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Article

Minimal metabolic pathway structure is consistent
with associated biomolecular interactions
Aarash Bordbar1, Harish Nagarajan2, Nathan E Lewis1,3,4, Haythem Latif1, Ali Ebrahim1, Stephen

Federowicz2, Jan Schellenberger2 & Bernhard O Palsson1,2,5,*

Abstract

Pathways are a universal paradigm for functionally describing
cellular processes. Even though advances in high-throughput data
generation have transformed biology, the core of our biological
understanding, and hence data interpretation, is still predicated
on human-defined pathways. Here, we introduce an unbiased,
pathway structure for genome-scale metabolic networks defined
based on principles of parsimony that do not mimic canonical
human-defined textbook pathways. Instead, these minimal path-
ways better describe multiple independent pathway-associated
biomolecular interaction datasets suggesting a functional organi-
zation for metabolism based on parsimonious use of cellular
components. We use the inherent predictive capability of these
pathways to experimentally discover novel transcriptional regula-
tory interactions in Escherichia coli metabolism for three transcrip-
tion factors, effectively doubling the known regulatory roles for
Nac and MntR. This study suggests an underlying and fundamental
principle in the evolutionary selection of pathway structures;
namely, that pathways may be minimal, independent, and segregated.
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Introduction

Historically, biochemical experimentation has defined pathways or

functional groupings of biomolecular interactions. Such pathways

are foundational to human-curated databases, such as KEGG

(Kanehisa et al, 2012), BioCyc (Caspi et al, 2010), and Gene

Ontology (Ashburner et al, 2000), are the basis for education in biochem-

istry, and are broadly deployed for analyzing and conceptualizing

complex biological datasets (Khatri et al, 2012). However, the order

of discovery and perceived importance of cellular components has

unavoidably introduced a man-made bias. Pathway organization is

thus often defined in a universal (rather than organism-specific)

manner, missing potential organism-specific physiology. It is

unclear whether the currently used pathway structures correctly

account for observed interactions between the macromolecules

needed to carry out their function.

Systems biology has led to the elucidation and analysis of

multiple cellular networks, representing metabolism (Mo et al,

2009; Orth et al, 2011), transcriptional regulation (Gama-Castro

et al, 2011), protein-protein interactions (Han et al, 2004), and

genetic interactions (Costanzo et al, 2010). These networks provide

the opportunity to build unbiased pathway structures using statisti-

cal or mechanistic algorithms. Statistical approaches have been

employed to high-throughput data and interaction networks to

reconstruct the cellular component ontology of Gene Ontology

(Dutkowski et al, 2012). However, such approaches were not meant

to reconstruct the Biological Processes ontology and build pathways

(Dolinski & Botstein, 2013).

Mechanistic approaches include utilizing convex analysis with

metabolic networks to automatically define pathways. Genome-

scale metabolic networks contain curated and systematized informa-

tion about all known biochemical moieties (metabolites) and trans-

formations (reactions) of a particular cell’s metabolism encoded on

its genome and described in experimental literature (Feist et al,

2009). The stoichiometric matrix (S) is a mathematical description

of a genome-scale metabolic network, which can be queried by

many available modeling methods (Lewis et al, 2012). These

models and the calculated reaction fluxes are typically studied under

a steady-state assumption (Fig 1A). Thus, the full set of potential

steady-state reaction fluxes of a metabolic network is contained in

the associated null space of S (Palsson, 2006). The basis vectors of

the null space have been previously shown to correspond to

biochemical pathways providing a fundamental connection between

mathematical and biological concepts (Papin et al, 2003). This

connection has generated many attempts to characterize the null
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space’s contents using convex analysis (Clarke, 1980). Though

readily applicable to small networks, it has been recognized

for some time that convex pathway definitions (e.g., extreme

pathways (Schilling et al, 2000) and elementary flux modes

(Stelling et al, 2002)) cannot be globally applied to genome-scale

networks as the enumeration of all such pathway vectors is not

computationally feasible (Yeung et al, 2007). More recently,

approaches have been developed to define subsets of metabolic

pathways (de Figueiredo et al, 2009; Kaleta et al, 2009; Kelk et al,

2012), though these pathways do not describe the totality of

phenotypic states.

In this study, we present a mixed-integer linear optimization

algorithm (MinSpan) that can for the first time define the shortest,

functional pathways for metabolism at the genome scale using

metabolic networks thereby describing the totality of steady-state

phenotypes. We find that (1) the minimal pathways are biologically

supported by independent biomolecular interaction networks, (2)

the minimal pathways have stronger biological support than tradi-

tional human-defined metabolic pathways, and (3) the minimal

pathways guided experimental discovery of novel regulatory roles

for E. coli transcription factors.

Results

Defining a minimal network pathway structure for metabolism

In this study, we introduce a network-based pathway framework

called MinSpan that calculates the set of shortest pathways (based

on reaction number) that are linearly independent from each other
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Figure 1. Overview of the MinSpan algorithm.

A A metabolic network is mathematically represented as a stoichiometric matrix (S). Reactions fluxes (v) are determined assuming steady state. All potential flux states
lie in the null space (N).

B The MinSpan algorithm determines the shortest, independent pathways of the metabolic network by decomposing the null space of the stoichiometric matrix to
form the sparsest basis.

C A simplified model for glycolysis and TCA cycle is presented with 14 metabolites, 18 reactions, and a 4-dimensional null space. Reversible reactions are shown.
D The four pathways calculated by MinSpan for the simplified model are presented, two of which recapitulate glycolysis and the TCA cycle, while the other two

represent other possible metabolic pathways. The flux directions of a pathway through reversible reactions are shown as irreversible reactions.
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(Fig 1). The MinSpan pathways are the sparsest linear basis of the

null space of S that maintains the biological and thermodynamic

constraints of the network. The MinSpan pathways have a

couple notable properties. First, unlike convex analysis approaches

(Llaneras & Pico, 2010), MinSpan pathways can be computed for

genome-scale metabolic networks. Second, the sparsest basis

(Fig 1B) maximally segregates the network into clusters of reac-

tions, genes, and proteins that function together. This property

allows for an unbiased functional segregation of cellular metabolism

into biologically meaningful pathways.

The mathematical derivation of MinSpan is provided in the Mate-

rials and Methods. Here, we begin with an illustrative example of

MinSpan for a metabolic model that contains a simplified represen-

tation of glycolysis and the TCA cycle (Fig 1C). In this example, S

has dimensions (m × n) where m = 14 metabolites and n = 18 reac-

tions. The linear basis for the null space (N) has dimensions

(n × n � r) where r is the rank of S. This S has rank (r = 14),

meaning that the null space is four dimensional (e.g., =18–14).

