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ABSTRACT OF THE DISSERTATION

Multiplicities Associated to Demazure Flags of sl2[t]-Modules

by

Lisa Marie Schneider

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, August 2015

Professor Vyjayanthi Chari, Chairperson

In this paper, we study the multiplicities of a level ` + 1–Demazure flag of a level `–

Demazure module for the current algebra sl2[t]. We establish a recursion of the graded

multiplicities and explicitly calculate these multiplicities when ` = 1, 2. Taking the special-

ization q = 1 of the graded multiplicity (i.e. numerical multiplicity), we establish a new

recursion of polynomials related to the numerical multiplicities. We give a solution for these

polynomials in two ways: as solutions of matrix equations and as coefficients in the series

expansion of rational functions.
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Introduction

In studying the representations of affine Lie algebras, we begin with understanding the

highest weight irreducible integrable representations particularly for the affine Lie algebra

associated to sl2. Since these modules are infinite dimensional, we focus on a family of

Demazure modules which occur in a highest weight integrable representation of the affine

Lie algebra associated to sl2. These Demazure modules are stable under the action of sl2

and thus we study their structure as modules for the current algebra sl2[t] which is defined

to be the Lie algebra of polynomial maps from C to sl2. Alternatively, the current algebra is

a maximal parabolic subalgebra of the affine Lie algebra. The action of the element d of the

affine Lie algebra defines an integer grading on the current algebra and also a compatible

grading on the sl2-stable Demazure modules. This work only reflects the work on sl2-stable

Demazure modules, thus we refer to these modules by simply using the term Demazure

module.

The Demazure modules are indexed by triples (`, n, r) where n ∈ Z+, r ∈ Z and ` ∈ N

and are denoted as τ∗rD(`, n). The integer ` is called the level of the Demazure module

and is given the action of the canonical central element of the affine algebra and r ∈ Z is

minimal so that the corresponding graded component is non–zero. A key result due to Naoi

[9] states that if m ≥ ` ≥ 1 then Demazure module D(`, n) admits a filtration such that the

successive quotients are isomorphic to level m Demazure modules. In fact Naoi proves this

result for an affine Lie algebra associated to a simply–laced simple Lie algebra. His proof is

indirect using results of [6] and[7]. Moreover, Naoi proved that the local Weyl module has a

filtration of level 1-Demazure modules for an affine Lie algebra associated to a non-simply

laced simple Lie algebra.

A direct and constructive proof of Naoi’s result was obtained in [4] for sl2. The methods

of this paper also showed the existence of a level m Demazure flag in a much wider class of
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modules for sl2[t]. As a result, explicit recurrence relations were given for the multiplicity of

a level (`+1)–Demazure module ocurring in a filtration of τ∗rD(`, n). A closed form solution

of these recurrences was, however, only obtained in some special cases: the numerical

multiplicities (the q = 1 case) were computed for ` = 2,m = 3, and the q-multiplicities for

` = 1,m = 2.

In this thesis, we give the closed form solution of the recurrences for ` = 1, 2,m = 3.

When ` = 1,m = 3, these closed forms give multiplicities of the filtration of a local Weyl

module by level 1-Demazure modules for type G2. Additionally, we show that the generating

series can be written in terms of partial theta functions. We also establish a simple matrix

solution to find the multiplicities with specialization q = 1 of a level `+1–Demazure flag of a

level `-Demazure module. Lastly, we establish addional relationships between the numerical

multiplicities for different values of `.
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Part I

Demazure Flags and Multiplicity
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Chapter 1

Demazure Modules

In this chapter, we introduce the necessary notation and preliminary results for simple

and affine Lie algebras in the case of g = sl2. Then, we recall the definition of a Demazure

module occurring in a highest weight integrable irreducible representation of the affine Lie

algebra ŝl2. We restrict our attention to stable Demazure modules as representations of the

current algebra and state several results from [5] about these modules.

1.1 Simple Lie algebra sl2

We first fix some notation. We let C(Z,Z+,N) represent the complex numbers (integers,

non-negative integers, positive integers respectively).

Recall that sl2 is the complex simple Lie algebra of two by two matrices of trace zero

and that {x, h, y} is the standard basis of sl2, with [h, x] = 2x, [h, y] = −2y and [x, y] = h

and the Cartan subalgebra is h = Ch. For n ∈ Z+, there is a unique finite dimensional

irreducible sl2-module, V (n) generated by a nonzero vector v with the relations:

x.v = 0, h.v = nv, yn+1.v = 0.

Moreover, dimV (n) = n+ 1.

For any finite dimensional sl2-module, V , we can define the character of V as the Laurent

polynomial in one variable x given by

chV =
∑
m∈Z

dimVmx
m,

where Vm = {v ∈ V |h.v = mv}.
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1.2 Associated Affine Lie algebra ŝl2

The associated affine Lie algebra ŝl2 with canonical central element c and scaling operator

d can be realized as follows: as vector spaces we have

ŝl2 = sl2 ⊗ C[t, t−1]⊕ Cc⊕ Cd,

where C[t, t−1] is the Laurent polynomial ring in an indeterminate t, and the commutator

is given by

[a⊗ tr, b⊗ ts] = [a, b]⊗ tr+s + (a, b)rδr,−sc, [d, a⊗ f ] = a⊗ tdf/dt, [c, ŝl2] = 0 = [d, d],

where ( , ) is the Killing form on sl2. The action of d can also be regarded as defining a

Z–grading on ŝl2 where we declare the grade of d and c to be zero and the grade of a⊗ tr

to be r for a ∈ sl2.

Let ĥ = Ch⊕Cc⊕Cd be the Cartan subalgebra and define the Borel and the standard

maximal parabolic subalgebras by

b̂ = sl2 ⊗ tC[t]⊕ Cx⊕ ĥ, p̂ = b̂⊕ Cy = sl2 ⊗ C[t]⊕ Cc⊕ Cd.

Notice that b̂ and p̂ are Z+–graded subalgebras of ĝ. We identify sl2 with the grade zero

subalgebra sl2 ⊗ 1 of sl2 ⊗ C[t]. Define δ ∈ ĥ∗ by: δ(d) = 1, δ(h ⊕ Cc) = 0. Let Ŵ be the

affine Weyl group associated to ĝ and recall that it acts on ĥ and ĥ∗ and leaves c and δ

fixed.

1.2.1 Demazure Module associated to Integrable Highest Weight Module

Suppose that Λ ∈ ĥ∗ is dominant integral: i.e., Λ(h),Λ(c − h) ∈ Z+ and Λ(d) ∈ Z. Let

V (Λ) be the irreducible integrable highest weight ĝ–module generated by a highest weight

vector vΛ. The action of ĥ on V (Λ) is diagonalizable and the central element c acts via

the scalar Λ(c) on V (Λ). The non–negative integer Λ(c) is called the level of V (Λ). For all

w ∈ Ŵ the element wΛ is also an eigenvalue for the action of ĥ on V (Λ) with corresponding

eigenspace V (Λ)wΛ. The Demazure module associated to w and Λ is defined to be

Vw(Λ) = U(b̂)V (Λ)wΛ.

The Demazure modules are finite–dimensional and if wΛ(h) ≤ 0, then Vw(Λ) is a module

for p̂. From now on, we shall only be interested in such Demazure modules. Notice that
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these Demazure modules are indexed by the integers

−s = wΛ(h) ≤ 0, ` = Λ(c), p = wΛ(d),

The action of d on the Demazure modules defines a Z–grading on them compatible with Z+–

grading on sl2[t]. Moreover, since w(Λ + pδ) = wΛ + pδ and (Λ + pδ)(h⊕Ccc) = Λ(h⊕Cc),

it follows that for a fixed ` and s the modules are just grade shifts. If s = 0 then D(`, 0) is

the trivial sl2[t]–module.

1.3 Category of Finite-dimensional Z-graded sl2[t]-modules

As the discussion in Section 1.2.1 shows, the proper setting for our study is the category

of finite–dimensional Z–graded sl2[t]–modules. We recall briefly some of the elementary

definitions and properties of this category. A finite–dimensional Z–graded sl2[t]–module is

a Z–graded vector space space admitting a compatible graded action of sl2[t]:

V =
⊕
k∈Z

V [k], (a⊗ tr)V [k] ⊂ V [k + r] a ∈ sl2, r ∈ Z+.

In particular, V [r] is a module for the subalgebra sl2 of sl2[t] and hence the action of h on

V [r] is semisimple,i.e.,

V [r] =
⊕
m∈Z

V [r]m, V [r]m = {v ∈ V [r] : hv = mv}.

The graded character of V is the Laurent polynomial in two variables x, q given by

chgr V =
∑
r∈Z

chV [r]qr =
∑
m,r∈Z

dimV [r]mx
mqr.

A map of graded sl2[t]–modules is a degree zero map of sl2[t]–modules (i.e. f : V → W

such that f(V [r]) ⊂ W [r] ∀r ∈ Z. If V1 and V2 are graded sl2[t]–modules, then the direct

sum and tensor product are again graded sl2[t]–modules, with grading,

(V1 ⊕ V2)[k] = V1[k]⊕ V2[k], (V1 ⊗ V2)[k] =
⊕
s∈Z

(V1[s]⊗ V2[k − s]).

The graded character is additive on short exact sequences and multiplicative on tensor

products.

Given a Z–graded vector space V , we let τ∗pV be the graded vector space whose r–th

graded piece is V [r+p]. Clearly, a graded action of sl2[t] on V also makes τ∗pV into a graded
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sl2[t]–module. It is now easy to prove (see [3] for instance) that an irreducible object of this

category must be of the form τ∗pV (n). It follows that if V is an arbitrary finite–dimensional

graded sl2[t]–module, then chgr V can be written uniquely as a non–negative integer linear

combination of qp chgr τ
∗
0V (n), p ∈ Z, n ∈ Z+.

