencies,
and serialization relations among data-path computations, or actions, and a delay table which

specifies the execution delay of each action.

The rule section of the model is based on the notions of condition and action. A condition may

be the presence of an input, or an input value, or the outcome of a test condition. A conjunction

of several conditions defines a rule. A decision table is a collection of rules that map condition

conjunctions into sets of aictions. Actions include logic, arithmetic, input-output(IO), and message-
passing operations. We associate an execution delay with each action. Actions are grouped into

action sets, or compound actions. With each action set, we associate a concurrency type of serial^
parallel, or data-parallel [4].

Condition Stub Condition Entries

Action Stub Action Entries

Figure 1: Basic structure of TDTs.

The structure of the rule section is shown in Figure 1. It consists of four quadrants. Condition
stub is the set ofconditions used in building the TDT. Condition entries indicate possible conjunc
tions of conditions as rules. Action stub is the list of actions that may apply to a certain rule.
Action entries indicate the mapping from rules to actions. A rule is a column in the entry part of
the table, which consists of two halves, one in the condition entry quadrant, called decision part of
the rule, one in the action entry quadrant, called action part of the rule.

In additional to the set of rules specified in a main table (the rule section), the TDT repre
sentation includes two auxiliary tables to hold additional information. Information specified in
the auxiliary tables include the execution delay ofeach action, serialization, data dependency, and
concurrency type between each pair of actions.

Example 1,1. Consider the following TDT:

'^1.2 I 02.1 I 02.2 I Oa.i I 03.2
C2 luuita

ai,i moo
^1,2 moo
02.1 lOOO
02.2 lOOO
03.1 lOOO
03,2 0 0 1

When ci = 'Y' and C2 = 'Y', actions ai,i and 01,2 are selected for execution. Since action 01.2 isspecified as a
successor ofai,i, action ai,i is executed with a one cycle delay followed by the execution of01,2- Symbols d'
and 'p' indicate actions that are data-parallel (i.e. parallel modulo data dependencies) and parallel actions
respectively. An arrow at row oi i and column 01,2 indicates that ai,i appears before 01,2- In contrast,
an arrow at row ai,i and column 01,2 indicates that ai,i appears after oi 2. •

The execution ofa TDT consists of two steps: (1) select a rule to apply, (2) execute the action
sets that the selected rule maps to. More than two action sets may be selected for execution. The
order in which to execute those action sets are determined by the concurrency types, serialization
relations, and datadependencies specified among those action sets [4], indicated by's', 'd\ and 'p'
in the table above.

An action in a TDT may be another TDT. This is referred to as a call to the TDT contained

as an action in the other TDT, which corresponds to the hierarchy specified in HDL descriptions.

Consider the following example.

Example 1.2. Consider the following calling hierarchy:

TDTi TDT2

Here when ci = 'N' the action needs to be invoked is the call to TDT2, forces evaluation of condition C2

resulting in actions 02 or 03 being executed. No additional information such as concurrency types needs to

be specified between auction oi and TDT2 since they lie on different control paths. For the same reason, we

omit the auxiliary table for TDT2. •

Procedure/function calling hierarchy in input HDLdescriptions results in a corresponding TDT
hierarchy. TDTs in a calling hierarchy are typically merged to increase the scope of presynthesis

optimizations. In the process of presynthesis optimizations, merging flattens the calling hierarchy
specified in original HDL descriptions. In this paper we present TDT decomposition which is

the reverse of the merging process. By first flattening the calling hierarchy and then extracting
the commonalities, we may find a more efficient behavior representation which leads to improved

synthesis results. This allows us to restructure HDL code. This code structuring is similar to the

heuristic optimizations in multilevel logic synthesis. In this paper, we introduce code-restructuring
in addition to other presynthesis optimization techniques such as column/row reduction and action

sharing that have been presented earlier [1, 4, 2].

