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Abstract: Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart
disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to
be understood, there is evidence indicating the relationship between MS and the dysregulation of the
immune system. The resultant biomarkers that are expressed in the process are gaining relevance
in the early detection of related MS. However, sensing only a single analyte has its limitations
because one analyte can be involved with various conditions. Thus, for MS, which generally results
from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for
precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the
non-invasively accessible biofluids that are available for sensing. Then two types of widely used
sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing,
figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough
insight into the current status of the available platforms and how the electrochemical and optical
modalities can complement each other for a more reliable sensing platform for MS.

Keywords: metabolic syndrome; diabetes; cardiovascular disease; obesity; inflammation; adipokines;
multiplexed sensor; electrochemical sensor; optical sensor; point-of-care

1. Introduction

Metabolic syndrome (MS) refers to a cluster of metabolic disorders resulting from
several impaired biochemical pathways [1–3]. These disorders include obesity, high blood
pressure, high blood sugar, and abnormal cholesterol. According to the American Heart
Association (AHA), approximately 35% of adults and 50% of people aged 60 years and
older suffer from MS in the United States alone. On a global scale, nearly 13% of adults
aged 18 years and older had obesity in 2016, according to World Health Organization
(WHO). People with MS are at an increased risk of mortality from cardiovascular compli-
cations, stroke, and chronic kidney diseases. With the global public health and economic
crises created by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), obe-
sity and dysfunctional metabolism also affect the course of Coronavirus disease 2019
(COVID-19) [4]. Importantly, clinical studies show that obesity and impaired metabolic
health are independent determinants of severe COVID-19.

The exact pathogenesis of MS is not well understood. However, research has demon-
strated that MS is a chronic inflammatory state resulting from dysregulation of the immune
system activity. Adipose tissues and the liver are the key inducers of chronic inflammation
in MS. Overproduction of inflammatory adipokines by adipose tissue plays a key role.
Adipokines are a group of up to 600 bioactive molecules, which primarily include leptin,
adiponectin, monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines (e.g.,
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Interleukin-6 (IL-6), Interleukin-1 (IL-1), and tumor necrosis factor-alpha (TNF-α)), among
others [1]. Overexpression of adipocyte-derived MCP-1 recruits monocytes that secrete
TNF-α, IL-6, and MCP-1. Additionally, IL-6 and TNF-α upregulate MCP-1 signaling, re-
sulting in repeated cycles of the inflammatory cascade and self-perpetuating adipose tissue
inflammation [1]. The liver expresses IL-6 receptors (IL-6R) and adiponectin receptors,
which interact with IL-6 and adiponectin molecules derived from adipocytes [1]. TNF-α is
also produced by the liver. Hence, the inflammatory burst generated by the adipose tissues
triggers a subsequent cycle of inflammation in the liver, perpetuating chronic inflammation.
The primary risk factors associated with MS include hyperglycemia, hypertension, insulin
resistance, elevated total cholesterol, high BMI (body mass index), increased levels of LDL
(low-density lipoprotein), decreased levels of HDL (high-density lipoprotein), elevated
triglycerides, and oxidative damage. The pro-inflammatory cytokines (i.e., IL-6, IL-1, and
TNF-α), the chemokine MCP-1, leptin, and uric acid are positively correlated with MS risk
factors. In contrast, anti-inflammatory cytokines (e.g., IL-10) and adiponectin are negatively
associated with the risk factors, as depicted in Figure 1 [3]. Several studies demonstrate
that individuals with these aforementioned risk factors are at an increased risk of severe
cardiovascular complications, type II diabetes, renal and liver failure, stroke, vascular
dysfunction, and in extreme cases, cancer. Therefore, early detection and quantification
of these circulating biomarkers will facilitate the early intervention of metabolic disorders
and prevent the resultant adverse clinical outcomes.
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Figure 1. Interaction of adipokines and inflammatory biomarkers that contribute to the development
of metabolic syndrome and its associated risk factors and diseases (HDL: high-density lipoprotein,
LDL: low-density lipoprotein, NAFLD: non-alcoholic fatty liver disease, BMI: body mass index).

MS is a complex and multi-factorial condition comprising a cluster of simultaneous
conditions that increase the risk of type 2 diabetes and heart disease. The exact definition
of MS varies among organizations, including the World Health Organization (WHO), the
National Cholesterol Education Program (NCEP), and the International Diabetes Federation
(IDF). The most widely accepted definition among them is the criteria set by NCEP and IDF,
which use waist circumference, the level of cholesterol, blood pressure, and fasting plasma
glucose [5]. However, MS diagnosis with these parameters does not necessarily specify the
disorder that the patient has, and they need to go through further clinical testing for precise
diagnosis. The diagnostic procedures that follow after the general MS diagnosis may differ
depending on which disorder the patient is suspected to have, and they most likely require
time-consuming and laborious steps, such as blood testing, genomic testing, imaging, etc.
This necessitates the need for a platform that can rapidly diagnose MS. To date, sensors have
been developed for this purpose to identify independent conditions only [6]. Sensors that
detect a single analyte may not provide conclusive results for diagnosing diseases associated



Sensors 2022, 22, 5200 3 of 30

with multiple complications, such as MS. Hence, there is a need to develop a multi-analyte
sensing platform to monitor the inflammatory pathways for studying the interplay of
molecular biomarkers, analyzing the progression of risk factors associated with MS, and
conducting a personalized risk assessment. Diagnostic and screening tools that provide
results in minutes and monitor multiple circulating biomarkers in real time will enable rapid
implementation of control measures and facilitation of timely treatment. In this review
article, we first summarize the biomarkers related to different types of MS and the potential
of non-invasively accessible biofluids for detecting the circulating biomarkers associated
with MS. Next, we discuss two widely used transduction mechanisms, the electrochemical
and optical methods, in developing multiplexed point-of-care (POC) sensing platforms for
early diagnosis of MS and monitoring its progression (Figure 2). The knowledge stemming
from this review will help researchers outline a path forward to fight the evolution of
metabolic disorders and the resulting health complications.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 32 
 

 

rapidly diagnose MS. To date, sensors have been developed for this purpose to identify 
independent conditions only [6]. Sensors that detect a single analyte may not provide 
conclusive results for diagnosing diseases associated with multiple complications, such as 
MS. Hence, there is a need to develop a multi-analyte sensing platform to monitor the 
inflammatory pathways for studying the interplay of molecular biomarkers, analyzing the 
progression of risk factors associated with MS, and conducting a personalized risk 
assessment. Diagnostic and screening tools that provide results in minutes and monitor 
multiple circulating biomarkers in real time will enable rapid implementation of control 
measures and facilitation of timely treatment. In this review article, we first summarize 
the biomarkers related to different types of MS and the potential of non-invasively 
accessible biofluids for detecting the circulating biomarkers associated with MS. Next, we 
discuss two widely used transduction mechanisms, the electrochemical and optical 
methods, in developing multiplexed point-of-care (POC) sensing platforms for early 
diagnosis of MS and monitoring its progression (Figure 2). The knowledge stemming from 
this review will help researchers outline a path forward to fight the evolution of metabolic 
disorders and the resulting health complications. 

 
Figure 2. Schematic illustration of multiplexed and multimodal biosensing for diagnosis of 
metabolic syndrome. 

2. Biomarkers for Metabolic Syndrome 
POC devices that continuously monitor the physiological signals of our bodies can 

provide unique insights into our health [7]. The conventional tests conducted in a clinical 
setting occur only a few times a year, whereas POC devices offer continuous access to real-
time physiological data. By performing near-patient testing with a small samples using 
portable devices, POC provides fast results with reliable diagnosis [8]. Biochemical 
markers are useful indicators for the progression of various health conditions, including 
stress, infection, and cardio-pulmonary abnormalities [9–11]. Serial measurements of 
specific proteins have proven advantageous in determining adverse clinical outcomes and 
death in critically ill MS patients [12–14]. However, the blood test is currently the only 
established and standardized method of measuring these biomarker levels. Blood tests 
are invasive, have an average turnaround time of several hours to days, and are difficult 
to conduct frequently to monitor disease progression. Thus, they impede the identification 
of dynamic biomarkers and significantly increase the risk of infections through cross-
contaminations, which are life-threatening for infants and critically ill patients (Figure 3). 
Additionally, the current procedure is not feasible in rural areas with limited standard 
protocols and trained personnel [15]. The diagnostic potential of body fluids, such as 

Figure 2. Schematic illustration of multiplexed and multimodal biosensing for diagnosis of metabolic
syndrome.

2. Biomarkers for Metabolic Syndrome

POC devices that continuously monitor the physiological signals of our bodies can
provide unique insights into our health [7]. The conventional tests conducted in a clinical
setting occur only a few times a year, whereas POC devices offer continuous access to
real-time physiological data. By performing near-patient testing with a small samples using
portable devices, POC provides fast results with reliable diagnosis [8]. Biochemical markers
are useful indicators for the progression of various health conditions, including stress,
infection, and cardio-pulmonary abnormalities [9–11]. Serial measurements of specific
proteins have proven advantageous in determining adverse clinical outcomes and death in
critically ill MS patients [12–14]. However, the blood test is currently the only established
and standardized method of measuring these biomarker levels. Blood tests are invasive,
have an average turnaround time of several hours to days, and are difficult to conduct
frequently to monitor disease progression. Thus, they impede the identification of dynamic
biomarkers and significantly increase the risk of infections through cross-contaminations,
which are life-threatening for infants and critically ill patients (Figure 3). Additionally, the
current procedure is not feasible in rural areas with limited standard protocols and trained
personnel [15]. The diagnostic potential of body fluids, such as sweat, tears, and breath,
is significantly underutilized. Advances in technology have enabled access to previously
inaccessible biochemicals with minimum discomfort and supervision. In this section, we
will discuss the possible biomarkers that can be used for diagnosing MS (Table 1). The
subsequent sections discuss the utility of five non-invasively accessible biofluids (sweat,
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tears, breath, saliva, and urine) in detecting and monitoring protein biomarkers along with
emerging low-cost and multiplexed POC sensors that are expected to substantially improve
diagnostic and prognostic outcomes in MS patients.
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tions and immune-gut microbiota interactions. In impaired cellular function, released biomarkers
include exome, miRNA, cellular components, and antibodies. In immune–microbiome interactions,
the intestinal dysbiosis and the increased bacterial lipopolysaccharides (LPS) trigger the autoimmune
response, causing disease onset.