Thus, a set of four linearly independent pathways through the

network represents a linear basis for the null space of S. There are

numerous potential sets of linearly independent pathways for a

metabolic network as the linear basis of the null space is not unique.

MinSpan chooses a set representing the shortest independent path-

ways, and we later show that this linear basis is more biologically

relevant than other linear bases.

Running MinSpan on the simplified model converts the linear

basis matrix (N) to a MinSpan pathway matrix (P) that contains the

four shortest, linearly independent reaction pathways (Fig 1B). The

resulting pathways are presented on the network map (Fig 1D).

MinSpan pathways #1 and #3 are similar to traditional metabolic

pathways (e.g., pathways that look like glycolysis and TCA cycle in

this simplified network), while the last two MinSpan pathways do

not mimic traditional pathways. In the Supplementary Information,

we contrast MinSpan with past convex analysis methods (e.g.,

Extreme Pathways and Elementary Flux Modes) and also present

another illustrative but more complex example for E. coli core

metabolism.

MinSpan pathways are supported by independent
biological datasets

MinSpan pathways are a fundamental and unbiased attempt to

define pathways for metabolism. We next determined whether

MinSpan pathways have biological relevance. By definition, path-

ways represent a grouping of biochemical transformations that can

concurrently function. The biomolecular machinery (e.g., genes

and proteins) of metabolic pathways has been previously shown

to preferentially share interactions compared to components

outside of pathways. Thus, the genes within pathways preferen-

tially contain positive genetic interactions (Kelley & Ideker, 2005)

and are co-regulated (Wessely et al, 2011). Furthermore, the

proteins within pathways preferentially contain protein-protein

interactions (see Supplementary Information). Thus, we compared

calculated MinSpan pathways of genome-scale metabolic networks

to the independent genome-scale networks of protein-protein inter-

actions (PPI) (Stark et al, 2006), genetic interactions (Costanzo

et al, 2010), and transcriptional regulation (TRN) (Gama-Castro

et al, 2011).

We computed MinSpan pathways for the genome-scale metabolic

networks of Escherichia coli (Orth et al, 2011) and Saccharomyces

cerevisiae (Mo et al, 2009). They contain 750 and 332 pathways,

respectively, representing the dimensions of the two null spaces

(see Supplementary Dataset S1). For each calculated MinSpan path-

way, we grouped the “gene-protein-reaction” (GPR) associations

(Fig 2A) of the metabolic reactions within that pathway (Fig 2B).

The GPR association is a set of Boolean rules describing the required

genes, transcripts, and proteins required to catalyze a metabolic

reaction.

We hypothesized that a highly correlated co-occurrence or co-

absence of two proteins across all the MinSpan protein sets of a

particular organism was an indication that the proteins share a PPI

and that a co-occurrence or co-absence of two genes implies that

the genes positively interact or that they are co-regulated by the

same transcription factor (TF). We compared MinSpan pathways to

PPI and genetic interactions in S. cerevisiae and the TRN of E. coli

as the datasets are most complete for those particular organisms

(Fig 2C).

By testing for significant Spearman correlation coefficients of co-

occurrence or co-absence of two proteins across the S. cerevisiae

MinSpan pathway protein sets, 80% of known yeast two-hybrid

PPIs in metabolism (Stark et al, 2006) were found within MinSpan

pathways (Fig 2D). Similarly, MinSpan pathways were representa-

tive of positive genetic interactions (Costanzo et al, 2010) in metab-

olism based on significant correlations of genes across the

S. cereivisae MinSpan pathway gene sets (Fig 2E).

We also used correlation analysis with E. coli pathway gene

sets to assess consistency with co-regulation by the same TF

(Fig 2F). The pathways share over 6,700 co-regulated gene pairs

within E. coli metabolism. Our analysis quantitatively revealed two

levels of regulation. First, local regulation (by TFs regulating at

most 30 metabolic genes, which accounts for 90% of E. coli TFs

regulating metabolism) is pathway based with TFs acting directly

on linearly independent, minimal pathways (Fig 2F). Second,

global regulation (TFs with more than 30 regulated metabolic

genes) involves many simultaneous cellular functions that are not

just metabolic and does not necessarily mimic the metabolic scaf-

fold. Hence, MinSpan pathways recapitulate local and intermediate

regulatory mechanisms, but do not capture the less specific roles

of global regulators.

MinSpan pathways are more biologically supported than
human-defined pathways

MinSpan pathways are highly consistent with PPI, positive genetic

interactions, and local transcriptional regulation implying their

biological relevance. However, a key question arises: Are there

other pathway structures (human or network-defined) that are

equally or better suited at representing pathway-associated biomo-

lecular data types?

To answer this question, we compared the biological relevance

of MinSpan pathways to other network pathway structures

derived from the null space of the stoichiometric matrix. We

calculated the “MaxSpan” or a null space basis matrix with the

least number of non-zero entries (e.g., the longest pathways) and

generated “RandSpan” or randomly generated null space bases

(n = 100) that had random criteria for the sparsity of the matrix.
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We also compared MinSpan to commonly used human-defined

pathway databases including: KEGG Modules (Kanehisa et al,

2012), BioCyc (EcoCyc (Keseler et al, 2011) for E. coli and Yeast-

Cyc (Cherry et al, 2012) for S. cerevisiae), and the Biological

Processes ontology of Gene Ontology (Ashburner et al, 2000) for

both organisms.

Surprisingly, repeating the correlation analysis for these alterna-

tive network and human-defined pathways, we found that MinSpan

pathways were generally more consistent with recapitulating biomo-

lecular interactions (Fig 2D, E, & F). For PPIs, MinSpan was margin-

ally, but not statistically, more consistent than other methods

(P = 0.0780 versus KEGG, P = 0.168 versus EcoCyc, P = 0.901

versus Gene Ontology, two-tailed t-test). As most PPIs occur

between proteins within the same metabolic complex or adjacent

metabolic reactions, most metabolic pathway structures should

conserve PPIs. However, for positive genetic interactions

(P = 3.16e-3 versus KEGG, P = 0.133 versus YeastCyc, P = 1.47e-3

versus Gene Ontology), local transcriptional regulation (P = 2.79e-4

versus KEGG, P = 0.181 versus EcoCyc, P = 2.35e-4 versus Gene

Ontology), and intermediate transcriptional regulation (P = 3.38e-3

versus KEGG, P = 3.97e-6 versus EcoCyc, P = 3.30e-18 versus Gene

Ontology), MinSpan pathways were statistically more representative

of the interactions. None of the pathway structures were highly

consistent with global regulation.

