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ABSTRACT OF THE DISSERTATION
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by
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Teaching machines to speak and act like a human is one of the longest-running goals in Artificial

Intelligence. This thesis tackles two important problems in building the next generation of dialogue

systems: enhancing the emotional intelligence of social chatbots and learning semantic structures

from dialogue corpus. On the one hand, taking into account emotional quotient in dialogue

system design help machine to mimic human behavior and further improve the long-term user

engagement. On the other hand, extracting structural information from dialogue data is critical for

us to analyze user behavior and system performance. The technology could be applied to various

areas in computational linguistics, such as dialogue management, discourse analysis, and dialogue

summarization.

This thesis consists of two parts. In the first part, we aim to present our efforts at studying

emotional intelligence in dialogues systems. We break down the problem into three subjects:

1) the modeling and incorporation of human values, i.c., people tend to have common attitudes

towards some statements or scenarios; 2) the inference of social relations between interlocutors

ii



from dialogues. Chatbots with such inferring capability can understand human behavior better and

act appropriately; and 3) the modeling and tracking of speakers’ mental states. This is beyond

understanding what users say to perceive what users imply, requiring agents to mentally simulate

the evolution status of the environment.

In the second part of this thesis, we investigate how we can extract structural information from

dialogue corpus. In particular, we pioneered two research directions: 1) we reconstruct the original

dialogues with variational recurrent neural networks and structured attention, then we extract the

structure by computing the transitions between latent states; and 2) we detect and track the status of

potential slot token groups to approximate a representation of task-oriented dialogue structures. We

explored the problem from both theoretical and practical perspectives.
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CHAPTER 1

Introduction

1.1 Motivation

Teaching machines to speak and act like a human is one of the longest-running goals in Artificial

Intelligence. In this thesis, we try to address two critical problems towards building the next

generation of dialogue systems.

1.1.1 Emotional Intelligent Dialogue Systems

Psychologist Nicholas Humphrey believes that it is social intelligence, rather than quantitative

intelligence, that defines humans [GM15]. Enhancing the emotional intelligence of chatbots allows

them to understand user behaviors better and act appropriately in various situations. We argue there

are three critical aspects in this problem.

(i) Values. Value refers to desirable goals in human life. People tend to have common attitudes

towards some statements or scenarios. For example, it gives a sense of achievement if you get a

paper published. By considering values, we can estimate user behavior and cognitive patterns from

their utterances and generate responses that conform to the robot’s persona configuration. Figure 1.1

shows example dialogues of agents with value personalization and recognition. For instance, an

agent who is set to value stimulation and self-direction will love skiing. After the user refuses the

agent’s invitation to drink some beers, the agent could recognize the user’s value of security and

steer its future recommendation to healthier options.

Figure 1.2 shows a sociological perspective of basic human values [Sch92]. It describes ten
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Hey! What's your plan for this weekend? 

I plan to ski this weekend.

(Agent who values stimulation and self-direction)(User)

You know that is temping but is not good for our
fitness.

Would you like to have some beer?

(User who values security)

Agent recognizes user’s preference for a healthy
lifestyle and steer its future recommendation.

(Agent)

Figure 1.1: Socially intelligent agents with value personalization and recognition.

universal values that are recognized throughout all major cultures. The circular structure reflects the

dynamic relations among these values, i.e., the pursuit of some value may result in either accordance

with another value or a conflict with another value.

Universalism

Benevolence

SecurityPower

Achievement

Hedonism

Stimulation

Self-direction

Conformity

Tradition

Openness to
Change

Self-
Transcendence

Self-
Enhancement Conservation

Figure 1.2: Theory of basic human values [Sch92].

(ii) Social Relations. Social relations form the basic structure of our society, defining not only
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S1: Well then we’ll-we’ll see you the day after tomorrow. Mom?! Dad?! What-what. . . what you guys doing here?!

S2: Well you kids talk about this place so much, we thought we’d see what all the fuss is about.

S3: I certainly see what the girls like coming here.

S1: Why?!

S3: The sexy blonde behind the counter.

S1: Gunther?!

S2: Your mother just added him to her list.

S1: What? Your-your list?

Argument Pair Trigger Relation Type

R1 (S2, S1) dad per:children

R2 (S3, Gunther) sexy blonde per:positive impression

R3 (S3, S1) mom per:children

R4 (S1, S3) mom per:parents

R5 (S1, S2) dad per:parents

Table 1.1: A dialogue example from DialogRE [YSC20].

our self-images but also our relationships [Szt02]. To build an emotionally intelligent robot, it

is vital to have the bot understand its contextual surroundings, including users’ social relations.

Table 1.1 shows an example in the dataset DialogRE [YSC20]. Given a dialogue as context and

a set of entities, the task of Dialogue Relation Extraction predicts the relation types between the

entities from a predefined relation set.

When we try to mimic humans’ capability of inferring social relations, there are several aspects

that we need to take into consideration:

• Human can reason an unknown relationship from the entities’ relations with others. For

example, given A is B’s mother and C is B’s father, we can easily infer A is C’s wife. In

another saying, each type of relation is governed by a special potential function — social

norm.

• Human can incorporate personal attributes such as age, gender, and profession as cues to aid

the relational inference.
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• Social relations could evolve along with social interactions. For instance, strangers become

friends over a good chat.

(iii) Mental States. The third is about constructing and maintaining the mental states reflected

by an individual’s Theory of Mind [PW78], i.e., capability to understand others’ thoughts and

sense their emotions. This is beyond understanding what users say, but also to understand what

users imply, requiring agents to mentally simulate and reason the evolution process of the social

environment.

a small bucket

a rag

persona

I come from the
lower class ... King

persona

carrying
I am a king of the
whole empire ...

a duster

a crowncarrying

a scepter

Servant

carrying carrying

partner

carrying

carrying

in

Figure 1.3: A graphical representation of the agent’s mental state. Nodes are attributed with encoded

descriptions of agents, objects and the environment. Agents’ action trigger explicit topology changes

of the graph.

For communication happening between agents A and B, the Theory of Mind describes the

following recursive levels of their mental states:

• Level 0: Physical world;

• Level 1: A’s belief and desires; B’s belief and desires;

• Level 2: A’s belief in A’s mind, B’s belief in B’s mind (self-conscious); B’s belief in A’s mind,

and A’s belief in B’s mind;

• ...
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The reasoning capability on a deeper level of the mental states indicate a higher emotional

quotient of a bot. It will further empower the machine to have the following cognitive capabilities:

• Attributing the causal effects and blames to actions;

• Predicting the possible actions and responses of other agents;

• Understanding the extended meaning, implicature, and irony of other agents.

1.1.2 Structure Learning in Dialogue Systems

The second central topic of this thesis is the structure learning of dialogues.

Figure 1.4: Common modularized dialogue systems that are widely used in industry.

Existing dialogue systems in the industry are mostly modularized systems that consist of

components of Automatic Speech Recognition (ASR), Natural Language Understanding (NLU),

Dialogue Management (DM), Natural Language Generation (NLG), Text-to-Speech (TTS), as

shown in Figure 1.4. While there has been remarkable progress in learning end-to-end ASR, NLU,

NLG, and TTS, the design of DM still heavily relies on manually-crafted policies. The dialogue

policy defines the system’s action given a current dialogue state, which is based on recognized
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user intent, slot values, and potentially other contexts from multi-modal sensors. In this way, the

transition among the dialogue states composes a conversational graph or structure of the dialogue

domain that the agent is handling.

As we can see in Figure 1.5, extracting a semantic structure from dialogue data provides us

with a discourse skeleton of the domain, which is bus information request in this case. Another

greeting
request a bus

request #from_loc
inform #from_loc

request #to_loc
inform #to_loc

request #datetime
inform #datetime

0.49

inform default
request #duration

inform default
request #arrival

inform arrival
goodbye

inform default
goodbye

inform duration
goodbye

goodbye
silence

0.26 0.23

inform default
inform #from_loc

inform default
inform #to_loc0.01 0.01

Figure 1.5: Original dialogue structure of the bus information request domain in SimDial [ZE18].

User intents are marked in bold.

interesting type of dialogue structure is the interactive structure in multi-party dialogues. Figure 1.6

illustrates the interactive structure learned from a dialogue sample in Ubuntu Chat Corpus [LPS15].

Each node represents an utterance from different speakers in the dialogue, with darker linkages rep-

resenting stronger dependency relations between utterances. When speaker/addresses information

is unavailable in the corpus, learning such a structure allows disentangling the conversation and

estimating the speaker labels.

Therefore, extracting dialogue structures is an important topic for us to analyze user behavior

and system performance, benefiting several downstream tasks such as dialogue system building,

discourse analysis, and dialogue summarization.
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1 2 3 4 5 6

2 3 4 5 6 7

Figure 1.6: Learned interactive structure from a multi-party dialogue sample in Ubuntu Chat

Corpus [UA13].

1.2 Thesis Outline

Following the two central topics that we just discussed, this thesis consists of two parts — PART

I EMOTIONAL INTELLIGENT DIALOGUE SYSTEMS and PART II STRUCTURE LEARNING IN

DIALOGUE SYSTEMS.

PART I focuses on modeling and incorporating emotional intelligence in dialogue systems. To

be specific,

In Chapter 2, we talk about building human value driven dialogue systems. We begin with

an introduction of the theory of basic human value and utility, existing social commonsense

benchmarks, and emotionally intelligent dialogue datasets. Next, we present our curation procedure

and the statistical specifications of a new dataset, VALUENET. We then formally define the problem

formulation of value modeling and compare the performance between using Transformer [VSP17]

variants. Finally, we demonstrate how to incorporate the value model into chatbots on existing

dialogue datasets.

In Chapter 3, we discuss inferring social relations in dialogues. We begin by introducing the task

of Dialogue Relation Extraction and a relevant dataset, DialogRE [YSC20]. We then talk about the

difference between relation inference in documents and dialogues. The social relation is represented

as an attributed And-Or graph [ZWM98, ZM07], and we describe our proposed α–β–γ approach

to incrementally parse the graph. Finally, we present experimental results on the DialogRE and
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another related dataset, MovieGraph [VTC18]. We conduct an in-depth analysis of the results and a

case study of the model.

In Chapter 4, we explore how to combine mental state modeling and value modeling, and

incorporate both into artificial agents. We argue that the problem needs to be studied in an

embodied environment, such as the LIGHT [UFK19]. Then we introduce related works on text-

based embodied AI, mental state modeling, and value modeling. We formally define the problem

and present a holistic framework step by step as a proposal to address the problem. Finally, we

compare the proposed framework with end-to-end neural-based models and conduct a detailed

analysis of the results. We also discuss the future work in this area.

PART II explores two directions to learn and extract structures from dialogue data. Detailedly,

In Chapter 5, we begin with introducing the semantic structures in two-part dialogues and

interactive structures in multi-party dialogues. We present related works about structured attention

and previous works on structure learning. Then we formulate the learning of these two types of

structures, and present our approach Variational Recurrent Neural Network (VRNN) [SZY19]

with structured attention as a uniform solution. Finally, we compare the proposed algorithm with

state-of-the-art models at that time and analyze the results.

In Chapter 6, we take a different path from the previous chapter. We begin with presenting

a different representation of dialogue structures, where the nodes are simplified dialogue states

in task-oriented dialogues. After discussing related works in this topic, we propose a two-stage

approach, which is to detect and cluster potential slot tokens first, and then track the status of each

cluster to build the graph. Besides evaluating the structure learning performance, we also show that

data augmentation based on extracted structures improves the response generation quality.

We will finally conclude in Chapter 7.

8



Part I

Emotional Intelligent Dialogue Systems
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CHAPTER 2

Human Value Driven Dialogue System

Building a socially intelligent agent involves many challenges, one of which is to teach the agent

to speak guided by its value like a human. However, value-driven chatbots are still understudied

in the area of dialogue systems. Most existing datasets focus on commonsense reasoning or

social norm modeling. In this chapter, we present a new large-scale human value dataset called

VALUENET, which contains human attitudes on 21,374 text scenarios. The dataset is organized in

ten dimensions that conform to the basic human value theory in intercultural research. We further

develop a Transformer-based value regression model on VALUENET to learn the utility distribution.

Comprehensive empirical results show that the learned value model could benefit a wide range of

dialogue tasks. For example, by teaching a generative agent with reinforcement learning and the

rewards from the value model, our method attains state-of-the-art performance on the personalized

dialog generation dataset: PERSONA-CHAT. With values as additional features, existing emotion

recognition models enable capturing rich human emotions in the context, which further improves

the empathetic response generation performance in the EMPATHETICDIALOGUES dataset. To the

best of our knowledge, VALUENET is the first large-scale text dataset for human value modeling,

and we are the first one trying to incorporate a value model into emotionally intelligent dialogue

systems1.

1The dataset is available at https://liang-qiu.github.io/ValueNet/.
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2.1 Introduction

Value refers to desirable goals in human life. They guide the selection or evaluation of actions,

policies, people, and events. A person’s value priority or hierarchy profoundly affects his or her atti-

tudes, beliefs, and traits, making it one core component of personality [Sch12]. In dialogue systems,

modeling human values is a critical step towards building socially intelligent chatbots [QZL21]. By

considering values, we can estimate user behavior and cognitive patterns from their utterances and

generate responses that conform to the robot’s persona configuration. For example, the robot is set

to be aware of human values, and it invites Jerry to drink beers, but Jerry replies, “You know that is

tempting but is not good for our fitness”. The bot could read from the dialogue that Jerry prefers a

healthy and self-disciplined lifestyle and steer its recommendation to healthier options in the future.

The development of socially intelligent chatbots has been one of the longest-running goals in

artificial intelligence. Early dialogue systems such as Eliza [Wei66], Parry [CWH71], and more

recent SimSimi2, Panda Ichiro [OS18], Replika [FSR18], XiaoIce [ZGL20], were designed to

mimic human behavior and incorporate emotional quotients (EQ) to some extent. There are also

datasets and benchmarks for studying related problems, such as emotion recognition [MVC10,

HCK18, PHM19, GMG20], personalized dialogue generation [ZDU18, LCC20], and empathetic

dialogue generation [RSL19]. Even though value plays a fundamental and critical role in human

EQ, there is a lack of explicit modeling of values in the dialogue domain, based on social domain

theory. We have seen recent efforts about crowdsourcing social commonsense knowledge base or

benchmarks [FHS20, SRC19, LBC21, HBB20, HBB21, GBS21]. However, it is not clearly shown

how an agent can leverage this knowledge to estimate the users’ value priorities or guide its own

speaking and actions. In this work, we aim to alleviate this problem and investigate the usage of a

learned value function.

We start the study by curating a knowledge base of human values called VALUENET. Samples

with value-related scenarios were identified based on value-defined keyword searching. Next, we

2https://simsimi.com/
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Self-direction freedom

curiousindependent

privacy

Universalism

Benevolence

Conformity

Traditition
SecurityPowerAchievement

Hedonism

Stimulation

equality
unity

harmony

wisdom

love
helpful

responsible loyal

self-discipline
politeness

obedient

humble

respect devout

moderate

healthy

family

safety

belongingwealthy

authority

recognition

influential
successful

ambitious

intelligentpleasure
self-indulgent

daring
variation

excitement
enjoy

Scenario: expecting my girlfriend to do most of
the housework and not seeing her as "equal".

Scenario: applying to a far-away university
against my dad's wishes.

Scenario: letting
people know
when someone
needs medical
help.

Scenario: having a phone call in the bus.

Figure 2.1: The presented VALUENET dataset with curated social scenarios organized by Schwartz

values [Sch12].

asked Amazon Mechanical Turk workers about how the provided scenarios will affect one’s value.

This is based on the assumption that values underlie our attitudes; they are the guideline by which we

evaluate things. Workers assess behaviors/events positively if they promote or protect the attainment

of the goals we value. Behaviors/events are evaluated negatively if they hinder or threaten the

attainment of these valued goals. The whole process gives us a large-scale (over 21k samples)

multi-dimensional knowledge base of value. Figure 2.1 shows the overall structure of VALUENET.

Each split represents a value dimension identified in the theory of basic human values [Sch12]. The

figure also illustrates the value-related keywords and scenarios. The circular arrangement of the

values represents a motivational continuum. By organizing data in such a structure, we anticipate

the VALUENET to provide comprehensive coverage of different aspects of human values.

Next, we develop a Transformer-based value model to evaluate the utility score suggesting

the positive or negative judgment given an utterance. We provide a detailed analysis of learning

with multiple Transformer variants. Then we conduct a wide range of experiments to demonstrate

that the value model could benefit EQ-related dialogue tasks: (i) By finetuning a generative agent
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with reinforcement learning and the reward from our value model, the method achieves state-

of-the-art performance on the personalized dialogue dataset: PERSONA-CHAT [ZDU18]; (ii) By

incorporating values as additional features, in EMPATHETICDIALOGUES [RSL19], we improve the

emotion classification accuracy of existing models, which further facilitates the empathetic response

generation; (iii) Visualization of the value model shows that it provides a numerical way of user

profile modeling from their utterances.

In all, our contributions are two-fold. First, we present a large-scale dataset VALUENET for

the modeling of human values that are well-defined in intercultural research. Second, we initiate

to develop the value model learned from VALUENET to several EQ-related tasks and demonstrate

its usage for building a value-driven dialogue system. Our methodology can be generalized to a

wide range of interactive situations in socially aware dialogue systems [ZRR18], and human-robot

interactions [YL17, LHA21].

2.2 Related Work

An abundance of related work inspires our work. Our work aims to make contributions to dialogue

systems by incorporating the theory of human value. The dataset we collect shares a similar nature

with multiple social commonsense benchmarks and knowledge bases. Besides, we apply our

VALUENET for various dialogue tasks related to EQ.

2.2.1 Theory of Human Value and Utility

In the field of intercultural research, [Sch12] developed the theory of basic human values. The

theory identifies ten basic personal values that are recognized across cultures and explains where

they come from, as shown in Figure 2.1. The closer any two values in either direction around the

circle, the more similar their underlying motivations are; the more distant, the more antagonistic

their motivations. Note that dividing the value item domain into ten distinct values is an arbitrary

convenience. It is reasonable to partition the value items into more or less finetuned distinct values
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according to the needs and objectives of one’s analysis3. Similarly, in the economics field, the

concept of utility [Fis70] is initially defined as a measure of pleasure or satisfaction in economics

and ethics that drives human activities at all levels. Therefore, when we teach agents to speak and

act in a socially intelligent way, an approach considering human value utilities should be adopted.

In this work, we aim to learn a utility function for each dimension of value and steer the dialogue

system response generation accordingly.

2.2.2 Social Commonsense Benchmarks

[HBB20] present the ETHICS dataset, a benchmark that assesses a language model’s knowledge of

basic concepts of morality. SCRUPLES [LBC21] is a large-scale dataset with ethical judgments over

real-life anecdotes, motivated by descriptive ethics. SOCIAL-CHEM-101 presented by [FHS20]

is a corpus that catalogs rules-of-thumb as basic concept units for studying people’s everyday

social norms and moral judgments. They also propose Neural Norm Transformer to reason about

previously unseen situations, generating relevant social rules-of-thumb. SOCIAL IQA [SRC19] is

a large-scale benchmark for commonsense reasoning about social situations. [HBE17] present a

task and corpus for predicting the preferable options from two sentences describing the scenarios

that may involve social and cultural situations. Instead, in this work, we release a new dataset

VALUENET that provides annotation of human attitudes from different value aspects.

2.2.3 Emotionally Intelligent Dialogue Datasets

Several datasets are presented to study emotion dynamics in dialogues. DailyDialog [LSS17] is a

multi-turn dialogue dataset, which reflects the way of daily communication and provides emotion

labels for speakers. [HCK18] present EmotionLines with emotions labeling on all utterances in

each dialogue based on their textual content. MELD [PHM19] is an extension of EmotionLines for

3A refinement of the theory [SCV12], partitions the same continuum into 19 more narrowly defined values that
permit more precise explanation and prediction. We use the original 10-dimension version for simplicity in this work.
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multi-modal multi-party emotion recognition. [MVC10] record a corpus SEMAINE of emotionally

colored conversations. [GMG20] propose a framework COSMIC for emotion recognition in conver-

sations by considering mental states, events, actions, and cause-effect relations. DialogRE [YSC20]

is the first human-annotated dialogue-based dataset for social relation inference [QLZ21]. PERSONA-

CHAT [ZDU18] (revised in ConvAI2 [DLM20]) provides natural language profiles of speakers.

Based on PERSONA-CHAT, [LCC20] propose a transmitter-receiver-based framework with explic-

itly human understanding modeling to enhance the quality of personalized dialogue generation.

EMPATHETICDIALOGUES [RSL19] is a dataset that provides 25k conversations grounded in emo-

tional situations. Each dialogue is grounded in a specific situation where a speaker was feeling a

given emotion.

2.3 The VALUENET Dataset

During decision-making, people tend to pick the choice that aligns more with their own values. This

work aims to provide a transferable knowledge base for human value modeling in natural language.

To collect the VALUENET dataset, we curated social scenarios with value-related keywords and

further annotated them via Amazon Mechanical Turk. Each sample in VALUENET is a social

scenario description labeled with the annotator’s attitude through a specific value lens.

The entire dataset is organized in a circular structure as shown in Figure 2.1, aligning with the

theory of basic human values [Sch12]. The theory identifies ten universal values that are recognized

throughout major cultures. The circular structure reflects the dynamic relations among these values,

i.e., the pursuit of some value may result in either accordance with another value or a conflict with

another value. The ten distinct values can be further organized into four higher-order groups.

• Openness to change: self-direction, stimulation

• Self-enhancement: hedonism, achievement, power

• Conservation: security, conformity, tradition
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SECURITY

healthy, family, order, clean, safety, belonging

stable, public, surveillance, guard, welfare, enforcement, 
ensure, safekeeping, guarantee, collateral

support, protection, job, work

POWER

wealth, authority, recognition

sovereign, superior, force, dominance, leadership, 
mighty, rule, mandate, prerogative, accomplishment

influence, property, commitment, investment

ACHIEVE-
MENT

influential, successful, ambitious, capable, intelligent

talented, great, intellectual, outstanding, brilliant, 
distinguished, affluent, completion, create, rich

challenge, positive, performance, potential

HEDONISM

pleasure, enjoy, indulgent

happiness, amusement, delight, fun, desire, joy, resort, satisfaction, sex, beauty

relax, exercise

STIMULATION

daring, variation, excitement

exploit, courage, innovative, adventure, changing, 
passion, enthusiasm, nervous, adventure, intense

communication, production, possibilities

SELF-
DIRECTION

freedom, curious, independent, goal, privacy, respect

individual, autonomy, self-reliance, unrestricted, 
conscience, rights, exploration, interests, discover, dignity

identity

UNIVERSA-
LISM

broadminded, equality, unity, protection, harmony, justice, wisdom, beauty

divine, eternal, moral, ideal, solidarity, diversity, 
social, democracy, peace, compassion

services, understanding

BENEVOL-
ENCE

love, spiritual, helpful, friendship, forgiving, responsible, loyal

mutual, generous, sincere, kindness, sympathy, 
genuine, faithful, charitable, mercy, humanity

culture, parents, participation, concerning

CONFORMITY

discipline, politeness, obedient

behavior, respectful, norms, strict, manner, formal, 
gentle, compliant, regulation, principle

policy, comfortable

TRADITION

humble, respect, devout, moderate

conservative, orthodox, pious, classic, ancient, 
integrity, christian, buddhist, republican, islamic

responsibility, religion

Figure 2.2: Ten universal human values and related keywords for social scenario curation. Red:

keywords in the original value definition [Sch12]; Green: associated keywords found with datamuse;

Blue: associated keywords found with GloVe embedding.
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• Self-transcendence: benevolence, universalism

We describe the collection details of the VALUENET in the following sections.