The rest of this paper is organized as follows. In the next section, we introduce the notion

of TDT decomposition and relate it to the problem of kernel extraction in an algebraic form of
TDT. Section 3 presents an algorithm for TDT decomposition based on kernel extraction. Section

4 shows the implementation details of the algorithm and presents the experimental results. Finally,
we conclude in Section 5 and presents our future plan.

2 TDT Decomposition

TDT decomposition is the process of replacing a flattened TDT with a hierarchical TDT that

represents an equivalent behavior. As we mentioned earlier, decomposition is the reverse process of
merging and together with merging, it allowsus to produces HDL descriptions that are optimized for

subsequent synthesis tasks and are relatively insensitive to coding styles. Since this decomposition
uses procedure calling abstraction, arbitrary partitionsof the table (condition/action) matrices are
not useful. To understand the TDT structural requirements consider the example below.

Example 2.1. Consider the following TDT.

Notice the common patterns in condition rows in cq and C7, and action rows in 05, a?, and as- •

Above in Example 2.1 is a flattened TDT. The first three columns have identical condition

entries in ci and C2, and identical action entries in ci and 02. These columns differ in rows

corresponding to conditions {04, C5} and actions {03, 04, 05}, which appear only in the first three
columns. This may result, for example, from merging a sub-TDT consisting of only conditions {C4,
cs} and actions {03, 04, 05}.

Note the common pattern in the flattened TDT may result from merging a procedure which is
called twice from the main program. Or it may simply correspond to commonality in the original
HDL description. Whatever the cause,wecan extract the common part and make it into a separate
sub-TDT and execute it as an action from the main TDT.

Figure 2 shows a hierarchy of TDTs which specify the same behavior as the TDT in Example
2.1 under conditions explained later. The equivalence can be verified by merging the hierarchy
of TDTs [4]. Note that the conditions and actions are partitioned among these TDTs, i.e, no
conditions and actions are repeated amongs the TDTs.

TDTi:

Y Y Y N

Y N

TDT2 J_
TDTa

TDT2:

C4 II Y IN I N
_C5 ^

~jr_ ~ r
04 1

~i i

TDTs:
C6 II Y IY I NI N
C7 N

~

07 J 1 1
08 1 1 1

Figure 2: One possible decomposition of the TDT in Example 2.1.

It is not always possible to decompose a given TDT into a hierarchical TDT as shown in
Figure 2 above. Neither is it always valid to merge the TDT hierarchy into flattened TDT [4].

These two transformations are valid only when the specified concurrency types, data dependencies,

and serializations are preserved. In this particular example, we assume that the order of execution

of all actions follows the order in which they appear in the condition stub. For the transformations

to be valid, we also require that:

• Actions ai and 02 do not modify any values used in the evaluation of conditions C4 and cg.

• Actions ai and 02 do not modify any values used in the evaluation of conditions ce and C7.

Suppose we are given a hierarchical TDT as shown in Figure 2 to start with. After a merging

phase, we get the flattened TDT as shown in Example 2.1. In the decomposition phase, we can

choose to factor only TDT^ because it is called more than once. Then the overall effect of merging

followed by TDT decomposition is equivalent to in-line expansion of the procedure corresponding to

TDT2. This will not lead to any obvious improvement in hardware synthesis. However, it reduces

execution delay if the description is implemented as a software component because of the overhead

associated with software procedure calls.

The commonality in the flattened TDT may not result from multiple calls to a procedure

as indicated by TDT3 in Figure 2. It could also be a result of commonality in the input HDL

specification. If this is the case, extraction will lead to a size reduction in the synthesized circuit.

The structural requirements for TDT decomposition can be efficiently captured by a two-level

algebraic representation of TDTs [2]. This representation only captures the control dependencies in

action sets and hence is strictly a sub set of TDT information. As we mentioned earlier, TDTs are

based on the notion of conditions and actions. For each condition variable c, we define a positive

condition literal, denoted as Ic, which corresponds to an 'Y' value in a condition entry. We also

define a negative condition literal, denoted as Ic, which corresponds to an 'N' value in a condition

entry. A pair of positive and negative condition literals are related only in that they corresponds

to the same condition variable in the TDT.

