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Abstract

Rationale and Objectives.—Early prostate cancer detection and staging from MRI is 

extremely challenging for both radiologists and deep learning algorithms, but the potential to 

learn from large and diverse datasets remains a promising avenue to increase their performance 

within and across institutions. To enable this for prototype-stage algorithms, where the majority 

of existing research remains, we introduce a flexible federated learning framework for cross-site 

training, validation, and evaluation of custom deep learning prostate cancer detection algorithms.

Materials and Methods.—We introduce an abstraction of prostate cancer groundtruth that 

represents diverse annotation and histopathology data. We maximize use of this groundtruth if and 

when they are available using UCNet, a custom 3D UNet that enables simultaneous supervision 

of pixel-wise, region-wise, and gland-wise classification. We leverage these modules to perform 

cross-site federated training using 1400+ heterogeneous multi-parameteric prostate MRI exams 

from two University hospitals.

Results.—We observe a positive result, with significant improvements in cross-site 

generalization performance with negligible intra-site performance degradation for both lesion 

segmentation and per-lesion binary classification of clinically-significant prostate cancer. Cross-
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site lesion segmentation performance intersection-over-union (IoU) improved by 100%, while 

cross-site lesion classification performance overall accuracy improved by 9.5-14.8%, depending 

on the optimal checkpoint selected by each site.

Conclusion.—Federated learning can improve the generalization performance of prostate cancer 

detection models across institutions while protecting patient health information and institution-

specific code and data. However, even more data and participating institutions are likely required 

to improve the absolute performance of prostate cancer classification models. To enable adoption 

of federated learning with limited re-engineering of federated components, we open-source our 

FLtools system at https://federated.ucsf.edu, including examples that can be easily adapted to 

other medical imaging deep learning projects.

Keywords
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INTRODUCTION

Prostate cancer is the most prevalent cancer in American men but data shows that it affords 

a 99% survival rate if the cancer is detected early (1). Compared with the low specificity 

of PSA blood tests and the potential complications of invasive biopsy, screening based on 

magnetic resonance imaging (MRI) offers the potential of a fast, safe (non-invasive), and 

localized detection of prostate cancer that can aid in both diagnosis and treatment planning 

(2). Although the PI-RADS version 2.0 introduced much needed standardization of prostate 

MRI reporting (3), the scores associated with individual lesions has been shown to correlate 

poorly with the Gleason grade (cancer severity) determined by biopsy and histopathological 

analysis, with a positive predictive value of just 35% (4,5). While the introduction of 

PI-RADS version 2.1 aimed to improve this reporting system (6), the changes have been 

shown to have limited effect in improving overall cancer detection rates due to the changes 

only taking effect in a very small number of patients (7). As such, there is great interest 

in developing data-driven algorithms to assist and improve radiologists’ capabilities in 

detecting and staging of clinically-significant prostate cancer (CS-PCa).

Unfortunately, accurate and early MRI-based detection of prostate cancer has eluded 

machine learning and even deep learning algorithms to-date. While positive results have 

shown improved accuracy in staging of clinically-significant disease (Gleason patterns >3 

+ 3, Gleason grade group ≥2) (8), the overwhelming majority of deep learning prostate 

cancer detection studies have found similar accuracy to PI-RADS when utilizing screening 

populations with a balanced representation of Gleason grade groups (9). Such models 

still have clinical value, e.g. for transferring knowledge from expert radiologists, but 

requires models to have strong generalization behavior both within and across institutions, 

where MRI protocols, granularity of biopsy data, MRI hardware, and patient populations 

can vary significantly (10,11). This is especially important for application to screening 

populations where prostate cancer may present subtly, and single-site training may suffer 

from inadvertent bias or brittleness that ultimately limits performance even on data collected 

at the same institution.
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Federated learning (FL) presents an opportunity here to overcome these barriers, by offering 

a platform to share models and abundant data for extensive cross-site validation and 

enhanced model training without the need to share images or other sensitive protected health 

information (PHI). However, existing FL implementations have many limitations, such as 

the use of a limited set of only the most common neural network architectures, freezing 

of model code and data pipelines, intra- and inter-institution data homogeneity, or release 

of institution-specific code or data, which creates barriers for inclusion of research sites 

and limits the use of specialized approaches (12). This is especially prohibitive for medical 

imaging problems where patient examination protocols differ by research site, deep learning 

is still exploratory, and the community has not agreed on an ideal model architecture or data 

format, as is true for MRI-based assessment of prostate cancer.

Instead, what is needed is a flexible environment to apply deep learning models at scale, 

while retaining the ability to debug operations, modify model hyperparameters and data 

pipelines, and handle heterogeneous data formats, while maintaining security, privacy, and 

autonomy of code and data from participating institutions (Figure 1). Federated learning, 

in its truest sense, implies that each institution should be free to maintain separate 

implementations, as long as they adhere to the rules of federation, or in this case an 

application programming interface (API). To this end, in this paper we introduce a design 

pattern for federated learning of research prototypes, that provides a template API for FL 

with the following high-level features:

• Private institution-specific code and data stays private. Each institution does 

not need to share dataloading, pre-processing, or training code or with other 

institutions, or even the central server. For example, gradients or weights 

are shared via an API call, so institution-specific implementations are never 

revealed.