1.4 Demazure Module for the Current Algebra

We also give the definition of τ∗rD(`, s) as an sl2[t] module. Let `, s ∈ Z+ and write

s = `s1 + s0 with s1 ≥ −1 and s0 ∈ N with s0 ≤ `. Then D(`, s) is generated by an element

vs and defining relations:

(x⊗ C[t])vs = 0, (h⊗ f)vs = sf(0)vs, (y ⊗ 1)s+1vs = 0, (1.4.1)

(y ⊗ ts1+1)vs = 0, (y ⊗ ts1)s0+1vs = 0, if s0 < `. (1.4.2)

Let τ∗rD(`, s) be the graded sl2[t]– module obtained by defining the grade of the element

vs to be r. The following result is a special case of a result established in [5, Theorem 2,

Proposition 6.7 ] for s > 0.

Proposition 1. Let Λ be a dominant integral weight for ĥ and let w ∈ Ŵ be such that

Λ(c) = `, wΛ(h) = −s, wΛ(d) = r.

We have an isomorphism of graded sl2[t]–modules

Vw(Λ) ∼= τ∗rD(`, s).

Remark: A few remarks are in order here. In the case when s0 = `, ` − 1 the second

relation in equation (1.4.2) is a consequence of the other relations. A presentation of all

Demazure modules was given in [6], [8] in the case of simple and Kac–Moody algebras

respectively and includes infinitely many relations of the form (y⊗ ta)Vw(Λ) = 0. However,

it was shown in [5, Theorem 2] that in the case of the sl2–stable Demazure modules these

relations are all consequences of the ones stated in the proposition.

1.4.1 Properties of D(`, s)

We isolate further results from [5, Section 6] that will be needed for our study.
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Proposition 2. Let `, s ∈ Z+ and write s = `s1 + s0 with s1 ≥ −1 and s0 ∈ N with s0 ≤ `.

(i) For 0 ≤ s ≤ ` we have

D(`, s) ∼= τ∗0V (s), i.e. , (sl2 ⊗ tC[t])D(m, s) = 0.

(ii) For s > 0, we have dimD(`, s) = (`+ 1)s1(s0 + 1).

(iii) The sl2[t]–submodule of D(`, s) generated by the element (y ⊗ ts1)s0vs is isomorphic

to τ∗s1s0D(`, s−2s0). In particular, the quotient D(`, s)/τ∗s1s0D(`, s−2s0) is generated

by an element v̄s with defining relations, (1.4.1) and,

(y ⊗ ts1+1)v̄s = 0, (y ⊗ ts1)s0 v̄s = 0. (1.4.3)
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Chapter 2

Demazure Flags

In this chapter, we define the Demazure flag for a sl2[t]–module. Using the independence

of choice of flag, we define the graded multiplicities for a level `–Demazure flag of a sl2[t]–

module. Then, we then give results for when a module has a level `–Demazure flag and a

recursion for computing the graded multiplicities.

2.1 Jordan–Holder constituents for a Demazure modules

The following is a straightforward application of the Poincare–Birkhoff–Witt theorem.

Lemma 1. Let ` ∈ N and s ∈ Z+. The module τ∗0V (s) is the unique irreducible quotient of

D(`, s) and occurs with multiplicity one in the Jordan–Holder series of D(`, s). Moreover,

if τ∗pV (m), m 6= s is a Jordan–Holder constituent of D(`, s) then p ∈ N and s−m ∈ 2N.

Let ` ∈ N. It follows from the Lemma that if V is a graded finite–dimensional module for

sl2[t], then chgr V can be written uniquely as a Z[q, q−1] linear combination of chgrD(`, s),

s ∈ Z+.

2.2 Definition of a Demazure Flag

Let V be a finite–dimensional graded sl2[t]–module. We say that a decreasing sequence

F(V ) = {V = V0 ) V1 ) · · ·Vk ) Vk+1 = 0}
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of graded sl2[t]-submodules of V is a Demazure flag of level m, if

Vi/Vi+1
∼= τ∗piD(m,ni), (ni, pi) ∈ Z+ × Z, 0 ≤ i ≤ k.

Given a flag F(V ) we say that the multiplicity of τ∗pD(m,n) in F(V ) is the cardinality of

the set {j : Vj/Vj+1
∼= τ∗pD(m,n)}. It is not hard to show that the cardinality of this set is

independent of the choice of the Demazure flag (see for instance [4, Lemma 2.1]) of V and

we denote this number by [V : τ∗pD(m,n)]. Define

[V : D(m,n)]q =
∑
p∈Z

[V : τ∗pD(m,n)]qp, n ≥ 0, [V : D(m,n)]q = 0, n < 0.

It is known that

[D(`, s) : D(m, s)]q = 1, [D(`, s) : D(m,n)]q = 0 s− n /∈ 2Z+.

Moreover, for m ≥ `′ ≥ ` we have

[D(`, s) : D(m,n)]q =
∑
p∈Z≥0

[D(`, s) : D(`′, p)]q [D(`′, p) : D(m,n)]q. (2.2.1)

It follows from the discussion in Section 1.3 and Section 2.1 that if V admits a Demazure

flag of level m, then

chgr V =
∑
s∈Z

[V : D(m, s)]q chgrD(m, s). (2.2.2)

The following result was first proved in [9] for Demazure modules for arbitrary simply–laced

simple algebras using the theory of canonical basis. An alternate more constructive and self

contained proof was given in [4] for sl2[t].

Proposition 3. Let ` be a positive integer. For all non–negative integers s and m with

m ≥ `, the module D(`, s) has a Demazure flag of level m.

2.3 Demazure Flag of a Quotient of Demazure Modules

Theorem 3.3 of [4] shows that there is a very large class of modules admitting a Demazure

flag of level m. We do not state that result in full generality since it requires introducing

a significant amount of notation which is not needed in this paper. In the special case

we need, Theorem 3.3 and Lemma 3.8 of [4] give the first and second parts of the next

proposition.
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Proposition 4. Let ` ∈ N and s = `s1 + s0 with s1, s0 ∈ Z+ and 0 < s0 ≤ `.

(1) Consider the embedding τ∗s1s0D(`, s − 2s0) ↪→ D(`, s). The corresponding quotient

admits a Demazure flag of level m for all m > `.

(2) We have

[D(`, s)/τ∗s1s0D(`, s−2s0) : D(`+1, n)]q = q(s−n)/2[D(`, s−`−1)) : D(`+1, n−`−1)]q.

The following corollary is immediate.

Corollary 1. Keep the notation of the proposition. We have

[D(`, s) : D(`+ 1, n)]q = qs1s0 [D(`, s− 2s0) : D(`+ 1, n)]q

+q(s−n)/2[D(`, s− `− 1)) : D(`+ 1, n− `− 1)]q.

2.4 Recursion of Graded Multliplicities

We can now prove the following proposition.

Proposition 5. Let ` be a positive integer.

(i) for 0 ≤ n, k ≤ `, we have [D(`, k) : D(`+ 1, n)]q = δk,n and

[D(`, 2`j ± k) : D(`+ 1, n)]q = δk,n q
j(`j±n), j ∈ N.

(ii) if n ≥ `+ 1 and s0 ∈ N with s0 ≤ ` and s1 ∈ Z+, we have

[D(`,`s1 + s0) : D(`+ 1, n)]q = qs0s1 [D(`, `(s1 − 1) + (`− s0)) : D(`+ 1, n)]q

+ q(`s1+s0−n)/2[D(`, `(s1 − 1) + (s0 − 1)) : D(`+ 1, n− (`+ 1))]q.

Proof. To prove part (i) of the proposition we proceed by induction on j. Since 0 ≤ n ≤ `

we have by Proposition 2(i) that

D(`, n) ∼= D(`+ 1, n) ∼= τ∗0V (n),
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and so, if 0 ≤ k ≤ `, we get [D(`, k) : D(`+ 1, n)]q = δk,n. This shows that induction begins

and for the inductive step we assume that

[D(`, 2j′`+ k) : D(`+ 1, n)]q = δk,nq
j′(j′`+n),

holds for all 0 ≤ j′ < j and all 0 ≤ k, n ≤ `. Using Corollary 4 and noting that the second

term on the right hand side is zero since n ≤ `, and using the inductive hypothesis, we get

[D(`, 2j`+ k)) : D(`+ 1, n)]q = q2kj [D(`, 2j`− k) : D(`+ 1, n)]q

= q2kjq(2j−1)(`−k)[D(`, 2(j − 1)`+ k) : D(`+ 1, n)]q

= δk,nq
2nj+(2j−1)(`−n)+(j−1)(`(j−1)+n) = δk,nq

j(`j+n).

This proves the inductive step. It also proves that if j ≥ 1, then

[D(`, 2j`− k) : D(`+ 1, n)q = q(`−k)(2j−1)[D(`, 2(j − 1)`+ k) : D(`+ 1, n)]q

= δk,nq
(`−n)(2j−1)q(j−1)((j−1)`+n) = δk,nq

j(j`−n).

This completes the proof of part (i). Part (ii) is precisely the statement of Corollary 4.

2.5 Example of a Demazure Flag

In this section, we give an example of how a flag is constructed using Proposition 4 and

identify the graded multiplicities associated with this flag.

Let us consider D(3, 7) and look at the Demazure flag of level 4 of this module. Let v

be the nonzero generator of the D(3, 7) with the relations given in Proposition 2(iii). We

have the following increasing sequence of graded sl2[t]-submodules

0 ( U(sl2[t])((y ⊗ t)2(y ⊗ t2)v) ( U(sl2[t])((y ⊗ t2)v) ( U(sl2[t])v = D(3, 7).

It can easily be shown that we have the following surjective maps of graded sl2[t] modules:

τ4D(4, 1)→ U(sl2[t])((y ⊗ t)2(y ⊗ t2)v),

τ2D(4, 5)→ U(sl2[t])((y ⊗ t2)v)/U(sl2[t])((y ⊗ t)2(y ⊗ t2)v),

D(4, 7)→ U(sl2[t])v/U(sl2[t])((y ⊗ t2)v).
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Using a dimension argument along with Proposition 2(ii) gives up that these surjections are

actually isomorphisms. Therefore, we can explicitly write out the graded multiplicities as

[D(3, 7) : D(4, n)]q =


q4, n = 1

q2, n = 5

1, n = 7

0, otherwise.
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Chapter 3

Graded Multiplicities

In this chapter, we study the graded multiplicities of level `–Demazure flags of level m–

Demazure flags for ` = 2, 3 with m = 1, 2 respectively. We use the recursion from Chapter

2 along with generating functions to determine closed forms for these graded multiplicities.