These finding have two important implications. First, MinSpan

pathways have more underlying support from biomolecular data

types than human-defined pathways suggesting an alternative and

fundamental modular organization of cellular metabolism. Defining

pathways by human intuition and interpretation is less representa-

tive of the biomolecular interactions. Second, a minimal pathway

structure is more biologically relevant than other potential linear

bases of the null space confirming the principle underlying its use.

The specific values in Fig 2 are available in the Supplementary

Information.
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A “Gene-protein-reaction” (GPR) associations describe the necessary genes and proteins required for the catalysis of a metabolic reaction. Pyruvate dehydrogenase in
Escherichia coli is shown as an example.

B We grouped genes and proteins in the GPRs for each MinSpan pathway to check consistency with datasets on pathway-associated biomolecular interactions.
C–F Correlation analysis (C) of the gene and protein sets shows MinSpan pathways are biologically consistent with three different biomolecular interaction networks:
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Costanzo et al), and (F) transcriptional regulation in E. coli. MinSpan pathways are more consistent with data-driven protein interaction, genetic interaction, and
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Global comparison of MinSpan and human-derived pathways

How different are the MinSpan pathways from other sources of path-

way definitions? We can delineate the coverage and similarity of

MinSpan pathways against traditional pathway databases (i.e.,

KEGG, BioCyc, and Gene Ontology) for E. coli and S. cerevisiae

metabolism (Fig 3) to answer this question. First, we determined

the number of pathways in each database covering the metabolic

genes in the E. coli and S. cerevisiae metabolic models (see Table 1).

There are widely varying numbers of pathways between all the

databases. KEGG is the smaller of the two metabolic pathway

databases. Gene Ontology contains many other genetic classifications

and is larger than KEGG and BioCyc. MinSpan was the largest

pathway database.

Second, we calculated pairwise connection specificity indices

(CSI) (Green et al, 2011; Bass et al, 2013) for pathways across all

databases (MinSpan and human-defined) based on their gene prod-

ucts and hierarchically clustered them (Fig 3A). The CSI provides

both a metric of how similar two pathways are, and how specific

their similarity is compared to the rest of the available pathways.

For each pathway definition (MinSpan, KEGG, BioCyc, and GO), we

determined how many of their pathways are captured in other path-

way definitions by whether or not they shared a high CSI value

(Fig 3B). As the number of MinSpan pathways is much larger than

the number of pathways for other databases for E. coli, MinSpan

captures most of their information, while KEGG, EcoCyc, and GO

capture much less of MinSpan. For S. cerevisiae, Gene Ontology has

the highest coverage. It has two fewer pathways than MinSpan

(Table 1), but fully captures MinSpan pathways.

Third, we used a K-nearest neighbor search to assign the individ-

ual pathways of one pathway definition into the other three path-

way definitions (Fig 3C) to determine whether certain pathway

definitions are more similar than others. The number of pathways

that were similar between KEGG and BioCyc pathways and BioCyc

and GO was statistically significant (P < 0.05, binomial distribution,

Bonferroni correction) for both organisms. The number of pathways

that shared similarities with MinSpan was significantly depleted

(P < 0.05, binomial distribution, Bonferroni correction), or dissimi-

lar, from most pathway definitions in both organisms. This suggests

that KEGG and BioCyc have the most similar pathways, followed

with Gene Ontology, which has more similarities with BioCyc than

KEGG. MinSpan pathways are significantly different from human-

defined pathway databases and for E. coli contain many unique

pathways (Fig 3D).

Fourth, we determined what caused the significant difference in

MinSpan and human-defined databases by looking at the individual

pathways that were similar or dissimilar between the pathway

definitions (Fig 3D). For both E. coli and S. cerevisiae, MinSpan

captured traditional pathways in carbon metabolism (e.g., glycoly-

sis, pentose phosphate pathway, TCA cycle), amino acid metabo-

lism, and nucleotide metabolism. However, 26 of the 56 pathways

missed by MinSpan for E. coli were related to fatty acid metabolism.

A MinSpan pathway operates under the steady-state assumption,

leading to full flux balance of the metabolic network (e.g., all

metabolites and cofactors in the pathway must be produced,

consumed, and/or recycled). Traditional fatty acid pathway repre-

sentations do not include all necessary components, and fatty

acid pathways typically require the most precursors and cofactors.

Conversely, 99 of the 204 MinSpan pathways missed by tradi-

tional pathways dealt with pathways that contained the necessary

cofactors and precursors, mainly for fatty acid metabolism. The

second representative difference was that a few traditional

pathways (representing gluconeogenesis and deoxyribonucleotide

biosynthesis) were broken up into smaller MinSpan pathways.

Third, MinSpan pathways for E. coli contained 54 novel pathways

related to ion transport, alternate carbon metabolism, and

electron transfer.

For S. cerevisiae, Gene Ontology has a larger coverage of metabo-

lism than MinSpan. This difference is due to two reasons: (1) the

metabolic model of S. cerevisiae is not as comprehensive as the

model for E. coli and (2) the Gene Ontology for S. cerevisiae is rela-

tively more comprehensive than the one for E. coli. There were 32

pathways missed by MinSpan due to differing representations than

traditional pathway databases. Seven missed pathways dealt with

fatty acid metabolism, and their MinSpan counterparts took cofac-

tors and precursors into account. Five traditional pathways for tyro-

sine biosynthesis and triglyceride biosynthesis were broken up into

smaller pathways by the MinSpan algorithm. The specific pathways

that are missed by the MinSpan algorithm are provided in the

Supplementary Dataset S2.

Key examples of MinSpan differences

From a global perspective, there are three representative differences

between MinSpan and traditional pathways (Fig 4). First, MinSpan

enumerates pathways not already described in databases. We found

54 metabolic pathways in E. coli that were not described in KEGG,

Gene Ontology, or EcoCyc. For example, one such pathway involves

the degradation of shikimate, an aromatic compound, to L-trypto-

phan (Fig 4A). The pathway consists of eight metabolic reactions,

six of which are co-regulated by TrpR in E. coli, lending support to

the pathway’s biological relevance.

Table 1. Pathway numbers and lengths for MinSpan and pathway databases in Escherichia coli and Saccharomyces cerevisiae.