2.3.1 Social Scenario Curation

We curated a set of 21,374 social scenarios from the large-scale social-related database SOCIAL-

CHEM-101 [FHS20]. Value-related scenarios are retrieved with value keywords after lemmatization

and stemming. There are three sets of keywords identified for each dimension of Schwartz value:

(1) the keywords in the original definition of each value in Schwartz’s paper [Sch12]; (2) words that

share a similar meaning, words that are often used to describe the original keywords, and words

that are triggered by (strongly associated with) the original keywords4; (3) words that are near the

original keywords in the GloVe [PSM14] embedding space. The value keywords are verified and

confirmed by humans as listed in Figure 2.2.

2.3.2 Value-Aspect Attitude Annotation

We crowdsourced people’s attitudes to the curated scenarios on Amazon Mechanical Turk (AMT).

Figure 2.3 shows an example.

We follow a strict procedure to select qualified workers and ensure the workers understand

the concept of each value we ask. In Figure 2.3, the definition of BENEVOLENCE is shown

to the workers throughout the entire annotation process. To further help the understanding, we

include three examples in each assignment with correct answers being ”yes”, ”no”, and ”unrelated”,

respectively. The worker is then required to answer a prerequisite question correctly to proceed

to the formal survey. The formal survey is composed of ten questions, including two hidden

qualification checking questions. Before publishing on the AMT, two Ph.D. students prepared the

qualification questions by annotating a small subset of the curated scenarios. Their agreed samples

4We use datamuse (https://www.datamuse.com/api/) for this purpose.

17

https://www.datamuse.com/api/


Figure 2.3: Value-aspect attitude annotation in AMT.

(100 in total) were randomly inserted into the survey for worker selection. The selection procedure

was done in the value dimensions with more scenarios to get a large pool of qualified workers and a

relatively balanced final dataset across different values. The complete Mechanical Turk interface is

attached in the Appendix 2.8 for reference.

A total of 681 experienced AMT workers participated in our VALUENET annotation. 443 of

them passed the qualification test. Each scenario is assigned to four different workers. The original

inter-annotator agreement is 64.9%, and the Fleiss’ kappa score [Fle71] among the workers is 0.48,

which considers the possibility of the agreement by chance. Keeping the scope of VALUENET in

commonly-agreed attitudes towards social scenarios, we only retain the samples with three or more

agreements. Figure 2.4 shows the sample size of each value split and their label distribution.

The data is split into the train (75%), valid (15%), and test (10%). Similar to the polarity in

sentiment analysis [KWM11], we quantify the annotated labels into numerical values: yes (positive):

+1, no (negative): -1, unrelated (neutral): 0. We denote the numerical values as utility to describe

the effect of a scenario on one’s value. In other words, for people who appreciate a certain value,

actions with a higher utility in this value dimension would be more desirable to them.
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Figure 2.4: The sample number and label distribution of each value split in the VALUENET.

VALUENET train valid test total

# samples 16,030 3,206 2,138 21,374

average # tokens 12.05 12.09 12.26 12.07

unique # tokens 12,452 5,292 4,112 14,143

Table 2.1: Statistics of the VALUENET dataset.

Table 2.1 shows more statistical details about the VALUENET dataset. In total, we collected

21,374 samples covering a wide range of scenarios in daily social life.

2.4 Value Modeling

We experiment using Transformer-based pre-trained language models for modeling human values

from the VALUENET dataset.
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2.4.1 Task Formalization

Given a social scenario s, we wish to learn a value function that models the utility distribution of s

from the ten Schwartz value dimensions: V(s) = [VSEC(s), VPOW(s), VACH(s), VHED(s), VSTI(s), VSD(s),

VUNI(s), VBEN(s), VCON(s), VTRA(s)], where V$VALUE(·) ∈ [−1, 1] and V$VALUE(·) ∈ R.

2.4.2 Model

Pre-trained language model variants: BERT [DCL18], RoBERTa [LOG19], DistilBERT [SDC19],

BART [LLG19] are investigated for learning the value function. A custom input format constructed

as ⟨[CLS][$VALUE]s⟩ is fed into a Transformer encoder, i.e.,

V$VALUE(s) = TRM([CLS][$VALUE]s), (2.1)

where TRM denotes the Transformer encoder, [CLS] is the special token for regression or clas-

sification, and [$VALUE] are special tokens we define to prompt the language models the value

dimension we are interested in [LL21, BMR20, LR21]. In order to get the ten-dimensional output

V(s), a batch size of 10 is forwarded through the model. For the BERT, DistilBERT, and RoBERTa,

a regression head is put on top of the models and they are trained with the Mean Squared Error

(MSE) loss. We use the regression model with sigmoid activation to get a continuous estimation

of the utility in the range of [−1, 1]. To evaluate the effect of different loss functions, we train the

BART model with three output classes and the cross-entropy loss.

2.4.3 Result and Analysis

The learning performance of using fastText5 [JGB17] and Transformer variants are reported in

Table 2.2. All Transformers are trained for 40 epochs with a learning rate of 5e−6. The prediction

precision, recall, F1 score, and accuracy for regression models are computed by the utility rounded

to the nearest integer.

5https://github.com/facebookresearch/fastText
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F1(-1) F1(0) F1(1) P(-1) P(0) P(1) R(-1) R(0) R(1) Acc.↑ MSE↓

VALUENET (original)

fastText 0.70 0.46 0.43 0.65 0.47 0.55 0.76 0.44 0.35 0.58 0.66

BERT 0.73 0.50 0.51 0.72 0.46 0.71 0.74 0.55 0.39 0.61 0.39

DistilBERT 0.71 0.52 0.47 0.74 0.45 0.69 0.68 0.62 0.36 0.60 0.37

RoBERTa 0.65 0.51 0.34 0.74 0.40 0.71 0.58 0.69 0.22 0.55 0.41

BART 0.00 0.76 0.54 0.00 0.70 0.60 0.00 0.83 0.49 0.67 0.52

VALUENET (balanced)

fastText 0.70 0.48 0.43 0.64 0.50 0.54 0.76 0.45 0.36 0.59 0.68

BERT 0.67 0.48 0.51 0.73 0.42 0.61 0.62 0.58 0.43 0.57 0.40

DistilBERT 0.66 0.49 0.50 0.74 0.41 0.61 0.60 0.60 0.43 0.57 0.40

RoBERTa 0.65 0.51 0.34 0.74 0.40 0.71 0.58 0.69 0.22 0.55 0.41

BART 0.00 0.75 0.51 0.00 0.72 0.57 0.00 0.77 0.47 0.65 0.55

VALUENET (augmented)

fastText 0.58 0.52 0.29 0.72 0.40 0.65 0.49 0.75 0.18 0.52 0.59

BERT 0.67 0.55 0.41 0.78 0.43 0.78 0.58 0.76 0.28 0.58 0.38

DistilBERT 0.68 0.57 0.41 0.79 0.44 0.78 0.59 0.78 0.28 0.60 0.38

RoBERTa 0.70 0.56 0.41 0.78 0.45 0.75 0.64 0.74 0.28 0.61 0.40

BART 0.00 0.74 0.57 0.00 0.75 0.49 0.00 0.73 0.66 0.64 0.46

Table 2.2: Value modeling performance in the VALUENET dataset. Bold items are the best in each

metric column.

Acc. ACH BEN CON HED POW SEC SD STI TRA UNI

VALUENET (original) 0.56 0.68 0.82 0.63 0.35 0.52 0.45 0.58 0.60 0.51

VALUENET (balanced) 0.53 0.58 0.83 0.63 0.41 0.50 0.42 0.53 0.61 0.50

VALUENET (augmented) 0.48 0.66 0.82 0.58 0.33 0.47 0.48 0.49 0.64 0.42

Table 2.3: Accuracies of the BERT [DCL18] value model across different value dimensions in the

VALUENET dataset.
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In general, pre-trained language models perform better than the fastText baseline. However,

there is not a noticeable difference between the Transformer variants. The prediction accuracy of

BART is the highest among all models because it is explicitly trained for classification purposes.

BERT and DistilBERT get the lowest MSE in terms of regression performance.

Observing the sample imbalance across different value splits and labels (Figure 2.4), we release

another two versions of VALUENET: VALUENET (balanced) and VALUENET (augmented). The

original dataset is balanced by subsampling the negative and neutral data of the largest value

split (BENEVOLENCE). Moreover, we augment the neutral class of the original VALUENET by

assigning AMT results with less worker agreement to “unrelated”. Data distribution of the balanced

and augmented versions of VALUENET are illustrated in the Appendix 2.8. By analyzing the

prediction accuracy in different value splits (Table 2.3), we find that reducing the sample number of

BENEVOLENCE hurts the model performance in that dimension. Looking at the F1 score of each

class in Table 2.2, we conclude that augmenting the neutral class improves the F1(0) but reduces

F1(1) and F1(-1). We leave it a future work to further improve the value modeling performance.

In the next sections, we show how the learned value function could benefit EQ-related tasks and

help build a value-driven dialogue system.

2.5 Application: PERSONA-CHAT

As values are closely related to one’s personality, we first assess our value model on a personalized

dialogue dataset: PERSONA-CHAT [ZDU18]. The PERSONA-CHAT dataset contains multi-turn

dialogues conditioned on personas. Each persona is encoded by at least 5 sentences of textual

description, termed a profile. Example profile sentences are “I like to ski”, “I enjoy walking for

exercise”, “I have four children”, etc. The dataset is composed of 8,939 dialogues for training, 1,000

for validation, and 968 for testing. It also provides revised personas by rephrasing, generalizing or

specializing the original ones. The dataset we use for experiments is publicly available in ParlAI6.

6https://parl.ai/projects/convai2/
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Algorithm 1 Personalized Dialogue Value Matching
Input: [V(p1), ...,V(pN)], [V(x̂s

1), ...,V(x̂s
T )]

Output: reward R

1: for t = 1, 2, ..., T do

2: rt ← −1

3: mt ← −1

4: for i = 1, 2, ..., N do

5: if V(pi) ·V(x̂s
t) > rt then

6: rt ← V(pi) ·V(x̂s
t)

7: mt ← i

8: end if

9: end for

10: end for

11: γi ← 1, i = 1, 2, ..., N

12: for t = 1, 2, ..., T do

13: γmt ← γmt + 1

14: end for

15: R← 0

16: for t = 1, 2, ..., T do

17: R← R + sign(rt) · |rt|sign(rt)·γmt

18: end for

19: return R/N

2.5.1 Task Formalization

Given the agent’s self persona profile p = [p1, p2, ..., pN ] and the dialogue history up to the t-th turn

hs
t = (xu

1 , x
s
1, ..., x

u
t ), x

u
i is the i-th utterance by Person 1 played by the user, xs

i is the i-th utterance

by Person 2 played by the system, we evaluate the model’s performance on predicting the next
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utterance xs
t .

2.5.2 Model

A decoder-only Transformer-based model is used to estimate the generation distribution pθ(x
s
t |

hs
t ,p), where θ is the model parameter. Following the practice proposed in [GLC18], the model is

firstly trained with Maximum Likelihood Estimation (MLE) to ensure generating fluent responses.

Then we took an interleaving of supervised training (MLE) and reinforcement learning. We use the

REINFORCE policy gradient algorithm [Wil92] in our experiment, and the reward assignment is

described as follows.

Denote V(pi) and V(x̂s
i ) to describe the estimation of the agent’s value from its profile sentence

pi and generated response x̂s
i , respectively. We want the reward to promote the alignment of

the agent’s profile and utterances in the value space. For instance, if the agent has profile “I

like venture” and “I have a dog”, and it says “I plan to ski this weekend” and also “Do you like

skiing”. Both utterances should be aligned with the first persona. Here we propose a simple yet

effective searching algorithm (Algorithm 1) to find a match between [V(p1),V(p2), ...,V(pN)] and

[V(x̂s
1),V(x̂s

2), ...,V(x̂s
T )] and return a reward R. N is the number of profile sentences and T is

the length of the generated dialogue. V is normalized to ensure |rt| ≤ 1. Intuitively, the discount

argument γ prevents the language model from repeating the same fact in the agent’s profile.

2.5.3 Setup

We evaluate the same generative model in both generation and ranking settings. In the response

ranking setup, the candidates are scored with their log-likelihood. For the GPT-2 [RWC19] and

DIALOGPT [ZSG19] we have finetuned, we train them for 5k steps with a training batch size of 8.

The learning rate is set to 2e−6. For an illustration of computational requirements, the training with

MLE on 4 NVIDIA Tesla V100 takes ∼1 hours, and the reinforcement learning takes ∼30 minutes.
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Model
Original Revised

Hits@1(%) ↑ Ppl.↓ F1(%) ↑ Hits@1(%) ↑ Ppl.↓ F1(%) ↑

SEQ2SEQ-ATTN 12.5 35.07 16.82 9.8 39.54 15.52

P2BOT [LCC20] – 15.12 19.77 – 18.89 19.08

GPT-2 (MLE) [RWC19] 14.51[0.05] 17.23[0.03] 18.74[0.01] 10.31[0.07] 20.64[0.11] 18.29[0.05]

GPT-2 + Value (Ours) 16.44[0.10] 16.83[0.06] 18.76[0.02] 12.19[0.03] 19.98[0.06] 17.88[0.05]

DIALOGPT (MLE) [ZSG19] 20.20[0.04] 14.38[0.05] 20.16[0.04] 15.80[0.03] 17.35[0.05] 19.08[0.08]

DIALOGPT + Value (Ours) 20.97[0.08] 13.84[0.03] 20.22[0.01] 18.83[0.03] 17.01[0.03] 19.79[0.10]

Table 2.4: Next utterance prediction performance on PERSONA-CHAT [ZDU18]. We report the

standard deviation [σ] (across 5 runs) of the models we trained.

2.5.4 Result and Analysis

Following [ZDU18] and [LCC20], we report the Hits@1, Perplexity and F1 to evaluate the

methods in Table 2.4. By the submission of this dissertation, P2BOT [LCC20] is the state-of-the-art

model reported in this task. We also include a generative baseline using SEQ2SEQ with attention

mechanism [BCB14] for comparison. As observed, in terms of all the metrics we evaluated,

finetuning GPT-2 or DIALOGPT models with our value function provides a significant performance

boost compared to simply training them with MLE. Our DIALOGPT + Value model achieves new

state-of-the-art performance on perplexity and F1.

2.6 Application: EMPATHETICDIALOGUES

EMPATHETICDIALOGUES [RSL19] provides 25k conversations grounded in emotional situations.

It aims to test the dialogue system’s capability to produce empathetic responses. Each dialogue

is grounded in a specific situation where a speaker was feeling a given emotion, with a listener

responding. In this section, we demonstrate how we could leverage VALUENET to improve the

emotion classification accuracy and further improve the empathetic response generation.
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2.6.1 Emotion Classification

An auxiliary task that is highly related to empathetic dialogue generation is emotion classification.

In EMPATHETICDIALOGUES, each situation is written in association with a given emotion label. A

total of 32 emotion labels were annotated to cover a broad range of positive and negative emotions.

2.6.1.1 Model

Given the situation context s, a pre-trained BERT model encodes s and gets the sentence representa-

tion from its pooling layer of the [CLS] token. The same context is parsed by our pre-trained value

model to get a ten-dimensional vector, which serves as an additional feature for the classification:

hs = BERT(s),

vs = V(s),

e = softmax(W · ([hs; vs]) + b),

(2.2)

where W and b are learnable parameters.

2.6.1.2 Result

We compare the performance between our implementation and the baseline that directly applies the

BERT model for emotion classification. As shown in Table 2.5, the additional value information

benefits emotion classification from both the DistilBERT and BERT models. Our method obtains a

relative improvement of 5.2% on DistilBERT and 6.4% on BERT.

2.6.2 Empathetic Dialogue Generation

We further check whether our value model helps the empathetic dialogue generation. EMPATHETIC-

DIALOGUES applies PREPEND-K, a strategy to add supervised information to data, when predicting

the utterance given the dialogue history and the situation. We apply the strategy of prepending the

top-k emotion labels for dialogue generation. The top predicted label from the classifiers of emotion
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Model Accuracy (σ)

fastText 42.27 ± 0.3%

DistilBERT 41.81 ± 0.2%

DistilBERT + Value 43.98 ± 0.2% +2.17%

BERT 42.93 ± 0.1%

BERT + Value 45.67 ± 0.3% +2.74%

Table 2.5: Emotion classification performance in EMPATHETICDIALOGUES [RSL19].

is prepended to the beginning of the token sequence as encoder input, as below:

• Original: ”I finally got promoted!”

• Prepend-1 emotion: “proud I finally got promoted!”

2.6.2.1 Result

The results are shown in Table 2.6. As observed, prepending emotion tokens provides extra context

and improves the generation performance of GPT-2 and DIALOGPT. Since incorporating value

improves the emotion classification accuracy, it further improves the generation quality.

2.7 Application: Value Profiling
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Figure 2.5: Value visualization of example utterances/scenarios.
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Model Ppl.↓

EmoPrepend-1 [RSL19] 24.30

GPT-2 14.74

GPT-2 + Emotion (w/o Value) 14.46

GPT-2 + Emotion (w/ Value) 14.01

DIALOGPT 13.48

DIALOGPT + Emotion (w/o Value) 12.32

DIALOGPT + Emotion (w/ Valued) 12.12

Table 2.6: Empathetic dialogue generation in EMPATHETICDIALOGUES [RSL19]. EmoPrepend-1:

input prepending emotion from an external classifier.

For a more comprehensive understanding, we visualize the 10-dimensional value of four example

scenarios in Figure 2.5. As shown, the value model provides a numerical speaker profile. For

instance, saying ”forcing my daughter to sleep in her own bed” implies that the speaker values

power and conformity; saying ”I miss mom” implies that the speaker values benevolence; saying

”not wanting people to use my property without permissions” implies the speaker is self-directed

and values security. The last example ”I forgot how to be happy” results in a small radar graph. It

suggests that even the model could predict the overall polarity pretty well, there is still space to

improve its capability of distinguishing different values.

2.8 Appendix
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Figure 2.6: Amazon mechanical turk interface (prerequiste).

Figure 2.7: Amazon mechanical turk interface (formal).
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Figure 2.8: The sample number and label distribution of each value split in the VALUENET

(original).
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Figure 2.9: The sample number and label distribution of each value split in the VALUENET

(balanced).
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Figure 2.10: The sample number and label distribution of each value split in the VALUENET

(augmented).

30



CHAPTER 3

Social Relation Inference in Dialogues

Inferring social relations from dialogues is vital for building emotionally intelligent robots to

interpret human language better and act accordingly. We model the social network as an And-or

Graph, named SocAoG, for the consistency of relations among a group and leveraging attributes

as inference cues. Moreover, we formulate a sequential structure prediction task, and propose

an α–β–γ strategy to incrementally parse SocAoG for the dynamic inference upon any incoming

utterance: (i) an α process predicting attributes and relations conditioned on the semantics of

dialogues, (ii) a β process updating the social relations based on related attributes, and (iii) a γ

process updating individual’s attributes based on interpersonal social relations. Empirical results on

DialogRE and MovieGraph show that our model infers social relations more accurately than the

state-of-the-art methods. Moreover, the ablation study shows the three processes complement each

other, and the case study demonstrates the dynamic relational inference.

3.1 Introduction

Social relations form the basic structure of our society, defining not only our self-images but also our

relationships [Szt02]. Robots with a higher emotional quotient (EQ) have the potential to understand

users’ social relations better and act appropriately. Given a dialogue as context and a set of entities,

the task of Dialogue Relation Extraction (DRE) predicts the relation types between the entities from

a predefined relation set. Table 3.1 shows such an example from the dataset DialogRE [YSC20].

Existing researches using BERT-based models [DCL18, YSC20, XSZ20a] or graph-based
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S1: Well then we’ll-we’ll see you the day after tomorrow. Mom?! Dad?! What-what. . . what you guys doing here?!

S2: Well you kids talk about this place so much, we thought we’d see what all the fuss is about.

S3: I certainly see what the girls like coming here.

S1: Why?!

S3: The sexy blonde behind the counter.

S1: Gunther?!

S2: Your mother just added him to her list.

S1: What? Your-your list?

Argument Pair Trigger Relation Type

R1 (S2, S1) dad per:children

R2 (S3, Gunther) sexy blonde per:positive impression

R3 (S3, S1) mom per:children

R4 (S1, S3) mom per:parents

R5 (S1, S2) dad per:parents

Table 3.1: A dialogue example from DialogRE [YSC20]. Trigger word annotations are not used for

training, but rather for illustrating purpose only.

models [XSZ20b, CHH20] focus on identifying entities’ relations from the semantics of dialogues—

they utilize either the attention mechanism or a refined token graph to locate informative words (e.g.,

“dad” and “mom”) that imply the argument pairs’ relations. However, there are still three missing

parts in current models for social relation inference, according to our observations. First, current

models lack the explicit modeling of the relational consistency among a group of people—such

consistency helps humans reason about the social relation of two targets by using their relations

with a third person. For the example in Table 3.1, by knowing S2 and S3 are S1’s parents and S3 is

S1’s mother, we can infer that S2 is S1’s dad. Second, the personal attribute cues (e.g., gender and

profession) can also aid the relational inference but are not fully utilized. In the above example,

besides inferring S3 is S1’ mother according to S3’s feminine attribute, we can also have a guess

that Gunther is a waiter, which might be useful for the future social-relational inference. Third, since

the BERT-based and token-graph-based models take dialogues as a whole for relation prediction,

they cannot perform dynamic inference—updating the relational belief with an incoming dialogic
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Figure 3.1: Our method iteratively updates the robot’s belief of users’ individual attributes and

social relations, similar to human’s reasoning process. The left and right graph show the established

and updated belief, respectively.

utterance. This can limit their ability to track the evolving relations along with social interactions,

e.g., strangers become friends over a good chat [KTL20], unveiling intermediate reasoning results,

or dealing with long dialogues.

Motivated by these observations, we propose to model social relation as an attributed And-

Or graph (AoG) [ZWM98, ZM07, WZ11, SRZ16, QZH18], named SocAoG, and develop an

incremental graph parsing algorithm to jointly infer human attributes and social relations from a

dialogue. In specific, SocAoG describes social relations and personal attributes with contextual

constraints of groups and hierarchical representations. To incrementally parse SocAoG and track

social relations, we apply Markov Chain Monte Carlo (MCMC) to sample from the posterior

probability calculated by three complementary processes (α–β–γ) [QGX20, Zay15]. Figure 3.1

schematically demonstrates a graph update of both relations (i.e., disambiguating mom/dad and

adding a new party) and attributes (e.g., gender and profession) with the utterance “S2: Your mother

just added him to the list.” from the example dialogue in Table 3.1.

We evaluate our method on two datasets of DialogRE [YSC20] and MovieGraph [VTC18] for

relation inference, and the results show that our method outperforms the state-of-the-art (SOTA)
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ones. Overall, we make the following contributions: (i) We propose to model and infer social

relations and individuals’ attributes jointly with SocAoG for the consistency of attributes and social

relations among a group. To the best of our knowledge, it is the first time done in the dialogue

domain; (ii) The MCMC sampling from α–β–γ posterior enables dynamic inference—incrementally

parsing the social relation graph, which can be useful for tracking relational evolution, reflecting

the reasoning process, and handling long dialogues; (iii) We perform an ablation study on each

process of α–β–γ to investigate the information contribution, and perform case studies to show the

effectiveness of our dynamic reasoning.

3.2 Related Work

We review the related works on the social relation inference from documents, which is a well-studied

task, and those from dialogues, which is the emerging task that our work is focused on.