Moreover, we relate these generating functions to partial theta series. Lastly, we connect

these multiplicities to the multiplicities for the level 2-Demazure flag of the local Weyl

module for type G2 using the results of Naoi.

3.1 Notation

To begin this chapter, we introduce notation for q-binomial (or Gaussian) coefficients.

Given n ∈ Z+ and m ∈ Z, set[
n

m

]
q

=
(1− qn)...(1− qn−m+1)

(1− q)...(1− qm)
, m > 0,

[
n

0

]
q

= 1,

[
n

m

]
q

= 0, m < 0.

Notice that
[

n
n−m

]
q

=
[
n
m

]
q
.

To understand the polynomials [D(`, s) : D(m,n)]q, we consider the associated generat-

ing series: given `,m ∈ N with m ≥ `, set

A`→mn (x, q) =
∑
k≥0

[D(`, n+ 2k) : D(m,n)]q x
k, n ≥ 0.

It will be convenient to set A1→m
−1 (x, 1) = 1.

14



3.2 q-identities

In this section, we state some q-identities with proofs that will be used to verfiy the

results in the remainder of this chapter.

Lemma 3.2.1 (Analogs of Pascal’s Identity). For n,m ∈ Z, we have the following identities:

(i) [
n

m

]
q

= qm
[
n− 1

m

]
q

+

[
n− 1

m− 1

]
q

,

(ii) [
n

m

]
q

=

[
n− 1

m

]
q

+ qn−m
[
n− 1

m− 1

]
q

.

Proof. For a simple proof, use the definition of
[
n−1
m

]
q

and
[
n−1
m−1

]
q

to get

qm
[
n− 1

m

]
q

+

[
n− 1

m− 1

]
q

=
(1− qn−1) · · · (1− qn−m+1)

(1− q) · · · (1− qm)

(
qm(1− qn−m) + (1− qm)

)
=

(1− qn−1) · · · (1− qn−m+1)

(1− q) · · · (1− qm)

(
1− qn

)
=

[
n

m

]
q

.

The proof for the other identity is similar.

We refer the reader to [11] for a combinatorial proof using the fact that
[
n
m

]
q

is the

number of m-dimensional subspaces of a n-dimensional vector space over Fq.

Theorem 3.2.2 (q-Binomial Theorem). For n ≥ 0, we have

n∑
p=0

qp(p−1)/2

[
n

p

]
q

xp = (−x; q)n.

Proof. We prove this identity by induction on n. For n = 0, this equality trivially holds.
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Now, assume the equality holds for n = k − 1. For n = k, we have

(−x; q)k = (1 + xqk−1)(−x; q)k−1

= (1 + xqk−1)
k−1∑
p=0

qp(p−1)/2

[
k − 1

p

]
q

xp

=
k−1∑
p=0

qp(p−1)/2

[
k − 1

p

]
q

xp +
k−1∑
p=0

qk−1+p(p−1)/2

[
k − 1

p

]
q

xp+1

=

k−1∑
p=0

qp(p−1)/2

[
k − 1

p

]
q

xp +

k∑
p=1

qk−1+(p−1)(p−2)/2

[
k − 1

p− 1

]
q

xp

=
k−1∑
p=0

qp(p−1)/2

[
k − 1

p

]
q

xp +
k∑
p=1

qk−1+(p−1)(p−2)/2

[
k − 1

p− 1

]
q

xp

=
k∑
p=0

xpqp(p−1)/2

([
k − 1

p

]
q

+ qk−p
[
k − 1

p− 1

]
q

)
.

We can use Lemma 3.2.1 to get the identity for n = k thus completing the proof.

In the following sections, we give closed formulae for special cases of ` and m.

3.3 Level 2–Demazure flag of level 1-Demazure modules

In certain special cases, it is possible to write down the polynomials [D(`, s) : D(m,n)]q

explicitly as sums of products of q–binomials, i.e., by fermionic formulae. If ` = 1 and

m = 2, it was shown in [4], that for all k, n ∈ Z+, we have

[D(1, n+ 2k) : D(2, n)]q = qkd(n+2k)/2e
[
b(n+ 2k)/2c

k

]
q

. (3.3.1)

3.4 Level 3–Demazure flag of level 2-Demazure modules

Proposition 6. For r ∈ {0, 1, 2} and s ∈ Z+ , set

r =

1 r = 1

0 r = 0, 2
, s′ =

⌊
s+ 1 + r

2

⌋
.

For all p ∈ Z+, we have

[D(2, 3s+ r + 2p) : D(3, 3s+ r)]q = q
1
2

(p2+p(2s+r))
s′∑
j=0

j≡p (mod 2)

qj(j−r)/2
[p−j

2 + s

s

]
q

[
s′

j

]
q

.

16



Preliminary work using [10] assisted in the identification of the closed formulae in the

proposition.

To prove this proposition, we will first create a recursion of generating functions using

5. Then, we will verify the graded multiplicities.

3.5 Recursion of Generating Functions A2→3
n (x, q)

We first use Proposition 5 to give closed formulae for A2→3
n (x, q). In terms of generating

series, Proposition 5(i) gives,

A2→3
0 (x, q) =

∑
s≥0

q2s2x2s, A2→3
1 (x, q) =

∑
s≥0

q
s(s+1)

2 xs, A2→3
2 (x, q) =

∑
s≥0

q2s(s+1)x2s.

(3.5.1)

and Proposition 5(ii) gives for k ≥ 3,

A2→3
k−3 (xq, q) =


A2→3
k (x, q)− xq

k+1
2 A2→3

k (xq, q) if k is odd.

A2→3
k (x, q)− x2qk+2A2→3

k (xq2, q) if k is even.

(3.5.2)

We have the following result which solves this recurrence explicitly.

Proposition 3.5.1. Let r ∈ {0, 1, 2} and s ≥ 0, and set

r =

1, r = 1,

0, r = 0, 2.

Then, we have

A2→3
3s+r(x, q) =

∞∑
p=0

xp q
1
2

(p2+p(2s+r))
p∑
j=0

j≡p (mod 2)

qj(j−r)/2
[p−j

2 + s

s

]
q

[⌊ s+1+r
2

⌋
j

]
q

. (3.5.3)

3.6 Proof of Proposition 3.5.1

We check the initial conditions first. Let s = 0; in this case, the inner sum in equation

(3.5.3) equals 1 if either (i) r = 1, or (ii) r = 0 and p ≡ 0 (mod 2), and is zero otherwise.

From this, it is clear that (3.5.3) reduces to equations (3.5.1) when s = 0.
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Next, for s ≥ 1, we verify that the recurrence relation (3.5.2) holds. We set α(s) =⌊
s+r+1

2

⌋
and β(j, p, s) = p−j

2 + s.

First, suppose k = 3s + r is even. Then, s + r is even, and the recurrence in Equation

(3.5.2) is equivalent to the statement that the following sum vanishes for all p ≥ 0:

p∑
j=0

j≡p (mod 2)

qj(j−r)/2
[
α(s)

j

]
q

([
β(j, p, s)

s

]
q

−
[
β(j, p, s− 1)

s− 1

]
q

− qs
[
β(j, p− 1, s)

s

]
q

)
. (3.6.1)

Notice that β(j, p, s− 1) = β(j, p− 1, s) = β(j, p, s)− 1. But, from the q-binomial identity

3.2.1(ii) with n = β(j, p, s), m = β(j, p, s) − s, we see that each summand in (3.6.1) is in

fact zero. This proves the recurrence relation for k even.

Next, let k = 3s + r be odd. In this case, the recurrence relation of Equation (3.5.2) is

equivalent to the statement that the following sum vanishes for all p ≥ 0:

p∑
j=0

j≡p(mod 2)

q
j(j−r)

2

([
β(j, p, s)

s

]
q

[
α(s)

j

]
q

− qα(s)−j
[
β(j, p, s)

s

]
q

[
α(s)

j − 1

]
q

−
[
β(j, p, s− 1)

s− 1

]
q

[
α(s− 1)

j

]
q

)
.

(3.6.2)

Notice that β(j, p, s − 1) = β(j, p, s) − 1 and α(s − 1) = α(s) − 1 since s + r is odd.

Using the identity 3.2.1(ii) twice in succession, first with (n,m) = (α(s), j) and then with

(n,m) = (α(s), j − 1), we obtain:[
α(s)

j

]
q

=

[
α(s)− 1

j

]
q

+ qα(s)−j
[
α(s)

j − 1

]
q

− q2(α(s)−j)+1

[
α(s)− 1

j − 2

]
q

. (3.6.3)

Similarly, choosing n = β(j, p, s) and m = β(j, p, s)− s in Lemma3.2.1(ii) gives:[
β(j, p, s)− 1

s− 1

]
q

=

[
β(j, p, s)

s

]
q

− qs
[
β(j, p, s)− 1

s

]
q

. (3.6.4)

Substituting Equations (3.6.3), (3.6.4) into the first and third terms of (3.6.2) respectively,

and simplifying, the expression in (3.6.2) becomes

p∑
j=0

j≡p (mod 2)

q
j(j−r)

2

[
β(j, p, s)− 1

s

]
q

[
α(s)− 1

j

]
q

−
p∑
j=0

j≡p (mod 2)

q
(j−2)(j−r−2)

2

[
β(j, p, s)

s

]
q

[
α(s)− 1

j − 2

]
q

.