E. coli S. cerevisiae

KEGG EcoCyc
Gene
Ontology

MinSpan
(filtered) KEGG YeastCyc

Gene
Ontology

MinSpan
(filtered)

Number of pathways 91 199 348 737 74 121 296 298

Average pathway length (number of
genes)

5.4 6.6 7.3 13.6 3.9 7.1 7.9 13

Average gene usage 1.6 2.7 2.4 8.9 1.4 2.2 6.1 7.1
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Second, MinSpan pathways are mass-balanced and are function-

ally independent units that take into account systemic requirements.

For example, the traditional human-defined pathway for purine

biosynthesis starts from phosphoribosyl pyrophosphate (prpp) and

L-glutamine. Purine biosynthesis consists of 11 metabolic reactions

that lead to IMP (Fig 4B), which is further modified to other purines.

This traditional pathway exists in KEGG, Gene Ontology, and EcoCyc

and is biologically relevant as all 11 reactions are co-regulated

by PurR in E. coli. The third metabolic reaction for purine bio-

synthesis (phosphoribosylglycinamide formyltransferase) requires

10-formyltetrahydrofolate (10fthf). Thus, the MinSpan pathway for

purine biosynthesis also includes tetrahydrofolate (THF) recycling

which contains three reactions. The gene for the first reaction in

THF recycling is transcriptionally regulated by PurR, while the two

other reactions’ genes are not transcriptionally regulated. MinSpan

elucidates a coupling of THF recycling to IMP biosynthesis that is

independently verified by the co-regulation of the necessary genes.

Third, the minimalist decomposition of MinSpan is especially

useful for complex metabolic network topologies where pathway

enumeration is manually difficult. For example, threonine and

methionine metabolism in S. cerevisiae is a small but complex

network consisting of 12 metabolic reactions that involve multiple

amino acids (Fig 4C). KEGG contains two pathways for this region:

L-aspartate to L-threonine and L-aspartate to L-methionine (Fig 4C).

This ignores another potential path to L-methionine from L-threo-

nine. YeastCyc and GO cover all reactions in the example by

containing many more pathways, seven and five pathways, respec-

tively. Similar to KEGG, both YeastCyc and GO describe L-methio-

nine synthesis through L-aspartate. On the other hand, MinSpan

decomposes the network into L-threonine production through

L-aspartate and L-methionine production through L-threonine (Fig 4C).

These two functional units contain the shortest possible connection

between the major metabolites. In the process, this decouples

L-aspartate from L-methionine production.

Genetic interactions are consistent with the parsimonious

approach. From the correlation analysis (at a False Positive Rate of

20%), both MinSpan and human-defined pathways correctly identi-

fied four positive genetic interactions in the L-threonine synthesis

pathway (Fig 4C), suggesting a functional metabolic pathway.

However, there were no positive genetic interactions in the tradi-

tional L-methionine synthesis from L-aspartate, suggesting no func-

tional pathway and leading to five false positive predictions. In fact,

YDR158W and YER091C interact negatively, further supporting that

the two genes are not in the same pathway. Conversely, MinSpan

separates L-aspartate from L-methionine and hence correctly predicts

no genetic interactions. In addition, YCL064C negatively interacts

with YER052C, YDR158W, YJR139C, and YCR053W lending support

to L-threonine and L-methionine production being decoupled.

MinSpan pathways predict transcriptional regulation

MinSpan is an inherent property of metabolic networks, unlike

human-defined pathways, and offers the direct ability to predict

pathway-associated biomolecular properties from flux distributions

calculated by constraint-based modeling. From the above correla-

tion analysis, we observed that genes within a MinSpan pathway

are often co-regulated by the same TF. Thus, we tested whether TFs

act directly on the MinSpan pathway structure during metabolic

shifts to coordinate expression of the metabolic genes needed to

implement a fully functional pathway.

Constraint-based models can be used with Monte Carlo sampling

methods to compute candidate reaction flux states through the

metabolic network (Schellenberger et al, 2011). Comparing the

significantly changed reaction fluxes between two sampled meta-

bolic conditions has been previously shown to be consistent with

experimental datasets (Lewis et al, 2010; Bordbar et al, 2012; Nam

et al, 2012) (Fig 5A). However, these predicted differences are on

an individual reaction basis, not for coordinated changes in flux

states that might reflect the actions of the TRN.

A reaction flux state can be decomposed into its constituent path-

ways. As the MinSpan pathway matrix (P) is a linear basis for the

null space of S, any sampled flux distribution (v) can be decom-

posed into linear weights (a) of P (Wiback et al, 2003). Thus, meta-

bolic reactions (v) determined from Monte Carlo sampling can be

converted into changes in pathway flux loads (a) (Fig 5A). As

MinSpan pathways maintain the transcriptional regulatory hierar-

chy, the MinSpan pathways can then be associated to TFs based on

enrichment of known regulatory gene targets (Gama-Castro et al,

2011) (P < 0.01, hypergeometric test). Thus, a significant change in

the flux load of a MinSpan pathway (a) is a direct predictor of

pathway-associated TF activity.

Metabolic reaction fluxes were computed by Monte Carlo

sampling (Schellenberger et al, 2011) for minimal, aerobic glucose

conditions, as well as 51 nutritional shifts due to changes in carbon,

nitrogen, phosphorus, and sulfur sources, as well as supplementa-

tion of amino acids and nucleotide precursors and removal of

oxygen. Sampled metabolic reaction fluxes (v) were decomposed

into MinSpan pathway flux loads (a) to determine significantly

changed pathways across nutritional conditions (Fig 5A). TFs asso-

ciated with significantly changed pathways (P < 0.05, Wilcoxon

signed-rank test) were then used as predictors of transcriptional

regulation.

Predicted TF activities (Fig 5B) substantially agreed with known

regulatory changes detailed in EcoCyc (Keseler et al, 2011) and

primary literature (see Supplementary Information). As the TRN is

not completely known, we focused primarily on true-positive and

false-negative results. Transcriptional regulatory changes for 37 of

Figure 3. Global comparison of MinSpan pathways with databases of human-defined pathways.

A The pairwise connection specificity index (CSI) was calculated for all pathway definitions (from four sources: MinSpan, KEGG, BioCyc, and Gene Ontology) for
Escherichia coli and Saccharomyces cerevisiae as a measure of pathway similarity. The CSI matrix was hierarchically clustered and the database that the pathway
originates from is color-coded to the left and above the heatmap to illustrate the clustering.