• All federated components and model code are public domain. This allows each 

institution to verify security, privacy, and operation of the FL system. Our threat 

model treats each institution as a trusted party, with the central server being 

honest but curious, and communication only over secure channels. Further, each 

client has programmatic control over what is sent to the central server, preventing 

erosions of contract.

• Custom models, training strategies, and federated aggregation are left to 
researchers. The sole requirement is for each client to provide a get_objects 

function that assembles objects for local training. The distributed training 

strategy (implemented in the backend using NVFlare (13), or similarly using 

Flower (14) is built on top of the local training objects–not code, so researchers 

are free to experiment with new models and strategies without modifying any 

federated components.

We concertize this design pattern in an open-source toolkit, FLtools, which provides the 

necessary model- and data-agnostic federated components to train any feed-forward deep 

neural network using federated learning using, with zero modifications to site-specific model 

architecture code or local training routines. We achieve this by defining data and model 

abstractions that are used by both local- and federated-training routines, but which can 
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crucially differ across federated clients and research sites. Our toolkit is freely available at 

https://federated.ucsf.edu, and includes a simulation system, FLsim, that allows for model 

debuging and inspection of intermediate tensors while applying the same routines used in 

the full-scale FL system.

As an illustrative example, in this paper we use FLtools to perform cross-institution 

training of a custom deep learning model for multi-parametric MRI-based detection and 

classification of prostate cancer. For this task, we the recently proposed UCNet model 

architecture (15), which features a fully-convolutional 3D UNet backbone with a 3D region-

of-interest (ROI) classification head that enables per-lesion, per-sextant, and ultimately 

per-exam prediction of prostate cancer severity. The UCNet model achieves this by utilizing 

a histogram representation of the International Society of Urological Pathology (ISUP) 

grade group (or Gleason grade group) (4) that reflects a common data representation for 

prostate cancer histopathology across research sites, which may themselves include exams 

and groundtruth histopathology data at various granularities. The flexible UCNet, combined 

with the proposed federated learning system, enables the use of herterogeneous exams with 

groundtruth data from targeted biopsy, systematic biopsy, and prostatectomy, as well as 

results reported at a lesion, sextant and whole gland level.

Prior Work

Prior work in federated learning (FL) includes both problems of theoretical interest (learning 

strategies under various constraints, such as communication bottlenecks, non-iid data, or 

privacy concerns) and of practical value; with the latter focusing on the development of tools 

and frameworks to alleviate various user constraints. McMahan et al. provides an excellent 

overview of various available FL frameworks and research problems (16). One of the 

primary practical challenges an FL system faces is making the workflow as straightforward 

as possible, ideally approaching the ease-of-use achieved by machine learning libraries for 

local (single computer) training. In this paper we address this pain point by developing a 

library and design pattern that extends NVidia’s NVFlare toolkit for federated training using 

reusable, replacable, and interoperable federated components.

Specifically for prostate cancer detection from MRI, several works have utilized federated 

learning. Sarma et al (11) used multi-center federated training improves prostate gland 

segmentation, an important sub-step in the search for prostate cancer biomarkers. Yan et al 

(17) proposed a variation-aware federated learning framework where where the variations 

among clients are minimized by transforming the images (ADC maps) of all clients onto 

a common image space. Although some degree of homogeneity of input MRI (sequences, 

resolution, contrast normalization) is required for detection models to fully-leverage big 

datasets, traditional approaches to FL (including in (11) and (17) homogenize annotation 
datatypes, which is an important discrete variation both within and across institutions. In 

contrast, our work addresses this variation directly with a model architecture that leverages 

highly heterogeneous radiological annotation and histopathology. We evaluate the efficacy 

of this approach using multi-center federated learning with large datasets collected at UCSF 

and UCLA research hospitals.
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MATERIALS AND METHODS

Dataset and Assumptions

IRB Approval—The data and analysis for this study was approved by UCSF and UCLA 

Institutional Review Boards (IRB).

Multi-parametric Magnetic Resonance Imaging—Prostate MRI protocols are 

typically multi-parametric acquisitions composed of T2-weighted images (T2WI), diffusion-

weighted images (DWI), and dynamic contrast-enhanced (DCE) MRI. T2WI MRI provides 

anatomic data, DWI and associated apparent diffusion coefficient (ADC) maps represent 

the restriction of water movement in tissue that is altered in prostate tumors compared to 

healthy tissue, and DCE assesses differences in vascularity and blood supply. PI-RADS 

primarily relies on DWI and T2WI with a limited role and influence from DCE in select 

cases. An abbreviated biparametric (bp-MRI) exam involving just T2WI and DWI has been 

increasingly explored given the limited role of DCE in PI-RADS as well as the added 

time, complexity, cost, and contrast agent risks it requires. Herein, we investigate the use 

of bp-MRI for prostate cancer classification. Specifically, the T2-weighted and DWI as well 

as the associated ADC maps were extracted from a mp-MRI exam, and used in all the 

subsequent analysis.