Re-indexing the second sum with j′ = j − 2 proves this expression is zero. This completes

the proof.
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3.6.1 Simplification of Closed Form

We are now able to deduce Proposition 6. We define s′ = b s+1+r
2 c. We first note that

for j > min(p, s′), [p−j
2 + s

s

]
q

[
s′

j

]
q

= 0,

and thus we can take the inner summation in (3.5.3) from j = 0 to j = s′ with j ≡ p(mod 2).

Extracting the coefficient of xp in equation (3.5.3), we obtain the explicit polynomial for

[D(2, 3s+ r + 2p) : D(3, 3s+ r)]q in Proposition 6.

3.7 Level 3–Demazure flag of a level 1–Demazure module

Using equation (2.2.1) with ` = 1, `′ = 2 and m = 3 and the formulae in (3.3.1) and

Proposition 6 we get:

A1→3
3s+r(x, q) =

∞∑
n=0

n∑
p=0

p∑
j=0
j≡p

(mod 2)

xn q
1
2
γ(n,p,j)

[
n+

⌊
3s+r

2

⌋
n− p

]
q

[p−j
2 + s

s

]
q

[
s′

j

]
q

(3.7.1)

where γ(n, p, j) =
(
n2 + (n− p)2 + j2

)
+n (2s+ r) + (n− p)

(
2d s−r2 e+ r

)
+ j

(
−2d r2e+ r

)
.

We isolate the formulae for A1→3
3s+r(x, q) for 3s + r = 0, 1, 2. In equation (3.7.1), when

3s + r = 0, we have s = r = r = s′ = 0 and hence
[
s′

j

]
q

= 0 unless j = 0. We also have

γ(n, p, 0) = n2 + (n− p)2. Reindexing by p 7→ n− p, we have

A1→3
0 (x, q) =

∞∑
n=0

xn qn
2/2

n∑
p=0
p≡n

(mod 2)

q p
2/2

[
n

p

]
q

. (3.7.2)

For 3s+ r = 2, we have s = r = s′ = 0, r = 2 and γ(n, p, 0) = n2 + (n− p)2 + 2n− p. Using

the same reasoning in the previous case, we obtain

A1→3
2 (x, q) =

∞∑
n=0

xn q
n2+2n

2

n∑
p=0
p≡n

(mod 2)

q
p2

2

[
n+ 1

p

]
q

= (xq
1
2 )−1

∞∑
n=1

xn q
n2

2

n∑
p=0
p 6≡n

(mod 2)

q
p2

2

[
n

p

]
q

.

(3.7.3)
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Lastly, for 3s+ r = 1, we have s = 0 and r = r = s′ = 1 thus
[
s′

j

]
q

= 0 unless j = 0, 1. Since

γ(n, p, 0) = n2 + (n− p)2 + 2n− p = γ(n, p, 1), we have

A1→3
1 (x, q) =

∞∑
n=0

xn q
n(n+1)

2

n∑
p=0

q
p(p+1)

2

[
n

p

]
q

. (3.7.4)

Remark: In [2], we showed that certain specializations of A1→3
n (x, q) reduce to expres-

sions involving the fifth order mock theta functions of Ramanujan.

3.8 Multiplicities of level 1- Demazure flag of a local Weyl

module for type G2

Using the work of Naoi (see [9]), we are able to determine the graded multiplicities

associated to the level 1-Demazure flags of local Weyl modules for g of type G2. First, we

give the definition of the local Weyl module and the Demazure module as modules for the

current algebra.

3.8.1 Structure of g of type G2

Fix h a Cartan subalgebra of g and let R be the set of roots of g with respect to h. The

restriction of the Killing form of g to h induces an isomorphism between h and h∗ and hence

also a symmetric non–degenerate form ( , ) on h∗. We shall assume that this form on h∗ is

normalized so that the square length of a long root is two and for α ∈ R set dα = 2
(α,α) .

Fix a set {αi : i ∈ {1, 2}} of simple roots for R and let {ωi : i ∈ {1, 2}} ⊂ h∗ be the

set of fundamental weights. Let Q (resp. Q+) be the Z span (resp. the Z+ span) of

{αi : i ∈ {1, 2}} and similarly define P (resp. P+) to be the Z (resp. Z+) span of

{ωi : i ∈ {1, 2}} and set R+ = R ∩Q+. Define a partial order on P+ by λ ≥ µ if and only

if λ− µ ∈ Q+.

Finally, let {x±α , hi : α ∈ R+, i ∈ {1, 2}} be a Chevalley basis for g and set x±i = x±αi for

i ∈ {1, 2}.

3.8.2 Local Weyl Module

We can now define the local Weyl module of highest weight λ ∈ P+, denoted Wloc(λ),

as the g[t]–module generated by an element wλ with defining relations: for i ∈ {1, 2} and
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s ∈ Z+,

(x+
i ⊗ C[t])wλ = 0, (hi ⊗ ts)wλ = λ(hi)δs,0wλ, (3.8.1)

(x−i ⊗ 1)λ(hi)+1wλ = 0. (3.8.2)

Moreover, declaring the grade of wλ to be zero makes the local Weyl module a graded

g[t]-module.

3.8.3 Demazure Module

Then, the Demazure module of level ` and weight λ, denoted D(`, λ), is the graded

quotient of Wloc(λ) by the submodule generated by the elements

{(x−α ⊗ tp)r+1wλ : p ∈ Z+, r ≥ max{0, λ(hα − dα`p, for α ∈ R+}.

3.8.4 Reformulation of Result of Naoi

The next result is a reformulation of the result proved in [9, Section 4, Section 9] of

which the special case will be of interest to us.

Proposition 7. Suppose that g is of type G2. Let λ ∈ P+ be such that λ(h2) = r ∈ Z+

where α2 is the unique short root. Then, Wloc(λ) has a Demazure flag of level one and for

µ ∈ P+,

[Wloc(λ)) : D(1, µ)]q =


[Dsl2(1, λ(hn)) : Dsl2(3, µ(hn))]q, (λ− µ) ∈ Z+α2,

0, otherwise.

(3.8.3)

Here Dsl2(`, s) is the Demazure module for sl2 of weight s.

Then combining the multiplicities we found in the previous section with this Proposition,

we obtain the following.

Corollary 2. Let g be of type G2. The graded character of the local Weyl module of highest

weight λ ∈ P+ is a Z[q]-linear combination of the graded characters of level one Demazure
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modules. Explicitly, we have

chgrWloc(λ)

=
∑
µ∈P+,

(λ−µ)∈Z+α2

λ(h2)−µ(h2)
2∑

p=0

p∑
j=0
j≡p

(mod 2)

q
1
2
γ((λ(h2)−µ(h2)/2),p,j)

[ bλ(h2)
2 c

λ(h2)−µ(h2)−2p
2

]
q

[p−j
2 + bµ(h2)

3 c
bµ(h2)

3 c

]
q

[
s′

j

]
q

chgrD(1, µ),

where γ(n, p, j) =
(
n2 + (n− p)2 + j2

)
+ n (2s+ r) + (n− p)

(
2d s−r2 e+ r

)
+ j

(
−2d r2e+ r

)
and

s′ =

 b
bµ(h2)

3
c+1

2 c, µ(h2) 6≡ 1 mod 3

b b
µ(h2)

3
c+2

2 c, µ(h2) ≡ 1 mod 3

3.9 Partial Theta Series

Recall that the partial theta function and the q-Pochammer symbol (a; q)n are given by,

Θ(q, z) =

∞∑
k=0

qk
2
zk, (a; q)n =

n∏
i=1

(1− aqi−1), n > 0, (a; q)0 = 1.

We refer the reader to [1] for more details regarding partial theta functions. We now use

the fermionic formulae to prove,

Theorem 1. Let s ≥ 0.

(i) For r ∈ {0, 1}, we have

A1→2
2s+r(x, q) =

1

(q; q)s

s∑
i=0

(−1)iq
i(i+1)

2

[
s

i

]
q

Θ
(
q, xqi+s+r

)
. (3.9.1)

(ii) For r ∈ {0, 1, 2}, we have

A2→3
3s+r(x, q) =

1

(q; q)s

s∑
i=0

s′∑
j=0

(−1)i xj qβ(i,j)

[
s

i

]
q

[
s′

j

]
q

Θ
(
q2, x2qα(i,j)

)
, (3.9.2)

where

β(i, j) =
i(i+ 1)

2
+ j2 + j

(
s+

r − r
2

)
,

α(i, j) = i+ 2j + 2s+ r.
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Proof. Using the the q-binomial theorem 3.2.2 we get[
k + s

s

]
q

=

(
qk+1; q

)
s

(q; q)s
=

1

(q; q)s

s∑
i=0

(−qk)i
[
s

i

]
q

qi(i+1)/2. (3.9.3)

Equation (3.3.1) gives

A1→2
2s+r(x, q) =

∞∑
k=0

xkqk(k+s+r)

[
k + s

s

]
q

, (3.9.4)

for s ≥ 0, r ∈ {0, 1} and using (3.9.3) gives part (i).

Similarly, for part (ii), we begin with (3.5.3) and use the change in the inner summation

as discussed in section 3.6.1. Then, we interchange the order of summation and let p = j+2k

with k ≥ 0 to get

A2→3
3s+r(x, q) =

s′∑
j=0

xjqj
2+j(s+ r−r

2
)

[
s′

j

]
q

∞∑
k=0

x2kq2k2+2jk+k(2s+r)

[
k + s

s

]
q

.

Now, we use (3.9.3) to finish the proof of part (ii).

3.10 Graded Multiplicities for arbitrary `

We finish this chapter with a discussion of the graded multiplicities of a level ` + 1-

Demazure flag ofD(`, s) for arbitrary `. Using Proposition 5(i), we can computeA`→`+1
n (x, q)

for 0 ≤ n ≤ ` and write these generating series as (sums of) partial theta functions:

A`→`+1
0 (x, q) = Θ(q`, x`), A`→`+1

` (x, q) = Θ(q`, x`q`),

A`→`+1
k (x, q) = Θ(q`, x`qk) + (xq)`−kΘ(q`, x`q2`−k),

where 1 ≤ k ≤ `−1. Beyond the initial conditions, it is very difficult to obtain closed forms

for the graded multiplicities. Even forming a recursion of generating functions A`→`+1
n (x, q)

is difficult. Recall in Proposition 5(ii) we have the term

qs1s0 [D(`, `(s1 − 1) + (`− s0)) : D(`+ 1, n)]q.