3.2.1 Relation Inference from Documents

Most of the existing literature focus on relation extraction from professional edited news reports

or websites. They typically output a set of “subject-predicate-object” triples after reading the

entire document [BB07, MBS09, Kum17]. While early works mostly utilize feature-based meth-

ods [Kam04, MS14, GYD15] and kernel-based methods [ZAR03, ZG05, MB06], more recent

studies use deep learning methods such as recurrent neural networks or transformers [Kum17].

For example, [ZWX16] propose bidirectional LSTM model to capture the long-term dependency

between entity pairs, [ZZC17] present PA-LSTM to encode global position information, and

[AHH19, PRP19] fine-tune pre-trained transformer language models for relation extraction.

Two streams of work are closely related to our method. Regarding social network modeling,

while most works treat pairs of entities isolated [YSC20, XSZ20b, CHH20], [SCM16] formulate

the interpersonal relation inference as structured prediction [BM16, QZS20, ZQA20], inferring the

collective assignment of relations among all entities from a document [LZW20, JYQ20]. Regard-
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ing relation evolution, a few works are aimed to learn the dynamics in social networks, i.e., the

development of relations, from narratives by Hidden Markov Models [CID17], Recurrent Neural

Networks [KK19], deep recurrent autoencoders [IGC16]. Our method differs from the aforemen-

tioned works by modeling the structured social relations and their changes concurrently, which

can be useful for the task of tracking social network evolution [DS97] and unveiling the reasoning

process of relations. We achieve this by parsing the graph incrementally per utterance with the

proposed α–β–γ strategy.

3.2.2 Relation Inference from Dialogues

Recently, [YSC20] introduce the first human-annotated dialogue-based relation extraction dataset

DialogRE, in which relations are annotated between arguments that appear in a dialogue session.

Compared with traditional relation extraction tasks, DialogRE emphasizes the importance of tracking

speaker-related information within the context across multiple sentences. SOTA methods can be

categorized into token-graph models and pre-trained language models. For typical token-graph

models, [CHH20] present a token graph attention network, and [XSZ20b] further generate a latent

multi-view graph to capture relationships among tokens, which is then refined to select important

words for relation extraction. For pre-trained models, [YSC20] evaluate a BERT-based baseline

model [DCL18] and a modified version BERTs, which takes speaker arguments into consideration.

[XSZ20a] propose a simple yet effective BERT-based model, SimpleRE, that takes a novel input

format to capture the interrelations among all pairs of entities.

Both categories of SOTA models take a discriminative approach, whereas ignoring two key

constraints on relations: (i) social relation consistency in a group and (ii) human attributes. Different

from them, our method formulates the task as dialogue generation from an attributed relation graph,

so that the posterior relation estimation models both two constraints. Moreover, SOTA models

also assume the relations are static—they cannot learn the dynamics of the relations, while the

incremental graph updating strategy naturally enables the dynamic relation inference.
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3.3 Problem Formulation

Our goal is to construct a social network through utterances in dialogue. The network is a hetero-

geneous physical system [YBJ97] with particles representing entities and different types of edges

representing social relations. Each entity is associated with multiple types of attributes, while each

type of relation is governed by a potential function defined in human attribute and value space,

acting as the social norm. The relations are often asymmetric, e.g., A is B’s father does not mean B

is A’s father. To model the network, we utilize an attributed And-Or Graph (A-AoG), a probabilistic

grammar model with attributes on nodes. Such design takes advantage of the reconfigurability

of its probabilistic context-free grammar to reflect the alternative attributes and relations, and the

contextual relations defined on Markov Random Field to model the social norm constraints.
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Figure 3.2: SocAoG: Attributed And-Or Graph representation of a social network. A parse graph

determining each attribute and relation type is marked in blue lines. Dialogues are governed by the

word context and associated human attributes and relations.

The social network graph, named SocAoG, is diagrammatically shown in Figure 3.2. Formally,

SocAoG is defined as a 5-tuple:

G =< S, V,E,X, P >, (3.1)

where S is the root node for representing the interested society. V = Vand ∪ Vor ∪ V e
T ∪ V a

T denotes
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all nodes’ collection. Among them, And-nodes Vand represent the set of social communities, which

can be decomposed to a set of entity terminal nodes, V e
T , representing human members. Community

detection is based on the social network analysis [BS16, DWP07], and can benefit the modeling

of loosely connected social relations. Each human entity is associated with an And-node that

breakdowns the attributes into subtypes such as gender, age, and profession. All the subtypes consist

of an Or-node set, Vor, for representing branches to alternatives of attribute values. Meanwhile, all

the attribute values are represented as a set of terminal nodes V a
T . We denote E to be the edge set

describing social relations, X(vi) to be the attributes associated with node vi, and X(e⃗ij) to be the

social relation type of edge e⃗ij ∈ E.

Given P to be the probability model defined on SocAoG, a parse graph pg is an instantiation of

SocAoG with determined attribute selections for every Or-node and relation types for every edge.

For a dialogue session with T turns DT = {D(1), D(2), ..., D(T )}, where D(t) is the utterance at turn

t, our method infers the attributes and social relations incrementally over turns:

GT = {pg(1), pg(2), ..., pg(T )}, (3.2)

where pg(t) represents the belief of SocAoG at the dialogue turn t. We incrementally update the pg

by maximizing the posterior probability:

pg∗ = argmax
pg

p(pg|D; θ), (3.3)

where pg∗ is the optimum social relation belief, and θ is the set of model parameters.

3.4 Algorithm

3.4.1 α–β–γ for Graph Inference

For simplicity, we denote X(vi) as vi and X(e⃗ij) as eij in the rest of this chapter. We introduce

three processes, i.e., α, β, and γ process, to infer any SocAoG belief pg∗. We start by rewriting the
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posterior probability as a Gibbs distribution:

p(pg|D; θ) ∝ p(D|pg; θ)p(pg; θ)

=
1

Z
exp{−E(D|pg; θ)− E(pg; θ)},

(3.4)

where Z is the partition function. E(D|pg; θ) and E(pg; θ) are dialogue- and social norm-based

energy potentials respectively, measuring the cost of assigning a graph instantiation.

Denoting a dialogue as a sequence of words: D = {w1, w2, ..., wT }, the dialogue likelihood

energy term E(D|pg; θ) can be expressed with a language model conditioned on the parse graph:

E(D|pg; θ) =
T∑
t=1

E(wt|ct, pg)

=
T∑
t=1

− log(p(wt|ct, pg)),

(3.5)

where ct = [w1, ..., wt−1] is the context vector. Intuitively, the word selection depends on the word

context, the entities’ attributes and their interpersonal relations.

We approximate the likelihood by finetuning a BERT-based transformer with a customized input

format ⟨[CLS]D[SEP]vi0ei0j0vj0 ...vineinjnvjnv0v0...vn vn[SEP]⟩, which is a concatenation of

the dialogue history D and a flattened parse graph string encoding the current belief. We call the

estimation of pg from the dialogue likelihood p(wt|ct, pg) to be the α process. α process lacks the

explicit constraints for social norms related to interpersonal relations and human attributes.

For the social norm-based potential, we design it to be composed of three potential terms:

E(pg; θ) =− β
∑

vi,vj∈V (pg)

log(p(eij|vi,vj))

− γl
∑

e⃗ij∈E(pg)

log(p(vi|eij))

− γr
∑

e⃗ij∈E(pg)

log(p(vj|eij)),

(3.6)

where V (pg) and E(pg) are the set of terminal nodes and relations in the parse graph, respectively.

We call the term p(eij|vi,vj) the β process, in which we bind the attributes of node vi and vj to
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Figure 3.3: (a) α–β–γ process for SocAoG. (b) α–β process for reduced SocAoG without attributes.

Note that this β is only modeling the interrelations among X(e⃗).

update their relation edge eij , in order to model the constraint on relations from human attributes.

Reversely, we call the terms p(vi|eij) and p(vj|eij) the γ process, in which we use the social

relation edge eij to update the attributes of node vi and vj . This models the impact of relation to the

attributes of related entities. β, γl, and γr are weight factors balancing α, β and γ processes. Figure

3.3 a⃝ shows the graph inference schema with the three processes. Combining equation 3.4, 3.5, and

3.6, we get a posterior probability estimation p(pg|D; θ) of parse graph pg, with the guarantee of

the attribute and social norm consistencies.

Here we also provide a reduced version of our model, SocAoGreduced, which applies when

characters’ attributes annotation are not available for training1. With the same dialogue-based

1Both SocAoG and SocAoGreduced do not need attribute annotation during inference once trained.
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Algorithm 2 Incremental SocAoG Parsing for Social Relation Inference

Input: dialogue DT = {D(1), D(2), ..., D(T )}, target argument pairs {a1, a2}.

Initialize pg(0). Initialize vi and eij .

for t = 1, ..., T do

for s = 1, ..., S do

Compute the posterior p(pg|D(t); θ).

Make proposal moves with probabilities q1, q2 to get a new parse graph pg′.

Compute the posterior p(pg′|D(t); θ).

Compute acceptance rate α(pg′|pg,D(t); θ).

Accept/reject pg′ according to the acceptance rate.

end for

return ea1,a2 from the average of accepted pg samples.

end for

energy potential, We define the parse graph prior energy over a set of relation triangles:

E(pg; θ) = −β
∑

e⃗ij ,e⃗ik,e⃗jk∈E(pg)

log(p(eij|eik, ejk)). (3.7)

The method directly models the constraint of two entities’ relation from their relations to others,

with the inference schema demonstrated in Figure 3.3 b⃝.

3.4.2 Incremental Graph Parsing

Incrementally parsing the SocAoG is accomplished by repeatedly sampling a new parse graph pg(t)

from the posterior probability p(pg(t)|D(t); θ). We utilize a Markov Chain Monte Carlo (MCMC)

sampler to update our parse graph since the complexity of the problem caused by multiple energy

terms.

At each dialogue turn t, we initialize the parse graph with the α classification process, by

replacing all the Or-Node tokens with a special token [CLS]. We sample the parse graph for S

steps and use the average value of obtained samples as an approximation of pg(t). We design two
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types of Markov chain dynamics used at random probabilities qi, i = 1, 2 to make proposal moves:

• Dynamics q1: randomly pick a relation edge e⃗ij under the uniform distribution, flip its social

relation type eij according to the prior distribution given by β process:

∏
vi,vj∈V (pg)

p(eij|vi,vj). (3.8)

• Dynamics q2: randomly pick a terminal node vi and its attribute subtype under the uniform

distribution, and flip the one-hot value of attribute vi according to the prior distribution given

by γ process: ∏
e⃗ij∈E(pg)

p(vi|eij)
∏

e⃗ji∈E(pg)

p(vi|eji). (3.9)

Using the Metropolis-Hastings algorithm [CG95], the proposed new parse graph pg′ is accepted

according to the following acceptance probability:

α(pg′|pg,D; θ) = min(1,
p(pg′|D; θ)p(pg|pg′)
p(pg|D; θ)p(pg′|pg)

)

= min(1,
p(pg′|D; θ)

p(pg|D; θ)
),

(3.10)

where the proposal probability rate is canceled out since the proposal moves are symmetric in

probability. We summarize the incremental SocAoG parsing in Algorithm 2. Dialogues give a

continuously evolving energy landscape: at the beginning of iterations, p(pg(0)|D; θ) is a “hot”

distribution with a large energy value; by iterating the α–β–γ processes for pg updates through the

dialogue, the pg converges to the pg∗, which is much cooler.
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3.5 Experiments

3.5.1 Datasets

We use DialogRE (V2)2 [YSC20] and MovieGraph3 [VTC18] for evaluating our method. Detailed

descriptions on the two datasets, e.g., relation and attribute types, are provided in Appendix 3.6.

DialogRE contains 36 relation types (17 of them are interpersonal) that exist between pairs of

arguments. For the joint parsing of relation and attribute, we further annotate the entity arguments

with attributes from four subtypes (by following the practice of MovieGraph [VTC18]): gender,

age, profession, and ethnicity, according to Friends Central in Fandom4. DialogRE is split into

training (1073), validation (358), and test (357). Following previous works [YSC20, XSZ20b], we

report macro F1 scores in both the standard and conversational settings (F1c).

MovieGraph provides graph-based annotations of social situations from 51 movies. Each graph

comprises nodes representing the characters, their emotional and physical attributes, relationships,

and interactions. We use a subset (40) of MovieGraph with available full transcripts and split the

dataset into training (26), validation (6), and test (8). For MovieGraph, we only evaluate with F1

since the trigger word annotation for computing F1c is not available.

3.5.2 Experiment Settings

We learn the SocAoG model with a contrastive loss [HCL06] comparing the posterior of a positive

parse graph against a negative one. All parameters are learned by gradient descent using the

Adam optimizer [KB14]. During the inference stage, for each utterance, we run the MCMC for

S = min{w× (KM +K(K − 1)N), Smax} steps given K entities, M attributes, N relations, and

a sweep number of w. The probability of flipping the relation q1 is set to 0.7 to bias towards the

2https://github.com/nlpdata/dialogre

3http://moviegraphs.cs.toronto.edu/

4https://friends.fandom.com/wiki/Friends Wiki
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DialogRE (V2) MovieGraph

Dev Test Dev Test

Methods F1(σ) F1c(σ) F1(σ) F1c(σ) F1(σ) F1(σ)

BERT [DCL18] 59.4 (0.7) 54.7 (0.8) 57.9 (1.0) 53.1 (0.7) 50.6 (1.2) 53.6 (0.3)

BERTS [YSC20] 62.2 (1.3) 57.0 (1.0) 59.5 (2.1) 54.2 (1.4) 50.7 (1.1) 53.6 (0.4)

GDPNet [XSZ20b] 67.1 (1.0) 61.5 (0.8) 64.3 (1.1) 60.1 (0.9) 53.1 (1.1) 56.4 (0.8)

SimpleRE [XSZ20a] 68.2 (1.1) 63.4 (0.6) 66.7 (0.7) 63.3 (0.9) 55.2 (0.5) 58.1 (0.7)

SocAoGreduced (our method) 69.1 (0.4) 65.7 (0.5) 68.6 (0.9) 65.4 (1.1) 60.7 (0.4) 63.2 (0.3)

SocAoG (our method) 69.5 (0.8) 66.1 (0.7) 69.1 (0.5) 66.5 (0.8) 60.1 (0.6) 64.1 (0.8)

Table 3.2: Performance comparison between BERT, BERTS, GDPNet, SimpleRE, SocAoGreduced,

and SocAoG. We report 5-run average results and the standard deviation (σ).

relation prediction at first.

3.5.3 Baseline Models

We compare our method with both transformer-based (BERT, BERTS, SimpleRE) and graph-based

(GDPNet) models. Given dialogue history D and target argument pair (vi, vj), BERT [DCL18]

takes input sequences formatted as ⟨[CLS]d[SEP]vi[SEP]vj[SEP]⟩. BERTS [YSC20] is a

speaker-aware modification of BERT, which also takes speaker information into consideration by

converting it into a special token. SimpleRE [XSZ20a] models the relations between each pair of

entities with a customized input format. GDPNet [XSZ20b] takes in token representations from

BERT and constructs a multi-view graph with a Gaussian Graph Generator. The graph is then

refined through graph convolution and DTWPool to identify indicative words.

3.5.4 Performance Comparison

Table 3.2 shows the performance comparison between different methods on the two datasets. It

clearly shows that both of our models, SocAoG and SocAoGreduced, outperform the existing methods
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by all the metrics. In specific, without using any additional information of attributes, SocAoGreduced

surpasses the state-of-the-art method (SimpleRE) by 1.9% (F1)/2.1% (F1c) on DialogRE testing

set, and by 5.1% (F1c) on MovieGraph testing set. Such improvement shows the importance of

relational consistency for the modeling, and proves the effectiveness of our SocAoG formulation to

introduce the social norm constraints.

Moreover, by comparing between SocAoG and SocAoGreduced, we see that SocAoG further

improves most of the metrics by leveraging the attribute information for relation reasoning, e.g.,

69.1% vs. 68.6% for DialogRE testing F1 and 64.1% vs. 63.2% for MovieGraph testing F1. The

results demonstrate our method can effectively take advantage of the attributes as cues for social

relation predictions. We compare our SocAoG model with the existing model of highest accuracy

(SimpleRE) by relation types, and see consistent improvements for all types. A part of the results

are shown in Figure 3.4. We also observe that there are larger accuracy boosts for relations between

human entities than non-human entities (e.g., human-place), by an average of +2.5% vs. +1.8% in

F1, which is also reflected from Figure 3.4 (left 10 bars vs. right 10 bars). This can be explained as

relation/attribute constraints are more meaningful for interpersonal relations, e.g., there are more

constraints for the relation between three humans than the relation between two humans and a place.

Figure 3.4: Performance boosts (F1) of SocAoG compared to SimpleRE [XSZ20a] by relation

type. The left bars to the dashed line are relations between humans, while the right ones are those

between human and non-human entities.
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Table 3.2 also sees more accuracy improvement on MovieGraph dataset than DialogRE (+3.2%

vs. +6.0% in test F1c using SimpleRE as baseline). This is possibly because the dynamic inference

nature of our method makes it effective for dealing with dialogues with more turns: while existing

methods either truncate dialogues or use sliding windows, our method continuously updates the

relation graph given an incoming turn. We case study the dynamic inference in the next subsection.

3.5.5 Case Study on Dynamic Inference
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Figure 3.5: Left: inferred parse graph sequence from SocAoG based on the test dialogue in Table

3.3. Note that dad/mom are not distinguished in DialogRE. Right: model convergence measured by

acceptance rate at each dialogue turn.

Our method incrementally updates the relation and attribute information for a group of entities

upon per utterance input with the proposed α–β–γ strategy. Such dynamic inference can potentially

help reflect the evolving relations, unveil the reasoning process, and deal with long dialogues. Figure

3.5 shows the parse graph sequence by SocAoG inferring from a DialogRE testing dialogue as

shown in Table 3.3. We can see that the method continuously refines the relation/attributes from

an initial guess with incoming contexts, e.g. S2-S3: friends→parents in turn 5. Besides, the case

also shows that attributes can aid relation predictions, e.g., the inferred age of Emma clarifies her

relation with S3. Moreover, since our method models the relation consistency among a group, it

can predict the relation between two humans that do not talk directly. For example, S1 and S2 are
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1 S1, S2: Hi!

2 S3: Hey!

3 S4: So glad you came!

4 S1: I can’t believe Emma is already one!

5 S2:

I remember your first birthday!

Ross was jealous of all the attention we were giving you.

He pulled on his testicles so hard!

We had to take him to the emergency room!

6 S3: There’s something you didn’t know about your dad!

7 S5: Hey Mr. and Mrs. Geller! Let me help you with that.

8 S1: Thank you!

9 S5:

Oh man, this is great, uh? The three of us together again!

You know what would be fun?

If we gave this present to Emma from all of us!

Table 3.3: Dialogue example from the testing set of DialogRE [YSC20].

inferred to be a couple by their dialogues with S5 in turn 7.

Figure 3.5 also plots the average MCMC acceptance rate for the case, as defined in Formula

3.10, indicting the convergence of the inference. We see that the algorithm only needs to update

the current graph belief slightly with a new perceived utterance. A peak in the curve can indicate

that a key piece of information is detected that contradicts the existing belief: e.g., there is a peak

of convergence curve in turn 7, which corresponds to “S5: Hey Mr. and Mrs. Geller!”, indicating

that S1 and S2 are a couple rather than friends. As such, we can see the algorithm get several

relations updated accordingly. We also show the convergence plots for 50 random testing cases from

DialogRE in Figure 3.6, and the mean/standard deviation convergence rate as the black line/blue

shade. We prove that our updating algorithm is robust for the converged results.

3.5.6 Ablation Study on α–β–γ

The α–β–γ strategy is designed to update relations and attributes jointly, having the input infor-

mation flowing through the parse graph for the consistency of predictions. To validate the design,
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Table 1

1 2 3 4 5 6 7 8 9 10

1 1 1 0.7978 0.7054 0.4666 0.3754 0.3044 0.261 0.1992

1 1 1 0.7439942268479510.6455631469778710.3754932001462470.2529254174076060.2590050004580640.1692094220299180.154806582580251

1 1 1 0.77 0.69 0.48 0.56 0.2 0.28 0.23
1 1 1 0.84 0.69 0.46 0.33 0.33 0.39 0.28
1 1 1 0.83 0.64 0.53 0.36 0.31 0.35 0.23
1 1 1 0.75 0.77 0.47 0.5 0.31 0.12 0.24
1 1 1 0.78 0.69 0.53 0.36 0.24 0.14 0.2
1 1 1 0.85 0.77 0.34 0.26 0.24 0.21 0.22
1 1 1 0.83 0.67 0.5 0.22 0.23 0.17 0.25
1 1 1 0.89 0.74 0.51 0.52 0.29 0.36 0.19
1 1 1 0.85 0.73 0.36 0.2 0.26 0.29 0.21
1 1 1 0.75 0.69 0.59 0.51 0.39 0.14 0.21
1 1 1 0.82 0.7 0.35 0.42 0.32 0.3 0.14
1 1 1 0.89 0.6 0.58 0.2 0.36 0.28 0.21
1 1 1 0.82 0.63 0.4 0.41 0.36 0.34 0.14
1 1 1 0.81 0.79 0.53 0.4 0.28 0.27 0.18
1 1 1 0.8 0.65 0.38 0.44 0.33 0.11 0.17
1 1 1 0.81 0.74 0.55 0.21 0.38 0.19 0.26
1 1 1 0.79 0.74 0.49 0.46 0.26 0.36 0.29
1 1 1 0.76 0.68 0.5 0.27 0.2 0.21 0.15
1 1 1 0.73 0.62 0.3 0.32 0.33 0.34 0.28
1 1 1 0.7 0.71 0.59 0.3 0.32 0.1 0.17
1 1 1 0.74 0.77 0.54 0.37 0.3 0.38 0.23
1 1 1 0.86 0.77 0.34 0.23 0.39 0.36 0.2
1 1 1 0.8 0.75 0.56 0.33 0.35 0.12 0.17
1 1 1 0.86 0.74 0.58 0.57 0.36 0.33 0.16
1 1 1 0.7 0.76 0.52 0.32 0.34 0.19 0.14
1 1 1 0.79 0.76 0.36 0.28 0.33 0.38 0.13
1 1 1 0.74 0.66 0.5 0.29 0.23 0.37 0.21
1 1 1 0.71 0.77 0.44 0.59 0.31 0.28 0.15
1 1 1 0.87 0.75 0.37 0.56 0.36 0.18 0.14
1 1 1 0.75 0.65 0.52 0.26 0.32 0.31 0.14
1 1 1 0.75 0.74 0.36 0.34 0.32 0.37 0.25
1 1 1 0.71 0.76 0.57 0.52 0.27 0.39 0.27
1 1 1 0.74 0.73 0.32 0.4 0.33 0.11 0.21
1 1 1 0.84 0.6 0.38 0.36 0.3 0.25 0.17
1 1 1 0.89 0.79 0.57 0.54 0.32 0.27 0.15
1 1 1 0.81 0.78 0.3 0.46 0.25 0.17 0.16
1 1 1 0.7 0.68 0.52 0.54 0.39 0.34 0.25
1 1 1 0.76 0.79 0.54 0.23 0.33 0.17 0.12
1 1 1 0.82 0.62 0.55 0.38 0.31 0.15 0.19
1 1 1 0.81 0.73 0.57 0.25 0.21 0.36 0.15
1 1 1 0.84 0.6 0.41 0.24 0.31 0.22 0.19
1 1 1 0.76 0.66 0.54 0.29 0.32 0.24 0.2
1 1 1 0.83 0.61 0.58 0.45 0.28 0.18 0.22
1 1 1 0.78 0.75 0.36 0.26 0.3 0.38 0.2
1 1 1 0.86 0.79 0.49 0.3 0.22 0.27 0.17
1 1 1 0.77 0.66 0.45 0.38 0.28 0.22 0.25
1 1 1 0.82 0.74 0.53 0.39 0.33 0.3 0.25
1 1 1 0.79 0.66 0.44 0.3 0.3 0.29 0.22
1 1 1 0.84 0.62 0.31 0.58 0.23 0.15 0.19
1 1 1 0.88 0.64 0.37 0.51 0.39 0.37 0.23
0 0 0 0.05380577315204940.05983685302212870.09110679985375320.1163949995419360.05147458259239430.09179057797008160.0443934174197491
1 1 1 0.851605773152050.7652368530221290.5577067998537530.4917949995419360.3558745825923940.3527905779700820.243593417419749
1 1 1 0.7439942268479510.6455631469778710.3754932001462470.2590050004580640.2529254174076060.1692094220299180.154806582580251
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Figure 3.6: MCMC acceptance rate of the incremental parsing process. Dotted lines, black line, and

blue shade are for samples, mean, and standard deviation, respectively.