We define a operator between two action literals and two conditions literals which represents

a conjunction operation. This operation is both commutative and associative.

A TDT is a set of rules, each of which consists of a condition part which determines when the

rule is selected, and an action part which lists the actions to be executed once a rule is selected for

execution. The condition part of a rule is represented as

n (1)
t=l,ncond

^ _ f IcijWhen ce(x) =
1 /ciiWhen ce(x) = 'N'

where ncond is the number of conditions in the TDT and cc(t) is the condition entry value at the

ith condition row for this rule. The action part of a rule is represented as

n (2)
ae(i)54'0'; »=X,nact

where nact is the number of actions in the TDT and ae(i) is the action entry value at the ith action

row for this rule. A rule is a tuple, denoted by

(K-.a)

As will become clear later, for the purpose of TDT decomposition a rule can be expressed as a
product of corresponding action and condition literals. We call such a product a cu6e. For a given
TDT, T, wedefine an algebraic expression, Eti that consists of disjunction of cubes corresponding
to rules in T.

For simplicity, we can drop the operator and denotation and use 'c' or 'a' instead of Ic and

la, in the algebraic expressions of TDTs. However, note in particular that and 'c' are short-hand

notations for He and Hi and they do not follow Boolean laws such as cc = 0. These symbols follow
only algebraic laws for symbolic computation. For treatment of this algebra, the reader is referred
to [4].

Example 2.2. Here is the algebraic expression for the TDT in Example 2.1.

Etdt 2.1 = CiC2C4aia2a3a4a5

+ CiC2C4C50ia2a5

-h ciC2C4C5aia2a3

H- ciC2C3C6C7a2a6a7a8

+ CiC2C3C6C7a2a7fl8

+ CiC2C3C6C7a2a6<l7

+ CiC2C3C6C7a2a8

+ CiC2C3aia9

+ ciC2C3aia2a6a708

+ ciC2C3ai02a7a8

+ CiC2C30i02a6a7

+ CiC2C3ai02a8

Note that there is no specification on delay, concurrency type, serialization relation, and data dependency.
Also notice that 'c', 'c', and 'a' are short-hand notations for Hc\ Hs\ Ha respectively. •

2.1 Kerne! Extraction

During TDT decomposition, it is important to keep an action literal or condition literal within

one sub-TDT, that is, the decomposed TDTs must partition the condition and action literals. To

capture this, we introduce the notion of support and TDT support.

Definition 2.1 The support of an expression is the set of literals that appear in the expression.

Definition 2.2 The TDT-support of an expression Et is the set of action literals and pc»itive
condition literals corresponding to all literals in the support of the expression Ey.

Example 2.3. Expression ciC2C3C6C7a2a8 is a cube. Its support is {ci,C2,C3,C6,C7,oi,a8}. Its TDT
support is {ci,C2,C3,C6,C7,ai,a8}. •

We consider TDT decomposition into sub-TDTs that have only disjoint TDT-supports. TDT

decomposition uses algebraic division of TDT-expressions by using divisors to identify sub TDTs.

We define the algebraic division as folllows:

Definition 2.3 Let {/dividends /divisor, /quotient, /remainder] be algebraic expressions. We say that

/divider is aJl algebraic divisor of /divider when we have /dividend ~ fdivisor ' /quotient ~1" /remainder!
the TDT-support of /divisor and the TDT-support of /quotient are disjoint, and /divisor •/quotient is
non-empty.

An algebraic divisor is called a /actor when the remainder is void. An expression is said to be

cube /ree when it cannot be factored by a cube.

Definition 2,4 A kernel of an expression is a cube-free quotient of the expression divided by a

cube, which is called the co-kernel of the expression.

Example 2.4. Rewrite the algebraic form of TDTsxampie 2.1 as follows.