For ` = 1, 2, rewriting the weight `(s1 − 1) + (`− s0) in the form `s̃1 + s̃0 we have s0 = s̃0.

For arbitrary `, this equality does not hold. When we consider the generating series

A`→`+1
n (x, q) =

∑
k≥0

[D(`, n+ 2k) : D(`+ 1, n)]qx
k,

the recursions of the multiplicities (Proposition 5(ii)) depend upon the value of k mod `.
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Chapter 4

Numerical Multiplicities

In the previous chapter, we gave closed formulae in small cases of `. In general, the

graded multiplicities are difficult to calculate. Now, we turn our attention to numerical

multiplicities i.e. formally taking the specialization q = 1. Using Proposition 5 with q =

1, we create a recursion of generating functions. We can in turn create a recursion of

polynomials and solve this recursion as a system of equations. Lastly, we relate these

polynomials and find further recursions relating different level flags of Demazure modules.

4.1 Recursion for A`→`+1
n (x, 1)

We turn our attention to the study of A`→`+1
n (x, 1) for ` ≥ 1. We prove,

Theorem 2. For ` ≥ 1 and n ≥ 0, write n = (`+ 1)pn− rn where pn ∈ Z+ and 0 ≤ rn ≤ `.
Then,

A`→`+1
n (x, 1) =


A`→`+1
n+` (x, 1)− xrn A`→`+1

n+2rn
(x, 1) if `+ 1 - n,

A`→`+1
n+` (x, 1) if `+ 1 | n.

(4.1.1)

4.1.1 Polynomials d`n

We shall use Theorem 2 to establish the following result, which in particular shows that

the functions A`→`+1
n (x, 1) are rational. For this we define polynomials d`n, n ≥ 0, ` ≥ 1

with non–negative integer coefficients as follows. Set
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K1 =



0 1

0 1

0 1

0
. . .

. . . 1

0


, K2 =



0

. .
.
x`−1

. .
.
. .
.

0 x2

0 x

0 1


and K = K1 +K2.

The polynomials d`n are defined by requiring that the following equality hold for all p ≥ 0:[
d`(`+1)p d`(`+1)p+1 · · · d`(`+1)p+`

]T
= Kp+1

[
1 1 · · · 1

]T
. (4.1.2)

Proposition 8. Let ` ≥ 1. Then, for all n ≥ 0, we have

A`→`+1
n (x, 1) =

d`n

(1− x`)b
n
`+1c+1

.

4.1.2 Proof of Theorem 2

To simplify notation, we fix ` ≥ 1, and for s, n ∈ Z+, set

ν(s, n) := [D(`, s) : D(`+ 1, n)]q=1.

Recall that ν(s, n) = 0 if s < n. The theorem follows if we prove that for all s, n ≥ 0, we

have

ν(s, n) =


ν(s+ `, n+ `)− ν(s, n+ 2rn) if (`+ 1) - n.

ν(s+ `, n+ `) if (`+ 1) | n.

(4.1.3)

Notice that this equality holds whenever s < n, both sides being zero. Hence we have to

prove it only in the case when s ≥ n.

Observe that taking q = 1 in Proposition 5(i), gives

s ≥ 0, 0 ≤ n ≤ ` =⇒ ν(s, n) =

1 if s+ n or s− n is a multiple of 2`.

0 otherwise.
(4.1.4)

and taking q = 1 in Proposition 5(ii) with 0 < s0 ≤ `, s1 > 0 and s = `s1 + s0 gives

s ≥ `+ 1, n ≥ `+ 1 =⇒ ν(s, n) = ν(s− `− 1, n− `− 1) + ν(s− 2s0, n). (4.1.5)
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Observe in the last equation that s− 2s0 = `s1 − s0 ≥ 0.

We now proceed to prove (4.1.3) by induction on n. To see that induction begins, we

first prove that this assertion holds when n = 0 for all s ≥ 0. Using equation (4.1.4) it

follows trivially that ν(s, 0) = ν(s+ `, `) as required.

Now let n > 0. Assume that we have proved that ν(s, n′) satisfies (4.1.3) for all 0 ≤ n′ <
n and for all s ∈ Z+. We proceed by induction on s to prove that ν(s, n) satisfies (4.1.3) for

all s ∈ Z+. Notice that this induction begins at s = 0 since both sides of (4.1.3) are then

zero. Further, as remarked earlier, this equality holds for s < n; so we can further assume

that s ≥ n. Now, assume that we have proved the result for all s′ with 0 ≤ s′ < s. We have

to consider two cases.

Case 1: Suppose 0 < n ≤ `, and s ≥ n. In this case we have n = `+ 1− rn and we have to

prove that

ν(s, n) = ν(s+ `, n+ `)− ν(s, 2`+ 2− n).

Case 1(a): Suppose s ≥ `+1. Then (4.1.5) can be used for both terms of the right hand

side and we get

ν(s+ `, n+ `) = ν(s− 1, n− 1) + ν(s+ `− 2s0, n+ `),

ν(s, 2`+ 2− n) = ν(s− `− 1, `+ 1− n) + ν(s− 2s0, 2`+ 2− n).

Set

T1 = ν(s− 1, n− 1)− ν(s− `− 1, `+ 1− n)

and

T2 = ν(s+ `− 2s0, n+ `)− ν(s− 2s0, 2`+ 2− n).

Equation (4.1.4) applies to both the terms in T1. Now observing that:

(s− 1)− (n− 1) = (s− `− 1) + (`+ 1− n)

(s− 1) + (n− 1) ≡ (s− `− 1)− (`+ 1− n) (mod 2`),

we deduce that T1 = 0. Further, since s − 2s0 < s, the inductive hypothesis gives T2 =

ν(s − 2s0, n). We must thus prove that ν(s, n) = ν(s − 2s0, n). Since s ≡ s0 (mod `), we

obtain s − 2s0 ≡ −s (mod 2`); hence s ± n ≡ (s − 2s0) ∓ n (mod 2`); applying (4.1.4)

completes the proof.
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Case 1(b): Suppose s ≤ `. Then since 2`+ 2− n > `, we have ν(s, 2`+ 2− n) = 0. We

thus need to show that ν(s, n) = ν(s+ `, n+ `). Applying equation (4.1.5) again:

ν(s+ `, n+ `) = ν(s− 1, n− 1) + ν(s+ `− 2s0, n+ `).

But since 0 < s ≤ `, we have s = s0, and hence s + ` − 2s0 < ` < n + `. Thus the second

term vanishes. We need to now show that ν(s− 1, n− 1) = ν(s, n). But from (4.1.4), it is

clear that for 1 ≤ s, n ≤ `, ν(s − 1, n − 1) = ν(s, n) = δs,n . This completes Case 1 of the

inductive step.

Case 2: Suppose n ≥ `+ 1 and s ≥ n. Suppose first that `+ 1 - n. Consider

S = ν(s+ `, n+ `)− ν(s, n+ 2rn)− ν(s, n).

By applying (4.1.5) to each of these terms, we have

S = ν(s− 1, n− 1) + ν(s+ `− 2s0, n+ `)− ν(s− `− 1, n+ 2rn − `− 1)− ν(s− 2s0, n+ 2rn)

− ν(s− `− 1, n− `− 1)− ν(s− 2s0, n).

Since n− `− 1 < n and s− 2s0 < s, the inductive hypothesis gives

ν(s− `− 1, n− `− 1) = ν(s− 1, n− 1)− ν(s− `− 1, n+ 2rn − `− 1),

ν(s− 2s0, n) = ν(s+ `− 2s0, n+ `)− ν(s− 2s0, n+ 2rn).

Using these equations to replace ν(s− `− 1, n− `− 1) and ν(s− 2s0, n) in our equation for

S, we obtain S = 0 as required.

Now, suppose `+1 | n. Consider S′ = ν(s+`, n+`)−ν(s, n). As in the case for `+1 - n,

apply (4.1.5) to each term to get

S′ = ν(s− 1, n− 1) + ν(s+ `− 2s0, n+ `)− ν(s− `− 1, n− `− 1)− ν(s− 2s0, n).

Since n− `− 1 < n, s− 2s0 < s and `+ 1 | (n− `− 1), the inductive hypothesis gives

ν(s− `− 1, n− `− 1) = ν(s− 1, n− 1), ν(s− 2s0, n) = ν(s+ `− 2s0, n+ `).

This gives us S′ = 0 as required.
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4.1.3 Proof of Proposition 8

Proof. Let n ≥ 0, with n = (` + 1)pn − rn and 0 ≤ rn ≤ `. We consider three cases in

equation (4.1.1):

(i) 1 ≤ rn ≤ `− 1. In this case, define

n′ = n+ 2rn − ` = (`+ 1)pn − (`− rn),

and consider A`→`+1
n (x, 1) and A`→`+1

n′ (x, 1). Equation (4.1.1) gives us the system of equa-

tions:

A`→`+1
n (x, 1) = A`→`+1

n+` (x, 1)− xrn A`→`+1
n′+` (x, 1)

A`→`+1
n′ (x, 1) = A`→`+1

n′+` (x, 1)− x`−rn A`→`+1
n+` (x, 1)

(this becomes a single equation if rn = `− rn, i.e., if n = n′). Solving, we obtain:

A`→`+1
n+` (x, 1) =

1

1− x`
(
A`→`+1
n (x, 1) + xrn A`→`+1

n′ (x, 1)
)

(4.1.6)

(ii) rn = 0, i.e., n = (`+ 1)pn. Here we obtain A`→`+1
n+` (x, 1) = A`→`+1

n (x, 1)

(iii) rn = `, i.e., n = (`+ 1)pn− `. Then, A`→`+1
n (x, 1) = A`→`+1

n+` (x, 1)− x`A`→`+1
(`+1)pn+`(x, 1).