B The percentage of pathways that share a high CSI value (top 15% of interactions) between pathway databases is presented. For example, MinSpan pathways are
similar to and capture roughly 88% of all pathways in KEGG for E. coli. Conversely, KEGG is much smaller and only captures 26% of MinSpan pathways.

C A K-nearest neighbor search was done to see how pathways classify into other databases. KEGG and BioCyc pathways have the closest resemblance with Gene
Ontology being the next similar. MinSpan is significantly different than human-defined pathways. (*Significant enrichment, †Significant depletion).

D 533 MinSpan pathways are similar to 582 traditional pathways. There is not a one-to-one mapping as similar pathways may exist in multiple human-defined
databases. For E. coli¸ there are 204 unique MinSpan pathways. In S. cerevisiae, there are none as Gene Ontology captures all the pathways from the metabolic model.

◂
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the 51 nutrient shifts matched known associations and eight other

shifts partially matched known TF–environment associations (see

Supplementary Dataset S3). Overall, the predicted activities were

highly enriched in known TF–environment associations (P = 2.79e-107,

binomial distribution). Focusing on the 45 shifts, there were 247

predicted TF–environment associations. 154 of those predictions

are confirmed in EcoCyc and primary literature. 93, or 38%, of

the predicted TF activities are not known to be associated with

the corresponding shift, providing numerous novel transcriptional

regulation predictions.

Hierarchically clustering nutrient shifts based on predicted TRN

response stratifies key classes of shifts (Fig 5B). Nucleotide precur-

sor supplementation is characterized by PurR and GcvA activity.

Alternate sulfur sources as well as L-cysteine and L-methionine

supplementation clustered by CysB activity. Sugar carbon sources

clustered by Cra. Organic acid carbon sources, including glycerol,

were systemic and characterized by Fnr, Lrp, and Cra activity. Other

systemic shifts included the response to the lack of oxygen and

alternate nitrogen sources. Finally, predicted transcriptional regula-

tory changes of well-studied shifts (Cho et al, 2011, 2012) of amino

acid supplementation (L-arginine, L-leucine, L-tryptophan), nucleo-

tide supplementation (adenine), and oxygen depletion are described

in greater detail enumerating specific MinSpan pathway changes

(see Supplementary Information).

MinSpan pathways aid in experimental discovery of
novel regulation

MinSpan pathways not only accurately predict known TF activities

but also offer an opportunity to discover novel regulation. We chose

three novel TF–environment predictions to experimentally validate

that are non-obvious, in the sense that little to no literature links the

TF with the predicted associated environment. To be rigorous in the

experimental design, we chose environmental shifts that have been

well-studied; where discovering novel experimental findings would

be more difficult.
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Figure 4. The three differences between MinSpan and human-defined pathways.

A MinSpan automates the enumeration of biologically relevant pathways.
B MinSpan includes all required components of a pathway to be independent. The additional pathway components not found in human-defined pathways, such as THF

recycling, are often co-regulated and thus a part of a coherent pathway functioning as a “module” in a network.
C MinSpan decomposes complex topology into the simplest representation. For example, there is a shorter route to L-methionine production through L-threonine than
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Molecular Systems Biology 10: 737 | 2014 ª 2014 The Authors

Molecular Systems Biology Minimal pathway analysis for genome-scale networks Aarash Bordbar et al

8



The three tested associations were Nac with adenine supplemen-

tation (ade/Nac), Cra with L-tryptophan supplementation (L-trp/

Cra), and MntR with shift to anaerobic conditions (O2/MntR). The

chosen shifts represent three distinct magnitudes of dual perturba-

tions. In the ade/Nac case, the environment and genetic perturba-

tions are both relatively minor. In the L-trp/Cra case, Cra is a broad

acting TF and dominates, while the environmental perturbation to

the absence of oxygen dominates in the O2/MntR case.

We generated RNA-seq data from dual perturbation experiments

(Ideker et al, 2001; Covert et al, 2004) for the three cases consisting

of perturbations in the environment (media supplementation) and

genetics (TF knockout) of E. coli. For each case, we determined the
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Figure 5. MinSpan pathways help predict transcription factor activity.

A Constraint-based models can determine reaction activity, or flux states (v), using Monte Carlo sampling. Decomposing sampled flux states into linear weightings of
MinSpan pathways (a) allows prediction of TF activity. For example, metabolic reaction fluxes are sampled under glucose minimal media and glucose minimal media
+ L-arginine supplementation. Typical analysis would yield a list of reactions (including vi) that are significantly changed. With MinSpan pathways, the flux
distributions can be converted into significant changes in pathway activity (including aj). TFs are associated with pathways based on enrichment of regulated genes.
Predicting TF activity is based on which TFs are associated with the significantly changed pathways; in this case, aj is associated with ArgR.

B The TF activity of 51 nutrient shifts was predicted and can be hierarchically clustered by nutrient shift type. TF activity for the heatmap is defined as the percentage
of differential MinSpan pathways that are associated with that TF. 36% of the TF–environment associations predicted are not known, providing numerous predictions
for experimentation. Experimentally tested TF–environment associations are highlighted.
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gene set that is exclusively differentially expressed because of the

combination of the genetic perturbation and environmental shift

(see Materials and Methods) in order to analyze whether the TF

plays a role in the environmental shift.

Global analysis of the gene sets, based on enrichment of regula-

tory interactions with known TF associations (Gama-Castro et al,

2011), suggested that predictions for ade/Nac and O2/MntR were

correct, and the L-trp/Cra prediction was indeterminate. In the

ade/Nac case, the gene set was enriched with genes known to be

regulated by the TFs GcvA, Lrp, and PurR (P = 9.5e-6, 1.6e-4,

1.8e-4, hypergeometric test), suggesting that Nac (nitrogen assimi-

lation control) regulates similar genes during the shift or even

regulates the corresponding TFs. In the L-trp/Cra case, there were

no enriched TFs suggesting no global consensus. This discrepancy

might be due to (1) Cra knockout causing a large genetic shift that

might have changed how E. coli responds to L-trp and (2) MinSpan

is inaccurate for predicting global regulation. In the O2/MntR case,

TFs known to be associated with the anaerobic shift (including

ArcA and Fnr) were enriched as a whole (P = 3.6e-3, hypergeo-

metric test).