2.1. Metabolic Biomarkers for Predicting Cardiovascular Disease

Cardiovascular diseases (CVDs), a group of diseases or conditions that affect the
heart or blood vessels, including arrhythmia, aorta disease, heart attack, heart failure,
cardiomyopathy, etc., are among the most prevalent MS in the world [16,17]. Cardiovascular
disease is a severe condition that is considered the leading cause of death worldwide. Most
CVDs are related to atherosclerosis, where a plaque builds up in the arteries and blocks
blood flow. Although several behavioral patterns, such as obesity, smoking, frequent
alcohol consumption, and lack of physical activity are thought to increase the probability of
CVDs, biomarkers such as C-reactive protein (CRP), troponin I (cTnI), procalcitonin (PCT),
to name just a few, also play a role in the development of CVDs [18].

Factors such as cholesterol, low-density lipoprotein (LDL) cholesterol, high-density
lipoprotein (HDL) cholesterol, and triglycerides are considered conventional biomarkers
for predicting CVDs. These have been used widely through the years for risk prediction
models and diagnosis. However, recent studies showed that these traditional biomarkers
are insufficient [19]. They are not always expressed, and, in some cases, none or only one
of these biomarkers are observed in patients with CVDs [20]. Thus, novel biomarkers
are being investigated for enhanced CVD risk management. Since various conditions are
related to CVDs, the biomarkers for CVDs can also be classified according to the associated
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conditions, such as myocardial necrosis, inflammation, plaque instability, platelet activation,
myocardial stress, etc.

One of the widely studied biomarkers is cardiac troponin. Troponin is a protein
found in the heart muscles that inhibits contraction through its interaction with actin and
myosin. Normally, it is not present in the blood. However, when the heart is damaged,
it is released into the bloodstream, making it a possible biomarker for myocardial injury.
Current conventional assays for detecting cardiac troponin have limitations, including low
sensitivity [19]. Another biomarker for CVDs is CRP. CRP is a protein that is upregulated
when there is inflammation in the body. It is being used to determine the risk of coronary
artery disease. The relationship between CRP and cardiovascular events has been studied
extensively, and its direct association has been proved. Despite its relevance, it’s not a
casual factor expressed in CVDs [19]. In summary, a vast number of biomarkers for CVDs
have been studied. However, each biomarker holds its limitation, increasing the need for a
multiplexed CVD sensing platform.

2.2. Metabolic Biomarkers for Prediabetes

Diabetes refers to conditions where the body is either incapable of producing enough
insulin or of using the insulin that is produced. These two pathologies are classified as type
1 and type 2 diabetes, respectively. Type 1 diabetes, where insulin production in the body is
stopped, is known to be caused by an autoimmune reaction of the body, and its prevention
method is yet to be found. In contrast, type 2 diabetes with insulin resistance can be
prevented by practicing a better lifestyle, such as losing weight and eating healthy [21,22].
Prior to type 2 diabetes, patients develop a condition called prediabetes. With this condition,
the glucose level is higher than normal but is not considered to be diabetes, being between
100–125 mg/dL (5.6–6.9 mmol/L) [23].

As diabetes is one of the leading causes of serious health complications, including heart
disease, vision loss, kidney failure, ulcers, etc., the field of diabetic biomarker detection has
been investigated by many researchers. Glucose monitoring has been emphasized as an
area of interest due to its direct relationship with diabetes. While several research groups
have reported the association between blood glucose and other bodily fluids (such as sweat,
tears, and saliva) glucose concentrations, the field of glucose monitoring has started to
transition from utilizing invasive blood samples to noninvasive biofluids.

However, glucose is not the only biomarker for diabetes. There are a variety of other
biomarkers that are reported to be related, including the cluster of differentiation 14 (CD14),
CD 99 serum amyloid (SA), HbA1c, glycated albumin (GA), oral glucose tolerance test
(OGTT), adiponectin, FetA, etc. [24]. As the inflammatory response caused by obesity and
unhealthy lifestyle is the main cause for diabetes, biomarkers that are related to inflamma-
tion are also being investigated. For example, HbA1c is a molecule that is produced when
glucose attaches to hemoglobin. An HbA1c level between 39–46 mmol/mol is thought to
indicate prediabetes. However, HbA1c alone has its limitations regarding sensitivity to
diabetes diagnostics [25]. Hence, using it in conjunction with fasting plasma glucose (FPG)
and oral glucose tolerance test (OGTT) improves the reliability of the results. Another
biomarker that can be used is the monocyte differentiation antigen, CD 14, which has been
reported for its effect on insulin resistance [24]. Likewise, several biomarkers are found to
be related to either prediabetes or diabetes, increasing the need for a multimodal platform
for diabetic diagnosis with higher accuracy.

2.3. Metabolic Biomarkers for Cancer

Cancer is a complex disease that involves cancer-associated genes, including approx-
imately 250 oncogenes and 700 tumor suppressors [26]. These genes can regulate and
interact with metabolic genes, which cause dysfunctional metabolism in different cancer
genotypes. So far, 10,000–50,000 different single nucleotide variants of most oncogenes and
tumor suppressors in tumor cells have been identified as playing a key role in three major
cellular metabolism pathways [27]. Based on the type of cancer, the pathways of cellular
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metabolism include (i) aerobic glycolysis, (ii) glutaminyls, and (iii) one-carbon metabolism,
needed for rapid cell growth and division. Most of the pyruvate formed from glycolysis
enters the tricarboxylic acid (TCA) cycle in healthy cells and is oxidized via oxidative phos-
phorylation. However, in cancerous cells, pyruvate is mainly converted to lactic acid to
respond to the requirements of the metabolic mechanisms for their continuous cell growth.
The mechanisms regulate glycolytic enzymes expressed in cancer cells through multiple
pathways; for example, normally allosterically inhibiting rate-controlling steps [28]. The
pathway is associated with phos-phofructokinase (PFK), sustaining a high rate of glycolysis.
Usually, this pathway is inhibited by ATP. However, when glucose is abundant, fructose
2,6-bisphosphate, a product of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases,
can override ATP-mediated PFK inhibition [29]. In cancer cells, elevated levels of fructose
2,6 bisphosphate are produced under hexokinase activity, which allosterically activates
PFK [30]. As a result of the different mechanisms of activation, PFK activity is much higher
in cancer cells than in normal tissue.

Malfunctions in the metabolism of glucose, protein and carbohydrates, fatty acid oxida-
tion, mitochondrial function, neurotransmitter metabolism, and markers of oxidative stress
and microbiome contribute to cancer development. The concept of “oncometabolite” is
associated with metabolic disorders. For instance, the accumulation of a high concentration
of oncometabolites, including 2-hydroxyglutarate, fumarate, sarcosine, glycine, glucose,
glutamine, serine asparagine, choline, lactate, and polyamines initiates tumor growth and
metastasis [31]. The shunting of pyruvate to secreted lactase in cancer is associated with
elevated levels of lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT)
that cotransport lactate and a proton out of the cell [32]. LDH and MCT as metabolites
have been observed in several cancers in the tumor microenvironment. These enzymes are
involved in metabolic pathways that fulfill elevated metabolic demands for bioenergetics
and cellular biosynthesis. The shift toward lactate production and away from oxidative
phosphorylation also reflects the decreased activity of the LDH complex, which can result
from the induction of the inhibitory pyruvate dehydrogenase kinases (PDKs). In addition,
changes in the expression level of metabolic enzyme isoforms and activities of metabolic
enzymes, especially for increased secretion of lactate, cause metabolic disorders in cancer.

These endogenous metabolites indirectly modify histone methylation patterns, which
are associated with activation or repression of the transcription process for both oncogenes
and tumor suppressors [33]. In addition, recent electron images and bioassay measure-
ments displayed abnormal mitochondria structure, low numbers of mitochondria, and
insufficient oxidative phosphorylation (Oxphos) in the tumor tissue of over 80% of cancer
patients [34,35]. These losses are compensated by upregulation of glycolysis and lactate
fermentation in order to sustain tumor cells. This would support Warburg’s hypothesis
that respiration is insufficient in cancerous cells.

Although recent methods have advanced cancer treatments, early cancer detection
is still the best way to ensure effective treatment outcomes. These cancer metabolite
biomarkers have been used for cancer detection based on simple metabolic changes, such as
their increased levels in blood, saliva, breath, or urine. Some existing detection platforms for
metabolic enzymes have shown significant potential in cancer detection [36]. Indeed, recent
publications showed that genetic screening cannot detect more than 95% of cancer due to
somatic origin [26]. Therefore, metabolite screening could be an alternative approach that
provides fast, cost-effective, and early-stage detection of cancer. Advances in noninvasive
image processing techniques, including positron emission tomography (PET), magnetic
resonance spectroscopy, and metabolomic biosensor tests, can enable the detection of
oncometabolites in different cancer phenotypes.
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Table 1. Metabolic syndrome biomarkers and its relevant concentrations.

Metabolic Syndrome Biomarker Clinical Approval Concentration Refs.