Processes
F1(σ) F1c(σ)

α β γ

✓ 67.1 (0.5) 64.2 (1.1)

✓ ✓ 68.4 (0.8) 65.3 (0.6)

✓ ✓ 68.3 (0.4) 65.2 (0.7)

✓ ✓ ✓ 69.1 (0.5) 66.5 (0.8)

Table 3.4: An ablation study on our parsing algorithm.

we ablate the processes on DialogRE to evaluate their impact on performance. Table 3.4 shows

that α process, which is the discriminative model, makes the fundamental contribution, whereas

β and γ processes alone cannot recognize social relations since they cannot perceive information

from dialogues. Significantly, removing either one of the two processes will decrease the overall

performance since the inference efficiency is reduced.

3.6 Appendix
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ID Subject Relation Type Object Inverse Relation

1 PER per:positive impression NAME

2 PER per:negative impression NAME

3 PER per:acquaintance NAME per:acquaintance

4 PER per:alumni NAME per:alumni

5 PER per:boss NAME per:subordinate

6 PER per:subordinate NAME per:boss

7 PER per:client NAME

8 PER per:dates NAME per:dates

9 PER per:friends NAME per:friends

10 PER per:girl/boyfriend NAME per:girl/boyfriend

11 PER per:neighbor NAME per:neighbor

12 PER per:roommate NAME per:roommate

13 PER per:children NAME per:parents

14 PER per:other family NAME per:other family

15 PER per:parents NAME per:children

16 PER per:siblings NAME per:siblings

17 PER per:spouse NAME per:spouse

18 PER per:place of residence NAME gpe:residents of place

19 PER per:place of birth NAME gpe:births in place

20 PER per:visited place NAME gpe:visitors of place

21 PER per:origin NAME

22 PER per:employee or member of NAME org:employees or members

23 PER per:schools attended NAME org:students

24 PER per:works NAME

25 PER per:age VALUE

26 PER per:date of birth VALUE

27 PER per:major STRING

28 PER per:place of work STRING

29 PER per:title STRING

30 PER per:alternate names NAME/STRING

31 PER per:pet NAME/STRING

32 GPE gpe:residents of place NAME per:place of residence

33 GPE gpe:births in place NAME per:place of birth

34 GPE gpe:visitors of place NAME per:visited place

35 ORG org:employees or members NAME per:employee or member of

36 ORG org:students NAME per:schools attended

37 NAME unanswerable NAME/STRING/VALUE

Table 3.5: Relation types in DialogRE [YSC20].
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attributes

gender male, female

age adult, kid, young adult, teenager, senior, baby

ethnicity caucasian, asian, arab, south-asian, hispanic, african, native american, other, aboriginal, african-american

profession

photographer, cab driver, priest, writer, receptionist, delivery man, yoga instructor, chef, bartender, waitress,

tailor, parking attendant, student, professional, lawyer, teacher, businessman, secretary, model, prince, banker,

court reporter, intern, police officer, child psychologist, doctor, salesman/woman, hustler, bull rider, worker,

doctors, businessman/woman, nurse, barman, janitor, policeman, inspector, FDA agent, counselor, waiter, judge,

magician, prostitute, doorman, elevator operator, hotel manager, maid, bellhop, saleswoman, salesman, politician,

driver, usher, actress, actor, florist, pilot, flight attendant, film/tv producer, building manager, paramedic, federal agent,

postal worker, comic book artist, singer, executive, hockey player, referee, waiter/waitress, ex-soldier, receptionist,

mafia boss, mafia member, musician, drug lord, fruit vendor, barber, masseuse, mental patient, mental patient,

bus driver, night guard, housewife, editor, gardener, publisher, builder, elf, security guard, security chief, pedicurist,

professor of defense against the dark arts, wandmaker, wizard, caretaker, ghost, villain, Philadelphia Eagles fan,

cowboys America fan, bookmaker, unemployed, high school principal, jobless, racists, nuclear physicist, surgeon,

soldier, colonel, professor, engineer, military officer, technician, game show host, police, robber, waiter/waitress,

hitman, actor/actress, criminal, boxer, drug dealer, restaurant host, impersonator, military, trainer, manager, housekeeper,

veterinarian, sportsperson, sports coach, sports agent, accountant, personal assistant, nanny, reporter, tv host, cameraman,

tv presenter, cashier, artist, chauffeur, video artist, private investigator, administrator, tennis instructor, professional tennis player,

detective, ticket collector, director, medical workers, hospital orderly, pharmacist, security officer, dental assistant, dentist,

drug addict, registered sex offender, fetish worker, customer support, policemen, CEO, babysitter, assistant, principal,

guidance counselor, farmer, entertaining, domestic worker, fisherman, author, psychologist, security person, tv personality,

zeppelin crewman, king/queen, knight, journalist, assistant, weatherman, show host, make-up artist, seller, agent, tv show host,

makeup artist, treasure hunter, naval officer, steward, ship captain, ship designer, sailor, designer, carpenter, valet, bail bondsman,

court bailiff, court clerk, blackjack dealer, movie star, casino owner, casino manager, art director, executive recruiter, sports editor,

cowboy, cowboy employer, hacker, investment counselor, hairdresser, sports commentator, chemist, government rep, vicar, robot,

hotline agent, cook, surrogate date, philosopher, architect, record store owner, movie reviewer, call operator, bride,

dog sitter, newspaper employer, vet, insurance broker, union leader, tv reporter, senator, rancher, locksmith, district attorney,

store owner, smuggler, insurance agent, video editor, bouncer, trainee, real estate agent, prison guard, tour guide, mobster

relations

sibling, parent, cousin, customer, friend, stranger, spouse, colleague, boss, would like to know, lover, mentor, engaged,

knows by reputation, acquaintance, roommate, best friend, antagonist, employed by, business partner, student, classmate,

patient, teacher, child, heard about, enemy, employer of, psychiatrist, doctor, collaborator, ex-lover, landlord, superior,

supervisor, grandchild, divorced, sponsor, ex-boyfriend, neighbor, fan, close friend, sister/brother-in-law, uncle, host,

employer, step-mother, foster-son, family friend, godfather, godson, brother-in-law, nanny, grandparent, aunt, aide,

students, family, customers, classmates, alleged lover, trainer, slave, hostage, robber, owner, instructor, competitor,

fiancee, aunt/uncle, mother-in-law, girlfriend, killer, babysitter, one-night stand, boyfriend, tenant, distant cousin,

father-in-law, mistress, agent, replacement, argue about the relationship, lawyer, ex-spouse, ex-girlfriend/ex-boyfriend,

niece/nephew, parent-in-law, guardian, operative system, couple, goddaughter, customer, ex-neighbor, worker, vet,

apprentice, public official, nurse, supporter, interviewee, interviewer, supporters, ex-fiance, fiance

Table 3.6: Attribute and relation types in MovieGraph [VTC18].
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CHAPTER 4

Mental State Transition and Human Value

Building a socially intelligent agent involves many challenges. One of which is to track the agent’s

mental state transition and teach the agent to make decisions guided by its value like a human.

Towards this end, we propose to incorporate mental state simulation and value modeling into

dialogue agents. First, we build a hybrid mental state parser that extracts information from both

the dialogue and event observations and maintains a graphical representation of the agent’s mind;

Meanwhile, the transformer-based value model learns human preferences from a curated human

value dataset, VALUENET. Empirical results show that the proposed model attains state-of-the-art

performance on the dialogue/action/emotion prediction task in the fantasy text-adventure game

dataset, LIGHT. We also show example cases to demonstrate: (i) how the proposed mental state

parser can assist the agent’s decision by grounding on the context like locations and objects, and (ii)

how the value model can help the agent make decisions based on its personal priorities.

4.1 Introduction

Recently, there has been remarkable progress in language modeling with large-scale pre-trained

models [VSP17, DCL19, RWC19]. Such models are used to build either general chatbots [ZSG20]

or task-oriented dialogue systems [PLL20, AAA21, QZS20]. While most of these systems have

been able to generate fluent sentences, there are two major challenges towards building socially

intelligent agents. First, considering dialogues as a ”meeting of minds” [Gar14] or achieving some

alignment of the interlocutors’ mental models [RSM86, SVT16], few existing works are explicitly

tracking the mental state transition of agents [AYC20]. Endowing current dialogue systems with
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Hi! I can't find my phone.

When was your last time seeing it?

I went to my friend's apartment. Then
we played basketball. After that, we had
dinner together.

Then you should probably check the
basketball court.

Let's go outside and have some beers!

You know it's too late and not safe outside.

Figure 4.1: Socially intelligent agents with mental state simulation and human values.

such capability would allow the agent to condition its utterance on the context, simulate the effect of

its actions, and further help understand the extended meaning, implicature, and irony expressed by

the user [Gri81, Gri89]. Second, it remains under-explored that teaching agents to make a rational

decision guided by its value. From a social and cultural perspective, humans tend to have a common

preference described by the utility function related to individual values, common sense, and social

awareness. For the example in Figure 4.1, someone who values personal security prefers staying at

home rather than going outside at night.

Our work aims to alleviate the aforementioned problems, based on Embodied Cognitive Lin-

guistics (ECL) [LJ80, Gar14] and established value theories in sociology [Sch12]. The ECL states

that natural language is inherently executable, driven by mental simulation and metaphoric infer-

ence [LJ80], and learned through embodied interaction [FN04, TSH20]. Following its tenents, we

present a hybrid mental state parser that converts dialogue and event observations into a graphical

representation of the agents’ minds. Initialized with the location and object description, the inter-

pretable representation is updated through the interaction history to track the evolving process of an

agent’s belief about surroundings and other agents.
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In the field of intercultural research, [Sch92, SCV12] identify basic individual values that are

recognized across cultures. Inspired by the theory, we propose to incorporate a value model that

learns social common preferences on a curated knowledge base, VALUENET. We perform experi-

ments on a large-scale text-based embodied environment LIGHT [UFK19]. Empirical results show

that the model with our mental state emulator and value function achieves the highest performance

that aligns with human annotation among existing transformer-based models. Moreover, case

studies further demonstrate that the mental state provides extra context information, while the value

model helps agents make value-driven decisions.

Our contributions are two-fold. First, we propose to rethink the design of current dialogue

systems and suggest a new paradigm from the perspective of cognitive science and contemporary

sociology. Second, we present a new framework for building socially intelligent agents by incorpo-

rating mental state simulation and human value modeling into dialogue generation and decision

making. Our methodology can be generalized to a wide range of interactive social situations in

dialogue systems [Zha19], virtual reality [LSY19], and human-robot interactions [YL17].

4.2 Related Work

4.2.1 Text-based Embodied AI

Most recent works in dialogues only study the statistical regularities of language data, without an

explicit understanding of the underlying world. The virtual embodiment [KP19] was proposed as a

strategy for language research by several previous works [Bro91, KBV16, GM16, MJB16, LUT17].

It implies that the best way to acquire human knowledge is to have the agent learn through

experience in a situated environment. [UFK19] introduce LIGHT as a research platform for

studying grounded dialogue [Gri81, Gri89, Sta02], where agents can perceive, emote, and act when

conducting dialogues with other agents. [AUL20] extend LIGHT with a dataset of ”quests”, aiming

to create agents that both act and communicate with other agents in pursuit of a goal. Instead of

guiding the agent to complete an in-game goal, our work aims to teach agents to speak/act in a
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socially intelligent way. Besides LIGHT, there are also other text-adventure game frameworks, such

as [NKB15] and TextWorld [CKY18], but no human dialogues are incorporated in them. Based on

TextWorld, there are recent works [YCS18, YM19, AH19, AYC20] on building agents trained with

reinforcement learning.

4.2.2 Mental State Transition

An important hypothesis in the ECL [LJ80, FN04] is that humans understand the meaning of

language by mentally simulating its content. Great efforts have been made to model human

mental states. For example, [DRS19] design a memory network capable of storing knowledge and

generating natural responses conditioning on retrieved entries. [AYC20] propose a graph-aided

transformer agent (GATA) that infers and updates latent belief graphs during planning to enable

effective action selection. However, GATA is designed for capturing game dynamics not dialogues,

and our method is more flexible to encode both explicit environmental changes caused by agents’

actions and implicit mental state updates triggered by agents’ utterances. Such hybrid approaches

mixing fixed symbolic states with deep continuous states are studied in recent neural-symbolic

research [Sun94, GLG08, BGB17, YWG18]. The result interpretable graphs have two benefits: (i)

the mental state parsing could be viewed as a form of executable semantic parses [Lia16], so it is

easy to write programs to simulate the mind transition. A real-world application leveraging similar

approaches is seen in [ABB20]. (ii) the unified graphical representation can be extended to model

higher-order mental states, i.e., Theory of Mind (ToM) [PW78]. ToM is defined as the ability to

impute mental states to oneself and others. It enables humans to make inferences about what other

people believe in a given situation and predict what they will do [App10, GH17, ALS19]. ToM is

thus impossible without the capacity to form ”second-order representations” [Den78, Pyl78, GM15].
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4.2.3 Human Value

When teaching agents to speak and act in a socially intelligent way, an approach considering values

should be adopted. The theory of basic human values, developed by [Sch92, Sch12], tries to

measure universal values that are recognized throughout major cultures. A set of 10 basic values1

are identified and serve as the guiding principles in the life of a person or group [CD12], as shown

in Figure 4.2. Similarly, in economics and ethics, the concept of utility was developed as a measure

Universalism

Benevolence

SecurityPower

Achievement

Hedonism

Stimulation

Self-direction

Conformity

Tradition

Openness to
Change

Self-
Transcendence

Self-
Enhancement Conservation

Figure 4.2: Theory of basic human values [Sch92].

of pleasure or satisfaction that drives human activities at all levels. Derived from the rational choice

theory [Abe09], the utilitarianism states that human decision-making could be viewed as a two-step

procedure. First, we select a feasible region based on the financial, legal, physical, or emotional

restrictions we are facing. Then we make a choice based on the preference order [All02, Jon12].

In this work, we learn a transformer-based utility function of human values from a self-curated

knowledge base VALUENET. Inspired by descriptive ethics, VALUENET provides social scenarios

1A refinement of the theory [SCV12], partitions the same continuum into 19 more narrowly defined values that
permit more precise explanation and prediction.

54



and annotated human preference to teach the agent human attitudes to various ethical situations. The

dataset is curated from the widely used social commonsense dataset SOCIAL-CHEM-101 [FHS20]

and labeled with Amazon Mechanical Turk.

4.3 Problem Formulation

We will first briefly introduce the text-adventure environment LIGHT, followed by the mental state

modeling and value utility formulation.

Setting: The main foyer is massive. A grand staircase sits to the back of the foyer leading to the upstairs. At the front of the foyer stand two servants
ready to help anyone who comes to visit. To the left of the room there is a doorway leading into a corridor. To the right there is a door leading to another
corridor for the King's servants. At the foot of the stairs there is a bearskin rug that is staring at you almost as if still hungry. The walls are lined with
portraits of the king and the family.

Self Persona: Servant. I come from the lower class. I do what I am told without question. I can not read. I have not seen my family in a long time.
Self Carrying: a duster, a small bucket, a rag
Self Wearing: a shirt

Partner Persona: King. I am a king of the whole empire. I give rules and pursuit them. I am brave and fearless.
Partner Carrying: a crown, a scepter

Mental
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2

Action mask

Graph
Encoder

1
2
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Value Ranker
3
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5

utt/act/emote
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Self: I am sorry sir the rug startled me.
Action:  drop crown
Partner: Haha! That's bear I slain on my latest hunting trip. He's a mighty beast!
Emote: gesture laugh
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Figure 4.3: Socially intelligent agent architecture with mental state parser and value model.

LIGHT [UFK19] is a large-scale crowd-sourced fantasy text-adventure platform for studying

grounded dialogues. Figure 4.3 a⃝ shows a typical local environment setting, including location

description, objects (and their affordances), characters, and their personas. Agents can talk to other

agents in free-form text, take actions defined by templates, or express certain emotions (Figure
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4.3 b⃝). Given the environmental setting and observation history, our task is to predict the agent’s

utterance/action/emotion for the next turn. To achieve this goal in a socially intelligent manner,

we model the agent’s mental state transition and incorporate human values. The mind model is

proposed to depict the agent’s belief about the underlying states of the text world. Meanwhile,

a utility function of human values is designed to describe human preferences in common social

situations. We experiment on the text-adventure game for simplicity, but the proposed architecture

supports richer environments.

a small bucket

a rag

persona

I come from the
lower class ... King

persona

carrying
I am a king of the
whole empire ...

a duster

a crowncarrying

a scepter

Servant

carrying carrying

partner

carrying

carrying

in

Figure 4.4: A graphical representation of the agent’s mental state. Nodes are attributed with encoded

natural language description of agents, objects and the environment. Agents’ action trigger explicit

topology changes of the graph.

4.3.1 Mental State Modeling

Our goal is to parse, construct and maintain the mental states in dialogues. With the mental

state grounding on the details of the local environment, the agent could simulate and reason the

evolutionary status of the world and condition its speaking and actions. A graphical representation

of the mental state is proposed, as illustrated in Figure 4.4. Nodes in the graph represent the involved
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agents, persona descriptions, objects, objects’ descriptions, and setting descriptions, which will

change as the game setting switches. The relational edges between these nodes describe the state of

mind. The mental state is updated with the observed dialogue history or actions, e.g., King gives the

scepter to the servant will result in the scepter being moved from the King to the servant.

4.3.2 Human Value Modeling

We assume that the agent in the fantasy world would make near-optimal choices to maximize the

utility of its preferred values. We denote the available alternatives to be a set of n exhaustive and

exclusive utterances or actions A = {a1, ..., ai, ..., an}. The function fv(·) describes the utility score

of the alternative from the value dimension v, v ∈ V = {achievement, power, security, conformity,

tradition, benevolence, universalism, self-direction, stimulation, hedonism}. For example, if ai is

more preferred than aj in terms of security, then fsecurity(ai) > fsecurity(aj). Usually, we cannot

find an analytical form of the utility function. However, what matters for preference ordering is

which of the two options gives the higher expected utility, not the numerical values of those expected

utilities.

In LIGHT, the agent’s value priority is reflected by its persona description. For the example in

Figure 4.3 a⃝, the servant is a person who values conformity and tradition and has a lower priority

on self-direction and stimulation. Using the same value function to approximate a value priority

parser: fv(p), where p is the persona description, the utility or the desirability of candidate ai to

person p is the Euclidean distance between its value priority and the candidate’s utility score:

u(ai) =

√∑
v∈V

(fv(p)− fv(ai))
2. (4.1)

Since some actions could be impossible physically (e.g., one cannot drop an object if the agent is

not carrying the object), the decision making process becomes a problem of maximizing the utility

function that is subject to some constraints from the mental state, i.e., u(a|c), where c represents the

context or constraints.
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4.4 Algorithms

The overall architecture of our proposed framework is illustrated in Figure 4.3. For each scenario,

a setting description (Figure 4.3 a⃝) is provided by the LIGHT environment, which can include a

description of the location, object affordances, agents’ personas, and the objects that agents are

carrying, wearing, or wielding. The free-form conversations, actions, and emotions are logged

during the communication as the observation history (Figure 4.3 b⃝). To begin with, a mental state

parser will parse the setting descriptions into graph representation and initialize the agent’s mental

state (steps 1⃝ and 2⃝). Besides the mental state updating, the parser also outputs an action mask

that is aimed to rule out actions that are physically or causally impossible to take (step 3⃝). A graph

encoder (step 4⃝) and a text encoder (step 5⃝) will convert the mental state graph Gt and the dialogue

observation Ot into vector representations, respectively. The same text encoder will be used to

encode the candidates Ct (step 6⃝). In step 7⃝, the context vectors are combined by a bi-directional

attention aggregator [YDL18, SKF16], and each candidate is assigned a score with a Multi-Layer

Perceptron (MLP) (step 8⃝). The action mask is then applied to get the feasible candidates under

current mental state constraints (step 9⃝). In steps 10⃝ and 11⃝, the top three candidates from the last

step will be fed into the value model and re-ranked. Finally, the selected utterance/action/emotion is

executed by the agent (step 12⃝) and fed back to the environment. Upon receiving the response from

other agents in the environment, the new observation will be again parsed and used to update the

agent’s state of mind, and the cycle repeats. In the following, we will describe each component in

more detail.

4.4.1 Mental State Modeling (steps 1⃝- 2⃝)

Figure 4.5 describes the architecture of the mental state parser. We define the mental state graph

G ∈ [−1, 1]R×N×N , where R is the maximum number of relation types and N is the maximum

number of entities. The initial mental state graph G0 is constructed by a ruled-based parser from the

setting description O0. The graph is encoded by function fe to a hidden state h0 that is later used for

58



Dialog & Emoton

Graph
Encoder

Text
Encoder

Initialization

Action

Figure 4.5: Overall architecture of the hybrid mental state parser.

graph update. At game step t, the mental state parser parses relevant information from observation

Ot and update the agent’s mental state from Gt−1 to Gt. Considering that observation Ot typically

conveys incremental information from step t− 1 to t, we generate the graph update ∆gt instead of

the whole graph at each step

Gt = Gt−1 ⊕∆gt, (4.2)

where ⊕ is the graph update operation. The graph update can be either discrete or continuous,

and there have been studies on the pros and cons of each updating method [AYC20]. The discrete

approach may suffer from an accumulation of errors but benefit from its interpretability. The

continuous graph model needs to be trained from data, but it is more robust to possible errors.

In this work, we propose a hybrid (discrete-continuous) method for updating the agent’s state

of mind by considering there exists a mixture of discrete events and continuous information in

typical human-machine interactive environments. In the specific example of our tested LIGHT, the

actions or events are template-based, it is more appropriate to adopt a discrete method for parsing;

meanwhile, since utterances are challenging to be encoded into discrete representations, we apply a

continuous update method instead.

4.4.1.1 Discrete Graph Definition & Update

To update the graph, we define ∆gt as a sequence of update operations of the following two atomic

types:

• ADD(src, dst, relation): add a directed edge, named relation, from node src to
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node dst.

• DEL(src, dst, relation): delete a directed edge, named relation, from node src

to node dst.

LIGHT defines various actions including get, drop, put, give, steal, wear, remove, eat, drink, hug

and hit, and each taking either one or two arguments, e.g., give scepter to servant. Every action

could be parsed as one or a sequence of update operators that act on Gt−1. For example, actor

performing “give object to agent” can be parsed into DEL(actor, object, carrying) and ADD(agent,

object, carrying). The rule-based parsing of the setting description and the discrete events could

also be replaced by a seq2seq decoding process. Since both strings are well-structured in LIGHT,

we omit training such a decoder for simplicity. Note that actions in LIGHT could only be executed

when constraints are met, so we also generate an action mask according to the current mental state.