Through differential expression and detection of high confidence

binding sequence motifs, we identified novel regulatory roles for all

three tested TFs (Fig 6). For the ade/Nac case, we identified poten-

tial regulation of genes involved in purine metabolism, involved in

nitrogen assimilation, and regulated by Lrp (Fig 6A). The transcrip-

tion units (TUs) gcvTHP and gcvB are known to be regulated by

GcvA and PurR and are potentially regulated by Nac. Nac also

seems to regulate gcvB, which is a small regulatory RNA of Lrp

(Modi et al, 2011). Using FIMO (Grant et al, 2011), we detected a

significant Nac binding sequence motif for gcvB (�173 bp of tran-

scription start site (TSS), P = 1.73e-6). A significant increase in gcvB

suggests a repression of Lrp and genes typically repressed by Lrp

should have higher expression and genes activated by Lrp should

have lower expression. This trend was observed in all significantly

changed expression of Lrp-regulated genes (Fig 6A). We also identi-

fied novel regulation and high confidence binding sequence motifs

for nitrogen assimilation genes: nirB (�87 bp of TSS, P = 7.63e-5)

and nrdHIEF (�170 bp of TSS, P = 2.2e-5).

Though there was no global trend for the L-trp/Cra case, we did

find that Cra potentially regulates the L-trp symporter and trypto-

phanase (tnaCAB, Fig 6B). Crp is a known regulator of this TU

(Botsford & DeMoss, 1971), but our data suggest that Cra also plays

a role, possibly by in-direct regulation through Crp (Shimada et al,

2011).

Finally in the O2/MntR case, MntR potentially regulates four TUs

highly regulated during the anaerobic shift including the TF GadX

(-120 bp of TSS, P = 2.6e-5) (Fig 6C). GadX regulates pH-inducing

genes and the GAD system that play roles during fermentation

(Tramonti et al, 2002). MntR also potentially regulates a subunit of

pyruvate formate lyase (yfiD), NADH:ubiquinone oxidoreductase II

(ndh), and molybdenum biosynthesis (moaABC).

It is important to note that potential regulatory sites were only

detected during dual perturbation, suggesting that experiments to

elucidate TRNs under one environmental condition underestimate

non-intuitive regulatory events. The additional potential binding

sites nearly double the known potential binding sites for Nac and

MntR (Keseler et al, 2011). Dual perturbation predictions were more

accurate for local TFs (Nac/MntR) than global TFs (Cra), which is

also consistent with the correlation analysis. The analysis presented

to predict TF–environment associations is only possible with

MinSpan pathways, as opposed to pathway databases, as MinSpan

pathways directly link flux simulations from constraint-based

models to pathway biomolecular properties.
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Discussion

High-throughput technologies have transformed biological data

generation and experimentation. However, a major remaining chal-

lenge is analysis and interpretation of large datasets for achieving

biological understanding (Palsson & Zengler, 2010; Sboner et al,

2011). Though data analysis is steadily improving, the underlying

interpretation is still often relying upon historically determined,

human-defined pathways (Khatri et al, 2012). In this study, we

introduce an unbiased genome-scale method to define pathways

based on whole network function and a principle of parsimonious

use of cellular components. We find that the MinSpan pathways are

not only biologically relevant in their ability to recapitulate indepen-

dent datasets on biomolecular interaction, but are surprisingly more

accurate than traditional pathway databases such as KEGG, EcoCyc,

YeastCyc, and Gene Ontology. The results have three implications.

First, the results suggest that the traditional approach to defining

metabolic pathways is not complete and an unbiased alternative

might be more representative of the underlying pathway structure.

Traditional pathway enumeration focuses predominantly on

biochemical reactions. By incorporating a minimal criterion of the

number of reactions used, the MinSpan approach indirectly intro-

duces the requirements for biomolecular machinery usage into the

pathway definition. There are two fundamental features of MinSpan

pathways that differentiate them from traditional pathways. (1)

MinSpan pathways account for all necessary components to make a

pathway fully functionally independent (e.g., they are network-

based). (2) MinSpan pathways represent the simplest pathway

structure in a given network context. The improved consistency of

MinSpan with biomolecular interactions suggests that the coordi-

nated regulation and usage of biological components in the cell have

evolved to be minimal and independent in order to adapt to pertur-

bation with as little cost to the cell as possible. Biologically mean-

ingful pathways may be minimal, independent, and segregated.

Future delineation of metabolic pathways, both network and

human-defined, should take into consideration the cost of biomolecular

machinery and systemic functional requirements for metabolic function.

Second, the MinSpan pathways provide an alternative, comple-

mentary, and potentially more powerful approach for investigators

to analyze their generated data. Current pathway databases are

tremendously important in conceptualizing biological function and

are used by numerous investigators for data analysis. As MinSpan

pathways are more biologically relevant in terms of the underlying

biomolecular interactions, the theory presented here for an unbiased

pathway structure opens up the potential for a whole new suite of

pathways to be used with tools such as Gene Set Enrichment Analy-

sis (GSEA) (Subramanian et al, 2005).

Third, MinSpan pathways can guide the difficult process of

reconstructing and determining TRNs. The best characterized TRN

is that in E. coli. Though the E. coli TRN is not complete, our

approach of coupling metabolic models with MinSpan pathways

identifies novel associations between TFs and environmental shifts,

providing a rational method to design context-specific dual perturba-

tion experiments. In this study, we have experimentally validated

three of the 93 novel predictions allowing us to double the known

potential regulatory sites for Nac and MntR. Our analysis shows that

experiments under varying environmental conditions are required to

elucidate novel regulatory roles. Further, we recently confirmed two

additional novel MinSpan predictions for cytosine/Nac and cyto-

sine/NtrC (Kim, 2014) using chromatin immunoprecipitation with

exome sequencing methods (Rhee & Pugh, 2011). This work also

confirms the biochemical binding of Nac to the transcription unit

gcvTHP, which is the mechanism for which Nac is involved in

purine metabolism (Fig 6A). The remaining 88 MinSpan predictions

provide a roadmap for future experimentation to help discover

numerous new regulatory roles in E. coli, and the overall method

can be applied to any organism with a metabolic and regulatory

network.

There are also some limitations and areas for further research

with regards to the MinSpan algorithm. First, the MinSpan algo-

rithm is dependent on the quality of the genome-scale metabolic

model utilized; in the same way, the quality of pathway databases

for particular organisms is dependent on the biochemical knowledge

available. The MinSpan pathways are more comprehensive in E. coli

than S. cerevisiae as iJO1366 is much more complete than iMM904.

This difference is a reflection of the biochemistry of E. coli being

better studied than S. cerevisiae. Second, just as there are multiple

pathway databases for the same organism, there are sometimes

multiple metabolic network reconstructions for the same organism.