Etdt2.i = ciC20ia2(c4a3a4a5 040505 -1- 040503)
+ 01020302(0607060703 + O6C7O7O8 -I- C6C7O6O7 + C6C7O8)
+ 0102030109

+ 010102(0607060703 -f 06070703 -I- 06070607 -f- 060703)

The expression 04O3O405 -I- C40505 + 040503 is cube-free. Therefore it is a kernel of TDTszampie 2.i- The

corresponding co-kernel is 01020102- Similarly, 0607050703 -f- 05070703 -I- 05070507 + C6C7O8 is also a kernel of

TDTExampie 2.ii which has two corresponding co-kernels: 01C2O3O2 and 010102- •

3 Algorithm for TDT Decomposition

In this section, we present an algorithm for TDT decomposition. The core of the algorithm is
similar to the process of multi-level logic optimization. Therefore we first discuss how to compute
algebraic kernels from TDT-expressions before we show the complete algorithm which calls the
kernel computing core and addresses some important issues such as preserving data-dependencies

between actions through TDT decomposition.

3.1 Algorithms for Kernel Extraction

A naive way to compute the kernels of an expression is to divide it by the cubes corresponding to

the power set of its support set. The quotients that are not cube free are weeded out, and the others

are saved in the kernel set [5]. This procedure can be improved in two ways: (1) by introducing
a recursive procedure that exploits the property that a kernel of a kernel of an expression is also

the kernel of this expression, (2) by reducing the search by exploiting the commutativity of the
operator. Algorithm 3.1showsa method adapted from a kernel extraction algorithm due to Brayton
and McMullen [6], which takes into account of the above two properties to reduce computational
complexity.

Algorithm 3.1 A Recursive Procedure Used in Kernel Extraction

INPUT: a TDT expression e, a recursion index j\
OUTPUT: the set of kernels of TDT expression e;

extractKernelR(e, j) {
K = 0;
for i = j to n do

if (I getCubeSet(e,/,)| > 2) then
C = largest cube set containing s.t. getCubeSet(e,C) = getCubeSet(e,/i);
if {Ik ^ Cik < i) then

K = K U€xtractKern€lR{€/€^, i + 1)
endfor

K^KUe;
retUTn{K);

In the above algorithm, getCubeSet{e, C) returns the set ofcubes ofe whose support includes C.
We order the literals so that condition literals appear before action literals. We use n as the index

of the last condition literal since a co-kernel containing only action literals does not correspond a
valid TDT decomposition. Notice that Ic and Ig are two different literals as we explained earlier.
The algorithm is applicable to cube-free expressions. Thus, either the function e is cube-free or it

is made so by dividing it by its largest cube factor, determined by the intersection of the support
sets of all its cubes.

Example 3.1. After running Algorithm 3.1 on the algebraic expression ofTDTz.i we get the following
set of kernels:

ki = Etdt 2.1'y

^2 = 02010204030405 -I- O2O1O2C4C5O5 -I- C2O1O2C4C5O3
-i- 0203020507060708 + 02030205070708 + 02030205070507 -I- C2C3O2C6C708;

ks = 04030405 -(- C4O5O5 -J- C4C5O3;
^4 = 0507050708 + 05070708 + 05070507 -1- C5C7O8;

ks = C505 + C503;

ke = 0705+^7;
kr = 070507-fC708;

Note that Are has a cube with no action literals. This indicates a TDT rule with no action selected for

execution if ke leads to a valid TDT decomposition. However, ke will be eliminated from the kernel set as

we explained later. •

3.2 TDT Decomposition

Now we present a TDT decomposition algorithm which is based on the kernel extraction algorithm
presented earlier. The decomposition algorithm works as follows. First, the algebraic expression
of a TDT is constructed. Then a set of kernels are extracted from the algebraic expression. The

kernels are eventually used to reconstruct a TDT representation in hierarchical form. Not all the

algebraic kernels may be useful in TDT decomposition since the algebraic expression carries only a

subset of the TDT information. We use a set of filtering procedures to delete from the kernel sets

kernels which corresponds to invalid TDT transformations or transformations producing models

that results in inferior synthesis results.