By checking the adjacency matrix, we rule out action candidates conducted on objects that are

inaccessible.

4.4.1.2 Continuous Graph Definition & Update

Besides the actions taken by the agents, their utterances could also have an implicit impact on the

agents’ mental states. To handle the continuous dialogue observation, we use a recurrent neural

network as the graph update operation ⊕.

∆gt = f∆(hGt−1 , hOt),

ht = RNN(∆gt, ht−1),

Gt = MLP(ht).

(4.3)

The function f∆ aggregates the information from the previous mental state Gt−1 and observation

Ot to generate the graph update ∆gt. hGt−1 denotes the representation of Gt−1 from the graph

encoder. hOt is the output of the text encoder. ht is a hidden state acting as the memory, from which

we decode the new mental state Gt using a MLP. For the recurrent operator, we could either use
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LSTM [HS97] or GRU [CVB14]. More details on the graph encoder and text encoder we applied

are presented in the section 4.4.2.

4.4.2 Action Selector (steps 4⃝- 11⃝)

Conditioned on the agent’s mental state, the action selector chooses the optimal candidate based on

the prediction task (i.e., utterance, action or emotion). The selector consists of five components:

a graph encoder (Fig. 4.3 4⃝) to convert the state-of-mind graph to a hidden state vector; a text

encoder (Fig. 4.3( 5⃝, 6⃝)) to encode the dialogue history and text candidates; an aggregator (Fig.

4.3 7⃝) to fuse the two context representations; a general scorer (Fig. 4.3 8⃝) to assign a score to each

candidate; and a value model (Fig. 4.310⃝) to re-rank the candidates based on the assigned persona.

1. Graph Encoder. We use relational graph convolutional networks (R-GCNs) [SKB18] to

encode the graph representation of mental states. The R-GCN is adapted from Graph Convolutional

Networks (GCNs) so that it could embed the edge attributes (relational text embedding) in the

mental state graph.

2. Text Encoder. A BERT-based [DCL19] encoder converts the text-based dialogue history into

a vector representation, using the last hidden state corresponding to the [CLS] token; We also use

the same encoder to encode the text response candidates.

3. Aggregator. A bi-directional attention layer [YDL18, SKF16] is adopted to fuse the

information from the mental state and the contextualized text hidden state. The co-attention allows

the agent to focus on the memory part that has been mentioned in the dialogue.

4. Scorer. The full context representation vector is concatenated with each candidate, and an

MLP layer with softmax activation generates a score for each of them.

5. Value Ranker. After all the candidates are ranked, we select the top three candidates and

then re-rank them according to the proposed value model. The value model is a BERT-based utility

scorer trained on a self-curated knowledge base VALUENET. A custom input format constructed as
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⟨[CLS][$VALUE]s⟩ is fed into the BERT, i.e.,

fv(s) = BERT([CLS][$VALUE]s), (4.4)

where [CLS] is the special token for regression, s is the scenario, and [$VALUE] are special

tokens we define to prompt [LL21, BMR20] the transformer the interested value dimension v. A

regression head is put on top of the model to get a continuous estimation of the utility in the range

of [−1, 1].

The VALUENET is organized in 10 dimensions of Schwartz values. It consists of social scenarios

curated from SOCIAL-CHEM-101 [FHS20]. And the samples are annotated by Amazon Mechanical

Turk workers, who are asked about their attitudes towards provided scenarios. For example, if you

are someone who values benevolence, will you do or say: “today I buried and mourned a rat”? Their

choices (yes, no, unrelated) are then quantified to numerical utilities: +1, -1, 0, respectively.

4.5 Experiments

We conduct experiments on the LIGHT dataset and compare our model with state-of-the-art methods

based on two variants of BERT models. An ablation study is carried out to justify our model design,

and a case study is performed to demonstrate how the proposed framework could help the agent

ground upon the environment details and make value-driven decisions.

4.5.1 Experimental Setup and Implementation

The dialogues in LIGHT are split into train (8539), valid (500), seen test (1000), and unseen test

(739) as the dataset is released. The unseen test set consists of dialogues collected on a set of

scenarios that have not appeared in the training data. We use the history of dialogues, actions, and

emotions to predict the agent’s next turn. Note that the original paper manually filters out actions

with no affordance leveraging the object annotation, while we provide all candidates to demonstrate

our model’s capability of reasoning feasible actions automatically from the agent’s mental state.
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Here we describe the implementation details of the proposed framework. The mental state

graph is initialized with a structured setting string including all involved elements in the sce-

nario (an example is attached in Appendix 4.6). The setting parser is based on general parsing

tools like regular expression and spaCy [HM17, CM16, HJ15], resulting in the initial mental

state graph as shown in Figure 4.6. For the functions fe and fd, we use two-layer MLPs with

I am here to help the
needy ...

The graveyard
keeper

rake

Priest

persona

Old Crypt, Graveyard

Broken stones and an iron gate ...

description

iron gate
flowers

name
placard

cross

bible

carrying

partner

in in

in

stone

in

Figure 4.6: Initial mental state graph parsed from the example setting string in Appendix 4.6. The

nodes of objects’ descriptions are omitted to save space.

tanh [KO11] and ReLU [Aga18] activations. The Text Encoder is a pre-trained BERT (base-

uncased) model [WDS20]. The Graph Encoder is an R-GCN with six layers and a hidden size of

64. We also adopt the highway connections between consecutive layers for faster convergence and

3-basis decomposition to reduce the parameters and prevent overfitting.

4.5.2 Baseline Models

Two BERT-based models [UFK19] are used as strong baselines, which have kept the state-of-the-art

performance on this task. BERT Bi-Ranker produces a vector representation for the context

and each candidate. Each candidate is assigned a score by the dot product between the context
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embedding and the candidate embedding. BERT Cross-Ranker concatenates the context string

with each candidate and feeds the string to the BERT model instead. Compared with the bi-ranker,

The cross-ranker allows the model to attend to the context when encoding each candidate.

4.5.3 Results and Analysis

Seen Test Unseen Test

Dialogue Action Emotion Dialogue Action Emotion

Method R@1/20 Acc Acc R@1/20 Acc Acc

BERT-based Bi-Ranker 76.5 42.5 25.0 70.5 38.8 25.7

BERT-based Cross-Ranker 74.9 50.7 25.8 69.7 51.8 28.6

discrete mental state 75.8 52.1 25.1 69.9 53.4 25.5

continuous mental state 77.3 49.3 26.2 72.1 45.2 29.1

hybrid mental state 78.4 53.5 26.1 72.3 54.3 29.5

hybrid+mask 78.5 54.5 26.1 72.3 55.4 29.4

hybrid+mask+value 78.8 56.4 26.1 72.6 57.5 30.1

Human Performance* 87.5 62.0 27.0 91.8 71.9 34.4

Table 4.1: Model performance on the LIGHT Seen Test and Unseen Test. For dialogue prediction,

Recall@1/20 is reported for ranking the ground truth among 19 other randomly chosen candidates.

Percentage accuracy is calculated for action and emotion prediction. (*) Human performance is

reported by the original paper [UFK19] on a subset of data.

Table 4.1 shows the results, where our model outperforms the state-of-the-art models by a large

margin. To understand the results, we first compare mental state graph designs using discrete,

continuous, and the proposed hybrid parser.

The discrete mental state parser uses actions to explicitly update the graph to augment the

context representation. In the action prediction task, the discrete parser outperforms the purely

continuous method (+2.8% (seen), +8.2% (unseen)), the BERT Bi-Ranker (+9.6% (seen), +14.6%
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(unseen)), and the BERT Cross-Ranker (+1.4% (seen), +1.6% (unseen)). While the continuous

mental state parser misses the hard constraints introduced by less frequent actions, it updates the

graph implicitly with the dialogues and shows a better result than the discrete one on dialogue

prediction (+1.5% (seen), +2.2% (unseen)) and emotion prediction (+1.1% (seen), +3.6% (unseen)).

The hybrid mental state parser performs the best among the three according to almost all metrics,

mainly because it aggregates the soft update from the dense dialogue and the hard constraints from

the sparse actions. We also notice that the emotion prediction in LIGHT is a hard task because it

is not strictly constrained by the context. Even humans can only achieve 27.0% (seen) and 34.4%

(unseen) accuracy. Nevertheless, our model provides a relatively 1.2% (seen) and 3.1% (unseen)

performance boost compared to the best BERT baseline.
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Figure 4.7: Intermediate mental state for the agent Servant in the dialogue example of Figure 4.3.

The adjacency matrix of the mental state graph is visualized and the darkness of the edges represent

the relation strength. Only critical relation types between nodes are shown for illustration purpose.

Then, with the ablation study of our proposed action mask (hybrid mental state vs. hybrid+mask),

we prove the effectiveness of it for improving action accuracy by ∼1% in action prediction. Figure

4.7 demonstrates how the mental state could help agent ground on the context. We can see a very

weak relation of the type ”carrying” between the agent servant and the object crown. Thus the

servant should not be able to give the crown to others at this time step. Though our model does not
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rely on annotated action affordances during action predicting, an action mask can be reasoned from

such a mental state, which helps filter out physical or causally impossible actions.

Lastly, we analyze the results after introducing the value model. We first compute the value

priority of the agent by applying the value function to its persona description. For example, given

the servant’s persona description in Figure 4.3, it shows conformity, tradition, and security have

higher utility scores to the agent than other dimensions. Then we calculate utility scores of the top

three candidates based on Equation 4.1. This teaches the agent to make decisions that align with the

assigned role and further improves the overall performance, (+0.3% (seen), +0.3% (unseen)) for

dialogue prediction, (+1.9% (seen), +2.1% (unseen)) for action prediction, and +0.7% (unseen) for

emotion prediction.

4.6 Appendix

An example setting string for the utterance prediction is:

“ task speech

setting name Old Crypt, Graveyard

setting desc Broken stones and a iron gate closing the entrance with a name placard that the name

is worn off.

partner name the graveyard keeper who lives across the yard self name priest

self persona I am here to help the needy. I am well respected in the town. I can not accept lying.

object desc a gate : The gate is made out of rusty metal. It squeaks as it swings on its hinges.

object desc a flowers : you can see them up close but not afar. when noticed, you realize that they

are old.

object desc a name placard : The placard is made of wood witha clear name on it.

object desc a stone : The stone is chipped from being used as target practice from soldier trainees

object desc a placard : A sign used to display names of buildings or notices.

object desc an iron gate : The gate is ornate, with complicated iron scrollwork patterns.
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object desc a Rake : This rake is made of carefully split wood with a sturdy looking handle. Seems

useful for keeping the leaves under control.

object desc a Cross : The cross is broken and with a few dents in the sides.

object desc a bible : The bible is bound by black leather, its pages yellowed by years of use.

object in room a gate

object in room a flowers

object in room a name placard

object in room a stone

object in room a placard

object in room an iron gate

object carrying a Rake”.

The result mental state graph parsed from this setting is illustrated in Figure 4.6.

67



Part II

Structure Learning in Dialogue Systems
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CHAPTER 5

Structured Attention for Unsupervised Dialogue Structure

Induction

Inducing a meaningful structural representation from one or a set of dialogues is a crucial but

challenging task in computational linguistics. Advancement made in this area is critical for dialogue

system design and discourse analysis. It can also be extended to solve grammatical inference. In

this work, we propose to incorporate structured attention layers into a Variational Recurrent Neural

Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised

fashion. Compared to a vanilla VRNN, structured attention enables a model to focus on different

parts of the source sentence embeddings while enforcing a structural inductive bias. Experiments

show that on two-party dialogue datasets, VRNN with structured attention learns semantic structures

that are similar to templates used to generate this dialogue corpus. While on multi-party dialogue

datasets, our model learns an interactive structure demonstrating its capability of distinguishing

speakers or addresses, automatically disentangling dialogues without explicit human annotation1.

5.1 Introduction

Grammatical induction for capturing a structural representation of knowledge has been studied for

some time [Hig10]. Given the achievement in related areas like learning Hidden Markov acoustic

models in speech recognition [BBD86] and sentence dependency parsing in language understand-

ing [Cov01], our work aims to explore a more sophisticated topic: learning structures in dialogues.

1The code is released at https://github.com/Liang-Qiu/SVRNN-dialogues.
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Figure 5.1 shows the underlying semantic structure of conversations about bus information request

from SimDial dataset [ZE18], with one example dialogue as shown in Table 5.1. Another interesting

greeting
request a bus

request #from_loc
inform #from_loc

request #to_loc
inform #to_loc

request #datetime
inform #datetime

0.49

inform default
request #duration

inform default
request #arrival

inform arrival
goodbye

inform default
goodbye

inform duration
goodbye

goodbye
silence

0.26 0.23

inform default
inform #from_loc

inform default
inform #to_loc0.01 0.01

Figure 5.1: Original dialogue structure of the bus information request domain in SimDial [ZE18].

User intents are marked in bold.

type of dialogue structure is the interactive structure in multi-party dialogues. Figure 5.2 illustrates

the interactive structure we learned from a dialogue sample in Ubuntu Chat Corpus [LPS15]. Each

node represents an utterance from different speakers in the dialogue, with darker linkages repre-

senting stronger dependency relations between utterances. When speaker/addressee information is

unavailable in the corpus, learning such a structure allows disentangling the conversation [SP15]

and estimating the speaker labels. Discovering dialogue structures is crucial for various areas in

computational linguistics, such as dialogue system building [You06], discourse analysis [GS86],

and dialogue summarization [MRC05, LSZ10]. By looking into this topic, we can further improve

the capability of machines to learn more generalized, interpretable knowledge representation from

data.

However, capturing structure from the conversation is still much under-explored. The complexity

of dialogues could range from several-round task-oriented dialogues to tens-round multi-party

chitchat. It is unclear that for these different categories of dialogues, what types of inductive biases
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From Utterance

SYS: Ask me about bus information. How can I help?

USR: Hi. I need a bus.

SYS: Where do you want to take off?

USR: Going to Lawrance.

SYS: What time do you need the bus?

USR: Departure time is 9.

SYS: Bus 137 can take you there. What else can I do?

USR: Not done yet. How long will it take?

SYS: The ride is 45 minutes long. What else can I do?

USR: No more questions. Thank you.

SYS: Goodbye.

Table 5.1: An example two-party bus information request dialogue in SimDial [ZE18].

or constraints we could add to reduce the search space. It also remains an unsolved question for

formally evaluating the performance of dialogue structure induction algorithms. In this work, we

propose to use a combination of structured attention and unsupervised generative model to infer the

latent structure in a dialogue.

1 2 3 4 5 6

2 3 4 5 6 7

Figure 5.2: Learned interactive structure from a multi-party dialogue sample in Ubuntu Chat

Corpus [UA13].

Specifically, instead of simply applying a softmax function on potentials between a decoder

query and encoder hidden states, dynamic programming algorithms like Forward-Backward [Dev85]
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and Inside-Outside [LY90] could be used to efficiently calculate marginal probabilities from pairwise

potentials with a structural constraint. Through embedding such structured attention layers in a

Variational Recurrent Neural Network (VRNN) model, we can learn latent structures in dialogues

by jointly re-generating training dialogues. Such a process requires no human annotation and is

useful for dialogue analysis. In addition, by selecting appropriate structural biases or constraints,

we can learn not only semantic structures but also interactive structures. A linear Conditional

Random Field (CRF) attention layer is used in two-party dialogues to discover semantic structures.

A non-projective dependency tree attention layer is embedded to learn an interactive structure

that could help identify speaker/addressee information in multi-party dialogues that have tangled

conversation threads, such as forum discussions.

This work makes the following contributions. We propose to incorporate a structured attention

layer in VRNN to learn latent structures in dialogues. To our knowledge, no work connecting

structured attention with unsupervised dialogue structure learning has been done. We prove our

proposed VRNN-LinearCRF learns better structures than the baseline VRNN on the SimDial

dataset for semantic structure learning in two-party dialogues. For interactive structure learning in

multi-party dialogues, we combine VRNN with a non-projective dependency tree attention layer.

It achieves similar generation performance as the baseline GSN model [HCL19] on Ubuntu Chat

Corpus [UA13, LPS15], while our model can identify the speaker/addressee information without

trained on explicit labels.

5.2 Related Work

Attention mechanism [VSP17] has been widely adopted as a way for embedding categorical

inference in neural networks for performance gain and interpretability [JW19, WP19]. However, for

many tasks, we want to model richer structural dependencies without abandoning end-to-end training.

Structured Attention Networks [KDH17] can extend attention beyond the standard soft-selection

approach by attending to partial segments or subtrees. People have proven its effectiveness on a
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variety of synthetic and real tasks: tree transduction, neural machine translation, question answering,

and natural language inference [Rus20]. In this work, we propose to utilize structured attention to

explore dialogue structures. Specifically, we work on two types of dialogue structures, semantic

structures (dialogue intent transitions), and interactive structures (addressee/speaker changes).

Semantic structures have been studied extensively. Some previous works, such as [Jur97],

learned semantic structures relying on human annotations, while such annotations are costly and

can vary in quality. Other unsupervised studies used Hidden Markov Model (HMM) [Cho08,

RCD10, ZW14]. Recently, Variational Autoencoders (VAEs) [KW13] and their recurrent version,

Variational Recurrent Neural Networks (VRNNs) [CKD15], connects neural networks and tradi-

tional Bayes methods. Because VRNNs apply a point-wise non-linearity to the output at every

timestamp, they are also more suitable to model highly non-linear dynamics over the simpler

dynamic Bayesian network models. [SSL17] proposed the VHRED model by combining the idea of

VRNNs and Hierarchical Recurrent Encoder-Decoder (HRED) [SBV15] for dialogue generation.

Similarly, [ZLE18] proposed to use VAEs to learn discrete sentence representations. [SZY19] used

two variants of VRNNs to learn the dialogue semantic structures and discussed how to use learned

structure to improve reinforcement learning-based dialogue systems. But none of the previous work

has tried to incorporate structured attention in VRNNs to learn dialogue structure.

Compared to semantic structures, the interactive structure of dialogues is not clearly de-

fined. [EC08] initiated some work about dialogue disentanglement, which is defined as dividing a

transcript into a set of distinct conversations. [SP15] tested standard RNN and its conditional variant

for turn taking and speaker identification. Both of the tasks are highly related to understanding the

interactive structure but not identical. Our task, different from both of them, aims to construct an

utterance dependency tree to represent a multi-party dialogue’s turn taking. The tree can not only be

used to disentangle the conversations but also to label each utterance’s speakers and addressees. We

compare our model with Graph Structured Network (GSN), recently proposed by [HCL19]. GSN

builds a conversation graph utilizing explicit speaker/addressee information in Ubuntu Chat Cor-

pus [UA13] to improve the dialogue generation performance. Our model shows similar generation
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performance as them while demonstrating its capability of learning the utterance dependency tree.

5.3 Problem Formulations

We discuss the semantic and interactive dialogue structure learning separately. In task-oriented two-

party dialogues (between system and user), we want to discover a probabilistic semantic grammar

shared by dialogues in the same domain. While for multi-party dialogues, e.g., conversations in a

chatroom, which may have multiple conversations occur simultaneously, we are more interested

in finding an interactive structure that could help disentangle the conversation and identify the

speakers/addressees. Our method of structure learning is flexible to handle both problems with the

formulations as shown below.

For semantic dialogue structure learning, we formulate the problem as labeling the dialogue with

a sequence of latent states. Each conversational exchange xi (a pair of system and user utterances at

time step i) belongs to a latent state zi, which has an effect on the future latent states and the words

the interlocutors produce. The latent dialogue state is defined to be discrete, i.e., zi ∈ {1, 2, ..., N},

where N is the number of states predefined from experience. Our goal is to generate the current

sentence pair xi that maximizes the conditional likelihood of xi given the dialogue history while

jointly learning a latent state sequence z = [z1, z2, ..., zn]:

x̂ = argmax
x

|x|∑
i=1

log(p(z<i|x<i)p(xi|z<i)). (5.1)

Then, we can induce a probabilistic dialogue grammar by estimating the state transition probabilities

through maximizing the likelihood of the parsed latent state sequences.

A multi-party dialogue session can be formulated as an utterance-level dependency tree T(V,E),

where V is the set of nodes encoding the utterances, E = {ei,j}mi<j ∈ {0, 1} indicates whether
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utterance i is the parent of utterance j, and m is the maximum number of possible edges.

x̂ = argmax
x

|x|∑
i=1

log(p(T|x<i)p(xi|T))

= argmax
x

|x|∑
i=1

log(
i−1∏
j<k

p(ej,k = 1|x<i) · p(xi|T))

= argmax
x

[ |x|∑
i=1

i−1∑
j<k

log(p(ej,k = 1|x<i) +

|x|∑
i=1

log(p(xi|T)
]

(5.2)

Each path of the dependency tree represents a thread in the multi-party conversation in chronological

order. Our goal is to generate the response x̂ that maximizes the conditional likelihood of the

response given the dialogue history while jointly learning a latent utterance dependency tree as

shown in Equation 5.2. The conditional likelihood is factorized into two parts, representing the

encoding and decoding processes, respectively. We can further reason about the speaker/addressee

labels or disentangle the conversation by clustering the utterances from the learned tree.

5.4 Variational Recurrent Neural Network with Structured Attention

The overall architecture of Structured-Attention Variational Recurrent Neural Network (SVRNN)

is illustrated in Figure 5.3. The LSTM [HS01] word-level encoder marked in pink encodes each

utterance into a sentence embedding. Then an utterance-level encoder VRNN with different

structured attention layers encodes the dialogue history into a latent state z. A decoder marked in

blue will decode the next utterances from the latent state. We describe more details about the key

components of our model in the following subsections.

5.4.1 Variational Recurrent Neural Network

The pursuit of using an autoencoder like Variational Recurrent Neural Network (VRNN) is to

compress the essential information of the dialogue history into a lower-dimensional latent code.

The latent code z is a random vector sampled from a prior p(z) and the data generation model is
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Figure 5.3: Structured-Attention Variational Recurrent Neural Network (SVRNN).

described by p(x|z). The VRNN contains a Variational Autoencoder (VAE) at each time step. The

VAE consists of an encoder qλ(z|x) for approximating the posterior p(z|x), and a decoder pθ(x|z)

for representing the distribution p(x|z). The variational inference attains its maximum likelihood

by maximizing evidence lower bound (ELBO):

E [log pθ(x|z)]−KL (qλ(z|x)∥p(z)) ≤ log p(x). (5.3)

For sequential data, the parameterization of the generative model is factorized by the posterior

p (zt|x<t, z<t) and the generative model p (xt|z≤t, x<t), i.e.,

p(x ≤ T, z ≤ T ) =
T∏
t=1

[
p (xt|z≤t, x<t) · p (zt|x<t, z<t)

]
. (5.4)

The learning objective function becomes maximizing the ELBO for all time steps

E
[ T∑

t=1

(log p(xt|z≤t, x<t)−KL (q(zt|x≤t, z<t)∥p(zt|x<t, z<t)))
]
. (5.5)
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In addition, to mitigate the vanishing latent variable problem in VAE, we incorporate Bag-of-Words

(BOW) loss and Batch Prior Regularization (BPR) [ZZE17] with a tunable weight λ. By adjusting

the λ, the VRNN based models can achieve a balance between clustering the utterance surface

formats and attention on the context.

5.4.2 Linear CRF Attention

As we formulate the semantic structure learning in two-party dialogues as a state tagging problem,

we find it suitable to use a linear-chain Conditional Random Field (CRF) attention layer with VRNN.