Using case (ii) above, we obtain A`→`+1
n (x, 1) = (1− x`)A`→`+1

n+` (x, 1).

Now, for n, p ≥ 0, define

d`n := A`→`+1
n (x, 1) · (1− x`)b

n
`+1c+1,

and

ζp :=
[
d(`+1)p d(`+1)p+1 · · · d(`+1)p+`

]T
.

We will prove by induction that

ζp = Kp+1
[
1 1 · · · 1

]T
for p ≥ 0. When p = 0, we use equation (4.1.4) to get

d`n = (1− x`)A`→`+1
n (x, 1) =

(1− x`)
∑

k≥0 x
`k, n = 0, `

(1− x`)(
∑

k≥0 x
`k +

∑
k≥1 x

`k−n), 0 < n < `.

Thus, we have

d`n =

1, n = 0, `

1 + x`−n, 0 < n < `.
(4.1.7)
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These polynomials are the entries in ζ0 and satisfy ζ0 = K
[
1 1 · · · 1

]T
. Now, let p ≥ 1

and assume

ζp−1 = Kp
[
1 1 · · · 1

]T
.

We now have Kζp−1 = K1ζp−1 +K2ζp−1, where

K1ζp−1 =
[
d`(`+1)(p−1)+1 · · · d`(`+1)(p−1)+` 0

]T
,

and

K2 ζp−1 =
[
0 x`−1d`(`+1)(p−1)+` x`−2d`(`+1)(p−1)+`−1 · · · d`(`+1)(p−1)+1

]T
.

Dividing these vectors by (1− x`)p+1, the equations (4.1.6) for 0 < r < ` and the cases for

r = 0, ` give us that (K1 +K2)ζp−1 =
[
d`(`+1)p d`(`+1)p+1 · · · d`(`+1)p+`

]
= ζp. Then, by

the inductive hypothesis, we have

ζp = Kζp−1 = KKp
[
1 1 · · · 1

]T
as desired.

4.2 Generating Series Associated to d`(`+1)p

In the remaining sections of this chapter, we work towards giving a closed form for

the generating series h`(t, x) =
∑

n≥0 d
`
(`+1)nt

n. Through this process, we also relate the

numerical multiplicities between Demazure modules of different levels. Denote D(n, `) :=

d`(`+1)n. We can find a rational expression for h`(t, x).

Proposition 9. Let h`(t, x) =
∑∞

n=0D(n, `)tn and i ∈ Z+. We can write h`(t, x) as a

rational expression.

(i) For ` = 2i+ 1, We write h`(t, x) as(
x
`+1
2 − tx`−

`−1
2∑

k=1

x
3`+1

2
−kt2kP

`+1
2

k −

`−1
2∑

k=1

(1− x`)x`−kt2k+1P
`+1
2

k +

`−3
2∑

m=1

m−1∑
k=0

x`−kt2k+3P
`−(m−1)
k

)−1

×
(
x
`+1
2

∑̀
j=0

tjD(j, `)− x`t
`−1∑
j=0

tjD(j, `)−

`−1
2∑

k=1

x
3`+1

2
−kt2kP

`+1
2

k

`−2k∑
j=0

tjD(j, `)

−

`−1
2∑

k=1

(1− x`)x`−kt2k+1P
`+1
2

k

`−2k−1∑
j=0

tjD(j, `)+

`−3
2∑

m=1

m−1∑
k=0

x`−kt2k+3P
`−(m−1)
k

`−2k−3∑
j=0

tjD(j, `)

)
.
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(ii) For ` = 2i+ 2, we write h`(t, x) as

(
1− (1 + x`/2)

`
2
−1∑
k=0

x
`
2
−1−kt2k+2P

`−( `
2
−1)

k −

`
2
−1∑

m=0

m∑
k=0

x`−kt2k+2P `−mk

)−1

×
( `−1∑
j=0

tjD(j, `)− (1 + x`/2)

`
2
−1∑
k=0

x
`
2
−1−kt2k+2P

`−( `
2
−1)

k

`−1−2k∑
j=0

tjD(j, `)

−

`
2
−1∑

m=0

m∑
k=0

x`−kt2k+2P `−mk

`−1−2k∑
j=0

tjD(j, `)

)
.

4.2.1 Useful Lemma

To prove the proposition, we first need to write the polynomials d`(`+1)n+j for 0 < j < `

as Z[x]-linear combinations of D(p, `). We have the following result.

Lemma 4.2.1. Let D(n, `) denote d`(`+1)n and let m, k ∈ N and p ∈ Z. Then for 1 ≤ m <

`−1
2 , p ≥ m− 1 in the first equality and 0 ≤ m ≤ `+1

2 , p ≥ m− 1 in the second, we have

d`(`+1)p+`−m =
m∑
k=0

xm−kP `−mk D(p+m− 2k, `)

d`(`+1)p+m = Dp+m −
m−1∑
k=1

x`−kPmk D(p+m− 2k, `)

where

P `−mk =


∑k

i=0(−1)i
(
m−k+i

i

)(
k
i

)
xi`, 0 ≤ 2k ≤ m

(1− x`)−(m−2k)P `−mm−k , m < 2k

and

Pmk =


∑k−1

i=0 (−1)i
(
m−k+i
i+1

)(
k−1
i

)
xi`, 0 ≤ 2k ≤ m

m−k
k (1− x`)−(m−2k)Pmm−k, m < 2k.

Proof. For p ≥ −1, we have d`(`+1)p+` = D(p, `) and d`(`+1)p+1 = D(p + 1, `) using (4.1.2)

where d−k = 1 for 1 ≤ k ≤ `. Then, we check the recursions for d`(`+1)p+m+1 with 1 ≤ m <

`−1
2 , p ≥ m+ 2. We plug our solutions into the equation

d`(`+1)p+m = d`(`+1)(p−1)+m+1 + x`−md`(`+1)(p−1)+`−(m−1). (4.2.1)
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Using our solutions on the right hand side, we have

d`(`+1)(p−1)+m+1 + x`−md`(`+1)(p−1)+`−(m−1)

= D(p+m, `)−
m∑
k=1

x`−kPm+1
k D(p+m− 2k, `)

+ x`−m
m−1∑
k=0

xm−1−kP
`−(m−1)
k D(p+m− 2− 2k, `)

= D(p+m, `) +

m∑
k=1

x`−k(P
`−(m−1)
k−1 − Pm+1

k )D(p+m− 2k, `).

Now, due to the piecewise definition of Pnk , we must split our verification into cases.

Case 1: Take k = 0. The coefficient of D(p+m, `) is 1 on both sides of (4.2.1).

Case 2: Take 1 ≤ k ≤ m
2 . The coefficient of D(p+m− 2k, `) on the left side of (4.2.1) is

−x`−kPmk = −x`−k
k∑
i=0

(−1)i
(
m− k + i

i

)(
k

i

)
xi`.

The coefficient of D(p+m− 2k, `) on the right hand side is

x`−k
k−1∑
i=0

(−1)i
(
m− k + i

i

)(
k − 1

i

)
xi` − (−1)i

(
m+ 1− k + i

i+ 1

)(
k − 1

i

)
xi`

= x`−k
k−1∑
i=0

(−1)ixi`
(
k − 1

i

)((
m− k + i

i

)
−
(
m+ 1− k + i

i+ 1

))

= −x`−k
k−1∑
i=0

(−1)ixi`
(
k − 1

i

)(
m− k + i

i+ 1

)
= −x`−kPmk ,

where we used the identity 3.2.1 with q = 1.

Case 3: Take k = m+1
2 for m odd. For the left side of (4.2.1), the condition 2k > m gives

us the coefficient of D(p+m− 2k, `) is

−x`−kPmk = −
m−1

2
m+1

2

x`−
m+1

2 (1− x`)Pmm−1
2

= −
m−1

2
m+1

2

x`−
m+1

2 (1− x`)
(m−3)/2∑
i=0

(−1)i
(m+1

2 + i

i+ 1

)(m−3
2

i

)
xi`

= −x`−
m+1

2

(m−1)/2∑
i=0

(−1)ixi`
(m−1

2

i

)(m−1
2 + i

i+ 1

)
,
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which is equal to the coefficient of the same term on the right hand side of (4.2.1) using the

calculation from case 2.

Case 4: Take k > m+1
2 . The coefficient of D(p+m− 2k, `) on the left hand side of (4.2.1)

is

−x`−kPmk = −m− k
k

x`−k(1− x`)2k−mPmm−k

=
k −m
k

x`−k(1− x`)2k−m
m−k−1∑
i=0

(−1)i
(
k + i

i+ 1

)(
m− k − 1

i

)
xi`

=
k −m
k

x`−k(1− x`)2k−m−1
m−k−1∑
i=0

(−1)i
(
k + i

i+ 1

)(
m− k − 1

i

)
xi`

+

m−k∑
i=1

(
k + i− 1

i

)(
m− k − 1

i− 1

)
xi`.

Similarly for the coefficient on the right hand side of (4.2.1), we have

x`−k(P
`−(m−1)
k−1 − Pm+1

k )

= x`−k((1− x`)2k−m−1P
`−(m−1)
m−k − m+ 1− k

k
(1− x`)2k−m−1Pm+1

m+1−k)

= x`−k(1− x`)2k−m−1
m−k∑
i=0

(−1)ixi`
(
m− k
i

)((
k + i− 1

i

)
− (m+ 1− k)

(
k + i

i+ 1

))
To prove these coefficients are equivalent, it is enough to show for all i = 0, · · ·m− k,

(k −m)

((
k + i

i+ 1

)(
m− k − 1

i

)
+

(
k + i− 1

i

)(
m− k − 1

i− 1

))
=

(
m− k
i

)((
k + i− 1

i

)
− (m+ 1− k)

(
k + i

i+ 1

))
.

This can be proven rewriting the binomial coefficients using factorials.

The proof for verifying the expression for d(`+1)p+`−m for 1 ≤ m < `−1
2 is similar.