Algorithm 3.2 TDT Decomposition

INPUT: a flattened TDT tdt;
OUTPUT: a hierarchical TDT with root tdt';

decomposeTDT{tdt)

{
sop ^constructAlgebraicExpression{tdt);
K extractKernel(sop);
trimKerneil(/f, sop);
trimKernel2(A, sop, td);
trimSelf(fc, sop);
trimKerne}3(A:, sop);
trimKernel4(A:, sop);
tdt' reconstruct_TDT_with_KerneIs(£di, K);
return tdt'

The procedure constructAlgebraicExpression{) builds the algebraic expression of tdt following

Algorithm 3.2. The function expression{) builds an expression out of a set of sets according to the

data structure we choose for the two-level algrebraic expression for TDTs. The complexity of the

algorithm is 0{AR + CR) where A is the number of action in tdt, R is the number of rules in tdt,

and C is the number of conditions in tdt. The symbol in the algorithm denotes an empty set.

Algorithm 3.3 Constructing Algebraic Expressions of TDTs

constructAlgebraicExpression (tdt) {
for i = 1, C do

construct a positive condition literal 1^;
construct a negative condition literal Ici',

endfor

for t = 1, A do
construct an action literal /q.

endfor

R II empty set
for 2 = 1, R do

r

for j = 1, C do
if {ce{i,j) == 'Y') then

if {ce{i,j) == 'N') then

r <-rU{/cJ;
endfor;
R U r;

endfor

return expression(i2);

Procedure extractKernel{$op) calls the recursive procedure €xtractKern€lR{sop,l) to get a
set of kernels of sop, the algebraic expression of tdt.

Some kernels appear only once in the algebraic expression of a TDT. These kernels would not

help in reducing the resource requirement and therefore they are trimmed from K using procedure
trimKernellQ. Algorithm 3.4 below shows the details of trimKernellQ. The function co—
Kernels(k, e) returns the set of co-kernels of kernel k for expression e. The number of co-kernels

corresponds to the number of times sub-TDT that corresponds to a certain kernel is called in the

hierarchy of TDTs.

Algorithm 3.4 Removing Kernels Which Correspond to Single Occurrence of a Pattern
in the TDT Matrices

trimKernel^K, e) {
foreach k ^ K do

if (I co-Kernels(A:,c) | == 1) then
K<-K-{k};

endforeach

Example 3.2. Look at the kernels in Example 3.1. The kernel ks = 04030405 + C4C5O5 -I- C4C503 will be

trimmed off by trimKernell{) since it has only one co-kernel. •

Since information such as data dependency are not captured in algebraic form of TDTs, the
kernels in K may not corresponds to a decomposition which preserves data-dependencies specified
in the original TDT. These kernels are trimmed using procedure trimK€rn€l2{).

Algorithm 3.5 Removing Kernels Which Corresponds to an Invalid TDT Transforma
tions

trimK€rnel2(K, e, tdt) {
foreach k ^ K do

flag ^0;
foreach q ^ co —Kernel${k, e) do

foreach action literal la of q do
if action a modifies any condition corresponding to a condition literal of k then

foreach action literal Iq in k do
if (la is specified to appear before la) then

flag ^1;
endforeach

endforeach

endforeach

if (flag —— 0) then
K - W;

endforeach

The worst case complexity of this algorithm is 0{AR-\-CR) since the program checks no more

than once on each condition/action literal corresponding to a condition entry or action entry of tdt.

Example 3.3. Suppose in Example 2.1, a2 modifi^ C6 and the r^ult of as is also used ag. Because as

modifies cg, in the hierarchical TDT we need to specify that cg comes after TDT2 to preserve the behavior.