All MRI data was acquired on 3T MRI scanners. At UCSF, the scans were performed on 

MRI scanners from GE Healthcare, and primarily using an endo-rectal receive RF coil. At 

UCLA, the scans were performed on MRI scanners from Siemens Healthineers typically 

with external receive RF coil arrays (<2% endo-rectal coil). The typical parameters for the 

T2WI for UCSF were a 2D fast spin-echo sequence with TE = 102 ms, TR = 6 s, spatial 

resolution = [0.35, 0.35, 3] mm. The typical parameters for the T2WI for UCLA were a 3D 

turbo spin-echo sequence, TE = 201 ms, TR = 2200 ms, spatial resolution = [0.66, 0.66, 

1.5] mm. The typical parameters for DWI for UCSF were TE = 50-65 ms, TR = 4-5 s, b 

= 600 s/mm2, and spatial resolution = [1.6, 1.6, 3] mm, or TE = 60-85 ms, TR = 4-5 s, 

b= 1350 s/mm2, and spatial resolution = [2, 2, 3] mm. The typical parameters for DWI for 

UCLA were TE = 80 ms, TR = 4.8 s, spatial resolution = [1.625, 1.625, 3.59] mm, b-value 

= 1400 s/mm2. All cases utilized in this study utilized high b-value DWI. All images were 

downsampled and/or interpolated to the same spatial resolution of [0.66, 0.66, 2.24] mm for 

x, y, and z axis respectively for all series in datasets from both participating research sites.

Gland Segmentation and Contrast Normalization—As T2 and DWI have arbitrary 

non-quantitative image amplitudes, we apply interquartile range (IQR99)-based intra-image 

normalization to address the relative nature of MR image intensity values both within 

and across research sites and to eliminate outlying values created by imaging artifacts. 

Specifically, each image was normalized to the image-level IQR99 computed within the 

3D prostate gland (annotated by a radiologist or previously developed neural network 

segmentation model (18,19) as in (20):

Inorm = I − percentile(I, 1)
percentile(I, 99) − percentile(I, 1)
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(1)

To overcome the problem of high variability of intensity distribution across patients, 

we additionally apply Z-score image normalization to transform T2WI and DWI image 

intensities within the prostate gland to have zero mean and unit variance. Although there 

remain differences in image characteristics between the datasets used at University A and 

University B even after this pre-processing (Figure 2), we find that providing sample-level 

normalization can significantly improve the performance of trained models. With additional 

coordination, significant improvements could be made by further homogenizing the input 

data using cross-sample and cross-institutional dataset normalization.

Histopathology Derived from Prostate Biopsy—Prostate MRIs are typically 

conducted after an indication of an elevated prostate-specific antigen (PSA) blood 

concentration. At both research sites, a board-certified radiologist annotated the mp-MRI 

series with possible lesions, suggesting areas for prostate biopsy. At UCSF, prostate biopsy 

is conducted by transrectal-ultrasound (TRUS) MR-guidance, where a T2 MRI series 

is fused with the ultrasound to help navigate the needle and target the MR-annotated 

regions. In addition to targeted biopsy, UCSF urologists systematically sample the prostate 

in 6 regions, providing additional confidence to the gland-wise cancer designation. 

Unfortunately, as the prostate is highly non-rigid, only coarse coordinates are associated 

with each biopsy core sample. That is, for UCSF data we assume the location of the 

systematic biopsies based on a geometric division of the prostate into sextants in the 

registered MR-image space, and we assume the targeted biopsy occurs within a 2D 

bounding box around each lesion in each slice of the registered MRI. The groundtruth 

histopathology for each biopsy sample was determined by a pathologist who observed 

stained slices of the biopsy core under a microscope and assigned a Gleason pattern to each. 

We convert this Gleason pattern to the standardized ISUP grade group (1-5, 0 for negative), 

where a grade group ≥2 indicates clinically significant prostate cancer (CS-PCa).

At UCLA, a similar targeted TRUS prostate biopsy is conducted, but with additional 

innovation to identify the location of needle in the joint ultrasound-MRI image space, 

and enhanced radiologist-defined contouring of each lesion. The histopathology for each 

biopsy core is determined in a similar fashion as UCSF, resulting in a set of ISUP grade 

group scores. In this paper however, for data from the UCLA site we assume the highest 

ISUP grade group in each exam is known, but not to which lesion they correspond. For the 

UCLA site, we also do not include any systematic biopsy data. This mismatch in available 

data provides additional consideration for the design and supervision of our chosen deep 

architecture and supervision system, as will become apparent in Section 2.2.

Summary of Datasets at Research Sites—Table 1 summarizes the distribution of 

ISUP grade groups in training, validation, and testing exams for both research sites. As each 

prostate gland may yield multiple biopsy cores, exams are grouped by the highest ISUP 

grade. As evident, our datasets retrain some imbalance with respect to the cancer grade 

group distribution, in addition to less tabulatable differences in image characteristics.
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The demographic distribution with respect to the age, race, PSA density of these datasets is 

displayed in Table 2. Notably, these datasets reflect diverse screening and active surveillance 

populations, but are significantly imbalanced towards representing White men, due to both 

health equity and the populations served by UCSF and UCLA. We hope that the federated 

learning system proposed herein will enable the use of more diverse cohorts by breaking 

traditional geographic barriers of data sharing.