Cardiovascular
Diseases (CVDs)

C-reactive Protein (CRP) Approved >3 mg L−1 [37]

Highly sensitive CRP <1 mg L−1 [38]

Cardiac troponin 1 (cTn1) Approved >0.5 µg L−1 [39]

Procalcitonin >67.89 µg L−1

Cholesterol Approved >240 mg dL−1 [40]

LDL cholesterol Approved >130 mg dL−1 [41]

HDL cholesterol Approved <40 mg dL−1 [42]

Triglyceride >150 mg dL−1 [43]

Diabetes

Glucose Approved >125 mg dL−1 [44]

CD14 [45]

CD99 [46]

HbA1c Approved >6.5% [24]

GA >16.9% [47]

Adiponectin <6 mg mL−1 [48]

Fructosamine Approved <2.5 mmol L−1 [24]

Cancer

Fumarate Approved >1.35 mcg mg−1

creatinine
[49]

2-hydroxyglutarate Approved >700 ng mL−1 [50]

Sarcosine Approved >5000 nM [51]

Polyamines Approved 35 kU L−1 [52]

Lactate Approved >1.8 mmol L−1 [53]

Lactate dehydrogenase >280 U L−1 [54]

Autoimmune disease

Hydrogen peroxide (H2O2),
hydroxyl radical (OH), superoxide

anion radical (O2
−),

and nitric oxide (NO)

(investigating) 308 ppb
(cutoff of 77 nL mL−1) [55]

Serum fatty acids
(monounsaturated fatty acids such
as lauric acid (C12:0), myristic acid

(C14:0), stearic acid (C18:0),
lignoceric acid (C24:0), palmitic acid

(C16:0) and heptadecanoic acid
(C17:0); saturated fatty acids,

Cis-10-pentadecanoic acid (C15:1),
Cis-11-eicosenoic acid (C20:1n9),

and erucic acid (C22:1n9) as well as
the gamma-linolenic acid (C18:3n6)

polyunsaturated fatty acid))

(investigating) 86.7% specificity
(ROC analysis) [56]

Serum fatty acid
(3-hydroxypropionic and

methylcitric acids, propionylglycine,
tiglylglycine, 3-hydroxy-n-valeric,

and 3-keto-n-valeric acids)

investigating 0.856 (ROC analysis) [56]

Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein; CD, cluster of differentiation, HbA1c,
glycated hemoglobin; GA, glycated albumin.
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2.4. Metabolic Biomarkers for Autoimmune Disease

The immunometabolism of immune cells is of emerging interest in therapeutic im-
plications. Recently, the association between metabolic disorders and autoimmunity has
been of great interest for early diagnostics [57]. Discrete metabolic pathways contribute to
the regulation of growth, differentiation, survival, and activation of immune systems by
providing energy and specific activation ligands [58]. Recent reports showed the impor-
tance of significant metabolic alterations for immune homeostasis in allergic diseases and
rheumatoid arthritis [59]. Metabolic regulation of mucosal barriers, antigen-presenting cells,
CD4 T cells, nutritional status, the intestinal microbiome, and inflammatory pathologies
contribute to the development of autoimmune diseases.

As the first line in the immune system, the metabolic regulation of mucosal barriers is
a key contributor to allergic responses through reactive oxygen species (ROS). ROS systems
include hydrogen peroxide (H2O2), hydroxyl radical (OH), superoxide anion radical (O2

−),
and nitric oxide (NO), which play an important role in the elimination of bacterial and
fungal pathogens invading the mucosal layer [60]. The involvement of ROS systems with
microbes occurs in the phagolysosome of the innate immune system, and induces inflam-
mation of tissue damage, especially as it relates to the pathogenesis of autoimmune diseases.
Due to metabolic ROS activities, altered apoptosis and autoantigen structure reveal novel
epitopes through the unmasking of cryptic determinants to promote the production of
autoantibodies and cell immune activation, which initiates the autoimmune disease. In ad-
dition, enzyme and biochemical pathways typically produce ROS, which causes metabolic
dysfunction and inflammatory regulation. In addition, serum total fatty acids have been ex-
plored as a target metabolomic biomarker to predict autoimmune diseases [61]. These fatty
acids include saturated fatty acids, such as lauric acid (C12:0), myristic acid (C14:0), stearic
acid (C18:0), lignoceric acid (C24:0), and heptadecanoic acid (C17:0); monounsaturated fatty
acids, such as palmitic acid (C16:0), Cis-10-pentadecanoic acid (C15:1), Cis-11-eicosenoic
acid (C20:1n9), and erucic acid (C22:1n9); and the polyunsaturated fatty acid gamma-
linolenic acid (C18:3n6). Quantifying these metabolites permits the identification of the
cellular metabolic state even prior to disease onset. Through gas chromatography–mass
spectrometry (GC–MS) techniques, previous studies have shown significant metabolism dif-
ferences during the development of the disease [62]. Findings from studies of randomized
clinical trials showed that urinary organic acids, including 3-hydroxypropionic and methyl-
citric acids, propionylglycine, tiglylglycine, 3-hydroxy-n-valeric, and 3-keto-n-valeric acids,
could be potential biomarkers to track the progression of the disease. These biomarkers are
also detected in chronic malnutrition leading to imbalance between pro-inflammatory T
cells and the regulatory T cells that control inflammation.

The metabolic switch during T cell activation to control autoimmunity requires the
activation of the nuclear receptor 77 (Nur77) as a molecular brake [63]. The role of Nur
77 metabolic processes during T cell activation is to control oxidative phosphorylation
and aerobic glycolysis during T cell activation, restricting inflammation in autoimmune
conditions. The basis of immunometabolism is associated with immune cell metabolism
and control of a complex metabolic network for cell activation and expansion. The complex
system is dependent on T cell receptor self-activation in the development of T-cell-mediated
autoimmunity, rather than co-stimulatory signals or polarizing cytokines. The analysis of
the metabolic transcriptional network via RNA-seq and real-time RT-qPCR revealed that
metabolic pathways in autoimmune diseases are under the control of relevant transcription
factors, such as Nr2f1, Nr0b1, Esrra, Esrrb, and Essrg, which regulate T cell metabolism
and subsequent pro-inflammatory T cell function under modulation of estrogen-related
receptor alpha [63,64]. Thus, metabolic gene expression and glucose metabolism of effector
T cells are viable approaches for treating T-cell-mediated autoimmune diseases.
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3. Non-Invasively Accessible Resources for Biomarkers
3.1. Sweat

Sweat allows noninvasive sampling and detection, which are crucial for continuous
biomonitoring, particularly in neonates and the elderly population. In addition, sweat
sample preparation takes minimal time and effort due to the absence of most of the
impurities that are otherwise present in blood samples [65]. Moreover, sweat samples can
be taken frequently and stored for an extended period, facilitating efficient post-processing.
In particular, sweat contains a broad range of analytes, including electrolytes, proteins, and
lipids. Yu et al. detected more than 800 unique proteins and 32,000 endogenous peptides
in sweat, thereby demonstrating the significant potential of sweat-based diagnostics and
prognostics [66]. Notably, sweat hosts a wide variety of disease-specific biomarkers and
drug metabolites. Marques-Deak et al. and Dai et al. performed extensive cytokine
profiling of sweat samples and identified IL-1α, IL-1β, IL-6, IL-8, TNF-α, and transforming
growth factor-beta (TGF-β). These results were verified in a more comprehensive study
where 42 human cytokines were identified in 30 sweat samples [65]. This study identified
additional cytokines, including IL-2, IL-10, IL-13, Interferon-gamma (IFN-γ), and MCP-1.
The cytokine panel included the key adipokines associated with MS: MCP-1, IL-1, IL-6,
IL-10, and TNF-α. Sweat is also rich in glucose and uric acid, which are significantly
elevated in MS patients with a high cardiovascular risk profile [3,67].

Despite the well-documented list of biomarkers in sweat and the advantage of its
noninvasive collection, its unique secretion mechanism, as well as poor collection methods,
separate collection and analysis stages, to the impossibility of monitoring multiple analytes
simultaneously, and a lack of correlation studies between sweat and blood measurements
still hinder the successful clinical translation of sweat-based biosensors [68,69]. Sweat is
secreted by the eccrine glands and carries physiologically relevant analytes to the skin
surface. This transport mechanism creates a time lag between protein expression in blood
and sweat, hindering instantaneous monitoring. Moreover, analyte transport to sweat is
also subjected to tight protein junctions along their path [68,69]. These junctions act as bar-
riers to larger biomarkers and dilute them along the paracellular path. For instance, sweat
glucose is transported to the skin surface through the paracellular route, and it is 100 times
more diluted than interstitial fluid or blood plasma glucose. Extensive dilution of analyte
reinforces the need to develop ultrasensitive and highly selective sensors with carefully
designed sweat sampling methods. Additionally, much is yet to be understood regarding
the correlation of sweat biomarkers to their blood counterparts and the physiological state.
This is evident in the existing sweat-based sensors that only monitor fitness indicators, such
as sodium and potassium ion concentrations and rate of sweat loss. These sensors do not
quantify specific diagnostic biomarkers.

Nevertheless, efforts are underway to tap the potential of protein-rich and easily acces-
sible sweat for health monitoring. A breakthrough was achieved through the development
of integrated sensors for diagnosing cystic fibrosis and benchmarking with existing gold
standard laboratory-based bioassays [70–72]. Research has also demonstrated the utility
of sweat analytes in gout and metabolic disorder monitoring. For instance, researchers
developed a laser-engraved wearable sensor that can detect uric acid and tyrosine in
sweat [73]. Human studies were conducted to evaluate the performance of the sensor in
gout management.