4.2.2 Proof of Proposition 9

Now, we are able to prove Proposition 9.

First, assume ` is odd. We note that

d`
(`+1)p+ `−1

2

= d`
(`+1)(p−1)+ `+1

2

+ x
`+1
2 d`

(`+1)(p−1)+ `+3
2

= x
`+1
2 d`

(`+1)(p)+ `+1
2

+ (1− x`)d`
(`+1)(p−1)+ `+1

2
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and we can write d(`+1)(p−1)+ `+1
2

as a combination of d`n using Lemma 4.2.1. For p ≥ 0, we

have

D(p+ `, `) = d`(`+1)(p+`)

= d`
(`+1)(p+`− `−1

2
)+ `−1

2

+

`−3
2∑

m=1

x`−md`(`+1)(p+`−m−1)+`−(m−1)

= x
`+1
2 d`

(`+1)(p+`− `−1
2

)+ `+1
2

+ (1− x`)d`
(`+1)(p+`− `+1

2
)+ `+1

2

+

`−3
2∑

m=1

x`−md`(`+1)(p+`−m−1)+`−(m−1)

= x
`+1
2 (D(p+ `+ 1, `)−

`−1
2∑

k=1

x`−kP
`+1
2

k D(p+ `+ 1− 2k, `))

+ (1− x`)(D(p+ `, `)−

`−1
2∑

k=1

x`−kP
`+1
2

k D(p+ `− 2k, `))

+

`−3
2∑

m=1

x`−m(

m−1∑
k=0

xm−1−kP
`−(m−1)
k D(p+ `− 2− 2k, `)).

Rearranging some terms, we have

x
`+1
2 D(p+ `+ 1, `) = x`D(p+ `, `) + x

`+1
2

`−1
2∑

k=1

x`−kP
`+1
2

k D(p+ `+ 1− 2k, `)

+ (1− x`)

`−1
2∑

k=1

x`−kP
`+1
2

k D(p+ `− 2k, `)

−

`−3
2∑

m=1

m−1∑
k=0

x`−1−kP
`−(m−1)
k D(p+ `− 2− 2k, `).
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Then we multiply by tp and sum over p ≥ 0 to get

x
`+1
2

t`+1

(
h`(t, x)−

∑̀
j=0

tjD(j, `)

)
=
x`

t`

(
h`(t, x)−

`−1∑
j=0

tjD(j, `)

)

+

`−1
2∑

k=1

x
3`+1

2
−k

t`+1−2k
P
`+1
2

k

(
h`(t, x)−

`−2k∑
j=0

tjD(j, `)

)

+

`−1
2∑

k=1

(1− x`)x`−k

t`−2k
P
`+1
2

k

(
h`(t, x)−

`−2k−1∑
j=0

tjD(j, `)

)

−

`−3
2∑

m=1

m−1∑
k=0

x`−1−k

t`−2−2k
P
`−(m−1)
k

(
h`(t, x)−

`−2k−3∑
j=0

tjD(j, `)

)
.

Solving for h`(t, x) completes the proof of part (i).

For part (ii) of the lemma, we assume ` is even. Notice, that we have

d`
(`+1)p+ `

2

= (1 + x
`
2 )d`

(`+1)(p−1)+ `
2

+1
.

For p ≥ 0, we have

D(p+ `, `) = d`(`+1)(p+`)

= d`
(`+1)(p+`− `

2
)+ `

2

+

`
2
−1∑

m=1

x`−md`(`+1)(p+`−m−1)+`−(m−1)

= (1 + x
`
2 )d`

(`+1)(p+`− `
2
−1)+ `

2
+1

+

`
2
−1∑

m=1

x`−md`(`+1)(p+`−m−1)+`−(m−1)

= (1 + x
`
2 )

`
2
−1∑
k=0

x
`
2
−1−kP

`−( `
2
−1)

k D(p+ `− 2− 2k, `)

+

`
2
−1∑

m=1

x`−m(

m∑
k=0

xm−kP `−mk D(p+ `− 2− 2k, `)).

Now, we repeat the steps as in the proof of (i) to get the following equality with generating

functions

h`(t, x)−
`−1∑
j=0

tjD(j, `) = (1 + x`/2)

`
2
−1∑
k=0

x
`
2
−1−kt2k+2P

`−( `
2
−1)

k

(
h`(t, x)−

`−1−2k∑
j=0

tjD(j, `)

)

+

`
2
−1∑

m=0

m∑
k=0

x`−kt2k+2P `−mk

(
h`(t, x)−

`−1−2k∑
j=0

tjD(j, `)

)
.
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We have completed part (ii) of the lemma and thus completed proving the two expressions

for h`(t, x) as rational functions of t and x.

This completes the proof of Proposition 9.

4.3 Recursion for d`(`+1)p

We now restrict our attention to obtaining D(n, `) for 0 ≤ n ≤ `. Identifying these

polynomials would complete an explicit form for h`(t, x).

First, we define the function φp,` : Z → Z as φp,`(m) = m + dmp e(` − p). Then, we can

define the map Φp,` : Z[x]→ Z[x] as Φp,`(x
m) = xφp,`(m). Note that this map is linear, but

not always preserved under multiplication.

We have the following relationship between the polynomials d`n.

Lemma 4.3.1. For p, r ≥ 0, we have an equality of polynomials

dp+2+r
(p+3+r)p = Φp+r+1,p+r+2(dp+1+r

(p+2+r)p).

In this lemma, we take ` = p+ 2 + r. Then, we have

d`(`+1)p = Φ`−1,`(d
`−1
`p ).

for ` ≥ p+ 2.

We observe that Φr,s ◦ Φp,r = Φp,s for p ≤ r ≤ s. Thus, we have

d`(`+1)p = Φp+1,`(d
p+1
(p+2)p).

Thus, in terms of h`(t, x) for any `, we can calculate dp+1
(p+2)p for 0 ≤ p ≤ ` − 2 and apply

the function Φp+1,` to obtain the necessary d`(`+1)p for 0 ≤ p ≤ `− 2.

We finish this section with a proof of Lemma 4.3.1

4.3.1 Proof of Lemma 4.3.1

Applying the map Φp+r+1,p+r+2, we get

Φp+r+1,p+r+2(d(p+2+r)p,p+1+r)

= (1− xp+2+r)p+1
∑
m≥0

[D(p+ 1 + r, (p+ 2 + r)p+ 2m) : D(p+ 2 + r)p]x
m+d m

p+1+r
e
.
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Comparing coefficients in Φp+r+1,p+r+2(d(p+2+r)p,p+1+r) and d(p+3+r)p,p+2+r, it is enough to

prove the following equalities of multiplicities. For 1 ≤ k ≤ p+ 1 + r, we have

[D(p+ 2 + r, (p+ 3 + r)p+ 2(p+ 2 + r)j + 2k + 2) : D(p+ 3 + r, (p+ 3 + r)p)]q=1

= [D(p+ 1 + r, (p+ 2 + r)p+ 2(p+ 1 + r)j + 2k) : D(p+ 2 + r, (p+ 2 + r)p)]q=1

(4.3.1)

and

[D(p+ 2 + r, (p+ 3 + r)p+ 2(p+ 2 + r)j + 2) : D(p+ 3 + r, (p+ 3 + r)p)]q=1 = 0 (4.3.2)

for all p, r, j ≥ 0.

Denote ν(s, n, `) := [D(`, s) : D(` + 1, n)]q=1. To prove these equalities, we will first

proceed by induction on p. We will prove the equality when p = 0 for all r, j ≥ 0. Then

to prove the inductive step, we will use induction on j. The induction on j will require

different cases based on the value of k.

We begin with induction on p ≥ 0.

Base case p = 0,∀r, j ≥ 0: First, we comment on the values of k. We are allowing

1 ≤ k ≤ r + 1, then we have 4 ≤ 2k + 2 ≤ 2r + 4. Using Corollary 5(i) with q = 1, we

calculate the left side of (4.3.1)

ν(2(2 + r)j + 2k + 2, 0, r + 2) = δ2k+2,2r+4 = δk,r+1,

for all r, j ≥ 0. Similarly, calculating the right side of (4.3.1) we have

ν(2(1 + r)j + 2k, 0, r + 1) = δk,r+1,

for all j, r ≥ 0. Moreover, ν(2(2 + r)j + 2k + 2, 0, r + 2) = δk,r+1 with k = 0 proves p = 0

case for (4.3.2) for all r, j ≥ 0. This completes the base case for the induction on p.

Inductive step on p,∀r, j ≥ 0: Now, assume the equalities hold for all p ≤ i and r, j ≥ 0.

Then we must show (4.3.1) and (4.3.2) hold for p = i + 1,∀r, j ≥ 0. We will prove this by

induction on j ≥ 0.

36



Base Case j = 0, p = i + 1, ∀r ≥ 0: First, assume j = 0, p = i + 1. We discuss these

results in cases. First, suppose 2 ≤ 2k ≤ r. Then, we have the following

ν((i+ 4 + r)(i+ 1) + 2k + 2, (i+ 4 + r)(i+ 1), (i+ 3 + r))

= ν((i+ 4 + r)i+ 2k + 2, (i+ 4 + r)i, (i+ 3 + r))

= ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, (i+ 2 + r)),

using Proposition 5(ii) with ν((i+4+r)i+ i+4+r−2k−2, (i+4+r)(i+1), (i+4+r)) = 0

and the inductive hypothesis with p = i. Applying Proposition 5(ii) to ν((i+ 3 + r)(i+ 1) +

2k, (i+ 3 + r)(i+ 1), (i+ 3 + r)) gives the same result.

Consider the case when r + 1 ≤ 2k ≤ 2r + 1. We have

ν(((i+ 4 + r)(i+ 1) + 2k + 2), (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2 + 2r − 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2 + 2r − 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r).