UCNet for Mixed Histopathology Supervision

For this problem, we utilize the recently proposed 3D UCNet model, which is essentially 

composed of a 3D residual UNet with an additional fully-connected classification output 

head (15). Our implementation (Figure 3) takes registered 3-channel bp-MRI as input 

and predicts 3D lesion segmentation maps, 3D ISUP grade group maps, and region-wise 

histograms that are used to determine region-wise and exam-wise cancer severity. Although 

UNet-like architectures are applicable to many deep learning tasks in medical imaging 

(11,19,21,22), UCNet has been shown to be particularly well-suited to jointly handling 

a variety of complementary groundtruth histopathology datatypes available for prostate 

cancer, albeit from a single institution (15).

Of central importance to the federated learning approach used herein is the dynamically-

populated multi-task objective that we use to train UCNet with highly heterogeneous data 

collected both within and across institutions:

ℒ x, Yseg, Ygg, z = α1λ1ℒregion–classifier + α2λ2ℒGGmap–hist + α3λ3ℒGGmap + α4λ4ℒsegmentation

(2)

where x ∈ ℝ3 × X × Y × Z represents the registered 3-channel (T2WI, DWI, ADC maps) 

input MRI, Yseg ∈ ℝX × Y × Z represents the groundtruth lesion segmentation mask, Ygg ∈ ℝ
represents the groundtruth Gleason grade group for each of the R regions in an exam, and 

z ∈ ℝR represents the type of supervision (1-strong or 2-weak) applicable to the groundtruth 

datatype (lesion-biopsy or systematic-biopsy) available for each region r ∈ R.

Specifically, the UCNet model uses x to predict a tanh-activated 3D lesion 

segmentation map Ŷseg ∈ ℝ1 × X × Y × Z and softmax-activated 3D cancer grade group map 

Ŷgg ∈ ℝ2 × X × Y × Z, used to populate the objective terms for:

• lesion segmenatation, implemented using the combination:

ℒsegmentation Yseg, Ŷseg = ℒseg–dice + ℒseg–BCE

(3)

where

ℒseg–dice Yseg, Ŷseg = 1 − Yseg ⋅ Ŷseg

Yseg + Ŷseg + ϵ
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(4)

• strong voxel-wise cancer grading in homogeneous lesions, implemented using 

the standard categorical cross-entropy:

ℒGGmap z, Ygg, Ygg = 1
R+

∑
r ∈ R+

∑
k = 1

K
Ygg r, k logYgg 1r k

(5)

where 1r, represents an indicator (Kronecker delta) function selecting the voxels 

corresponding spatially to region r, and herein we pick K = 2 to represent the 

binary detection problem for CS-PCa.

• and, weak spatial cancer grading in gland regions with heterogeneous tissue 

types, implemented as ℒGGmap–hist = ℒhist–strong + ℒhist–high via ℎ̂, the soft K-dimensional 

histogram of predictions in each region, where:

ℒhist–strong z, Ygg, ℎ) = 1
Rα

∑
r ∈ Rα

∑
k = 1

K
Ygg r, k logℎ r, k

represents the sum over the conventional categorical cross-entropy of each 

histogram bin in each region r ∈ Rα where the supervision signal z r  is 1 (lesion 

biopsies), and

ℒhist–high z, Ygg, ℎ = 1
Rβ

∑
r ∈ Rβ

∑
k > argmaxkYgg[r]

K
Ygg r, k logℎ r, k

represents the modified sum over the categorical cross-entropy of each histogram 

bin greater than the groundtruth biopsy score, in each region r ∈ Rβ where the 

supervision signal z r  is 2 (systematic biopsies). The idea of ℒGGmap–hist is to 

suppress the proportion of voxels representing grade groups not supported by 

the histopathology data, namely for hetereogeneous tissue where the histogram 

bin corresponding to the groundtruth grade group may not have the highest 

proportion.
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Finally, the histograms ℎ̂ derived from the predictions Ŷgg ∈ ℝK × X × Y × Z are fed to 

the RegionNet classification head to produce region-wise predictions Ŷgg–region, that are 

supervised with the standard cross-entropy objective:

ℒregion–classifier z, Ygg, z = 1
R*

∑
r ∈ R*

∑
k = 1

K
Ygg r, k logz r, k

Additional details on the UCNet approach and baseline experiments with comparisons to 

state of the art are covered comprehensively in (15).

Modular Framework for Federated Learning

We are using federated learning (FL) as a way to combine and maximize the use of prostate 

MRI exams across research sites with minimal impact to research prototype algorithm 

design and existing training and validation pipelines. Although the chosen UCNet model 

provides considerable flexibility for handling diverse histopathology datatypes associated 

with prostate MRI, the goal herein is to develop an approach for handling diversity in 

datatypes across institutions regardless of the specific model chosen.

Distributed FL typically requires adapting a “local” (single-computer) training loop into 

a “federated” training loop, where model weight updates are synchronized between the 

remote clients and a central server to implement learning algorithms like federated 

stochastic gradient descent (FedSGD) or weight averaging (FedAverage). Typically this 

synchronization demands advanced engineering and researchers consequently often rely on 

FL frameworks to implement the details and help them build federated loops quicker.