However, this violates the data dependency specification between 02 and ag. Therefore, under the condition

given here, kernel k4 = cgcragaras + cecrajas + CgCragar + cgcyag will be removed by trimK€rnel2{). •

An expression may be a kernel of itself with a co-kernel of '1' if it is kernel free. However

this kernel is not useful for TDT decomposition. We use a procedure trimSel/() to delete an

expression from its kernel set that will used fro TDT decomposition. Also, as we mentioned earlier,

a kernel of an expression's kernel is a kernel of this expression. However, in this paper, we limit our

discussion on TDT decomposition involving only two levels of calling hierarchies. For this reason,

after removing an expression itself from its kernel sets, we also delete "smaller" kernels which are

also kernels of other kernels of this expression.

Algorithm 3.6 Other Kernel Trimming Routines

trimSelf(/f, exp) {
K i—K - {exp);

}

trimKernel3(/<', exp) {
foreach k £ K do

compute q and r s.t. exp = k • q + r
if TDTsupport(k) and TDTsupport(r) are not disjoint then

K i-K - {k};
endforeach }

trimKernel4(A', exp) {
foreach k £ K do

foreach q € K different from k do
if 9 is a kernel of k then

K - {?};
endforeach

endforeach

Example 3.4. Look at the kernels ofEtdt2.i- Kernels Ag will be eliminated by trimKernelZQ since ag
and as are also used in other cubes. For the same reason, fcg and kj are also eliminated. •

Finally, we reconstruct a hierarchical TDT representation using the remaining algebraic ker
nels of the TDT expression. The algorithm is outlined below. It consists two procedures;
reconstructJrDTjwithJ(ernel{), and constructTDT() which is called by the other procedure
to build a TDT out of an algebraic expression. Again, the worse case complexity of the algorithm
is 0{CR^AR).

Algorithm 3.7 Construct a Hierarchical TDT Using Kernels

INPUT: a flattened TDT tdt, its algebraic expression cxp, a set of kernels K of exp\
OUTPUT: a new hierarchical TDT;
re_Construct_TDT_with_Kernels(tdt, K, exp) {

foreach k ^ K do

t <—constructTDT{fdf, k)
generate a new action literal If for t;
compute q and r s.t. exp = k - q-\-r;
e ir~lt -g + r;

endforeach

return constructTDT(tdi, e);

}
constructTDT(idt, e) {

form condition stub using those conditions of tdt each of which has at least a corresponding
condition literal in e;

form condition matrix according to the condition literals appearing in each cube of c;
form action stub using those conditions of tdt each of which has at least a corresponding

action literal in e and those "new" action literals corresponding to extracted sub-TDTs;
form action matrix according to the action literals appearing in each cube of e;
form tdt' using the above components;
return tdt';

Dxample 3.5. Assume expression ceCTaeajag + c^crajas + cecjaeor + cgcrag is the only kernel left after
trimming procedures are performed on the kernel set K of the algebraic expression ofTDTsxampie 2.1- A
hierarchical TDT as shown in below will be constructed after running reconstructJTDT.withJiernelsO.

TDTi:

Y Y Y N N
Y

Y N N

I Y I N I I
1 I 1 I 1 I TT
1111

1 1

TDTz:
C6 II Y I Y I N I N
C7 II V I
fle II11 m
ay 1 1 1
as 1 1 ~T

4 Implementation and Experimental Results

Toshow the effect ofusing TDT decomposition in presynthesis optimizations, we have incorporated
our decomposition algorithm in PUMPKIN, the TDT-based presynthesis optimization tool [4].
Figure 3 shows the flow diagram of the process presynthesis optimizations. The ellipse titled
"kernel extraction" in Figure 3 show where the TDT decomposition algorithm fits in the global
picture of presynthesis optimization using TDT.

input HDL
user specification

merged TDT Assertions

column reduction

TDT(1)

merger

row reduction

melted TDT Assertions

TDT(2)

optimizer
action sharing

optimized TDT
TDT(3)

code generator
kernel extraction

optimized HDL
optimized TDT

Figure 3: Flow diagram for presynthesis optimizations: (a) the whole picture, (b) details of the
optimizer.