The reliability of individual sweat sensors can be improved by incorporating multi-
plexed (multiple analyte detection on a single sensing platform) and multimodal (multiple
transducers for the same set of analytes) detection. An ideal integrated platform would
comprise sweat collection, the transducer unit, signal processing, data transmission, and
post-processing. More importantly, the correlation of analyte concentrations in sweat with
the pathology of MS needs to be established and clinically validated.
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3.2. Tears

Tears are secreted by the lachrymal gland and are an excellent source of proteins,
lipids, hormones, electrolytes, nucleic acids, and glucose [74]. Biomarkers in tears directly
diffuse from the blood through the blood–tear barrier. Hence, the biomarker concentrations
in tears are more closely correlated to blood than other biofluids, such as sweat. Basal
tears that act as the protective film covering the eye surface continuously contact the blood
through the blood–tear diffusion barrier. This blood–tear interaction makes the basal tear
an attractive target for noninvasive, continuous, and long-term disease monitoring.

Several proteins in tear fluid have been found to hold clinical utility in diagnosing
ocular diseases, including dry eye syndrome, trachoma, glaucoma, keratoconus, and
thyroid-associated orbitopathy, as well as systemic disorders including diabetes mellitus,
cancer, systemic or multiple sclerosis, cystic fibrosis, and Alzheimer’s disease. Glucose
and lactate are two well-established tear analytes [75–79]. In addition, tear fluid is a rich
source for metabolic phenotyping [80]. Tears of diabetic patients show elevated levels of
several metabolites, such as carnitine, tyrosine, uric acid, and valine [80]. Increased levels
of inflammatory cytokines and chemokines in tears, including IL-6, IL-1, IL-8, IL-10, and
TMF-α, have been investigated in patients with dry eye disease. Moreover, drugs such as
metformin, bisoprolol, and gabapentin are also detectable in tears [80], thus highlighting
the potential of tear fluids in monitoring therapeutic outcomes. However, there is a gap in
knowledge regarding the levels of MS biomarkers in tears, and the relationship between
tear and blood biomarker levels remains unclear.

Currently, challenges persist with tear-based biomarker monitoring. For instance, the
reflex tears generated during emotional or mechanical stimulation interfere with the basal
tear-based sensing methodology, owing to the differences in composition and secretion
rates of basal and reflex tears. Other potential challenges include the limited volume of
basal tears (less than 5 µL) [81] produced by our eyes, and the need for a biocompatible,
stable, energy-efficient, and miniaturized sensing platform with sufficiently high sensitiv-
ity and selectivity. These hurdles can be overcome through device miniaturization and
biocompatible electronic interfaces.

3.3. Breath

Analysis of exhaled human breath allows noninvasive, fast, and personalized detection
of health parameters. The volatile organic compounds (VOCs) present in the exhaled breath
carry the body’s fingerprints of metabolic and biophysical processes [82]. The VOCs are
formed metabolically, brought to the lungs via the bloodstream, and finally exhaled via the
respiratory tract [83]. Research has demonstrated the alterations in the breath composition
of diabetic patients. Metabolic disorders in diabetic patients, such as increased glucose
and lipolysis levels, lead to elevated acetone concentrations in the exhaled breath. Hence,
acetone is considered a breath biomarker for identifying impaired metabolism in diabetic
patients. Breath acetone level ranges from 0.3 to 0.9 ppm in healthy individuals, whereas
the levels can reach up to 1.8 ppm in diabetic patients [84,85]. Diabetic patients also exhale
a higher concentration of isopropanol than a healthy individual [86]. Individuals suffering
from a cluster of metabolic disorders would exhale a different concentration of acetone and
isopropanol. Extensive investigations are required to dissect the breath signatures related
to MS and unravel its underlying pathogenesis.

The existing breath analysis is centered around mass spectrometry owing to its ppb-level
sensitivity [87]. Although mass spectrometers provide ultra-high sensitivity, they entail time-
intensive and disruptive measurements, lack portability, and prevent follow-up and dynamic
studies. Hence, mass-spectrometry-based techniques are difficult to implement on a wide
scale. Conversely, a common challenge encountered by commercial portable electronic nose
technology is the lack of sensitivity to VOCs present at exceptionally low levels (i.e., at the
ppb level and below) in the exhaled breath [83]. With rapid advances in nanotechnology and
molecular diagnostics, the use of breath for diagnosis is evolving. The emerging detection
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methods should take the aforementioned limitations into account and exhibit high sensitivity
and selectivity to the breath analytes for noninvasive MS screening.

3.4. Saliva

Saliva is an attractive biofluid for quantifying biomarkers related to oral and systemic
diseases due to the noninvasive nature of saliva testing and its continuous availability [88].
Several biomarkers have been detected in saliva, including alpha-amylase, glucose, lactate,
phosphate, and uric acid. Their salivary levels correlate well with their blood levels [89].
Research demonstrates the clinical utility of salivary biomarkers in the identification of MS.
Salivary C-reactive protein levels exhibit consistent results in type 2 diabetes, while salivary
adiponectin, leptin, IL-6, and TNF-α provide inconsistent results, requiring additional
investigations [90].

Researchers have developed mouthguard and pacifier sensors for continuous moni-
toring of metabolites (including uric acid, lactate, and glucose) from saliva [91–93]. The
electrochemistry-based technique was used to transduce metabolite levels into measurable
electrical signals. Additionally, smartphone-based portable electrochemical biosensing
system for salivary microRNAs has been introduced for point-of-care in remote areas [94].
Some challenges remain in translating these saliva sensors into clinical practice. These
challenges include a lack of continuous and reliable operation of these devices over a long
period, and their insufficient sensitivity to ultra-low concentrations of analytes found in
saliva (sometimes even lower than those found in sweat) [88].

3.5. Urine

Urine is another rich source of metabolites, as it contains salts, proteins, and other
clinically useful analytes. Compared to other body fluids, urine samples can be obtained in
large quantities, which can be repeated several times a day. Molecules diffuse into urine
from nearby blood capillaries; hence, their urinary levels correlate well with their blood
counterparts. Several key parameters are identified in urine, including glucose, ketones,
bilirubin, and bacteria. Abnormal urinary levels of these parameters may indicate diabetes,
kidney diseases, renal diseases, bacterial infections, dehydration, and bladder cancer [95].
Although metabolomic analysis of urine is a mature process, translating laboratory-based
assays to the bedside is a challenge. Nevertheless, intelligent assays, such as biomarker
harvesting hydrogel nanoparticles and affinity-capture pre-processing techniques, are
enabling the quantification of previously undetectable urinary proteins [96].

4. Biosensor Platforms
4.1. Electrochemical Biosensors

Chemical detection is a straightforward method of monitoring targeted molecules,
including biomarkers for MS. Owing to the nature of chemical reactions, the sensors exhibit
high specificity. Among them, electrochemical sensors have been widely investigated
due to their high sensitivity and miniaturization advantages. Electrochemical sensors
present high temporal and spatial resolution due to their micro-size and response time in
seconds [97,98]. Furthermore, their high reaction speeds enable real-time and continuous
monitoring of target molecules. Furthermore, batch production of probes is possible with
the commercial clean room fabrication process, bringing the total cost of the sensor down to
an affordable range. Recently, with the advance in technology, 3D-printed electrochemical
sensors have been introduced into the field to compensate for the time-intensive labor
required for the existing clean room fabrication process, making the fabrication process
easier and more cost-effective [99].

Because electrochemical sensors operate based on the electroactivity of target molecules,
they can be classified into two categories: sensors targeting electroactive molecules and
those targeting non-electroactive molecules. In the case of electroactive molecules, the fab-
rication process is relatively simple, as the sensing material and optimized potential are the
only relevant factors in optimizing the reaction occurring on the sensor surface. Examples of
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these molecules are vitamin C (ascorbic acid), dopamine, and uric acid [100–102]. However,
for molecules that are not electroactive, additional mediators are needed to convert these
non-electroactive molecules into a reporter molecule that can be either reduced or oxidized
at the sensing electrode. These molecules include glucose, lactate, L-glutamate, GABA,
etc. [103–105]. As MS is a metabolic disorder that results from the imbalance of several
molecules, various electrochemical sensors have been reported to monitor the analytes that
are related to MS, as discussed in the previous section.

4.1.1. Cardiovascular Disease

As explained earlier, aside from behavioral patterns, various biomarkers play a role in
developing CVD. Monitoring these molecules can contribute to the early diagnosis of CVD,
possibly increasing the survival rate for patients with the disorder. In this regard, Boonkaew
et al. developed a multiplexed electrochemical paper-based analytical device (ePAD) for
simultaneous detection of three CVD biomarkers, CRP, troponin I (cTnI), and procalcitonin
(PCT) (Figure 4a) [106]. The antibodies for each target analyte were immobilized on the
graphene oxide (GO)-modified carbon electrodes printed on the ePAD. The change in cur-
rent due to the binding of target biomarkers was observed with square wave voltammetry,
and the current was linearly correlated to the analyte concentration. With the advantage
of using a graphene-modified stencil-printed carbon electrode, the sensor showed a wide
detection range of 1–1000 ng mL−1, 0.001–250 ng mL−1, and 0.0005–250 ng mL−1 and a
limit of detection of 0.38 ng mL−1, 0.16 pg mL−1, and 0.27 pg mL−1 for CRP, cTnI, and PCT,
respectively, which is sufficient when compared to the values suggested by the WHO.

Koukouviti et al. reported an alternative type of multiplexed electrochemical sensor
for monitoring cardiac biomarkers (Figure 4b) [107]. A 3D-printed 4-electrode enzymatic
biosensor for simultaneous measurement of cholesterol and choline was developed by this
group. Notably, the overall cost for the biosensor was brought down to $0.031, and the
fabrication time was reduced to around 30 min by 3D printing of the whole chip. This elim-
inates the time-consuming process of conventional biodevice fabrication, which includes
sputtering and photolithography. Additionally, it allows on-demand manufacturing at
the time of need. As a proof of concept, simultaneous amperometric measurement of two
cardiac biomarkers in the blood droplet, cholesterol and choline, was performed, and the
LODs were found to be 3.36 and 0.08 µmol L−1 for cholesterol and choline, respectively,
which are much lower than the threshold levels for coronary syndromes (6 mmol L−1 and
28 µmol L−1 for cholesterol and choline, respectively).