To achieve this, many frameworks (e.g. NVidia Clara, Flower) use programming design 

patterns like dependency injection to maintain control of the main program logic (e.g. 

looping structures) while also providing programming hooks for custom code. Although this 

simplifies the interface for federated deployment and increases adoption for well-calibrated 

production-ready models in established problem domains, this presents an obstacle for 

researchers developing new models in problem domains at their infancy, such as prostate 

cancer detection from MRI. This is because the researcher cannot easily develop, debug, 

and refactor the core model or training logic as a module independent of the FL framework 

engineering code. For example, even hardware-agnostic frameworks like Flower (14) require 

re-implementation of the federated loop.

To address this, we present a design pattern for FL that separates model development and 

FL implementation code, providing a feature-rich FL development environment for medical 

imaging researchers. Our design pattern is composed of 3 elements: a model abstraction 

(Section 2.3.1), a data abstraction (Section 2.3.1), and a model-agnostic federated toolkit 

(Section 2.3.1). The model and data abstractions are extensible and are meant to expose 

essential functionality of local gradient computation and weight updating to the federated 

toolkit without requiring any re-implementation. The federated toolkit can be implemented 

with different distributed frameworks on the backend, such as with Nvidia’s NVFlare 2.1 or 
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Flower. In the current implementation our federated toolkit, FLtools seamlessly handles any 

differentiable feed-forward network architecture implemented in torch.

Model Abstraction—We adopt the pytorch lightning (23) design pattern for specifying 

models, which involves defining a class with the key methods:

• forward – a function that implements a forward pass or inference given a batch 

of input data, using the model architecture and weights (objects defined in the 

class), resulting in a set of tensors as the model’s output.

• training_step – a function that accepts a batch of training data (paired input data 

and groundtruth data), calls forward with input data to produce output data, and 

computes metrics and losses by comparison with the groundtruth to both monitor 

and train the model.

• validation_step – (optional) a function that performs the same function on 

training_step using a frozen version of the model on a batch of validation data, to 

monitor model performance.

• unpack_batch – (optional) a function we define to accept and unpack a dictionary 

of collated training or validation data, to enable easy dispatch of forward and 

training_step without complex arguments.

• configure_optimizers – a function that returns a neural network optimization 

function of the user’s choice.

Our current implementation utilizes torch networks encapsulated within a pytorch lightning 

class, but a similar design pattern is equally applicable to other deep learning frameworks 

like tensorflow. One distinct benefit of utilizing a pytorch lightning class is that existing 

local logging and checkpointing functionality can be utilized during federated training as 

well.

Data Abstraction—There are two abstractions we use here, one for the general FL 

design pattern, and the second for the specific MRI-based prostate cancer localization and 

classification problem.

For the general FL design pattern, we require each client to provide a get_objects function 

that returns the following:

• model – a python class, defined with the aforementioned member functions and 

learnable algorithm parameters (Section 2.3.1).

• train_dataloader – a python iterable that (when iterated on) returns a collated 

dictionary of batched training data using client-specific code and data 

sources. This can be defined using private, client-specific file loaders and a 

torch.utils.data.DataLoader to perform collation.

• val_dataloader – same as train_dataloader, but returning a collated dictionary of 

validation data.

Rajagopal et al. Page 10

Acad Radiol. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, from the perspective of the FL training loops, data yielded by client-specific 

dataloaders are fed directly to training_step, without additional specification or connector 

code within the FL environment. This provides flexibility for prototype algorithm developers 

at each research site to change model and data specifications (e.g DNN toplogy, file 

loading, pre-processing, augmentation) without modifying the interface. Moreover, each 

site is free to modify and optimize local implementations of all the aforementioned 

components (including choice of training objectives and metrics), albeit within constrains 

of the federated algorithms employed.

Specifically, for the MRI-based prostate cancer detection problem, we define the content 

of the training data using an extensible dictionary. Besides imaging data provided as a 

registered, multi-channel 3D tensor x ∈ ℝ3 × X × Y × Z, we also include 3D binary region 

masks Y ∈ ℝR × X × Y × Z representing each of the R regions where histopathology data 

is included (lesions and sextants). Crucially, for this work we encode the histopathology 

data using a z ∈ ℤR × 2 matrix, representing a supervision signal {0,1,2} and a maximum 

ISUP grade group (0-negative, 1-5) for each region. The supervision signal is used to 

dynamically select learning objectives applicable to the type of histopathology groundtruth 

on a region-by-region basis inside our UCNet model, enabling large heterogeneity in the 

types of exams that can be included for training both within and across prostate cancer 

research sites. This dynamic selection is clarified in Section 2.2 when describing UCNet.

Federated Toolkit (FLtools)—Our lightweight FLtools library includes several 

components that represent baseline implementations of various federated routines 

(structured to enable compatibility with Nvidia’s NVFlare (13) and Flower (14), but which 

are crucially reusable across models and FL experiments. These include:

• FLComponents - baseline implementations of training, aggregation, and 

serialization strategies that utilize the get_objects interface. This decouples the 

model implementation from backend implementations, such as those based 

on Nvidia’s NVFlare or Flower, enabling reuse of all essential federated 

components across models and experiments.

• FLTrainer - A reusable module extending NVFlare’s “Trainer” component using 

the get_objects interface to perform training on the clients.

• FLAggregator - A reusable module that extends NVFlare’s “Aggregator” 

component, responsible for (a) validating the gradient contribution from each 

clients, and (b) aggregating gradient averaging via FLUtils.