Further research is needed to assess the differences in the calculated

MinSpan pathways for different metabolic models of the same

organism. Third, human-defined pathways are often defined in

a universal, rather than organism-specific, manner. This can be a

strength, particularly for educational purposes as it provides a

common “language” to describe the function of many organisms.

However, universal pathways can also be a weakness. Human-

defined pathways focus on the topology of gene products, while

ignoring the organism-specific functional context of metabolic path-

ways. For example, isotopomer metabolic flux profiling has shown

that metabolic functionality can often be quite different than the

gene products present (Amador-Noquez et al, 2010). To assess the

conservation of MinSpan pathways, a preliminary analysis compar-

ing E. coli and S. cerevisiae MinSpan pathways is provided in the

Supplementary Information. However, further research with several

reconstructions of different organisms is needed to fully assess

whether MinSpan pathways are conserved across species.

Materials and Methods

MinSpan Formulation

The MinSpan algorithm determines the shortest, linearly indepen-

dent pathways for a stoichiometric matrix (S) with dimensions

m × n and a rank of r. The input is a metabolic model (variables S,

lb, ub) and outputs a MinSpan pathway matrix (P). P is the sparsest

null space of S that maintains biological and thermodynamic

constraints (lb and ub). Coleman and Pothen defined the mathemati-

cal problem for the sparsest linear basis of the null space as the

“sparse null space basis problem” and then proved that a greedy

algorithm must find the globally optimal sparsest null space (least

number of non-zero entries) (Coleman & Pothen, 1986). More

recently, Gottlieb and Neylon showed that a similar problem, “the

matrix sparsification problem,” is equivalent to the “sparse null space

basis problem” (Gottlieb & Neylon, 2010). We formulated “the matrix

sparsification problem” as a mixed-integer linear programming
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(MILP) problem. The MILP is boxed in the pseudo-code below.

Simply put, the orthonormal null space (N) of S is initially defined by

singular value decomposition. Then, the vectors of the orthonormal

null space are iteratively replaced by the shortest pathways that span

the removed vector’s subspace. This process is continuously repeated

until the number of non-zero entries in P has converged to a mini-

mum. Before running the algorithm, all reactions that cannot carry a

flux are removed, all exchanges are opened, and the biomass func-

tion is removed. The algorithm is summarized below:

N = null(S)

P = N

while (true)

P0 = P

for j = 1:n-r

P0
a;b ¼ Pa;b if b 6¼ j

0 if b ¼ j

�

x ¼ N � nullðhTÞ where N � h ¼ P

min
X

bi where b 2 f0; 1g
S � v ¼ 0

lbi � vi �ubi

� 1000bi � vi � 1000bi

xT � v 6¼ 0

P0
a;b ¼ Pa;b if b 6¼ j

v if b ¼ j

�

end

P = P0

if nnz(P) == nnz(P0), break, end

end

The null() operator defines the orthonormal null space using

singular value decomposition. The nnz() operator determines the

number of non-zero entries in a matrix. Vectors are in bold, and

matrices are capitalized. P0 is similar to P, but without the vector pj,

and x is a vector that spans the space of pj and is linearly indepen-

dent from P0. b is a binary version of the flux vector (v) that is mini-

mized by the optimization problem to determine the MinSpan

pathways. This is proved by contradiction. If P0 and x are linearly

dependent, then multiples of x and the vectors of P0 should linearly

combine to zero:

P0Kþ xk ¼ 0whereK; k 6¼ 0

P0K ¼ �N � nullðhTÞk
N�1P0K ¼ �nullðhTÞk
hK ¼ �nullðhTÞk
hThK ¼ �hTnullðhTÞk
hTh ¼ 0

hTh is a positive semi-definite matrix by definition and cannot

equal zero. Thus, P and x are linearly independent. The xT�v 6¼ 0

constraint ensures that the calculated pathway spans the proper

dimension of the null space. For a MILP problem, the constraint

is formulated as below, where e is an arbitrarily small value

(set to 0.1, various other choices yield similar results), and

f+ and f- are binary variables required to formulate a “not-equal”

constraint:

fþ þ f� ¼ 1where f 2 f0; 1g
xT � v� 1000ð1� fþÞ� efþ

� xT � vþ 1000ð1� f�Þ� ef�

The termination criterion for the branch and bound method for

each MILP iteration is a relative gap tolerance of 1e-3 or time limit

of 30 min. These criteria were developed based on convergent

properties of solutions as the two parameters were varied. As the

MinSpan algorithm is a MILP problem, there can exist alternative

optimal solutions. The total number of non-zero entries in the

matrix is unique, but the pathways may not be. Rerunning the

correlation analysis to determine biological relevance with alternate

MinSpan pathways for both E. coli and S. cerevisiae yielded little

changes to the results (see Supplementary Information). MinSpan is

available for COBRApy at https://github.com/sbrg/minspan.

MaxSpan and RandSpan were generated similarly with slight

modifications. For MaxSpan, the optimization was switched to a

maximization problem to make the densest null space. For Rand-

Span, we assigned a random value from �0.5 to 0.5 to the optimiza-

tion c vector to randomly minimize and maximize the use of

reactions while constructing each null space. For maximization, the

following constraints are added to link the binary and continuous

variables:

vi � bi � 1000ðgi � 1Þ � ð1000� eÞ
vi þ bi � � 1000gi � ð1000� eÞ

Where e is an arbitrarily small value (set to 0.1, various other

choices yield similar results) and gi are dummy binary variables to

allow an “OR” statement in linear programming. If gi is either 1 or

0, one of the two above constraints is off.

Correlation analysis

The metabolic reactions in MinSpan pathways were converted to

gene and protein sets based on the gene-protein-reaction associa-

tions. Pairwise Spearman rank correlations of the co-occurrence or

co-absence of genes and proteins across the pathways were calcu-

lated. Correlations that were not significant (P > 0.05, permutation

test) were filtered from further analysis. The total number of corre-

lations remaining after filtering is the coverage criteria (i.e., log

(interactions)) in the x-axes of Fig 2. The correlation coefficient was

the varied discrimination threshold for generating the receiver oper-

ating characteristics (ROC) curve, using a convex hull. P-values to

determine statistically different ROC convex hull curves were

calculated using the approach by Hanley and McNeil (Hanley &

McNeil, 1982).