4.1.2. Prediabetes

Recently, research regarding multiplexed electrochemical measurement of glucose has
been guided towards integrating various measuring techniques into a single platform.

Rogers et al. reported a wearable microfluidic system that can perform flow immunoas-
says, fluorometric assays, and digital galvanic measurements to track the stress states [108].
Various reporters for stress have been monitored through the platform, including cortisol,
vitamin C (ascorbic acid), glucose, sweat rate, and galvanic skin response. First, the lateral
flow immunoassays (LFIAs) targeted cortisol in sweat using anti-cortisol antibodies (ACA)
and gold nanoparticles (AuNPs). The hydrophobic surface of AuNPs assisted in the conju-
gation of ACA and AuNPs, which reacted with cortisol in sweat to generate a signal. The
cortisol-ACA-AuNP bound to the anti-mouse IgG (anti-IgG) antibody in the test channel,
where the signal was correlated with the number of AuNPs, the number of binding sites
per AuNP, and the total amount of cortisol-BSA, and the concentration of sweat cortisol
was measured.



Sensors 2022, 22, 5200 13 of 30

Sensors 2022, 22, x FOR PEER REVIEW 13 of 32 
 

 

states [108]. Various reporters for stress have been monitored through the platform, 
including cortisol, vitamin C (ascorbic acid), glucose, sweat rate, and galvanic skin 
response. First, the lateral flow immunoassays (LFIAs) targeted cortisol in sweat using 
anti-cortisol antibodies (ACA) and gold nanoparticles (AuNPs). The hydrophobic surface 
of AuNPs assisted in the conjugation of ACA and AuNPs, which reacted with cortisol in 
sweat to generate a signal. The cortisol-ACA-AuNP bound to the anti-mouse IgG (anti-
IgG) antibody in the test channel, where the signal was correlated with the number of 
AuNPs, the number of binding sites per AuNP, and the total amount of cortisol-BSA, and 
the concentration of sweat cortisol was measured. 

 
Figure 4. Examples of multiplexed electrochemical sensors for metabolic diseases. (a) Multiplexed 
ePAD for cTnI, PCT, and CRP detection [106]. (b) Fabrication process of the 3D printed biosensor 
for amperometric detection of cholesterol and choline [107]. (c) A 32-sensor array with microwells 
with a microfluidic chamber for simultaneous detection of prostate cancer biomarker proteins [109]. 
(d) Fabrication process of superwettable electrochemical microchip and schematic of 
electrochemical detection of analyte in droplets formed on the sensor [110]. 

Similarly, Javey et al. reported a fully integrated wearable sensor array for 
multiplexed sweat analysis made by integrating skin-conformal plastic-based sensors and 
commercially available integrated circuit components [111]. This platform measures 
glucose, lactate, potassium, sodium, and skin temperature sensitively and selectively. The 
utilization of flexible polyethylene terephthalate (PET) enabled stable sensor–skin contact 
for better surface area with higher sensitivity. For glucose and lactate detection, 
corresponding enzymes were functionalized on the electrode surface to convert the 
analytes into electroactive reporters. For ion detection, ion-selective electrodes (ISEs) were 
used. Additionally, metal microwires were used to monitor the temperature based on its 
resistance. The performance of the sensors was found to be aligned with the physiological 
concentrations, demonstrating their health-monitoring application not only for the 
general public but also for athletes whose loss of ions can crucially affect their bodily 

Figure 4. Examples of multiplexed electrochemical sensors for metabolic diseases. (a) Multiplexed
ePAD for cTnI, PCT, and CRP detection [106]. (b) Fabrication process of the 3D printed biosensor
for amperometric detection of cholesterol and choline [107]. (c) A 32-sensor array with microwells
with a microfluidic chamber for simultaneous detection of prostate cancer biomarker proteins [109].
(d) Fabrication process of superwettable electrochemical microchip and schematic of electrochemical
detection of analyte in droplets formed on the sensor [110].

Similarly, Javey et al. reported a fully integrated wearable sensor array for multiplexed
sweat analysis made by integrating skin-conformal plastic-based sensors and commercially
available integrated circuit components [111]. This platform measures glucose, lactate, potas-
sium, sodium, and skin temperature sensitively and selectively. The utilization of flexible
polyethylene terephthalate (PET) enabled stable sensor–skin contact for better surface area
with higher sensitivity. For glucose and lactate detection, corresponding enzymes were func-
tionalized on the electrode surface to convert the analytes into electroactive reporters. For ion
detection, ion-selective electrodes (ISEs) were used. Additionally, metal microwires were used
to monitor the temperature based on its resistance. The performance of the sensors was found
to be aligned with the physiological concentrations, demonstrating their health-monitoring
application not only for the general public but also for athletes whose loss of ions can crucially
affect their bodily function. Furthermore, this platform can be reconfigured for in situ analysis
of other biomarkers for real-time physiological and clinical investigations.

Although the original purpose of these multiplexed sensors was for general health
monitoring and not for diagnosing MS, the target molecules, including ascorbic acid, glu-
cose, lactate, etc., are good indicators for MS. Thus, by repurposing its use from general
health monitoring to specific MS diagnosis via modification of its components, this multi-
plexed, multimodal sensing system can overcome the limitations of single analyte sensors
and provide a highly sensitive and precise diagnosis platform. The breakthrough made by
the aforementioned research groups takes a step further from sensing only the individual’s
physical activities and vital signs to a molecular level sensing of the user’s health. Similar
to the incorporation of heart-rate monitoring in smart devices, vital-sign measurements are
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widely used due to their noninvasive nature. However, due to the limitations in access to
samples, the biomolecular assay for personalized health has always been challenging.

4.1.3. Cancer

Cancer has recently gained recognition as a metabolic disease. In the past, it has been
purely classified as a disorder of proliferation, but recent studies suggest that the metabolic
system becomes affected by the overgrowth of tumor cells, leading to a feedback loop of
continuous cell growth. Xu et al. reported a multiplexed electrochemical biosensor platform
to detect various prostate cancer biomarkers (Figure 4c) [110]. This platform adapted
bioinspired superwettability, which combines two extreme states of super-hydrophobicity
and super-hydrophilicity to control the behaviors of liquid droplets. By applying this
technique to electrochemical sensing, the amount of solution could be decreased from a
typical large volume to a single microdroplet. With the super-hydrophilic surface being
the actual sensing area and the superhydrophobic surface surrounding it, a microwell for
the microdroplets was formed. In addition, a gold nanodendritic structure was electrode-
posited on the surface to increase the adhesion with water microdroplets. The sensor
was tested for three different prostate cancer biomarkers, miRNA-375, miRNA-141, and
prostate-specific antigen, and it showed sensitive and selective detection properties.

Another multiplexed platform that was reported for prostate cancer biomarkers was
from Tang et al. This group adapted an array of 32 electrochemical sensors to detect four
different biomarkers for prostate cancer, which were prostate-specific antigen, prostate-
specific membrane antigen, interleukin-6 (IL-6), and platelet factor-4 (PF-4) (Figure 4d).
Relative antibodies were coated on the designated sensing sites with eight sensors for each
target. Among those eight sensors, two sensors were selected to serve as negative monitors
for any nonspecific protein absorption on the sensor surface. The results showed that the
platform obtained clinically relevant detection limits (0.05 to 2 pg mL−1) and 5-decade
dynamic ranges (sub pg mL−1 to well above ng mL−1), indicating its application not only
in the early detection of prostate cancer but also in diseases that require the simultaneous
detection of several biomarkers.

4.1.4. Autoimmune Disease

In autoimmune disease, where the body’s immune system malfunctions and does
not distinguish between the patient’s own cells and foreign cells, the overactivity of the
immune system attacks the normal cells in addition to the foreign cells, causing detrimental
effects on the patient. There are over 80 autoimmune diseases that have been reported,
including rheumatoid arthritis (RA), type 1 diabetes, systemic lupus erythematosus (lupus),
and inflammatory bowel disease, among others. Currently, treatments for autoimmune
disease primarily focus on treating the patient once the condition occurs, where the focus is
on reducing the activity of the immune system. However, it would greatly benefit patients
if early diagnosis were possible before any adverse and irreversible damage occurred.

RA is one chronic autoimmune disease that occurs in the joints of the hands and feet.
While the exact cause of the disease is still unknown, the production of IgM rheumatoid
factor (RF) and anti-cyclic citrullinated peptide/protein antibodies (anti-CCP-ab) are con-
sidered to cause RA. Considering that a vast amount of people with positive anti-CCP-ab
have a 5-year risk of developing RA, early detection of anti-CCP-ab can significantly help
people recognize RA before the disease enters the chronic phase. In this regard, Cho et al.
have reported an electrochemical sensor designed to detect anti-CCP-ab for early detection
of RA [112]. The acceptable level of anti-CCP-ab in healthy individuals is below 20 IU/mL,
so levels above this number can indicate the subject’s susceptibility to developing RA.
Using an avidin-biotin bio-recognition system and self-assembled monolayer (SAM) of
mercaptohexanoic acid (MHA), the authors achieved a platform that can maintain the
activity for the immunogen used in this study, B-CCP, with good selectivity. Furthermore,
the sensing platform was compact (14 × 3.5 mm) due to the MEMS structure, with remark-
able functionality for performing electrochemical impedance spectroscopy (EIS). As the
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concentration of anti-CCP-ab changes in human serum (HS), the charge transfer resistance
of the EIS measurement changed accordingly. This sensor showed good linearity from
1 IU/mL–800 IU/mL with a limit of detection of 0.82 IU/mL in HS. In addition, the sensor
was able to function for over 20 days with good stability, making it suitable for point-of-care
(POC) devices.