• FLSharableGenerator - A reusable module that extends NVFlare’s “Sharable 

Generator” component and converts a model to a sharable, a dictionary of 

weights and gradients that can be transmitted between the server and clients.

• FLModelPersistor - A reusable model that extends “ModelPersistor”, responsible 

for saving and loading of the checkpoint file on the server.

As an example, Nvidia’s NVFlare environment includes “Bring Your Own Trainer” (BYOT) 

and “Bring Your Own Component” (BYOC) modes that enables users to develop their 
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own FL components, e.g. to extract, aggregate, serialize, and transfer model weights 

and gradients between clients, using high-level APIs separated from the deep learning 

model architecture and data-specific code, such as pre-processing or model execution. The 

FLtools NVFlare backend includes baseline implementations of these components as a light-

weight library that can be imported into existing research repositories, and which crucially 

utilizes the get_objects interface, separating local model development and FL deployment. 

Furthermore, FLtools includes a simulation tool FLsim that enables researchers to test FL 

deployment on one or more systems outside of NVidia’s federated environment (Table 3).

Figure 5 depicts a sequence diagram elucidating the communication between various entities 

present in the federated topology implemented for FedSGD (Figure 4). An important feature 

of FLtools is the clear separation between the engineer’s duties responsible for the machine 

learning operations (MLOps) team and the researcher developing the model. We found 

that the autonomy of the respective experts to work in separate areas and integrate via a 

programming contract fosters an environment of collaboration, conducive to FL success.

Figure 6 shows how FLsim simulates the federated loop (Figure 5) on the local machine of 

the researcher. Since FLSim is decoupled from NVflare, the researcher is free to use existing 

debug tools (e.g. pdb) to fine-tune model or computational hyperparameters (e.g. batch size) 

prior to running the federated training via NVFlare.

Model Training and Implementation Details—For the FL experiments in this paper, 

we host the central server on an Amazon Web Services (AWS) EC2 instance, and two 

clients that are behind institutional firewalls at UCSF and UCLA, respectively (Figure 4). 

The central server aggregates gradients from each client and performs a weight update with 

appropriate momentum terms (we are using the AdamW optimizer with FedSGD). Our FL 

concept involves private data, but also private metrics, so each client has no knowledge of 

how well the federated model is performing at other research sites. Instead, each institution’s 

client monitors performance on the institution’s own private validation dataset. Thus, there is 

no stopping criteria from the perspective of the server, and client can freely choose to select 

whichever checkpoint they consider to be most performant.

RESULTS

We evaluate the performance of UCNet in two different prostate cancer detection tasks: 

MR-identified lesion segmentation and lesion-wise classification of clinically significant 

prostate cancer (CS-PCa).

Table 4 compares the test-set mean IoU of lesion segmentation for models trained locally 

and via FL. The locally trained models fail (IoU = 0.000) when evaluated on data from 

the other site. The FL models had dramatic improvements in cross-site generalization 

performance for the FL models, showing reasonable performance for test set data from 

either site.

Since our approach utilizes private validation sets, clients are unaware of the performance of 

the model at other sites and are free to select model checkpoints with the highest validation 

performance independently at each site. This is an important point that leads to two versions 
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of the final federated model (UCSF-FL and UCLA-FL), as each site may select different 

checkpoints as “best” according to their own withheld validation set.

Table 5 compares the test-set overall (class-balanced) binary lesion classification accuracy, 

sensitivity, and specificity for models trained locally and via FL, again indicating dramatic 

improvements in cross-site generalization performance for the FL models. We report 

occurrence-normalized (class-balanced) overall accuracy since this provides the clearest 

indication of a model’s generalization performance on screening populations, which is 

in contrast to other recent prostate cancer MRI based work that have reported results 

from cross-validation performance using model sensitivity and specificity (8,9,22). For 

this metric, lesion-wise prostate cancer classification performance is measured for each 

model on the population level by computing an occurrence-normalized confusion matrix and 

averaging the diagonal to represent the class-balanced overall accuracy. Since the region 

classifier in the UCNet model is not a threshold-based classifier, we do not compute a 

receiver operating characteristic (ROC) curve that is optimized for sensitivity and specificity 

using the validation set. Instead, we pick the checkpoint with the best overall accuracy on 

the validation set, and use this operating point for test set evaluation.

In particular, in Table 5 we can see that local models trained at each institution performed 

well on each institution’s private test set, but the performance on the set from the other 

institution was much lower, i.e. indicating poor generalization performance. UCLA-local 

model showed 47.9% accuracy on UCSF data, which is 30% lower than UCSF-local model 

performance. The result of UCLA model evaluation on UCSF data showed high TNR (0.93) 

and low TPR (0.03), which means low usability of the model on data in another institution. 

UCSF-local model showed slightly higher accuracy of 53.3% on the UCLA data, which was 

still 23% lower than UCLA local model result. Although the best FL model was chosen on 

each site separately based on the local validation performance, both FL models succeeded in 

generalization. UCLA-FL model increased the UCSF data classification accuracy by 14.8% 

with corresponding increase in TNR and TPR, which made the model usable in practice 

by another institution. The same result achieved UCSF-FL model, which increased UCLA 

local data performance accuracy by 9.5% with increase in TNR and TPR. Furthermore, the 

performance of the FL models on has only a small decreases in performance on local data.