Define ξ to be a random vector ξ = [ξ1, ..., ξn] with ξi ∈ {0, 1}. n is the number of utterances in a

dialogue. The context vector cj given the current sentence hidden state hj and hidden state history

h can thus be written as:

cj =
j−1∑
i=1

p(ξi = 1|h,hj)hi. (5.6)

We model the distribution over the latent variable ξ with a linear-chain CRF with pairwise edges,

p(ξ1, ..., ξn|h,hj) = softmax(
j−2∑
i=1

θi,i+1(ξi, ξi+1)), (5.7)

where θi,i+1(k, l) is the pairwise potential for ξi = k and ξi+1 = l. The attention layer is a two-state

CRF where the unary potentials at the i-th dialogue turn are:

θi(k) =


hiW1hj, k = 0

hiW2hj, k = 1

, (5.8)

where [h1, ...,hn] are utterance level hidden states and W1,W2 are parameters. The pairwise

potentials can be parameterized as

θi,i+1(ξi, ξi+1) = θi(ξi) + θi+1(ξi+1) + h⊤
i hi+1. (5.9)

The marginal distribution p(ξi = 1|x) can be calculated efficiently in linear-time for all i using

message-passing, i.e., the forward-backward shown in Algorithm 3.
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Algorithm 3 Forward-Backward for LinearCRF Attention
Input: potential θ

α[0, ⟨t⟩]← 0

β[n+ 1, ⟨t⟩]← 0

for i = 1, ..., n; c ∈ C do

α[i, c]←
⊕

y α[i− 1, y]⊗ θi−1,i[y, c]

end for

for i = n, ..., 1; c ∈ C do

β[i, c]←
⊕

y β[i+ 1, y]⊗ θi,i+1[c, y]

end for

A← α[n+ 1, ⟨t⟩]

for i = 1, ..., n; c ∈ C do

p(ξi = c|x)← exp(α[i, c]⊗ β[i, c]⊗−A)

end for

return p
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C denotes the state space and ⟨t⟩ is the special start/stop state. Typically the forward-backward

with marginals is performed in the log-space semifield R ∪ {±∞} with binary operations ⊕ =

logadd and ⊗ = + for numerical precision. These marginals allow us to calculate the context

vector. Crucially, the process from vector softmax to forward-backward algorithm is a series

of differentiable steps, and we can compute the gradient of the marginals with respect to the

potentials [KDH17]. This allows the linear CRF attention layer to be trained end-to-end as a part of

the VRNN.

5.4.3 Non-projective Dependency Tree Attention

For interactive structure learning in multi-party dialogues, we want to learn an utterance dependency

tree from each dialogue. Therefore, we propose to use a non-projective dependency tree attention

layer with VRNN for this purpose. The potentials θi,j , which reflect the score of selecting the i-th

sentence being the parent of the j-th sentence (i.e., xi → xj), can be calculated by

θi,j = tanh(s⊤ tanh (W1hi + W2hj + b)), (5.10)

where s,b,W1,W2 are parameters, hi,hj are sentence hidden states.

The probability of a parse tree ξ given the dialogue x = [x1, ..., xn] is,

p(ξ|x) = softmax(1{ξ is valid} ·
∑
i ̸=j

1{ξi,j = 1}θi,j), (5.11)

where the latent variable ξi,j ∈ {0, 1} for all i ̸= j indicates that the i-th sentence is the parent of

the j-th sentence; and 1{ξ is valid} is a special global constraint that rules out configurations of

ξi,j’s that violate parsing constraints. In our case, we specify each sentence has one parent and that

must precede the child sentence, i.e,
n∑

i=1

ξi,j = 1, ξi,j = 0(i ≥ j). (5.12)

It is possible to calculate the marginal probability of each edge p(ξi,j = 1|x) for all i, j in O(n3) time

using the inside-outside algorithm with details explained in Appendix 5.6, which is a generalization

of the forward-backward algorithm.
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Then the soft-parent or the context vector of the j-th sentence is calculated using parsing

marginals, i.e.,

cj =
n∑

i=1

p(ξi,j = 1|h,hj)hi. (5.13)

The original embedding is concatenated with its context vector to form the new representation

ĥj = [hj; cj]. (5.14)

5.4.4 Decoder

In order to generate a response to an utterance i, the decoder calculates a distribution over the

vocabulary then sequentially predicts word wk using a softmax function:

p(w|ĥ) =
|w|∏
k=1

p(wk|ĥ,w<k) =

|w|∏
k=1

softmax(MLP(hdec
k , cdeck ))

hdec
0 = ĥi

hdec
k = LSTM(hdec

k−1,MLP(ewk−1
; cdeck−1))

cdeck =
i∑

j=1

softmax(hdec
k Waĥj)ĥj,

(5.15)

where ĥi is the hidden state for utterance i with structured attention, hdec
k is the hidden state of the

decoder LSTM, ewk−1
is the embedding of the predicted word at decoding time stamp (k − 1), and

cdeck is the attention-based context vector at decoding time stamp k. Note that the context vector

here is calculated with the simple attention different from the structured attention we described

before. Wa is a matrix to learn the match degree of hdec
k and ĥj .

5.5 Experiments

We incorporate structured attention in VRNNs to explore two types of dialogue structure, semantic

structure, and interactive structure.

80



5.5.1 Semantic Structure Learning in Two-party Dialogues

5.5.1.1 Datasets

We test the VRNN with Linear CRF Attention on the SimDial dataset [ZE18] of simulated conver-

sations. Dialogues are generated for information requests in four domains: bus, restaurant, weather,

and movie. Table 5.1 shows an example dialogue in bus schedule request domain. Although

significant variations exist between dialogues of the same domain, we aim to explore a shared

semantic structure among each dialogue domain. We validate our algorithm on this simulated dataset

because these dialogues are generated using pre-defined templates that make recovering ground

truth structures much easier. One recovered ground truth structure with transition probabilities is

shown in Figure 5.1. We have 800 dialogue samples for training, 100 for validation, and 100 for

testing in each dialog domain. The length of the dialogues ranges from 6 to 13 utterances. The

maximum length of an utterance is 33 words.

5.5.1.2 Evaluation Metrics

Since the number of states is unknown during unsupervised training, we set the state number

empirically to 10. Then the learned structure is essentially a state transition matrix of size 10× 10.

However, the original structure could be another state transition matrix of any size depending on

the domain complexity. This makes the model evaluation on the ground truth a problem because it

requires us to measure the difference between two state transition matrices of different sizes. To

alleviate this problem, we define two metrics: Structure Euclidean Distance (SED) and Structure

Cross-Entropy (SCE). We first estimate a probabilistic mapping Psi,s′i
between the learned states

{s′i, i = 1, 2, ...,M} and the true states {si, i = 1, 2, ..., N}, through dividing the number of

utterances that have the ground truth state si and learned state s′i by number of utterances with

the ground truth state si. And we let the reversed mapping probability Ps′i,si
be the normalized
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transpose of Psi,s′i
. Then SED and SCE are defined as:

T ′
sa,sb

=
∑

i,j∈{1,2,...,M}

Psa,s′i
· Ts′i,s

′
j
· Ps′j ,sb

SED =
1

N

√ ∑
a,b∈{1,2,...,N}

(T ′
sa,sb
− Tsasb)

2

SCE =
1

N

∑
a,b∈{1,2,...,N}

− log(T ′
sa,sb

)Tsasb ,

(5.16)

where T ′
sa,sb

is the learned transition probability from state sa to state sb and Tsa,sb is the true

transition probability.

5.5.1.3 Results and Analysis

We compare the proposed VRNN-LinearCRF against other unsupervised methods: K-means

clustering, Hidden Markov Model, D-VRNN [SZY19], and VRNN with vanilla attention. D-VRNN

is similar to our work but without structured attention. We use a bidirectional LSTM with 300

hidden units as the sentence encoder and a forward LSTM for decoding. 300-dimensional word

embeddings are initialized with GloVe word embedding [PSM14]. A dropout rate of 0.5 is adopted

during training. We set the BOW-loss weight λ to be 0.5. The whole network is trained with the

Adam [LH17] optimizer with a learning rate of 0.001 on GTX Titan X GPUs for 60 epochs. The

training takes on average 11.2 hours to finish.

To evaluate the learned structure, we compare VRNN-LinearCRF’s output in Figure 5.4 with

the ground truth dialogue structure in Figure 5.1. A dialogue structure learned by VRNN without

structured attention is also shown in the Appendix 5.6. We find our method generates a similar

structure compared to ground truth in the bus domain. Figure 5.5 shows all models’ quantitative

results. Having a lower value in SED and SCE indicates the learned structure is closer to the ground

truth and better. Our method with BERT, VRNN-LinearCRF-BERT performs the best. K-means

clustering performs worse than VRNN-based models because it only considers utterances’ surface

format and ignores the context information. Hidden Markov Model is similar to VRNN but lacks a
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Figure 5.4: Learned semantic structure of SimDial bus domain [ZE18]. User intents are marked in

bold. Transitions with P < 0.1 are omitted.

continuous propagating hidden state layer. VRNN-LinearCRF observes the entire history of latent

states but ignores the redundant transitions due to the structure attention. The model’s performance

further improves when replacing the vanilla LSTM encoder with a large-scale pre-trained encoder

like BERT [DCL19], as BERT provides better representations.

5.5.2 Interactive Structure Learning in Multi-party Dialogues

We extend our method to learn interactive structure in multi-party dialogues. Specifically, we detect

each utterance’s speaker and addressee by constructing an utterance dependency tree.

5.5.2.1 Datasets

We use Ubuntu Chat Corpus [UA13] as the dataset to study interactive structure since it provides the

ground truth of speaker/addressee information for evaluation. Though every record of Ubuntu Chat

Corpus contains a clear speaker ID, only part of the data has an implicit addressee ID, coming as
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Figure 5.5: All models’ performance in (a) Structure Euclidean Distance (SED) and (b) Structure

Cross-Entropy (SCE) in four dialogue domains.

the first word in the utterance. We select addressee ID that appeared in a limited context and extract

dialogue sessions with all utterances having verified speaker ID and addressee ID. We extract 20k

dialogues with lengths ranging from 7 to 8 turns. Table 5.2 shows an example dialogue.

5.5.2.2 Results and Analysis

Considering Ubuntu Chat Corpus have a large number of technical terminologies, we use a relatively

larger vocabulary size of 30k. We use LSTMs and BERT as the sentence embedding encoder and

two GRU [CGC14] layers with 300 hidden units each as the decoder. The model converges after

100 epochs on GTX Titan X GPUs. The training procedure takes about 54 hours.

To evaluate the learned utterance dependency tree, we compare it with the annotated speaker-

addressee relation and find 68.5% utterances are assigned the correct parents. This is a reasonable

number because the dependency relationship does not fully rely on the speaker/addressee informa-

84



From To Utterance

p1 p2 I know upgrading always got hardon settings to new system..

p3 − And the description of the settings is even wrong

p1 p2 So these days i always clean install

p2 p1 Yeah, i think i will end up doing it

p2 p1 Do you happen to know if 12.10 install will let me install grub2 to partition instead

of mbr without any extra tweaks?

p1 p2 I think default clean install will install grub2 on first section of your hd

p4 p2 No

Table 5.2: Multi-party dialogue example in Ubuntu Chat Corpus [UA13].

tion in a chatroom. A different interlocutor could answer others’ questions even when the questions

were not addressed to him/her. Figure 5.2 visualizes the learned interactive structure from the

example in Table 5.2. Specifically, utterance 4 largely depends on utterance 3, while utterances 6

and 7 answer the question from utterance 5.

Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL

HRED 10.54 4.63 2.67 1.53 4.22 10.14

GSN No-speaker (1-iter) 9.23 3.32 1.89 1.24 3.57 8.12

GSN No-speaker (2-iter) 11.32 4.89 2.94 1.54 4.12 10.15

GSN No-speaker (3-iter) 11.42 4.81 3.11 1.87 4.51 10.29

GSN W-speaker (1-iter) 10.11 3.75 1.93 1.31 3.56 9.89

GSN W-speaker (2-iter) 11.43 4.90 2.99 1.63 4.32 10.34

GSN W-speaker (3-iter) 11.52 4.93 3.23 1.91 4.77 11.21

VRNN-Dependency-Tree 11.23 4.92 3.24 1.92 4.69 10.88

Table 5.3: Different methods’ experiment results on Ubuntu dataset.

We also compare the model’s generation performance with Hierarchical Recurrent Encoder-

Decoder (HRED) and Graph-Structured Network (GSN) [HCL19]. The GSN model uses the

annotated speaker/addressee information to construct a dialogue graph for utterance encoding
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iteration. However, this is not required by our VRNN-Dependency-Tree since we generate the

original dialogues while learning a dependency structure. For consistent comparison with previous

work, we evaluate all models with BLEU 1 to 4, METEOR, and ROUGEL with the package

in [CFL15]. All results are shown in Table 5.3. We observe that the proposed VRNN-Dependency-

Tree model without using any speaker annotation achieves similar generation performance compared

to the state-of-the-art method, GSN with speaker annotation.

5.6 Appendix
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Figure 5.6: Learned dialogue structure from VRNN without structured attention in SimDial bus

domain.
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Algorithm 4 Inside-Outside for Non-projective Dependency Tree Attention
Input: potential θij

α, β ← −∞

for i = 1, ..., n do

α[i, i, L, 1]← 0

α[i, i, R, 1]← 0

end for

β[1, n, R, 1]← 0

for k = 1, ..., n do

for s = 1, ..., n− k do

t← s + k

α[s, t, R, 0]←
⊕

u∈[s,t−1] α[s, u, R, 1]⊗ α[u + 1, t, L, 1]⊗ θst

α[s, t, L, 0]←
⊕

u∈[s,t−1] α[s, u, R, 1]⊗ α[u + 1, t, L, 1]⊗ θts

α[s, t, R, 1]←
⊕

u∈[s+1,t] α[s, u, R, 0]⊗ α[u, t, R, 1]

α[s, t, L, 1]←
⊕

u∈[s,t−1] α[s, u, L, 1]⊗ α[u, t, L, 0]

end for

end for

for k = n, ..., 1 do

for s = 1, ..., n− k do

t← s + k

for u = s + 1, ..., t do

β[s, u, R, 0]←⊕ β[s, t, R, 1]⊗ α[u, t, R, 1]

β[u, t, R, 1]←⊕ β[s, t, R, 1]⊗ α[s, u, R, 0]

end for

if s > 1 then

for u = s, ..., t− 1 do

β[s, u, L, 1]←⊕ β[s, t, L, 1]⊗ α[u, t, L, 0]

β[u, t, L, 0]←⊕ β[s, t, L, 1]⊗ α[s, u, L, 1]

end for

end if

for u = s, ..., t− 1 do

β[s, u, R, 1]←⊕ β[s, t, R, 0]⊗ α[u + 1, t, L, 1]⊗ θst

β[u + 1, t, L, 1]←⊕ β[s, t, R, 0]⊗ α[s, u, R, 1]⊗ θst

end for

if s > 1 then

for u = s, ..., t− 1 do

β[s, u, R, 1]←⊕ β[s, t, L, 0]⊗ α[u + 1, t, L, 1]⊗ θts

β[u + 1, t, L, 1]←⊕ β[s, t, L, 0]⊗ α[s, u, R, 1]⊗ θts

end for

end if

end for

end for

A← α[1, n, R, 1]

for s = 1, ..., n− 1 do

for t = s + 1, ..., n do

p[s, t]← exp(α[s, t, R, 0]⊗ β[s, t, R, 0]⊗−A)

if s > 1 then

p[t, s]← exp(α[s, t, L, 0]⊗ β[s, t, L, 0]⊗−A)

end if

end for

end for

87



CHAPTER 6

Structure Extraction in Task-Oriented Dialogues with Slot

Clustering

Extracting structure information from dialogue data can help us better understand user and system

behaviors. In task-oriented dialogues, dialogue structure has often been considered as transition

graphs among dialogue states. However, annotating dialogue states manually is expensive and

time-consuming. In this chapter, we propose a simple yet effective approach for structure extraction

in task-oriented dialogues. We first detect and cluster possible slot tokens with a pre-trained model to

approximate dialogue ontology for a target domain. Then we track the status of each identified token

group and derive a state transition structure. Empirical results show that our approach outperforms

unsupervised baseline models by far in dialogue structure extraction. In addition, we show that data

augmentation based on extracted structures enriches the surface formats of training data and can

achieve a significant performance boost in dialogue response generation.

6.1 Introduction

There is a long trend of studying the semantic state transition in dialogue systems. For example,

modeling dialogue states in a deep and continuous space has been shown to be beneficial in response

generation task [SSL17, WVM17, WHS20]. While in a modular system [BFP17] that is more

preferred in industry, dialogue states are explicitly defined as the status of a set of slots. The domain-

specific slots are often manually designed, and their values are updated through the interaction with

users, as shown in Table 6.1. Extracting structure information from dialogue data is an important
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Figure 6.1: Dialogue structure in the attraction domain of the MultiWOZ [BWT18]. The structure

on the left is from annotated dialogue states, while the right one is extracted by our approach.

Structures for other domains are attached in Appendix 6.6.

topic for us to analyze user behavior and system performance. It also provides us with a discourse

skeleton for data augmentation. Figure 6.1 shows an example of dialogue structure in the attraction

domain of the MultiWOZ dataset [BWT18]. Each node represents a distinct dialogue state in

Table 6.1, where the three dialogue turns correspond to node 0⃝, 1⃝ and 2⃝ respectively. And the

edges indicate transitions between pairs of states.

However, high-quality dialogue data with complete dialogue state annotation is limited. Existing

works put more emphasis on unsupervised learning of dialogue structures. Representative ones

include training language models based on Hidden Markov Models (HMMs) [Cho08] or Variational

Recurrent Neural Networks (VRNNs) [SZY19, QZS20] to reconstruct the original dialogues. The

structure built upon the latent states is then evaluated in downstream tasks like dialogue policy

learning. Since the latent states are implicitly defined, there is a gap between the learned structure

and the canonical dialogue states in task-oriented dialogues, making the structure hard to interpret

and analyze. What’s more, it remains unclear how we should choose the number of states during

extraction. The state number directly decides the structure granularity, but it is not available in

practice.
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Dialogue
Dialogue State

Slot Value

[usr] Can you please help me find a place to go?

[sys] I’ve found 79 places for you to go.

Do you have any specific ideas in your mind?

[0, 0, 0]→ 0⃝

[‘’, ‘’, ‘’]

[usr] I’d like a sports place in the centre please.

[sys] There are no results matching your query.

Can I try a different area or type?

[0, 1, 1]→ 1⃝

[‘’, ‘sports’, ‘centre’]

[usr] Okay, are there any cinemas in the centre?

[sys] We have vue cinema.

[0, 2, 1]→ 2⃝

[‘’, ‘cinemas’, ‘centre’]

Table 6.1: Example dialogue in the attraction domain of the MultiWOZ [BWT18]. Bold tokens

are detected by our algorithm as potential slots and used to update the dialogue state. The dialogue

state vectors record how many times each slot is updated.

To alleviate these problems, we propose a simple yet effective approach for structure extraction

in task-oriented dialogues. First, we define a task called Slot Boundary Detection (SBD). Utterances

from training domains are tagged with the conventional BIO schema but without the slot names.

A Transformer-based classifier is trained to detect the boundary of potential slot tokens in the test

domain. Second, while the state number is usually unknown, it is more reasonable for us to assume

the slot number can be estimated by checking just a few chat transcripts. We therefore cluster the

detected tokens into groups with the same number of slots. Finally, the dialogue state is represented

with a vector recording the modification times of every slot. We track the slot values through each

dialogue session in the corpus and label utterances with their dialogue states accordingly. The

semantic structure is portrayed by computing the transition frequencies among the unique states.

We evaluate our approach against baseline models that directly encode utterances or use rule-

based slot detectors, besides the afore-mentioned latent variable model VRNN. Empirical results

in the MultiWOZ dataset [BWT18] show that the proposed method outperforms the baselines

by a large margin in all clustering metrics. By creating a state-utterance dictionary, we further

90



demonstrate how we could augment original data by following the extracted structure. The extra

training data is coherent logically but creates more variety in surface formats, thus provides a

significant performance boost for end-to-end response generation. The proposed Multi-Response

Data Augmentation (MRDA) beats recent work [GLI21] using Most Frequent Sampling in a

single-turn setting without annotated states.

6.2 Related Works

Extensive works have been done on studying the structures of dialogues. [Jur97] learned semantic

structures based on human annotations. While such annotations are expensive and vary in quality,

recent research shifted their focus to unsupervised approaches. By reconstructing the original

dialogues with discrete latent variable models, we can extract a structure representing the transition

among the variables. In this direction, people have tried Hidden Markov Models [Cho08, RCD10,

ZW14], Variational Auto-Encoders (VAEs) [KW13], and its recurrent version Variational Recurrent

Neural Networks (VRNNs) [CKD15, SZY19]. Based on VRNNs, [QZS20] tried to incorporate

structured attention in VRNNs to inject structural inductive bias. More recently, [SST21] proposed

an Edge-Enhanced Graph Auto-Encoder (EGAE) architecture to model local-contextual and global

structural information. Meanwhile, [XLW21] integrates Graph Neural Networks into a Discrete

Variational Auto-Encoder to discover structures in open-domain dialogues. However, since the

latent variables are defined implicitly, it is hard to interpret or evaluate the extracted structure

directly.

Benefiting from the pre-training technique [MBX17, HR18, PNI18, DCL19], the Transformer

architecture [VSP17] can be trained on generic corpora and adapted to specific downstream tasks.

In dialogue systems, [WHS20] pre-trained the BERT model [DCL19] on task-oriented dialogues for

intent recognition, dialogue state tracking, dialogue act prediction, and response selection. [PLL21,

HMW20] parameterize classical modular task-oriented dialogue system with an autoregressive

language model GPT-2 [RWC19]. DIALOGPT [ZSG20] extends the GPT-2 to conversational
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response generation in single-turn dialogue settings. In this work, we demonstrate how we can

adapt a pre-trained Transformer for structure extraction in task-oriented dialogues. Our approach of

detecting slot boundaries first is also related to the work of [HDY21] but uses a different model.

The extracted structures are proved useful in multiple downstream tasks. [XLW21] use the struc-

ture to guide coherent dialogue generation in open domains. [ABB20] synthesize a dataflow as task-

oriented dialogue going on to improve representability and predictability. [SZY19] and [ZXE19]

use the learned structures for dialogue policy learning. [GLI21] augment training data with the

proposed Most Frequent Sampling (MFS) to improve the success rate of task-oriented dialog

systems. [ZOY20] propose a Multi-Action Data Augmentation (MADA) framework guiding the

dialog policy to learn a balanced action distribution. Nevertheless, both MFS and MADA are based

on annotated dialogue states. Our work shows that the extracted structure can also be leveraged for

data augmentation and alternative sampling strategies could be used.

6.3 Methodology

6.3.1 Problem Formulation

We aim to discover a probabilistic semantic structure shared by dialogues from the same domain. We

formulate the problem as labeling each dialogue with a sequence of dialogue states. A structure is

then extracted by calculating the transition frequencies between pairs of states. Each conversational

exchange xi, a pair of system and user utterances at time step i, corresponds to a dialogue state zi,

which tracks the status of the task and guide the upcoming dialogue.

Commonly, dialogue states in task-oriented dialogue systems are defined as a set of slot-value

pairs, which results in a huge amount of distinct states in total. To make the problem tractable, we

count how many times each slot is modified without considering the actual slot values. Specifically,

zi = [M(S1),M(S2), ...,M(SN)], (6.1)

where Sj is a domain-specific slot, M(Sj) is the number of changes of the slot Sj from the beginning
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of the dialogue session, and N is the number of slots in the given domain. Although it is hard to

determine the number of states because the value of each slot could be updated for infinite times,

it is reasonable to assume that the number of slots is available during inference. For example, by

checking a few transcripts, a bot builder for the MultiWOZ attraction domain can easily identify

there are three slot types (name, type, area) that they need to fill in.