Table 2 outlines some electrochemical sensors reported in the literature for multiplexed
detection of MS biomarkers.

Table 2. Electrochemical sensors for multiplexed detection of biomarkers for metabolic syndrome.
Abbreviations: SLE, systemic lupus erythematosus; PSA, prostate-specific antigen; PSMA, prostate-
specific membrane antigen; BAFF, B-cell activation factor; APRIL, a proliferation-induced signal;
SWV, square wave voltammetry; EIS, electrochemical impedance spectroscopy; ECL, electrochemilu-
minescent; DPV, differential pulse voltammetry.

Metabolic
Syndrome Biomarker E-Chem Method LOD Linear Range Refs.

Cardiovascular
Diseases (CVDs)

C-reactive protein (CRP)
SWV

0.38 ng mL−1 1–10,000 ng mL−1

[106]Troponin (cTnI) 0.16 pg mL−1 0.001–250 ng mL−1

Procalcitonin (PCT) 0.27 pg mL−1 0.0005–250 ng mL−1

Cholesterol Amperometry 0.36 µmol L−1 30–240 µmol L−1
[107]

Choline 0.08 µmol L−1 0.5–4 µmol L−1

miR-1 0.31 pM
miR-208b EIS 0.37 pM 0.1 pM–10 nM [113]
miR-499 0.77 pM

Diabetes
Glucose Amperometry 209 µmol

[114]Insulin 340 µmol

Glucose Amperometry 0–200 µM
[111]Lactate 0–30 µM

Glucose
EIS

58 mg dL−1 50–800 mg dL−1
[115]

L-tyrosine 0.3 µmol L−1 1–500 µmol L−1

I27L ECL 8.1 × 10−12 M 1.0 × 10−11–1.0 × 10−7 M [116]

I27L ECL 23 fM 0.0001–100 nM [117]

miRNA-124 DPV 0.65 fM 1 fM–100 nM [118]

miRNA-21 coulometry 17 fM 10−8–10−14 M [119]

Cancer
miRNA-155

DPV
6.7 fM 0.01–1000 pM

[120]miRNA-122 1.5 fM 0.01–1000 pM

Prostate Cancer

PSA

DPV

1–100,000 pg mL−1

[110]PSMA
Interleukin-6 (IL-6)

1–10,000 pg mL−1

1–1000 pg mL−1

Platelet factor-4 (PF-4) 1–10,000 pg mL−1

miRNA-375
DPV

miRNA-375
[109]miRNA-141 0.01–10 µM miRNA-141

PSAPSA

Methotrexate (MTX)

DPV

35 nM 5–1000 µM

[121]Leukemia Lactate dehydrogenase 25 U L−1 60–700 U L−1

Uric acid (UA) 450 nM
Urea 20 µM

Breast Cancer
miRNA-155

DPV
0.98 fM

1 fM–10 nM [122]miRNA-21 3.58 fM
miRNA-16 0.25 fM
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Table 2. Cont.

Metabolic
Syndrome Biomarker E-Chem Method LOD Linear Range Refs.

miRNA-155 0.33 fM
miRNA-21 SWV 0.04 fM 0.001–1000 pM [123]

miRNA-210 0.28 fM

Rheumatoid
Arthritis (RA) Anti-CCP-ab EIS 0.82 IU mL−1 1–800 IU mL−1 [112]

CXCL7 Amperometry 0.8 ng mL−1 1–75 ng mL−1
[124]

MMP3 1.2 pg mL−1 2–2000 pg mL−1

SLE BAFF Amperometry 0.08 ng mL−1 0.24–120 ng mL−1
[125]

Colorectal Cancer APRIL 0.06 ng mL−1 0.19–25 ng mL−1

4.2. Optical Biosensors

Numerous studies have been conducted to develop optical sensors for single analyte
detection. Figure 5 depicts an overview of different types of optical sensing platforms, in-
cluding meta-structures, surface plasmon resonance (SPR), reflectometric interference [126],
evanescent wave fluorescence [127], bioluminescence [128], and surface-enhanced Raman
scattering (SERS) [129]. However, little progress has been made on multi-analyte detec-
tion using a single POC framework. MS is a constellation of multiple disorders, thereby
necessitating multiplexed monitoring with a single sensing platform. Sensors that are
cost-effective and capable of monitoring the body’s initial responses to metabolic disorders,
such as abnormalities in the immune system response, adipokines, and uric acid levels,
as well as the resulting dysfunctions, such as elevated levels of blood glucose, triglyc-
erides, cholesterol, oxidative stress, LDL, and insulin resistance, hold substantial potential
for affordable and large-scale screening of populations. In addition, the early-detection
capabilities of these sensors would reduce mortality and improve quality of life.

4.2.1. Multiplexed Optical Detection Systems

Multiplexed monitoring is crucial because MS involves an interplay between several
biological processes. Expression of one biomarker can indicate more than one disease,
different disease conditions may manifest with identical physical symptoms, and it may
be paramount to monitor the dynamic progression of a disease [130]. In addition, multi-
plexing generates high-throughput spatiotemporal data while conducting multiple tests
simultaneously. Subsequently, large sets of data can be combined with an artificial intel-
ligence/machine learning (AI/ML) framework to implement just-in-time interventions,
predict the progression of diseases, and improve treatment outcomes. This section first de-
scribes the conventional techniques of multiplexed biomarker detection and then transitions
to point-of-care (POC) and in vivo detection schemes.

The current gold standard methods for multiplexed detection of molecular biomarkers
include enzyme-linked immunosorbent assay (ELISA), fluorescence immunoassays, and
polymerase chain reaction (PCR). ELISA employs multiple wells to probe distinct analytes.
Receptor–analyte interaction inside each well generates a colored product, the optical den-
sity of which is proportional to the analyte concentration [131]. Although the multiple-well
framework enables biomarker multiplexing in a single assay, ELISA has certain limitations,
including lack of standardization among similar assays, laborious assay procedure, ex-
pensive reagents and plate reader, specialized storage and handling, and often, the need
for higher sample volume (>100–200 µL) [131,132]. In contrast to enzymes used with
ELISA, fluorescence immunoassays use a fluorescent label for quantifying proteins [133].
Fluorescence assays are also unsuitable for POC applications due to additional limitations,
such as low photostability and intrinsic background fluorescence [134]. PCR is the current
gold standard for the qualitative identification and differentiation of infectious species, by
detecting nucleic acid sequences unique for the pathogen. PCR can identify different types
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of organisms, including bacteria, parasites, viruses, and fungi, from their genetic signature.
Although the working principle and ingredients are similar, to ensure selective detection
of the pathogen and reduce false-positive results, specific primers and probes are used to
detect different organisms. In addition, PCR only works on DNA, hence, prior to PCR, the
viral RNA is converted to DNA using a reverse transcription (RT) mechanism and the PCR
is referred to as RT-PCR [135]. While molecular tests are highly sensitive and widely used
for molecular biomarkers analysis, running the tests and analyzing the results can take
up to a week (in locations with many tests) and require sophisticated lab equipment and
technicians. Moreover, molecular tests cannot monitor disease progression or past infection
in real time.
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Figure 5. Overview of different types of optical sensing mechanisms based on the optical phe-
nomenon arising from receptor–analyte interactions. This overview shows meta-structures, surface
plasmon resonance, reflectometric interference [126], evanescent wave fluorescence [127], biolumines-
cence [128], and surface-enhanced Raman scattering (SERS) [129]. Reproduced under the terms and
conditions of the Creative Commons CC BY license.

Recent progress has been made on screening multiple biomarkers at the POC. Some
notable architectures are explained hereafter. Jahns et al. reported a photonic crystal biosen-
sor for multiplexed detection of CD40 ligand antibody, EGF antibody, and streptavidin in
parallel on a single chip [136]. The photonic crystal comprised titanium-dioxide-coated
periodic grated nanostructures functionalized with multiple specific ligands, as depicted
in Figure 5 (left panel). A simple CMOS camera and imaging optics were used to record
and analyze the spatially resolved transmission intensity, thereby eliminating the need
for complex optics and spectrometer. The optical transmission spectra exhibited shifts in
the guided mode resonance wavelength in response to analyte binding to the receptors,
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resulting from refractive index changes on the photonic crystal surface. This shift in spectra
is schematically shown in Figure 5 (right panel). The green color channel of the camera was
read out to measure the intensity shifts in the transmission spectrum. Figure 5 (middle
panel) demonstrates the experimental measurement setup in which the multiplexed pho-
tonic crystal biosensor was placed between two crossed polarization filters, and variations
in the transmission intensity were recorded by the CMOS image sensor. Another group
introduced a novel common-path interferometer biosensor for simultaneous sampling of
tens of measurement fields [137]. The system utilized multi-pinhole Fourier frequency
division method to measure proteins binding to a photonic crystal surface. A CMOS camera
was used to obtain the far-field interference pattern. Figure 5 shows the pinhole plate and
Fourier lens-based measurement setup and the shifts in phase and reflection intensity of
guided mode resonance upon changes in refractive index at the photonic crystal surface.
The pinhole patterns were designed in such a way that their positions matched the different
biomarker binding sites. The pinhole patterns in turn determined the frequency positions
in the Fourier domain. To increase the number of measurement sites, a spiral pattern was
designed with 54 pinholes and three different radii. A silicon photonic microring resonator
array was also developed for ultrasensitive detection of four microRNA targets present
in standard solutions and extracted from mouse brain tissue [138]. The microring res-
onator array was functionalized with antibodies (named S9.6) that specifically recognized
DNA:RNA heteroduplexes. Figure 5 illustrates the sequential formation of the S9.6 amplifi-
cation assay and the resulting relative shift in resonance for seven different concentrations
of each target microRNA. Chen et al. developed localized surface plasmon resonance
(LSPR) microarrays with 480 nanoplasmonic sensing spots in microfluidic channel arrays
for multiplexed detection of six serum cytokines in infants following cardiopulmonary by-
pass (CPB) surgery [139]. The biochip was composed of eight parallel microfluidic channels
running orthogonally to six antibody-functionalized gold nanorods with 10 turns on a glass
substrate (Figure 5), thereby giving rise to an array of 480 LSPR biosensing spots on the
entire chip. The ensemble of around 2000 plasmonically uncoupled gold nanorods on each
sensor spot exhibited a distinct resonance, which was leveraged to quantitatively identify
multiple cytokines in parallel. Optical fiber opens a new paradigm in biosensing, owing to
its smaller footprint, ease of multiplexing, remote monitoring capability, and immunity to
electromagnetic interference. A multiparametric fiber-optic probe was realized for simulta-
neous detection of temperature, curvature and strain [140]. The sensing probe was made of
a Bragg grating structure engraved in a graded-index multimode fiber and a Fizeau cavity.
All these components were made in series along the fiber. The sensor structure and the
experimental setup are shown in Figure 5. This sensor probe can be reconfigured for moni-
toring biomolecules. Qu et al. reported a duplex fiber-optic LSPR probe functionalized with
His6-tagged T2C2 and MDTCS bioreceptors to detect the two antibodies, 4B9 and II-1 [141].
Gold nanoparticles served the dual purpose of signal amplification and distinguishing the
two targets in the same sample. The same fiber was sequentially functionalized with the
bioreceptors, expanding its applications in several biosensing fields. Other noteworthy
multiplexed protein monitoring platforms include spotted arrays of randomly distributed
metal nanoparticles functionalized with specific targets that generate graded SPR [142],
Raman dye-coded aptamer-gold nanoparticle conjugates [143], and plasmonic staining of
inverse opal photonic crystal hydrogel bead [144]. Although these multiplexed frameworks
provide POC monitoring, they are particularly suitable for formulating in-vitro protein
assays. Challenges persist in the realization of in vivo multiplexed optical sensors.