Herein, we focus primarily on classification performance of the model, so IoU performance 

is only reported to provide a measure of how well the model localizes areas of interest in 

each exam. As indicated by Figures 7 and 8, the cancer region tends to be overestimated 

by the model in most exams. The false positive rate (Type-I error) for classification can be 

inferred from the Table 5 as 1 - TNR (true negative rate); this indicates a 26-33% initially 

on local models and data trained at each site, and with 7-45% when the local models were 

initially exchanged. Note that the low false positive percentage is not indicative of the 

overall model accuracy, as the true positive rate was also low (3-51%) when models were 

initially exchanged, resulting in poor overall performance. For example, the 7% FPR with 

3% TPR indicates that the model tends to predict mostly ‘Negative‘ disease. However, the 

results in Table 5 further demonstrate a positive result for the federated learning experiment, 

indicating a boost to 35-40% for federated checkpoints picked and evaluated on data from 

the same institution, and 43-53% for federated checkpoints evaluated on data from the 
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other institution. Combined with improvements in reducing the false negative rate (Type-II 

error), the federated experiment demonstrates greater generalization accuracy in terms of 

class-balanced accuracy (average of the true negative and true positive rates).

In Figures 7 and 8 we illustrate the performance through sample results of local and FL 

models from both institutions evaluated on UCSF and UCLA test sets, respectively. These 

figures show the input images and MRI-identified lesion masks along with the DL-predicted 

results from UCNet models. These include lesion masks that aim to predict and highlight the 

lesion location, spatial grading map that aims for a voxel-wise prediction of CS-PCa, and 

region-wise classifications of CS-PCa for each sextant and lesion.

As mentioned above, local UCSF and UCLA models performed well on data from their own 

site, but did not generalize well to data from the other site, which is shown in Row 2 of 

Figure 7.A and Figure 8.A. In these examples, the MRI-identified lesion is not identified 

in the DL-predicted lesion mask, spatial grading map, or regional classification. The last 

two rows of the figures show that in these examples the FL models are able to reclaim 

accuracy loss for improved generalization. The DL-predicted lesion mask in particular 

clearly highlights the MRI-identified lesion with both FL models and on test data from both 

sites.

While overall FL models evaluated on the same sites resulted in a slight accuracy drop, we 

observed that in some cases FL improved the performance of the local model as shown in 

Figure 7.B and Figure 8.B. In these cases, the local models were able to identify the lesion 

location, indicated by the intensity of the DL-predicted lesion mask, but failed to correctly 

classify this CS-PCa (ISUP GG 2) in these patients. Interestingly, the FL models both were 

able to correctly identify these lesions as CS-PCa (Rows 3-4) in the spatial grading map and 

regional classification.

DISCUSSION

The primary goals of federated learning are to increase the absolute performance of 

models but also to improve the generalization capability of models across institutions. 

To this end, we challenged our FL system and deep learning model by presenting highly 

heterogeneous MRI data, patient distributions, and groundtruth annotations (both within 

and across institutions). Our bespoke architecture, UCNet, was able to handle this task, 

and resulted in good performance in both local and federated training. The resulting 

models, chosen on each site independently based on the local validation performance, 

gained the benefit of having learned from each of the private datasets without ever needing 

to transfer, pool, or homogenize data at a single location. Both FL checkpoints showed 

desirable generalization performance, and resulted in higher accuracy evaluated on the local 

datasets from the opposite institutions, while neither site had sufficient data to generalize 

well on their own. The clinical impact of federated CS-PCa detection models is improved 

generalization accuracy and physician confidence in deployed models.

One design choice that should be revisited is the stopping criteria for choosing checkpoints 

independently on private institutional validation data. Although private validation increases 
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privacy and incentives institutions to participate in FL to improve performance on their own 

data, we believe a better methodology may be to monitor global validation accuracy since 

the accuracy on the other institution’s dataset may give a better indicator of performance 

on out-of-distribution data, the common pitfall all of deep learning models. This is evident 

from the deviation between within-site performance on validation and test sets, which 

was especially bad for UCLA data with −15.4% classification accuracy and −45% lesion 

segmentation IoU.

In terms of practical FL implementation, the presented FedSGD technique implemented in 

FLComponents achieves O(1) memory complexity with respect to the number of clients, and 

thus is highly scalable for training with hundreds of research sites. However, one practical 

issue with FedSGD is that it has a relatively high time and communication complexity O(n), 
since it must wait until every client responds before updating the global model at every 
iteration. In this respect, FedAvg may be a more desirable aggregation strategy, although 

the training dynamics have not yet been explored with UCNet and prostate MRI. One 

option to reduce the complexity constants for FedSGD may be to implement asynchronous 

peer-to-peer distribution of gradients and local update of weights, with the central server 

only acting to globally update momentum terms. We leave this as future work for the 

FLtools library.

In addition to prostate MRI other medical imaging applications that would directly benefit 

from this approach include classification of less common cancers, e.g. brain tumors, kidney 

cancer and pancreatic cancer, where the ability to utilize data from multiple sites and all 

sources of histology groundtruth can significantly increase dataset sizes to potentially boost 

overall detection accuracy and/or generalization (24). The presented FL design pattern is 

especially useful for data-starved deep learning problems that are challenging enough to 

necessitate the use of non-standard architectures or loss functions, where its desirable to 

expand dataset size and diversity while retaining model, dataloader, and learning algorithm 

mutability (12,25)

More broadly, we hope that this work will encourage collaboration and data-sharing 

across institutions, enabling us to tackle the next phase of model training in radiology. 