Our experimental methodology is as follows. The HDL description is compiled into TDT mod
els, run through the optimizations, and finally output as a HardwareC description. This output is
provided to the Olympus High-Level Synthesis System [7] for hardware synthesis under minimum
area objectives. We use Olympus synthesis results to compare the effect of optimizations on hard
ware size on HDL descriptions. Hardware synthesis was performed for the target technology of
LSI Logic lOK library of gates. Results are compared for final circuits sizes, in term of number of
cells. In addition to the merging algorithms, the column and row optimization algorithms originally
implemented in PUMPKIN [1], we have added another optimization step ofTDT decomposition.
To evaluate the effectiveness of this step, we turn off column reduction, row reduction, and action
sharing pahses and run PUMPKIN with several high-level synthesis benchmark designs.

Table 1: Synthesis Results: cell counts before and after TDT decomposition is carried out.

design module

receiver

comm DMAjcmit

exec_unit

cruiser State

circuit size (cells) A%

before after

1252 1232 2

440 355 19

992 770 22

864 587 32

356 308 14

Table 1 showsthe results of TDT decomposition on examplesdesigns. The design 'daio' refers to
the HardwareC design of a Digital Audio Input-Output chip (DAIO) [8]. The design 'comm' refers
to the HardwareC design of an Ethernet controller [9]. The design 'cruiser' refers to the HardareC

design of a vehicle controller. The description 'State' is the vehicle speed regulation module. AH
designs can be found in the high-level synthesis benchmark suite [7]. The percentage of circuit size
reduction is computed for each description and listed in the last column of Table 1. Note that this

improvement depends on the amount of commonality existing in the input behavioral descriptions.

5 Conclusion and Future Work

In this paper, we have introduced TDT decomposition as a complementary procedure to TDT
merging. We have presented a TDT decomposition algorithm based on kernel extraction on an

algebraic form of TDTs. Combining TDT decomposition and merging, we can restructure HDL
descriptions to obtain descriptions that lead to either improved synthesis results or more efficient
compiled code. Our experiment on named benchmarks shows a size reduction in the synthesized
circuits after code restructuring.

Sequential Decomposition (SD) has been proposed in [10] to map a procedure to a separate hard
ware component which is typically specified with a process in most HDLs. Using SD, a procedure
can be mapped on an off-shelf component with fixed communication protocol while a complement
protocol can be constructed accordingly on the rest (synthesizable part) of the system. Therefore
as a future plan of the research presented in this paper, we plan to combine SD and TDT de

composition to obtain a novel system partitioning scheme which works on tabular representations.
We will investigate the possible advantages/disadvantages of this approach over other partitioning
approaches.

References

[1] J. Li and R. K. Gupta, "HDL Optimization Using Timed Decision Tables," in Proceedings of
the Design Automation Conference, pp. 51-54, June 1996.

[2] J. Li and R. K. Gupta, "Limited exception modeling and its use in presynthesis optimizations,"
in Proceedings of the Design Automation Conference^ June 1997.

[3] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded
Systems. Prentice Hall, 1994.

[4] J. Li and R. K. Gupta, "System modeling and presynthesis using timed decision tables," Tech.
Rep. UCI ICS-TR-97-12, University of California, March 1997.

[5] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[6] R. Brayton and C. McMullen, "The decomposition and factorization of boolean expressions,"
in Proceedings of the IEEE International Symposium on Circuits and Systems, 1982.

[7] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, "The Olympus Synthesis System for
Digital Design," IEEE Design and Test Magazine, pp. 37-53, Oct. 1990.

[8] M. M. Ligthard, A. Bechtolsheim, G. D. Micheli, and A. E. Gamal, "Design ofa digital input
output chip," in Custom IC Conference, May 1989.

[9] D.Ku and G.D.Micheli, High-level Synthesis ofASICs under Timing and andSynchronization
Constraints. Kluwer Academic Publishers, 1992.

[10] K. Rath, V. Choppella, and S. D. Josnson, "Decomposition of sequential behavior using inter
face specification and complementation," VLSI Design, vol. 3, no. 3-4, pp. 347-358, 1995.