Recent advances in fiber optics have led to the realization of optofluidic and op-
toelectronic platforms, which can be reconfigured for multiplexed in vivo applications.
Frequently, the fiber structures are micromachined to produce sophisticated core-and-shell
geometry for integrated optofluidic analysis [145]. Such architectures involve sophisticated
lithography and functional structure integration processes. Other approaches include the
incorporation of functional materials into microstructured fibers to realize multimodal and
flexible neural probes. This is particularly applicable to the spinal cord and the peripheral
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nerves, which are subject to frequent bending and stretching deformations [146]. Some
design considerations for developing neural probes include minimizing tissue damage and
foreign body response, increasing flexibility of the devices, and adding surface coatings
to incorporate biocompatibility. These features are difficult to achieve with conventional
neural interfaces owing to their rigid geometry and lack of mechanical compliance. In
contrast, optical fibers can be readily maneuvered and programmed with elasticity and
stretchability, multiple materials, and micro and nanoscale features to circumvent the
hurdles in traditional neurological studies. For example, thermo-resistive optical fibers
were fabricated by incorporating novel chalcogenide semiconductor Ge17As23Se14Te46 core,
and metallic electrodes (Sn96Ag4) [147]. In addition, novel tunable architectures were
reported for chemical sensing, such as a hollow channel surrounded by alternating layers
of chalcogenide glass arsenic selenide (As2S3) and polyetherimide [148], as well as a hybrid
all-in-fiber configuration [149]. Stretchable and tunable fibers have also been reported in
applications with biological tissue interfaces [150]. Other emerging techniques include
incorporating multiple probing [151] and stimulation [152] sites and discrete devices (e.g.,
micro LEDs and photodetectors) [153] along the fiber.

4.2.2. Cardiovascular Disease

As explained earlier, cardiac troponin, CRP, PCT, and IL-6 biomarkers play a crucial
role in developing CVD. Kundu et al. developed a plasmonic POC device comprising a
gold- and graphene-oxide-coated patterned array of periodic nanoposts to detect PCT [154].
The sensor demonstrated a sensitivity of 0.0643 a.u./pg·mL−1 at lower concentrations and
0.0224 a.u./pg·mL−1 at higher concentrations of PCT, and a detection limit of 1.22 pg·mL−1.
The sensor chip was capable of measuring the kinetics of antigen–antibody bindings at the
SPR sensor surface. In addition, the sensor exhibited high reproducibility to PCT molecules
down to the picomolar level, which could be attributed to the soft lithography-based low-
cost sensor manufacturing process. SPR sensor was also used for multiplexed detection of
myocardial infarction biomarkers, cardiac troponin I (cTnI), and myoglobin (MG) [155].

Two highly sensitive fiber-optic biosensing techniques include fluorescence and label-
free methods. A combination tapered fiber-optic biosensor was developed by forming a
molecular sandwich assay near the tip [156]. The fiber probe was functionalized with cap-
ture antibodies and immersed in a solution containing fluorescence-dye-labeled detection
antibodies. In the absence of target antigens, the evanescent field of the fiber had few to no
interactions with the dye, and hence little fluorescence was observed. Upon addition of the
antigen, a molecular sandwich was formed on the probe surface and the evanescent field
excited the fluorescent dyes. This combination tapered probe was used to detect IL-6 with
a limit of detection of 5 pM. In another work, a fluoro-mediated sandwich immunoassay
was made on an optical fiber for simultaneous detection of four CVD biomarkers, B-type
natriuretic peptide (BNP), cardiac troponin I (cTnI), C-reactive protein (CRP), and Myo-
globin (MG) [157]. Noushin et al. reported dual-modality detection of IL-6 by integrating a
fiber-optic sensor into a microfluidic electrochemical sensor on a wearable biochip [158].
Combination of two modalities allowed the detection of a wide range of IL-6 molecules
in sweat samples. For instance, the electrochemical sensor had a linear operation range
from 0.1 pg/mL to 1000 pg/mL, while the fiber-optic sensor operated from 1 ng/mL to
1000 ng/mL of IL-6.

The aforementioned literature was not focused on detecting CVD in particular, as
some biomarkers are expressed in a wide range of diseases. For instance, CRP is a general
inflammatory biomarker. Therefore, more studies need to be conducted to apply the already
reported sensors to MS diagnosis.

4.2.3. Prediabetes

Different types of nanomaterials have been incorporated into optical sensing modalities to
enhance sensitivity and selectivity to MS biomarkers, such as glucose. For instance, microgels
were assembled on an SPR fiber tip to develop a fiber-optic glucose sensor with tunable limit
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of detection, working range, and response time [159]. The 3D porous network of microgels
allowed the detection of millimolar glucose concentrations, previously undetected with a
planar platform. The sensor exhibited a linear detection range from 16 µM–16 mM and a
tunable limit of detection was achieved by changing the microgel concentrations.

Koman et al. introduced a multiscattering-enhanced optical biosensor for multiplexed,
continuous, and non-invasive monitoring of lactate and glucose [160]. The sensing spots
were deposited on a porous membrane that demonstrated spatial variations in refractive
index leading to multiple scattering of light. Subsequently, an inverted microscope was
used to obtain the absorption spectra from the sensing spots under white-light illumination.
Although the original purpose of this multiplexed sensor was for continuous measurements
of cellular processes, such as monitoring the uptake of exogenously supplied glucose by
the green algae Chlamydomonas reinhardtii, the sensing platform can be readily repurposed
for diagnosing MS.

Kim et al. developed a paper-disc centrifugal optical device for colorimetric detection
of glucose and lactate [161]. The sensing platform comprised of a disposable, wax printed,
rotting paper module along with a photodiode and light-emitting diode to quantitatively
measure the color changes in multiple reaction zones on the paper-disc in real time. Fur-
thermore, the device had a self-calibration feature that minimized the effects of ambient
light, temperature, humidity, and measurement time variations.

4.2.4. Cancer

With the emerging evidence that cancer is a metabolic disease, it is worth investigating
the existing sensing technologies that would inform the repurposing of the sensors for
diagnosing MS. A variety of high-performance and label-free optical sensors have been
reported in the literature for detecting cancer biomarkers. For instance, a fiber-optic LSPR
probe was developed by Sanders et al. for label-free detection of prostate-specific antigen
(PSA), an important biomarker for prostate cancer [162]. The LSPR signal was excited by a
gold nanodisc array made at the end facet of the fiber using electron beam lithography and
lift-off techniques. Anti-PSA monoclonal antibody molecules were functionalized at the
LSPR probe for selective detection of PSA. Experimental results demonstrated a detection
limit of 100 fg/mL.

Surface-enhanced Raman spectroscopy (SERS) is another powerful tool for ultrasen-
sitive detection of chemical species. SERS involves a highly localized field enhancement
induced by laser excitation of roughened metallic surfaces or metal nanostructures. The
enhancement factor can reach up to 1011, leading to the possibility of single molecule detec-
tion [163]. Several SERS biosensors have been investigated for multiplexed detection of
prostate cancer biomarkers, including a silver-nanoparticle-based sensor for the detection
of PSA, PSMA, hK2 (Human kallikrein 2) [164], core-shell SERS nanotags [165], and gold
nanorod SERS nanotags [166] for the detection of PSA, CEA (carcinoembryonic antigen),
and AFP (alpha fetoprotein). A more comprehensive list of multiplexed biosensors for
prostate cancer diagnosis can be found in [167]. In addition, a chip-integrated silicon
photonic sensor array was developed for multiple-cancer biomarker detection [168]. The
biochip was used to detect eight different cancer biomarkers: AFP, activated leukocyte cell
adhesion molecule (ALCAM; breast cancer biomarker), cancer antigen 15-3 (CA15-3; breast
cancer biomarker), cancer antigen 19-9 (CA19-9; pancreatic, colorectal, and ovarian cancer
biomarker), cancer antigen-125 (CA-125; ovarian cancer biomarker), CEA, osteopontin
(ovarian and liver cancer biomarker), and PSA.