Considerations here include increasing input data diversity label granularity diversity, and 

finding/demographic diversity. In this way, we believe that federated learning has an 

important role to play in addressing health equity issues by improving representation of 

underserved populations (26), such as for Black prostate cancer patients (27).

CONCLUSION

We develop and open-source a federated learning toolkit FLtools that can be combined with 

the powerful NVFlare and Flower backends to provide an extensible and reusable federated 

components for researchers to re-use with custom deep learning models and workflows, or 

with heterogeneous datasets that can vary in specification across clients in a federation. We 

successfully applied this design pattern to train a custom UCNet deep learning model we 

developed to handle diverse prostate MRI and associated radiological and histopathology 

annotations using two large datasets of 1800+ exams. Results indicate between 9.50-14.8% 
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improvement in generalization performance of lesion classification, and nearly 100% 

improvements in generalization performance of lesion segmentation. To improve absolute 

performance of models and realize the full potential of federated learning, incorporation of 

additional multi-institution data is required. The tools and approach presented will readily 

support these efforts for improved assessment of prostate cancer based on MRI.
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Fig. 1. 
Federated learning of research prototype algorithms enables cross-site validation that is 

useful for improving within-site performance. (Color version of figure is available online.)
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Fig. 2. 
Intra- and inter-site variations of multiparametric MRI data. (A,B) Natural variation between 

appearance of ISUP grade group 2 lesions (countoured) in UCLA data. (C,D) Large 

variation in the apparent MR contrast and size of lesion annotations (bounding boxes) in 

UCSF data. (Color version of figure is available online.)
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Fig. 3. 
UCNet Architecture, depicted here with a 3D residual UNet backbone, histopathology-based 

histogram suppression, and regional classification modules. In this paper, UCNet takes 

registered 3D mp-MRI as input and produces as output: lesion segmentation maps, 1-hot-

encoded cancer grading maps (for classification of clinically-significant prostate cancer, K 
= 2), and per-region classifications ℒglobal not trained). (Color version of figure is available 

online.)
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Fig. 4. 
FL topology for FedSGD. (Color version of figure is available online.)
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Fig. 5. 
Modular federated system architecture. (Color version of figure is available online.)
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Fig. 6. 
FLSim Local Federated Simulation. (Color version of figure is available online.)
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Fig. 7. 
Evaluation of UCNet models on example UCSF dataset. (A) depicts a transverse slice of 

an exam with a MRI-identified ISUP GG 2 lesion where the UCLA-local model performs 

poorly, but both federated models (Rows 3-4) achieves the same level of accuracy as UCSF-

local model. (B) depicts a transverse slice of an exam with a MRI-identified ISUP GG 2 

lesion where both local models perform poorly, but federated models correctly classify this 

lesion as CS-PCa. Notably, for both (A-B), federated checkpoint chosen by UCLA stopping 

criteria (Row 3) performs better than the checkpoint chosen by UCSF (Row 4), highlighting 
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that neither site has sufficient data to generalize well on their own. (Color version of figure is 

available online.)
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Fig. 8. 
Evaluation of UCNet models on example UCLA datasets. (A) depicts a transverse slice of an 

exam with a MRI-identified ISUP GG 2 lesion where UCSF-local model performs poorly, 

but both federated models (Rows 3-4) achieves the same level of accuracy as UCLA-local 

model. (B) depicts a transverse slice of an exam with a MRI-identified ISUP GG 2 lesion 

where both local models performs poorly, but federated models perform well.
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TABLE 2.

Cohort demographics for the prostate MRI datasets from UCSF and UCLA used in this study.

UCSF UCLA

Age (years) 66.6 ± 7.2 64.5 ± 7.4

PSA Density (ng/ml2) 0.18 ± 0.21 0.14 ± 0.27

White 750 (77.1%) 625 (63.4%)

Asian 60 (6.2%) 55 (5.6%)

Black 34 (3.5%) 37 (3.7%)

Other/unknown/declined 129 (13.2%) 269 (27.3%)

Endorectal Coil 813 (83.6%) 17 (1.7%)
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TABLE 4.

Mean lesion segmentation intersection-over-union (IoU) on test sets.

Model Test Set UCSF UCLA

UCSF-local 0.134 0.000

UCSF-FL 0.120 0.105

UCLA-local 0.000 0.153

UCLA-FL 0.111 0.063
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TABLE 5.

Region-wise Lesion Binary Classification Accuracy. Bracketed numbers indicate TNR and TPR, respectively.

Model Test Set UCSF UCLA

UCSF-local 68.0% [0.74, 0.63] 53.3% [0.55, 0.51]

UCSF-FL 67.9% [0.76, 0.60] 62.8% [0.69, 0.57]

↓ 0.01% ↑ 9.5%

UCLA-local 47.9% [0.93, 0.03] 69.5% [0.67, 0.73]

UCLA-FL 62.7% [0.78, 0.47] 66.8% [0.74, 0.65]

↑ 14.8% ↓ 2.7%
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