6.3.2 Slot Boundary Detection and Clustering

In a task-oriented dialogue system, slots are predefined in a domain ontology, and the system needs

to identify their values to accomplish users’ intents. For example, in order to book a taxi service,

we need to fill the values of four slots: “leave-at”: 4 p.m., “arrive-by”: 6 p.m., “departure”: Palo

Alto, and “destination”: San Jose. However, such a slot ontology is usually not available in a real

scenario. We thus define a preliminary sub-task of slot boundary detection (SBD) and clustering for

dialogue structure extraction. Given a target domain G, a set of dialogues D, and the number of

slots N , the sub-task is to find all token spans that are possible slots in the domain G, and assign

them into N separate slot groups {S ′
1, S

′
2, ..., S

′
N}. As mentioned, we assume we do not have the

slot ontology but N is available.

For the SBD task, we retain the slot annotation in the conventional BIO scheme but drop the slot

name labels. Table 6.2 shows examples in three task-oriented dialogue datasets. We hypothesize

that the capability to identify slot tokens is transferable across domains. We train a BERT-based slot

detector on some domains and apply it to an unseen domain. A [CLS] classification embedding

is inserted as the first token and a [SEP] token is added as the final token. Given an input token

sequence x = (x1, ..., xT ), the final hidden states of BERT (ht) is fed into a softmax layer to classify

over three labels: “B”, “I”, and “O”.

yt = softmax(Wht + b). (6.2)

To make the process compatible with the BERT WordPiece tokenizer [WSC16], we assign the
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MultiWOZ

Utt [usr] a train to London King Cross that departs after 08:15

Slots O O O O B I I O O O B

ATIS

Utt i want to fly from baltimore to dallas round trip

Slots O O O O O B O B B I

Snips

Utt book a restaurant for eight people in six years

Slots O O B O B O B I I

Table 6.2: Slot boundary annotation in the BIO scheme. Examples are from the Multi-

WOZ [BWT18], ATIS [THH10], and Snips [CSB18] datasets.

original label of a word to all its sub-tokens. This model is trained end-to-end to minimize

with cross-entropy loss. For each token span Ti = [Ti1, ..., Tik], if their slot labels predicted are

[B, I, ..., I](k > 1) or B(k = 1), and the label of token Tik+1 is predicted as B or O, then Ti is

considered as a slot token span.

The pre-trained BERT model provides a powerful contextualized token representation. Therefore,

we reuse the final hidden states for slot clustering. Mathematically, the token span Ti is encoded as

hi =
1

k

k∑
j=1

hij, (6.3)

where hi1, ...,hik are the final hidden states of Ti = [Ti1, ..., Tik]. The BERT representations are

contextualized, so the same token spans appearing in different contexts have different encodings.

By doing so, one token span can be assigned to multiple slot clusters simultaneously. For example,

“Palo Alto” can be both a departure city and an arrival city, depending on its context. By clustering

the token span encodings, we can assign each of them into one of the N groups and derive a fake

slot ontology.

S ′
j = clustering(hi), j ∈ {1, ..., N}, (6.4)
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museum, college, entertainment, 
night club, park, sports, 

church, theatre, ......

club salsa, fitzwilliam museum, parkside pools,
holy trinity church, jesus green outdoor pool, the churchill

college, scott polar museum, peoples portraits exhibition at
girton college, old schools, museum of classical

archaeology, ......

centre
museum, college, entertainment, 

west, nightclub, east, 
south, museums, north, park

club salsa, the fitzwilliam museum, parkside pools, holy trinity
church, jesus green outdoor pool, churchill college, scott polar

museum, people's portraits exhibition at girton college, old
schools,  museum of classical archaeology, ......

north, centre|west,
east, south, 
centre, west, 

dontcare

True Slot Ontology Predicted Slot Ontology

Area Type

Name

Figure 6.2: True slot ontology v.s. predicted slot ontology of the attraction domain in the MultiWOZ.

Mis-clustered tokens are marked in bold and red. Slot names are unknown but it will not affect the

structure extraction procedure.

where S ′
j is the j-th predicted slot group. Three clustering algorithms including KMeans [AV06],

Birch [ZRL96], and Agglomerative Clustering [Mul11] are evaluated. Note that there is no guarantee

that S ′
j can be mapped to any predefined slot type Sj . A clustered example is shown in Figure 6.2.

More details about clustering are explained in section 6.4.

6.3.3 Deterministic Dialogue State Labeling

The slot boundary detection and clustering are followed by a deterministic procedure to construct

the dialogue structure. To begin with, we initialize the dialogue state as z0 = [0, 0, ..., 0]. Then

in dialogue turn k, for each slot token span Ti detected, if the clustering algorithm determines

Ti ∈ S ′
j , we increment M(S ′

j) by one. Table 6.1 demonstrates this procedure. In this way, we

label each dialogue session with its extracted dialogue states without any state annotation. The

dialogue structure is then depicted by representing distinct dialogue states as nodes. Due to the

variety of M(S ′
j), the number of dialogue states is always larger than the number of slots, as shown

in Table 6.3. We connect an edge between a pair of nodes if there is such a transition in the data,

and the edge is labeled as the normalized transition probability from the parent node.
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Domain Taxi Restaurant Hotel Attraction Train

#samples 435 1,311 635 135 345

#slots 4 7 10 3 6

#states 29 206 734 11 85

Table 6.3: Statistics of the MultiWOZ [BWT18] dataset. #states are number of annotated distinct

dialogue states.

6.4 Experiment

6.4.1 Datasets

MultiWOZ [BWT18] is a common benchmark for task-oriented dialogues. It has 8,420/1,000/1,000

dialogues for train, validation, and test, respectively. We use its revised version MultiWOZ

2.1 [EGP20], which has the same dialogue transcripts but with cleaner state label annotation.

Table 6.3 shows some statistics of the MultiWOZ dataset. The MultiWOZ has five domains of

dialogues: taxi, restaurant, hotel, attraction, and train. We hold out each of the domain for testing

and use the remaining four domains for SBD training. Note that some of the target slots are not

presented in the training slots, e.g., “stay”, “stars”, and “internet” only appear in the hotel domain.

To evaluate the transferability of the approach, we also tried to train the slot boundary detector

on another two public datasets, ATIS [THH10, GGH18] and Snips [CSB18]. The ATIS dataset

includes recordings of people making flight reservations and contains 4,478 utterances in its training

set. The Snips dataset is collected from the Snips personal voice assistant and contains 13,084

training utterances. We train the SBD model on their training split and test on the selected domain

of MultiWOZ. Examples are shown in Table 6.2.
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6.4.2 Setup

We conduct extensive experiments to compare our approach with different baseline models. The

ground truth construction follows the same deterministic procedure by counting the modification

times of annotated slot values, instead of the spans predicted by our algorithm. We describe details

of the baseline models as follows.

• Random Every conversational turn is randomly assigned a state by selecting a number from

1 to the ground truth #states in Table 6.3.

• VRNN Dialogues are reconstructed with Variational Recurrent Neural Networks [SZY19,

QZS20], which is a recurrent version of Variational Auto-Encoder (VAE). The extracted

structure represents the transition among discrete latent variables.

• BERT-KMeans/Birch/Agg Each conversational turn is encoded by BERT with the final

hidden state of [CLS] token. The utterance encodings are then clustered with Kmeans, Birch,

and Aggolomerative clustering methods.

z = clustering(hCLS) (6.5)

Number of clusters are directly set to the #states.

• TOD-BERT-mlm/jnt This is similar to the previous baseline but encoding utterances with

TOD-BERT. TOD-BERT [WHS20] is based on BERT architecture and trained on nine task-

oriented datasets using two loss functions: masked language modeling (MLM) loss and

response contrastive loss (RCL). TOD-BERT-mlm only uses the MLM loss, while TOD-

BERT-jnt is jointly trained with both loss functions. The utterance encodings are clustered

with KMeans.

• (TOD-)BERT-spaCy Instead of training a slot boundary detector based on BERT, we im-

plement a heuristic-based detector with spaCy1. Words are labeled as slot spans if they are

1https://spacy.io/
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nouns. Suppose it detects n slot words {w1..., wn} in the ui utterance, the j-th word has |wj|

sub-tokens, the BERT/TOD-BERT encoding of the k-th sub-token of this word is hjk. Then

we represent this turn as:

ui =
1

n

n∑
j=1

1

|wj|

|wi|∑
k=1

hjk. (6.6)

In this method, we do not cluster slot representations, but we use average slot embedding to

represent the whole utterance. Then ui are clustered to #states clusters with KMeans:

zi = clustering(ui). (6.7)

• TOD-BERT-SBDMWOZ This is similar to the previous approach. But instead of using a

heuristic-based detector, the TOD-BERT is trained for SBD in training domains of MultiWOZ

and detect slot tokens in the test domain, and then we use those detected slot embeddings to

represent each utterance.

• TOD-BERT-DETATIS/SNIPS/MWOZ The TOD-BERT is trained for SBD in the ATIS, Snips,

or the MultiWOZ training domains. Then in the test domain of MultiWOZ, we follow the

deterministic dialogue state labeling process described in section 6.3.3, instead of clustering

utterance embeddings, to extract a structure.

We use English uncased BERT-Base model, which has 12 layers, 12 heads, and 768 hidden states.

We train BERT (or TOD-BERT) on the Slot Boundary Detection (SBD) task with AdamW [LH17]

optimizer using a dropout rate of 0.1. The model is trained with an initial learning rate of 5e−5 for

5 epochs on two NVIDIA Tesla V100 GPUs.

6.4.3 Results and Analysis

Table 6.4 shows the empirical results of Slot Boundary Detection. We report the F1 score in both

slot level (F1slot) and token level (F1token). In the slot level, a slot prediction is considered correct

only when an exact match is found, which doesn’t reward token overlap (partial match). In general,
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F1slot F1token

Method Taxi Restaurant Hotel Attraction Train Taxi Restaurant Hotel Attraction Train

spaCy 0.43 0.48 0.47 0.33 0.39 0.28 0.21 0.21 0.16 0.23

TOD-BERTATIS 0.57 0.56 0.52 0.45 0.62 0.57 0.54 0.44 0.43 0.60

TOD-BERTSNIPS 0.50 0.53 0.48 0.41 0.52 0.55 0.49 0.41 0.37 0.51

TOD-BERTMWOZ 0.90 0.89 0.84 0.91 0.84 0.90 0.89 0.82 0.91 0.84

Table 6.4: Slot boundary detection results tested in the MultiWOZ.

BERT-based slot boundary detectors perform better than the heuristic-based detector. Because

utterances in MultiWOZ share similar interaction behaviors and utterance lengths, it makes the

model easier to transfer from one domain to another within MultiWOZ than from the ATIS and

Snips to the MultiWOZ.

ARI AMI SC

Taxi Rest. Hotel Attr. Train Taxi Rest. Hotel Attr. Train Taxi Rest. Hotel Attr. Train

Random 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

VRNN 0.05 0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.01 0.06 - - - - -

BERT-KMeans 0.02 0.01 0.01 0.01 0.01 0.11 0.09 0.02 0.03 0.06 0.11 0.08 0.06 0.13 0.09

TOD-BERT-mlm 0.02 0.01 0.01 0.03 0.02 0.13 0.11 0.03 0.06 0.10 0.12 0.08 0.06 0.17 0.09

TOD-BERT-jnt 0.03 0.02 0.02 0.03 0.03 0.16 0.13 0.06 0.08 0.14 0.09 0.08 0.06 0.13 0.07

BERT-spaCy 0.01 0.06 0.04 0.01 0.01 0.09 0.18 0.12 0.06 0.08 - - - - -

TOD-BERT-spaCy 0.01 0.03 0.05 0.02 0.01 0.09 0.15 0.12 0.05 0.05 - - - - -

TOD-BERT-SBDMWOZ 0.15 0.00 0.00 0.00 0.05 0.17 0.13 0.04 0.06 0.16 0.39 0.34 0.27 0.44 0.34

TOD-BERT-DETATIS 0.08 0.05 0.09 0.03 0.06 0.26 0.22 0.25 0.15 0.26 - - - - -

TOD-BERT-DETSNIPS 0.06 0.05 0.11 0.03 0.04 0.25 0.23 0.22 0.09 0.22 - - - - -

TOD-BERT-DETMWOZ 0.15 0.22 0.24 0.33 0.24 0.39 0.48 0.44 0.44 0.44 - - - - -

Table 6.5: Structure extraction results using clustering metrics in the MultiWOZ dataset. SC is

omitted for methods that do not encode utterances directly. Results using BERT-Birch and BERT-

Agg are reported in Appendix 6.6.

We further analyze the performance of structure extraction, as shown in Table 6.5. We evaluate

the model performance with clustering metrics, testing whether utterances assigned to the same

state are more similar than utterances of different states. Given the knowledge of the ground truth
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dialogue state assignments and the model assignments of the same utterances, the Rand Index (RI)

is a function that measures the similarity of the two assignments. Mathematically,

RI =
a+ b

C
nsamples
2

,

ARI =
RI− E[RI]

max(RI)− E[RI]
,

(6.8)

where a is the number of pairs of elements that are assigned to the same set by both the ground

truth and the model, b is the number of pairs of elements that are assigned to different sets by both,

C
nsamples
2 is the total number of pairs in the dataset. The Adjusted Rand Index (ARI) corrects for

chance and guarantees that random assignments have an ARI close to 0. For a comprehensive

analysis, we also report Adjusted Mutual Information (AMI) and Silhouette Coefficient (SC). While

both ARI and AMI require the knowledge of the ground truth classes, the Silhouette Coefficient

(SC) evaluates the model itself but needs utterance representations to compute the distance. Thus,

we do not report SC for methods such as TOD-BERT-DET.

SC =
b− a

max(a, b)
, (6.9)

where a is the mean distance between the sample and all other points in the same class, b is the

mean distance between a sample and all other points in the next nearest cluster.

We observe a negligible effect of using different clustering algorithms on the structure extraction

performance. As we can see in Table 6.5, the VRNN baseline performs not so well, because their

dialogue states are defined in a latent space while the ground truth we compare with is based on

the accumulative status of slots. Switching the encoder from the original BERT to TOD-BERT

provides a slight improvement. Using a spaCy-based detector can have inaccurate slot detection, so

the performance of (TOD-)BERT-spaCy are worse than TOD-BERT-SBDMWOZ. Simply averaging

the detected slot token encodings for utterance clustering will also lose the information of individual

slot changes. Compared with these baselines, our approach TOD-BERT-DETMWOZ/ATIS/SNIPS based

on slot boundary detection and deterministic dialogue state labeling outperforms others by a large

margin. In Figure 6.3 and Figure 6.4, we show the robustness of the proposed TOD-BERT-DETMWOZ
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to an inaccurate estimation of #slots. In Appendix 6.6, we show example utterances that are predicted

as the same state in different domains.

Estimated #slots

0.0

0.1

0.2

0.3

0.4

2 4 6 8 10 12

Taxi Restaurant Hotel Attraction Train

ARI

Figure 6.3: Evaluation of the proposed TOD-BERT-DETMWOZ’s robustness to estimated #slots.

Stars are the ground truth.

Estimated #slots

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

Taxi Restaurant Hotel Attraction Train

AMI

Figure 6.4: Evaluation of the proposed TOD-BERT-DETMWOZ’s robustness to estimated #slots.

Stars are the ground truth.
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6.5 Data Augmentation

Conversations have an intrinsic one-to-many property, meaning that multiple responses can be

appropriate for the same dialog context [ZOY20]. Leveraging this property, we augmented training

data to improve end-to-end dialogue response generation based on the extracted structure. Specifi-

cally, we build a dictionary mapping from the dialogue state to its different valid utterances. Then

we enable this dictionary to create additional data during training, which allows a language model

to learn a balanced distribution. In the following sections, we will briefly introduce the task of

single-turn dialogue response generation, the baseline augmentation approach called Most Frequent

Sampling [GLI21], and the proposed Multi-Response Data Augmentation.

6.5.1 Single-Turn Dialogue Generation

Training a single-turn dialogue response generative model is to learn an autoregressive (AR) model

that maximize the log-likelihood L of ground truth response R = xn+1, ..., xT conditioned on

dialogue history C = x1, ..., xn, which is encoded by dialogue state z:

L =
∑
i∈D

logP (Ri|Ci)

=
∑
i∈D

log
T∏

t=n+1

p(xt|x1, ..., xt−1),

(6.10)

where i is each turn in dialogue corpus D. For a number of dialogue history Ci belonging to

the same state z, there exits K different system responses R(1), ..., R(K) that are valid, i.e., for

j = 1, ..., K,∃i ∈ D s.t. (zi, Ri) = (z, R(j)). We denote the valid system response set for dialogue

state z as V(z).

6.5.2 Most Frequent Sampling

[GLI21] proposed Most Frequent Sampling (MFS) as a data augmentation strategy based on the

annotated conversational graph. MFS generates novel training instances so that the most frequent
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agent actions are preceded by new histories, which is one or more original paths leading to common

actions. The authors observed the best performance when they combined extra data augmented

from MFS with the baseline training data.

6.5.3 Multi-Response Data Augmentation

However, augmented with the Most Frequent Sampling, it may exaggerate the frequency imbalance

among valid responses, resulting in a lower response diversity. The original MFS also depends

on annotated dialogue states from the MultiWOZ. To alleviate the problems, we propose Multi-

Response Data Augmentation (MRDA) to balance the valid response distribution of each state z

based on our extracted dialogue structure. Concretely, for each dialog turn i with state-response

pair (zi, Ri), we incorporate other valid system responses under the same state, i.e., Ri′ , i
′ ̸= i with

zi′ = zi, as additional training data for turn i. The new objective function becomes:

Laug =
∑
i∈D

∑
Ri′∈V∗(zi)

logP (Ri′ |Ci), (6.11)

where V∗(zi) ⊆ V(zi) is a subset of the valid response set V(zi) of dialogue state zi, zi is the

predicted dialogue state of history Ci. The idea is similar to the Multi-Action Data Augmentation

(MADA) proposed by [ZOY20], but our method doesn’t need to train an action decoder to generate

responses and no annotated dialogue states are required.

6.5.4 Setup

We compare our MRDA approach with the MFS baseline in the MultiWOZ dataset. We used the

ground truth dialogue states for MFS as in its original paper. For MRDA, we hold out each of

the domains for testing and use the remaining four domains for SBD training and dialogue state

prediction. The data of each held-out domain is split into train (60%), valid (20%), and test (20%),

which are used for language model training and testing. To evaluate both methods in a realistic

setting where training data is limited and augmentation is required, we adjust the ratio between

actually used training data and total training data, denoted by rtrain. Moreover, to explore the impact
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Perplexity↓ Taxi Rest. Hotel Attr. Train

Original train 4.88 4.46 6.16 7.75 6.58

+ MFS 5.34 6.54 7.17 8.39 6.91

+ MRDA 4.64 3.69 5.57 3.91 5.83

BLEU↑ Taxi Rest. Hotel Attr. Train

Original train 9.88 12.54 8.68 8.46 8.93

+ MFS 9.73 12.56 7.54 9.21 7.64

+ MRDA 22.13 18.77 10.66 47.79 9.20

Table 6.6: Response generation in the MultiWOZ with data augmentation (rtrain = 1.0, raug = 1.0).

of augmented data size, we define raug as the ratio between the size of augmented samples and used

training samples. The DIALOGPT [ZSG20] model is trained with the data for 5 epochs with a

learning rate of 3e−5 to generate single-turn responses.

6.5.5 Results and Analysis

The generation perplexity and BLEU scores in the five domains of the MultiWOZ are reported

in Table 6.6. Both augmentation methods first double the original training samples, i.e., rtrain =

1.0, raug = 1.0. By augmenting the data, we reduce the perplexity by an average of 1.24 and improve

the BLEU score by an average of 12.01. The results also demonstrate our approach outperforms the

MFS baseline by an average of 2.14 in perplexity and 12.37 in BLEU, because the MRDA balances

the valid response distribution. Our approach also doesn’t require any annotation of the test domain.

To explore the impact of available training data size and augmented data size, we try different

combinations of the rtrain and raug, and illustrate the results in Figure 6.5 and Figure 6.6 (numbers

attached in Appendix 6.6). The figures show that: (i) Our MRDA approach constantly improves

the generation performance in both metrics, and it outperforms the MFS baseline regardless
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Figure 6.5: Data Augmentation (perplexity↓) in the MultiWOZ. Blue: MFS. Red: MRDA (ours).

Figure 6.6: Data Augmentation (BLEU↑) in the MultiWOZ. Blue: MFS. Red: MRDA (ours).

of the original data size. (ii) Data augmentation based on a larger training set provides more

performance boost because the language model is trained with more data and different valid

responses are balanced. These observations suggest that our extracted dialogue structure can

successfully augment meaningful dialogue for response generation, with the potential to improve

other dialogue downstream tasks such as policy learning and summarization. We also include

example augmented dialogues in the Appendix 6.6.

Table 6.7 reports how many states are overlapped in the MultiWOZ, using the slot value

annotation and our dialogue state definition. It shows that our test set has no distinct dialogue state

that never appears in the train or valid sets, while this may not be the case in practice. The MRDA

method creates new instances that follow existing dialogue flows but with different surface formats,

while it remains a compelling direction to create completely new state sequences by discovering

causal dependencies in the extracted structures.

6.6 Appendix
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State Overlap Taxi Rest. Hotel Attr. Train

Train Only 9 97 387 0 25

Valid Only 0 12 51 0 7

Test Only 0 0 0 0 0

Train & Valid 18 68 148 10 38

Train & Test 16 55 99 9 32

Test & Valid 16 62 141 9 37

Train & Valid & Test 16 55 99 9 32

Table 6.7: Annotated dialogue state overlap across train, valid, and test splits in the MultiWOZ

dataset.

Figure 6.7: Dialogue structure in the taxi domain of the MultiWOZ. The structure on the left is

from annotated dialogue states, while the right one is extracted by our approach.
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Figure 6.8: Dialogue structure in the restaurant domain of the MultiWOZ. The structure on the left

is from annotated dialogue states, while the right one is extracted by our approach.