4.2.5. Autoimmune Disease

Several optical biosensing platforms have been developed to detect the biomarkers
expressed in autoimmune disease. Some notable ones are highlighted in this section. MiR-
NAs are considered promising biomarkers for detecting a wide range of diseases, including
rheumatoid arthritis (RA). Huang et al. developed a nanophoton switch based on quantum
dots (QDs) and graphene oxide (GO) for detecting miRNA-21 and miRNA-155 [169]. The
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transducing mechanism relied on fluorescence quenching based on fluorescence resonance
energy transfer (FRET). A fluorescence quenching effect took place between the QDs and
GO, and was used as a fluorescence switch with a high signal-to-noise ratio (SNR). The
same pair of miRNAs were also detected by an ultrasensitive SPR sensor based on two-
dimensional antimonene nanomaterial and Au nanorods [170]. The sensor demonstrated
a detection limit down to 10 aM, one of the lowest reported to date. This ultrasensitivity
could be attributed to the substantially stronger interaction of antimonene with ssDNA
than graphene. Other significant optical biosensors that will serve as a promising avenue
for early diagnosis of RA include multiplexed miRNA detection via enzymatic signal
amplification [171] and label-free miRNA detection using arrays of microring resonators.
The multiplexed sensor presented in [171] detected six different miRNAs (miRNA-21,
miRNA-26a, miRNA-29a, miRNA-106a, miRNA-222, and miRNA-335), while the sensor
in [172] detected miRNA-21, miRNA-24, miRNA-133b, and let-7c-5p.

Table 3 outlines some optical sensors reported in the literature for multiplexed detec-
tion of MS biomarkers.

Table 3. Optical sensors for multiplexed detection of biomarkers for metabolic syndrome (MS).

Metabolic
Syndrome Biomarker Optical Method LOD Linear Range Refs.

Cardiovascular
Diseases (CVDs) Procalcitonin (PCT) SPR 1.22 pg mL−1 10–105 pg mL−1 [154]

Myoglobin (MG)
SPR

<1 ng mL−1 1–25 ng mL−1
[155]

Cardiac troponin I (cTnI) <1 ng mL−1 1–25 ng mL−1

Interleukin-6 (IL-6) Fiber-optic
fluorescence

5 pM
(0.12 ng mL−1) 5–500 pM [156]

B-type natriuretic
peptide (BNP)

Cardiac troponin I (cTnI)
C-reactive protein (CRP)

Myoglobin (MG)

Fiber-optic
fluorescence

0.1 ng mL−1

7 × 10−3 ng mL−1

700 ng mL−1

70 ng mL−1

0.1–1 ng/mL
0.7–7 ng/mL

700–7000 ng/mL
70–700 ng/ml

[157]

Fiber-optic SPR 1.48 ng mL−1 1–1000 ng mL−1
[158]

Interleukin-6 (IL-6) Electrochemical 0.886 fg mL−1 0.1–1000 pg mL−1

Prediabetes Glucose Fiber-optic SPR

Can be tuned by
changing the

microgel
concentration

16 µM–16 mM [159]

Glucose Microfluidics-
enabled

multi-scattering of
light

110 nM 1–400 µM
[160]Lactate 240 nM 10–3000 µM

Glucose
Colorimetric

27.2 µM 0.0781–5 mM
[161]Lactate 29.6 µM 0.0391–2.5 mM

Prostate Cancer LSPR 100 fg mL−1 [162]
PSA 50 fgmL−1–5 ngmL−1

PSA
SERS

0.46 fg mL−1 0.46 fg mL−1–
478.93 ng mL−1

[164]PSMA 1.05 fg mL−1 1.05 fg mL−1–
113.4 ng mL−1

hK2 0.67 fg mL−1 0.67 fg mL−1–
466.23 ng mL−1

PSA
SERS

0.37 pg mL−1 1 pg mL−1–10 µg mL−1

[165]CEA 0.43 pg mL−1 10 pg mL−1–1 µg mL−1

AFP 0.26 pg mL−1 10 pg mL−1–1 µg mL−1
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Table 3. Cont.

Metabolic
Syndrome Biomarker Optical Method LOD Linear Range Refs.

PSA
SERS

10 pg mL−1 for all
proteins

- [166]CEA
AFP

Multiple Cancers

AFP

Silicon photonic
sensor array

-

[168]

ALCAM -
CA15-3

-

CA19-9
CA-125

CEA
Osteopontin

PSA

Rheumatoid
Arthritis (RA)

miRNA-21
FRET 1 pM (both) 1 pM–1 nM (both) [169]

miRNA-155

miRNA-21
SPR 10 aM (both) 10 aM–10 pM (both) [170]

miRNA-155

miRNA-21

Silicon photonic
Microring resonators

9 nM 20 nM–2 µM

[171]
miRNA-26a 4 nM 20 nM–2 µM
miRNA-29a <1 nM 2 nM–2 µM
miRNA-106a 2 nM 2 nM–2 µM
miRNA-222,
miRNA-335 1 nM 2 nM–2 µM

let-7c-5p 4 nM 4–250 nM
miRNA-21 Silicon photonic

Microring resonators

4 nM 4–250 nM
[172]miRNA-24 1.95 nM 1.95 nM–2 µM

miRNA-133b 62.5 nM 62.5 nM–1 µM

Abbreviations: PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; hK2, human kallikrein
2; CEA, carcinoembryonic antigen; AFP, alpha fetoprotein; ALCAM, activated leukocyte cell adhesion molecule;
CA15-3, cancer antigen 15-3; CA19-9, cancer antigen 19-9; CA-125, cancer antigen-125; SPR, surface plasmon reso-
nance; LSPR, localized surface plasmon resonance; SERS, surface-enhanced Raman Scattering; FRET, fluorescence
resonance energy transfer.

5. Outlook: Towards Multimodal Sensor Platforms

The discussion above suggests that combining sensing methodologies and multiplex-
ing may be a more suitable approach, depending on the desired application and type of
analysis. With the appropriate blend of sensing modalities, it would be possible to achieve
higher sensitivity and selectivity, as well as a wider dynamic detection range, which is
beyond the capability of a single sensing mechanism. In addition, fusing multiple-sensing
modalities on a single biochip offers improved detection reliability. Electrochemical and
optical sensing have their own unique advantages that can be exploited in a single platform
by combining the two modalities [173,174]. Although electrochemical sensors are relatively
simple to use and easy to miniaturize, several instances, such as real-time monitoring of
critically ill patients in an ICU (intensive care unit) setting, require the use of minimally
invasive sensors that can be inserted inside the body with ease. Research demonstrates
the development of implantable electrochemical sensors for in vivo monitoring [175–178].
However, such in vivo detection strategies require invasive surgery, which is often not
feasible for neonates, seniors, or critically ill patients. In this regard, the unique features of
optical fiber enable the realization of multifunctional and multi-responsive in vivo sensing
probes [126]. Placement of fiberoptic catheters into the internal jugular veins has been
demonstrated to provide continuous venous oxygen saturation measurements. However,
challenges persist in the realization of multiplexed fiber-optic biosensing probes. Conven-
tional optical fiber-based multiplexed biosensing involves a bundle of optical fibers, which
substantially increases the footprint and the number of coupling elements between the
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fibers and the free space [179,180]. In contrast to these setups, a fiber-optic device that does
not require any cleanroom procedures or costly physical operations (e.g., etching, surface
cleaning, and surface preparation), is highly desirable for low-cost manufacturing of sensor
systems. In addition, it can provide multiplexed monitoring with a smaller footprint and
offers functionalities comparable to conventional devices, with tremendous scientific and
technological merit and clinical applications. Moreover, optical sensors are not affected by
interferences, such as magnetic, ionic, or electric fields [173]. In contrast, electrochemical
sensors do not require a dark environment for measurements and have a wider dynamic
range compared to optical sensors [173]. Furthermore, biosensors with clustered, regularly
interspaced, short palindromic repeats (CRISPR)/Cas effector is widely being studied
recently due to its excellent properties [181]. One example is using collateral cleavage
activity from Cas13a, where the CRISPR/Cas system cut labelled RNA reporters for signal
generation at room temperature, once bound to the target gene [182]. In this regard, this
novel technique has been integrated with electrochemistry with higher sensitivity and
accuracy [183]. Hence, adapting the strengths from electrochemistry and optics and com-
bining these two modalities will generate a richer set of data than would be possible with a
single modality. Moreover, the vast quantities of data generated from the multimodal and
multiplexed platforms can further be analyzed using meta-analysis to determine precise
biomarkers for the diagnosis of MS [184]. As MS is a complex and multi-factorial condition,
computational methods can provide information on the difference in the level of impor-
tance for each biomarker, and contribute to forming personalized treatments for effective
patient care [185–187].

The improvement in device performance was also verified in our previous work,
wherein we developed dual-modality transducing units (optical and electrochemical) on
a single integrated platform for monitoring protein biomarkers in a microfluidics [188]
and flexible wearable setting [158]. The two sensing modalities were demonstrated to
complement each other in terms of dynamic operation range and detection capabilities [158].
Another work regarding the integration of modalities was reported by Lamberti et al.,
where optoelectrochemical detection of insulin was performed on a graphene-modified
substrate [189]. This sensor showed improved sensing reliability and efficiency, including
redundancy of detection, internal titration, efficiency verification properties, and avoidance
of false positives. Therefore, in the diagnosis of MS, for which dynamic interactions and
interrelations among risk factors need to be considered, multimodal and multiplexed
sensing platforms integrating electrochemistry with optics can further enhance the overall
performance of the biosensor platform and provide more accurate results.
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