Moreover, if we apply Proposition 5(ii) to the first term i+ 1 times, we obtain

ν((i+ 4 + r)(i+ 1) + 2 + 2r−2k, (i+ 4 + r)(i+ 1), i+ 3 + r) = ν(2 + 2r−2k, 0, i+ 3 + r) = 0,

since 0 < 2 + 2r− 2k ≤ r+ 1 < i+ 3 + r and using the fact that the multplicity term from

inclusion map of Proposition4 is 0 since ν(s, n, `) = 0 for s < n,∀` ∈ Z+. Similarly, we have

for r + 1 < 2k ≤ 2r + 1,

ν(((i+ 3 + r)(i+ 1) + 2k), (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2 + 2r − 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r),

where again obtain

ν((i+ 3 + r)(i+ 1) + 2 + 2r−2k, (i+ 3 + r)(i+ 1), i+ 2 + r) = ν(2 + 2r−2k, 0, i+ 2 + r) = 0,

37



by applying Proposition 5(ii) to the first term i+ 1 times. For the case 2k = r+ 1, we have

ν(((i+ 3 + r)(i+ 1) + 2k), (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 2 + r)i, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r).

This completes the base case when r + 1 ≤ 2k ≤ 2r + 1.

Now, consider the case when 2r + 2 ≤ 2k ≤ 2r + i+ 3.We have

ν(((i+ 4 + r)(i+ 1) + 2k + 2), (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 3 + r)(i+ 2) + 2 + 2r − 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= δk,r+1 + ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r).

using Proposition 5(ii), the inductive hypthesis on the second term and the observation that

(i+ 3 + r)(i+ 2) + 2 + 2r− 2k ≤ (i+ 4 + r)(i+ 1) with equality holding only for 2k = 2r+ 2

implies ν(i+ 3 + r)(i+ 2) + 2 + 2r− 2k, (i+ 4 + r)(i+ 1), i+ 3 + r) = δk,r+1 for calculating

the first term. Similarly, using Proposition 5(ii) and the same observation, we get

ν(((i+ 3 + r)(i+ 1) + 2k), (i+ 3 + r)(i+ 1), i+ 2 + r)

= δk,r+1 + ν(((i+ 3 + r)i+ 2k), (i+ 3 + r)i, i+ 2 + r),

thus completing the proof in this case.

Lastly, consider the case: 2r + i+ 4 ≤ 2k ≤ 2r + 2i+ 4. We have

ν((i+ 4 + r)(i+ 1) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2i+ 4r + 8− 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2k − 2r − i− 3, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2i+ 4r + 8− 2k, (i+ 4 + r)i, i+ 3 + r)

+ ν((i+ 4 + r)i+ 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= δk,r+i+2 + ν((i+ 3 + r)i+ 2k′, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r),
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where we set k′ = 2r + 3 + i− k, use the inductive step on p = i to obtain the second and

third terms and compute ν((i+ 3 + r)(i+ 1) + 2k − 2r − i− 3, (i+ 4 + r)(i+ 1), i+ 3 + r)

since (i+ 3 + r)(i+ 1) + 2k−2r− i−3 < (i+ 4 + r)(i+ 1) unless k = r+ i+ 2. We also have

ν((i+ 3 + r)(i+ 1) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 2 + r)(i+ 1) + 2i+ 4r + 5− 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 2 + r)(i+ 1) + 2k − 2r − i− 3, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2i+ 4r + 6− 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r)

= δk,r+i+2 + ν((i+ 3 + r)i+ 2k′, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2k, (i+ 3 + r)i, i+ 2 + r).

This completes the this case and also completes the base case for the induction on j for

(4.3.1).

Now, to prove the base case for (4.3.2), we have

ν((i+ 4 + r)(i+ 1) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 3 + r)i+ r, (i+ 4 + r)(i+ 1), i+ 3 + r) + ν((i+ 4 + r)i+ 2, (i+ 4 + r)i, i+ 3 + r) = 0,

using the inductive hypothesis for the second term and the fact that

(i+ 3 + r)i < (i+ 4 + r)(i+ 1)

to get the first term is zero. The base case with j = 0 is complete.

Inductive step on j, ∀r ≥ 0, p = i+ 1: Now assume equality holds for j ≤ n for p = i+ 1

and for all r ≥ 0. Again, we break the proof for (4.3.1) into cases. First, consider 2 ≤ 2k < r.

We have

ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2(r − k) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2(r − k) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r),
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where we used Proposition 5(ii) and the inductive hypothesis on p on the first term. Cal-

culating the other multiplicity using Proposition 5, we obtain

ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)(i+ 1), i+ 2 + r).

We need to show

ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2(r − k) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)(i+ 1), i+ 2 + r).

We can use the inductive hypothesis on j (r − k)-times to get

ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2(r − k) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + k)(i+ 1) + 2n(i+ 3 + k) + 2, (i+ 4 + k)(i+ 1), i+ 3 + k)

= 0,

and similarly

ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + k)(i+ 1) + 2n(i+ 2 + k) + 2, (i+ 3 + k)(i+ 1), i+ 2 + k)

= 0.

Thus, the multiplicities are equal completing the case when 2 ≤ 2k < r. Calculating the

other multiplicity using Proposition 5, we obtain

ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)i, i+ 2 + r).
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As in the previous case, we can use the inductive hypothesis on j (r − k)-times to obtain

ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2(r − k) + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + k)(i+ 1) + 2n(i+ 2 + k) + 2, (i+ 3 + k)(i+ 1), i+ 2 + k)

= 0.

We consider the case 2k = r, r + 1 separately. For 2k = r, we have

ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k, (i+ 4 + r)(i+ 1), i+ 3 + r),

where we used Proposition 5(ii) and the inductive hypothesis on p and j on the first and

second terms respectively. Similarly, when 2k = r + 1, we have

ν(((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

where we use the inductive hypothesis on j and p on the first and third terms, respectively.

Moreover, applying the inductive hypothesis on p (r − k)-times as in the previous case, we

get that the second term is 0 i.e.,

ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r) = 0.
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Calculating the other multiplicity, we have

ν(((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

which completes the cases for 2k = r, r + 1.

Now, consider r + 1 < 2k ≤ 2r + 1. We have

ν(((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

where we use the inductive hypothesis on j and p on the first and third terms, respectively.

Moreover, applying the inductive hypothesis on p (r − k)-times as in the previous case, we

get that the second term is 0 i.e.,

ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r) = 0.

Similarly, we have

ν(((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2r − 2k + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2r − 2k + 2, (i+ 3 + r)i, i+ 2 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)
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where the second term is zero by applying the inductive hypothesis on p (r − k)-times i.e.

ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2r − 2k + 2, (i+ 3 + r)i, i+ 2 + r) = 0.

This completes the case when r + 1 ≤ 2k ≤ 2r + 1.

Now, we consider 2r + 2 ≤ k ≤ 2r + i+ 3. We have

ν(((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

where we use the inductive hypothesis on j and p on the first and third terms, respectively.

For the second term, since 2r − 2k + 2 ≤ 0, we have

ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2r − 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)i+ 2n(i+ 3 + r) + 2k′ + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)i+ 2n(i+ 2 + r) + 2k′, (i+ 3 + r)i, i+ 2 + r),

where we use the inductive hypothesis on j and k′ = i+ 3 + 2r− k > 0.In the same fashion,
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we have

ν(((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2r − 2k + 2, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2r − 2k + 2, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2n(i+ 2 + r) + 2k′, (i+ 3 + r)i, i+ 2 + r)

+ ν(((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

using the same notation for k′ as above. This completes the case for 2r+ 2 ≤ k ≤ 2r+ i+ 3

Lastly, consider 2r + i+ 4 ≤ 2k ≤ 2r + 2i+ 4. Then, we have

ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2i+ 8 + 4r − 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2i+ 8 + 4r − 2k, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2k + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2(i+ 3 + 2r − k), (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

using the inductive hypothesis on p for the first and second terms and the inductive hy-
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pothesis on j for the third term. We also have

ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2(n+ 1)(i+ 2 + r) + 2i+ 6 + 4r − 2k, (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

= ν((i+ 3 + r)(i+ 1) + 2n(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2(i+ 3 + 2r − k), (i+ 3 + r)(i+ 1), i+ 2 + r)

+ ν((i+ 3 + r)i+ 2(n+ 1)(i+ 2 + r) + 2k, (i+ 3 + r)i, i+ 2 + r),

thus equality in this case. We have completed the inductive step for j for (4.3.2). This also

completes the inductive step for p for (4.3.2). Hence, we have established (4.3.2).

Now, to prove

ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r) = 0.

Recall, we assume this equality holds for j ≤ n for p = i+ 1 and for all r ≥ 0. We have

ν((i+ 4 + r)(i+ 1) + 2(n+ 1)(i+ 3 + r) + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2r + 2, (i+ 4 + r)(i+ 1), i+ 3 + r)

+ ν((i+ 4 + r)i+ 2(n+ 1)(i+ 3 + r) + 2, (i+ 4 + r)i, i+ 3 + r)

= ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2r + 2, (i+ 4 + r)(i+ 1), i+ 3 + r),

by induction on p for the second multiplicity. By r-applications of (4.3.1), we have

ν((i+ 4 + r)(i+ 1) + 2n(i+ 3 + r) + 2r + 2, (i+ 4 + r)(i+ 1), i+ 3 + r) = 0.

This completes the inductive step on j for (4.3.2). Moreover, this completes the inductive

step on p and the proof of the lemma.
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Conclusion

In this paper, we used the constructive proof of level (` + 1)–Demazure flags of a level

`–Demazure module in [4] to give a well-defined recursion for the graded multiplicities.

For ` = 1, 2, we gave closed formulae for the graded multiplicities. Moreover, the proper

combination of these multiplicities with Naoi’s result in [9] gave exact multiplicities for the

flag of the local Weyl module for type G2 by level 1-Demazure modules. We then related

the results to partial theta functions. As it is difficult to find a closed form for arbitrary

` ∈ N, we turned our focus to numerical multiplicities. We proved recursions of generating

functions for the specialization q = 1. This gave us two ways to determine the numerical

multiplicities. Moreover, we also found relationships between the numerical multiplicities

for different values of the level `.
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