Figure 6.9: Dialogue structure in the hotel domain of the MultiWOZ. The structure on the left is

from annotated dialogue states, while the right one is extracted by our approach.
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Figure 6.10: Dialogue structure in the train domain of the MultiWOZ. The structure on the left is

from annotated dialogue states, while the right one is extracted by our approach.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 10.28 (11.96) 10.90 (14.07) 10.17 (13.68) 9.67 (15.39) 12.25 (14.42)

0.3 7.77 (8.48) 8.44 (9.17) 6.66 (9.16) 8.05 (9.89) 8.27 (9.45)

0.5 7.60 (7.87) 6.09 (8.34) 7.28 (8.05) 5.00 (9.01) 5.85 (8.56)

0.7 6.01 (6.65) 5.58 (6.61) 5.65 (6.83) 5.40 (7.96) 5.13 (7.03)

0.9 5.75 (6.17) 5.28 (6.79) 5.62 (6.51) 5.52 (7.18) 5.08 (7.14)

Table 6.8: Data Augmentation with MRDA (perplexity↓) in the Taxi domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 11.36 (10.39) 10.09 (12.18) 9.91 (14.97) 10.57 (14.53) 9.90 (14.81)

0.3 7.17 (7.65) 6.96 (8.64) 6.96 (9.34) 6.99 (8.26) 6.78 (8.04)

0.5 6.10 (6.47) 5.70 (6.78) 5.66 (7.27) 5.85 (7.07) 5.96 (7.93)

0.7 5.61 (5.84) 5.13 (5.86) 5.00 (6.64) 5.29 (6.19) 5.27 (6.46)

0.9 5.14 (5.32) 4.58 (5.64) 4.96 (5.78) 4.50 (5.75) 4.28 (6.18)

Table 6.9: Data Augmentation with MRDA (perplexity↓) in the Restaurant domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.
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rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 17.17 (18.31) 14.90 (25.47) 18.39 (24.60) 16.75 (40.37) 16.52 (30.99)

0.3 10.45 (12.12) 11.45 (12.15) 11.22 (14.33) 11.21 (16.43) 11.08 (17.94)

0.5 9.38 (10.57) 8.60 (11.35) 10.06 (13.52) 8.40 (13.81) 10.22 (16.71)

0.7 8.05 (8.71) 9.12 (9.80) 8.28 (11.69) 8.85 (12.66) 8.62 (13.31)

0.9 7.45 (7.98) 7.36 (9.08) 7.22 (10.04) 7.39 (11.65) 7.20 (12.98)

Table 6.10: Data Augmentation with MRDA (perplexity↓) in the Hotel domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 20.70 (21.61) 19.74 (21.30) 18.57 (30.25) 18.26 (23.63) 15.67 (30.17)

0.3 11.88 (14.29) 12.69 (15.65) 12.52 (16.07) 9.61 (17.93) 14.98 (18.71)

0.5 12.06 (12.18) 10.41 (14.43) 13.66 (13.49) 8.95 (14.35) 11.37 (15.27)

0.7 10.17 (10.66) 9.81 (11.70) 10.97 (11.74) 12.59 (11.27) 8.78 (13.61)

0.9 9.84 (10.00) 6.89 (10.46) 8.26 (12.42) 5.28 (11.52) 7.68 (11.20)

Table 6.11: Data Augmentation with MRDA (perplexity↓) in the Attraction domain of the Multi-

WOZ. Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 14.71 (18.41) 16.74 (18.31) 18.67 (22.44) 13.96 (21.89) 15.05 (28.61)

0.3 11.36 (11.29) 10.98 (14.00) 9.25 (14.07) 10.68 (15.73) 10.92 (13.93)

0.5 8.51 (9.90) 7.62 (9.26) 8.47 (10.11) 7.70 (11.13) 9.30 (12.30)

0.7 8.38 (8.49) 6.88 (9.46) 7.24 (10.28) 7.58 (10.78) 7.61 (10.18)

0.9 6.85 (8.30) 6.93 (8.80) 6.33 (8.70) 7.31 (8.42) 7.43 (9.16)

Table 6.12: Data Augmentation with MRDA (perplexity↓) in the Train domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.
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rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 7.34 (6.69) 7.97 (5.73) 7.15 (6.18) 7.41 (5.57) 7.19 (5.67)

0.3 8.02 (7.79) 8.02 (7.75) 10.67 (7.05) 12.04 (7.51) 10.77 (7.11)

0.5 8.49 (7.04) 10.47 (8.77) 7.55 (6.96) 13.27 (5.86) 13.70 (4.63)

0.7 10.34 (8.34) 12.03 (7.77) 11.29 (5.60) 10.44 (4.97) 18.15 (6.39)

0.9 9.35 (7.79) 9.46 (8.93) 10.36 (6.58) 10.98 (7.20) 20.16 (8.31)

Table 6.13: Data Augmentation with MRDA (BLEU↑) in the Taxi domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 10.47 (9.45) 9.24 (9.32) 8.96 (9.30) 10.39 (6.20) 11.76 (9.44)

0.3 10.04 (9.98) 11.74 (10.33) 12.20 (10.57) 12.35 (11.29) 13.63 (11.32)

0.5 12.84 (12.14) 14.70 (11.89) 15.46 (13.45) 16.71 (12.78) 15.96 (13.58)

0.7 13.33 (12.33) 15.61 (13.29) 17.67 (12.49) 16.68 (12.80) 19.13 (12.13)

0.9 13.64 (13.84) 14.71 (11.99) 17.13 (12.93) 17.39 (13.03) 22.87 (13.66)

Table 6.14: Data Augmentation with MRDA (BLEU↑) in the Restaurant domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 6.32 (5.00) 6.80 (6.97) 7.35 (6.27) 7.54 (5.84) 7.28 (5.14)

0.3 6.94 (6.60) 6.98 (5.96) 8.79 (6.48) 9.22 (6.86) 11.28 (6.21)

0.5 8.07 (8.05) 7.91 (7.43) 8.43 (7.17) 12.32 (6.45) 9.12 (7.39)

0.7 9.16 (8.32) 7.05 (7.88) 8.92 (7.64) 11.00 (7.62) 12.67 (7.62)

0.9 8.61 (9.60) 10.89 (7.90) 11.06 (9.43) 12.24 (7.52) 12.89 (7.15)

Table 6.15: Data Augmentation with MRDA (BLEU↑) in the Hotel domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.
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rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 4.20 (4.36) 3.61 (2.59) 4.60 (4.60) 7.24 (3.15) 6.16 (5.52)

0.3 6.40 (5.26) 9.50 (9.40) 9.55 (6.60) 15.35 (7.39) 6.21 (4.17)

0.5 6.96 (5.90) 10.96 (5.77) 7.46 (7.36) 13.06 (7.25) 8.81 (7.45)

0.7 8.14 (4.93) 12.40 (7.65) 13.41 (7.76) 16.54 (2.58) 12.19 (7.14)

0.9 10.22 (6.94) 9.52 (8.06) 19.13 (6.51) 27.91 (8.71) 22.50 (10.01)

Table 6.16: Data Augmentation with MRDA (BLEU↑) in the Attraction domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.

rtrain|raug 0.1 0.3 0.5 0.7 0.9

0.1 3.83 (3.77) 6.13 (3.72) 3.35 (4.14) 4.51 (2.94) 5.09 (3.31)

0.3 5.78 (5.66) 5.42 (5.33) 5.84 (3.55) 6.48 (4.17) 9.73 (4.88)

0.5 5.70 (6.24) 7.02 (6.69) 5.79 (4.67) 8.02 (6.66) 12.52 (5.21)

0.7 5.58 (3.81) 8.79 (6.83) 6.56 (5.44) 8.85 (6.34) 12.21 (7.43)

0.9 9.34 (6.45) 7.82 (6.61) 8.08 (4.25) 9.51 (6.84) 10.79 (6.70)

Table 6.17: Data Augmentation with MRDA (BLEU↑) in the Train domain of the MultiWOZ.

Numbers in the parenthesis are using MFS.
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ARI AMI SC

Taxi Rest. Hotel Attr. Train Taxi Rest. Hotel Attr. Train Taxi Rest. Hotel Attr. Train

Random 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - - -

VRNN 0.05 0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.01 0.06 - - - - -

BERT-KMeans 0.02 0.01 0.01 0.01 0.01 0.11 0.09 0.02 0.03 0.06 0.11 0.08 0.06 0.13 0.09

BERT-Birch 0.02 0.01 0.01 0.01 0.01 0.12 0.09 0.02 0.03 0.06 0.07 0.06 0.08 0.09 0.07

BERT-Agg 0.02 0.01 0.01 0.01 0.01 0.11 0.09 0.02 0.05 0.07 0.08 0.05 0.08 0.11 0.07

TOD-BERT-mlm 0.02 0.01 0.01 0.03 0.02 0.13 0.11 0.03 0.06 0.10 0.12 0.08 0.06 0.17 0.09

TOD-BERT-jnt 0.03 0.02 0.02 0.03 0.03 0.16 0.13 0.06 0.08 0.14 0.09 0.08 0.06 0.13 0.07

BERT-spaCy 0.01 0.06 0.04 0.01 0.01 0.09 0.18 0.12 0.06 0.08 - - - - -

TOD-BERT-spaCy 0.01 0.03 0.05 0.02 0.01 0.09 0.15 0.12 0.05 0.05 - - - - -

TOD-BERT-SBDMWOZ 0.15 0.00 0.00 0.00 0.05 0.17 0.13 0.04 0.06 0.16 0.39 0.34 0.27 0.44 0.34

TOD-BERT-DETATIS 0.08 0.05 0.09 0.03 0.06 0.26 0.22 0.25 0.15 0.26 - - - - -

TOD-BERT-DETSNIPS 0.06 0.05 0.11 0.03 0.04 0.25 0.23 0.22 0.09 0.22 - - - - -

TOD-BERT-DETMWOZ 0.15 0.22 0.24 0.33 0.24 0.39 0.48 0.44 0.44 0.44 - - - - -

Table 6.18: Complete structure extraction results using clustering metrics in the MultiWOZ dataset.

SC is omitted for methods that do not encode utterances directly. BERT with different clustering

methods are included.
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Domain Original Augmented

Taxi

[USR] I would like a taxi from Saint John’s college to Pizza Hut Fen Ditton.

[SYS] What time do you want to leave and what time do you want to arrive by?

[USR] I want to leave after 17:15.

[USR] Booking completed!

Your taxi will be blue honda Contact number is 07218068540

[USR] Thank you for all the help! I appreciate it.

[SYS] You are welcome. Is there anything else I can help you with today?

[USR] No, I am all set. Have a nice day. Bye.

[SYS] you too! thank you

[USR] From museum of classical archaeology to london kings cross

train station, please

[SYS] I have ordered one for you their pick up time is 1:00pm.

Is this time okay or do you need a different time?

[USR] Please pick me up at the scott polar museum

[SYS] Okay, I’ve booked a taxi for you.

[USR] Could you give me the car type and contact number?

[SYS] Certainly, the car is a white Honda, and the contact number is 07135860962.

[USR] Got it. Thanks for helping me.

[SYS] Your welcome. Have a great time.

Restaurant

[USR] Can you help me find Restaurant One Seven?

[SYS] I have Restaurant One Seven located in Centre,

phone number is 01223337766.

Would you like for me to make a reservation for you?

[USR] I would like to book for two on Wednesday, at 17:15.

[SYS] I have you booked Wednesday at 17:15 a table for 2,

this table will hold for 15 mins and your reference number is GXO64LG8.

[USR] Great, thanks! That’s all I needed!

[SYS] You’re welcome! Have a great day. Goodbye.

[USR] I am looking for a particular restaurant. It is called pizza hut city centre.

[SYS] It’s a cheap italian place in the centre at Regent Street City Centre cb21ab.

The phone number is 01223323737. Would you like more info?

[USR] That sounds like just the place!

Can you book me a table for 2 at 19:45 on Thursday?

[SYS] You’re all set. I’ve got a table for 2 at 19:45 this Thursday.

Your reference number is F3K2PQZZ.

[USR] Ok sounds good. Thank you!

[SYS] You are welcome. Is there anything else I can assist you with today?

[USR] That is all. Thank you for your help!

[SYS] You’re welcome. Have a great day.

Hotel

[USR] I need a place to stay in the north please.

[SYS] There are 13 places to stay in the north.

Do you have any other criteria?

[USR] I don’t want to have to pay for parking.

[SYS] I have 5 different gueshouses listed.

For what day and for how many please?

[USR] For 3 people starting on Wednesday and staying 2 nights.

[SYS] There are 11 hotels available actually.

Would you like to narrow it to a specific price range or star rating?

[USR] Just a guesthouse in the north with free parking.

I’ll need a reference number then too please.

[SYS] I was able to get you in at Archway House.

Your reference number is WUMUZ0JX.

Can I help you with anything else?

[USR] That’s all I need today. Thanks! Bye!

[SYS] Thank you for using our system!

[USR] north area of town

[SYS] There are two hotels in that area with free parking:

Ashley Hotel and the Lovell lodge.

Would you like to book either of those?

[USR] Actually, I’d like a guest house.

[SYS] how about hamilton lodge? It sounds lovely.

[USR] Can you see if either of them are available

for 2 nights for 5 people starting on Thursday,

I have no preference for which one.

[SYS] Both of those hotels are completely booked up when trying to fit that criteria.

Perhaps we can try different specifications?

Attraction

[USR] Someone told me about a place called Old Schools.

It’s supposed to be some kind of attraction.

Can you tell me anything about it?

[SYS] Old schools is an architecture museum in the centre area.

The admission is free. Would you like tickets?

[USR] Yes, please. That would be great.

[SYS] I just checked and it is free.

The address is trinity lane and the phone number is 01223332320.

Can I help you with anything else?

[USR] No, that is all for today. Thanks so much!

[SYS] You’re welcome! Have a great day!

[USR] Yes, hello. I’m looking for a particular attraction called Downing College.

[SYS] t is located on \tregent street, in the centre.

[USR] Thank you so much!

[SYS] You are welcome! Did you need anything else today?

[USR] No, that was all. Good bye.

[SYS] Thanks and enjoy!

Train

[USR] am looking for a train, it should go to cambridge and

should depart from norwich

[SYS] What time and day are you looking to travel?

[USR] Yes, I would like travel on Monday and I would need to arrive by 08:30.

[SYS] TrainID TR9020 leaves norwich on monday and

arrives in cambridge at 06:35.

[USR] What is the price for the train?

[SYS] The cost will be 17.60 pounds.

Would you like more information about that?

[USR] What time does the train leave?

[SYS] it leaves at 05:16”,

[USR] Thanks, that’s all. Good bye.\n

[SYS] Goodbye and thanks for using the help desk.

[USR] I am looking for a train out of kings lynn please.

[SYS] Where will you be going?

[USR] I want to go to Cambridge.

[SYS] When will you be leaving?

[USR] yes. i should leave after 13:45 and should leave on thursday

[SYS] I have a train leaving Thursday at 13:59,

would you like me to book it for you?

[USR] Could you tell me when the train arrives in London Liverpool Street?

[SYS] That train arrives at 15:27. Would you like me to book it for you?

[USR] yes pliz.may i also get the arrival time

[SYS] The arrival time is by 15:27, do you want to book a seat?

[USR] Not yet. I just needed to get the details. Thanks for helping me. Goodbye.

[SYS] Thank you for using our services. Do you need any further assistance?

Table 6.19: Examples of generated dialogues by the Multi-Response Data Augmentation in the

MultiWOZ.
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State/Utts State 0 State 1 ...

Taxi

Utt. 0
[usr] I would like a taxi from Saint John’s college to Pizza Hut Fen Ditton.

[sys] What time do you want to leave and what time do you want to arrive by?

[usr] I would like to be picked up at the cambridge belfy and go to the cambridge shop.

[sys] I’m sorry, are you going to the Cambridge shop house,

or did you mean the cambridge shop?

...

Utt. 1

[usr] I need to book a taxi to come to Express by Holiday Inn Cambridge

to take me to the Oak Bistro.

[sys] Okay, waht time do you want to leave by?

[usr] I want to be picked up at frankie and bennys please.

[sys] I’ve booked a black Honda, the contact number is 07796011098.

[usr] Great, thank you for your help.

[sys] No problem. Are you finished?

...

Utt. 2
[usr] I want to depart from sidney sussex college.

[sys] Great. Now I’ll just need a time from you please.

[usr] I am departing from la tasca.

[sys] I have booked a grey BMW, the contact number os 07618837066.

[usr] Thanks so much for your help.

[sys] Thank you goodbye.

...

Utt. 3 ... ... ...

Restaurant

Utt. 0

[usr] I need help finding a place to eat called curry garden.

[sys] Curry garden is an expensive restaurant that serves Indian food.

Do you want me to book it for you?

[usr] Yes, please.I need one for friday at 13:45. I’ll be dining alone.

[sys] I apologize but I was unable to book you for the restaurant.

Would you like for me to find you another restaurant?

...

Utt. 1

[usr] I’m trying to find a restaurant called the Slug and Lettuce.

Do you know where that is?

[sys] Yes it is in the centre area.

[usr] 5 people on a Wednesday at 19:45.

[sys] You got it. Here is your reference number: P9D58C0O.

[usr] Thank you for help. That’s everything I needed.

[sys] Have a great day!

...

Utt. 2
[usr] I need to get to a restaurant known as the Lucky star.

[sys] It is located at Cambridge Leisure Park Clifton Way Cherry Hinton.

[usr] Yes I would, for 3 people Wednesday at 18:15.

[sys] Unfortunately, the restaurant is full at this time.

Is there another time or day I can reserve for you?

...

Utt. 3 ... ... ...

Hotel

Utt. 0

[usr] I would really like something expensive.

[sys] Unfortunately, I can’t find any that are expensive.

Let’s try a different price range.

[usr] Yes, please. 6 people 3 nights starting on tuesday.

[sys] I am sorry but I wasn’t able to book that for you for Tuesday.

Is there another day you would like to stay or perhaps a shorter stay?

...

Utt. 1

[usr] I need a guesthouse with a moderate price.

[sys] Do you have a preferred area of the city you’d like to stay in?

[usr] No, I don’t have a preference.

I’d like the guesthouse to have free parking though!

[sys] I found acorn guest house. It is moderately priced and has four stars!

Would you like me to book that for you?

[usr] Yes. I have heard great things about that guest house.

[sys] Your booking is complete. Your reference number is 33ZFXQ8P.

Is there anything else I can help you with today?

[usr] No, that’s all I needed today. Thank you!

[sys] Thank you for using our service today.”

...

Utt. 2

[usr] I’m looking for something that would be in the middle price point.

[sys] I have located 15 guesthouse types in the moderate price range.

Do you have a preference for a particular area of town?

[usr] That sounds perfect.

Can I book it for 5 nights starting on Monday for 3 people?

[sys] The Avalon doesn’t have room for 5 nights starting Monday.

How about a different day or a shorter stay?

...

Utt. 3 ... ... ...

Attraction

Utt. 0

[usr] Can you please help me find a place to go?

[sys] I’ve found 79 places for you to go.

Do you have any specific ideas in mind?

[usr] I’d like a sports place in the centre please.

[sys] There are no results matching your query.

Can I try a different area or type?

...

Utt. 1

[usr] I’m a tourist from out of town.

But, I was trying to find something fun to do near my hotel.

Could you recommend a place?

[sys] I would be more than happy to recommend an attraction,

first could you tell me in what part of town your hotel is located?

[usr] I’m looking for a place in the centre of town that is a nightclub.

[sys] There are 5 nightclubs in the centre area,

the one with the lowest entrance fee is soul tree nightclub which is 4 pounds to get in.

...

Utt. 2
[usr] I am looking for a place to go in town.

[sys] There are many places, do you have a particular destination type in mind?

[usr] Can you found me a swimming pool in the south part of town?

[sys] Unfortunately I was unable to find a pool at the south part of town,

however we have some north east and at the centre.

...

Utt. 3 ... ... ...

Train

Utt. 0

[usr] I am looking for a train departing from london liverpool please.

[sys] I’ll be glad to help.

You would like to from london liverpool street to what destination, please?

[usr] I want to leave on Friday.

[sys] Unfortunately, the only train I have matching your criteria is one leaving 23:59

and arriving at 01:27 in the morning.

Did you want to book that?

...

Utt. 1

[usr] I am looking for a train to go to London Kings Cross.

[sys] There are several available option to travel to Kings cross today.

What time would you like to travel?

[usr] I want to leave on Monday.

[sys] Great, TR5720 from london kings cross to cambridge leaves monday at 11:17.

Can I book this for you?

...

Utt. 2

[usr] I am looking for a train from Cambridge to Birmingham New Street.

[sys] The next train leaving from Cambridge for Birmingham New Street

departs Friday at 5:01, and will arrive by 7:44.

[usr] I would like to leave after 13:45.

[sys] There is a train that leaves at 15:00

would you like me to book that train for you?

...

Utt. 3 ... ... ...

Table 6.20: Predicted dialogue states for dialogues in the five domains of the MultiWOZ dataset.
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CHAPTER 7

Conclusion

In this dissertation, we discussed two important topics towards building the next generation of

dialogue systems: PART I: Emotional Intelligent Dialogue Systems and PART II: Structure Learning

in Dialogue Systems.

In Chapter 2, we introduce a new dataset for human value modeling, VALUENET, which

contains 21,374 scenarios in ten distinct human values. We also apply the learned value model from

VALUENET to several EQ-related dialogue tasks. Our experiments show our approach and dataset

provide a new way to control the dialogue system speaking style and numerically estimate one’s

value preference.

In Chapter 3, We propose a SocAoG model with α–β–γ processes for the consistent inference of

social relations in dialogues. The model can also leverage attribute information to assist the inference.

MCMC is proposed to parse the relation graph incrementally, enabling the dynamic inference upon

any incoming utterance. Experiments show that our model outperforms state-of-the-art methods;

case studies and ablation studies are provided for analysis.

In Chapter 4, we propose to build a socially intelligent agent by incorporating mind simulation

and human values. We explore using a hybrid parser to track agents’ mental state transition. The

value model pre-trained on VALUENET brings social preference to help the agent make decisions.

The model is proved to have a better performance than the state-of-the-art models on LIGHT.

In Chapter 5, we propose to inject structured attention into variational recurrent neural network

models for unsupervised dialogue structure learning. We explore two different structure inductive

biases: linear CRF for utterance-level semantic structure induction in two-party dialogues; and non-

115



projective dependency tree for interactive structure learning in multi-party dialogues. Both models

are proved to have a better structure learning performance over the state-of-the-art algorithms.

In Chapter 6, we propose a simple yet effective approach for structure extraction in task-oriented

dialogues. We define a task of Slot Boundary Detection and clustering to approximate the dialogue

ontology. We extract a semantic structure that explicitly depicts the state transitions in task-oriented

dialogues, without using state annotation during inference. Extensive experiments demonstrate

that our approach is superior to the baseline models in all the domains of the MultiWOZ dataset.

In addition, we demonstrate how to augment dialogue data based on our extracted structures to

improve end-to-end response generation remarkably.

Altogether, we are excited about the progress that has been made in the field of dialogue systems

and have been glad to be able to contribute to this area. At the same time, we believe there is still a

long way towards building human-like chatbots. A lot of open questions need to be addressed in the

future:

• Values. One challenge is to capture and encode the complete context for making value-driven

decisions. We are also interested in improving the modeling performance and extending

current formalism to non-English speaking cultures.

• Social relations. We will further explore how different initialization of the parse graph could

help warm start the inference under various situations and how multi-modal cues could be

leveraged.

• Mental states. Modeling and maintaining the mental states is another key challenge and

our approach is just one step towards solving the problem. Right now, we are not clear how

to model the deeper levels in the Theory of Mind and how to avoid the error propagation

throughout the interaction.

• Structure learning. We will further explore how to explicitly incorporate linguistics informa-

tion, such as named entities into the latent states. We also hope to encourage more researchers
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to work on comprehensive analysis and downstream application study of these extracted

dialogue structures.
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Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. “A Network-based End-to-End
Trainable Task-oriented Dialogue System.” In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pp. 438–449, Valencia, Spain, April 2017. Association for Computational
Linguistics.

[WZ11] Tianfu Wu and Song-Chun Zhu. “A numerical study of the bottom-up and top-down
inference processes in and-or graphs.” International journal of computer vision,
93(2):226–252, 2011.

133



[XLW21] Jun Xu, Zeyang Lei, Haifeng Wang, Zheng-Yu Niu, Hua Wu, and Wanxiang Che.
“Discovering Dialog Structure Graph for Coherent Dialog Generation.” In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 1726–1739, Online, August 2021. Association for Computational
Linguistics.

[XSZ20a] Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong Chng. “An Embarrassingly Simple
Model for Dialogue Relation Extraction.” arXiv preprint arXiv:2012.13873, 2020.

[XSZ20b] Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong Chng. “GDPNet: Refining Latent
Multi-View Graph for Relation Extraction.” arXiv preprint arXiv:2012.06780, 2020.

[YBJ97] Xue Yongqiang, Gao Baojiao, and Gao Jianfeng. “The theory of thermodynamics
for chemical reactions in dispersed heterogeneous systems.” Journal of colloid and
interface science, 191(1):81–85, 1997.
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