The correlations were compared to biomolecular interaction data

types to assess the biological relevance of gene and protein group-

ings of the pathways. Known biomolecular interactions were taken

as the gold standard positive set. All available yeast two-hybrid

screening data from BioGRID (Stark et al, 2006) were used for

protein-protein interactions. “Stringent” positive genetic interactions

(defined by the authors as P < 0.05 and e > 0.16) were taken from
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Costanzo et al. For TF–gene interactions, all reported interactions in

RegulonDB (Gama-Castro et al, 2011) were used. A lack of reported

biomolecular interactions in these three datasets was deemed the

gold standard negative set.

KEGG modules (Kanehisa et al, 2012) and GO Biological

Processes ontology (Ashburner et al, 2000) were downloaded from

their respective websites on 01/27/2013 for comparison. EcoCyc

(Keseler et al, 2011) and YeastCyc (Cherry et al, 2012) pathways

were downloaded on 02/12/2013. Only distinct pathways with two

or more genes from the metabolic networks were considered. The

same correlation analysis was used for the human-curated path-

ways, MaxSpan, and RandSpan.

Comparing pathway databases

We calculated the connection specificity index (CSI) (Green et al,

2011; Bass et al, 2013) between pathways based on their gene prod-

ucts across all pathway definitions (MinSpan, KEGG, BioCyc, and

Gene Ontology). The CSI is a metric that determines the similarity

between two vectors by ranking the Pearson’s correlation coefficient

of the two vectors based on the correlations of all other vectors

versus the two vectors in question. A CSI between pathways A and

B is defined as:

CSIAB ¼ # pathways correlated with A and B that PCC \PCCAB � t

ny

where PCC is the correlation coefficient of gene products, PCCAB

is the correlation between A and B, t is an empirically derived

threshold, and ny is the total number of pathways. Further expla-

nation of CSI and software tools for its use is available (Bass et al,

2013). The threshold for CSI was set based on the distribution

of correlations (E. coli – 0.0350, S. cerevisiae – 0.0562, see Supple-

mentary Figure S13). Pathways were considered similar if their

CSI ranked in the top 15% of CSI values.

We also employed a k-nearest neighbors search to find the most

similar pathways across the pathway databases. The Pearson’s

correlation was used as the distance metric. The closest hit that also

had a high CSI value (top 15%) was used as the nearest neighbor. If

the pathway did not have a high CSI value, then the pathway was

deemed unique compared to the other databases.

MinSpan pathways contain many gene products related to the

mass balancing of the network, such as transporters, that are active

in nearly every pathway. In order for a meaningful comparison

between MinSpan and human-defined databases, the genes in each

MinSpan pathway were filtered to only the representative genes of

that pathway. To do so, we used a conservative filter to remove

genes that were in nearly every pathway (P > 0.85, hypergeometric,

empirically derived).

Determining reaction fluxes and transcription factor activities

Monte Carlo sampling (Schellenberger et al, 2011) was used to

determine 10,000 reaction flux distributions for the E. coli metabolic

network for each of the 52 nutrient conditions. For glucose minimal

media conditions, exchange constraints were taken from Covert

et al (2004). For anaerobic conditions, rate of oxygen input was set

to zero. For amino acid and nucleotide simulations, rate of amino

acid or nucleotide input was set to the minimum rate that would

allow the biomass constituent, at the wild-type growth rate, to be

generated solely from exogenous substrate. Six nutrient shifts were

not considered (L-alanine, L-asparagine, L-aspartate, L-glutamate,

L-glutamine, and uracil), as they are involved with type 3 loops

(physiologically infeasible pathways that are artifacts of pathway

enumeration algorithms (Palsson, 2006)). For alternate carbon,

nitrogen, phosphorus, and sulfur sources, the original input source

from glucose minimal media conditions was set to zero and an

equal rate of atom flow was set as the input. All nutrient conditions

had the basal biomass flux rate set to 90% of the optimal value. To

compare different conditions, sampled fluxes within a particular

condition were normalized by median growth rate for comparison.

The specific lower bounds for exchanges used with the E. coli model

are detailed in the Supplementary Dataset S4. All upper bounds are

set to 1,000.

Assignment of TFs to MinSpan pathways was by hypergeometric

enrichment (P < 0.01) of the TF-regulated genes as determined by

RegulonDB (Gama-Castro et al, 2011). Determination of whether or

not a TF plays a role in an environmental shift was determined by

hypergeometric enrichment (P < 0.05) of the number of significantly

changed TF-associated pathways. TFs regulating only one metabolic

reaction or appearing in one pathway were removed due to a lack of

statistical power.

Growth conditions, RNA isolation, and RNA-seq

KEIO collection knockout strains were used (Baba et al, 2006).

Strains were grown to mid-exponential phase under conditions spec-

ified in Supplementary Table S1. Spinner flasks were used for

aerobic culture and serum bottles for anaerobic cultures. One

volume of mid-exponential sample was mixed with two volumes of

RNA-Protect (Qiagen). Cell pellets were lysed for 30 min at 37°C

using Readylyse Lysozyme (Epicentre), SuperaseIn (Ambion),

Proteinase K (Invitrogen), and SDS. Following cell lysis, total RNA

was isolated using RNeasy columns (Qiagen) following vendor

procedures with on column DNase treatment for 30 min at room

temperature. Paired-end, strand-specific RNAseq was performed

using the dUTP method (Levin et al, 2010) with the following modi-

fications. rRNA was removed with Epicentre’s Ribo-Zero rRNA

Removal Kit. Subtracted RNA was fragmented for 3 min using

Ambion’s RNA Fragmentation Reagents. cDNA was generated using

Invitrogen’s SuperScript III First-Strand Synthesis protocol with

random hexamer priming.

Transcript quantification from RNA-seq reads

RNA-seq reads were aligned to the genome sequence of E. coli (Ref-

Seq: NC_000913) using Bowtie (Langmead et al, 2009) with 2

mismatches allowed per read alignment. To estimate transcript

abundances, FPKM values were calculated using Cufflinks (Trapnell

et al, 2010) with appropriate parameters set for the strand-specific

library-type and upper-quartile normalization. EcoCyc annotations

were used for transcript quantification. Differential expression

analysis was done using cuffdiff with upper-quartile normalization,

and appropriate parameters set for strand-specific library type.

A fold change of greater than 2-fold and a false discovery rate
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cutoff of 0.05 were used to determine significant differential

expression.

Analysis workflow for dual perturbations

Dual perturbation experiments consisted of four RNA-seq experi-

ments: (1) wild type (WT) on glucose minimal media, (2)

WT + nutrient shift, (3) TF knockout (KO) on glucose minimal

media, and (4) TF KO + nutrient shift. We defined differentially

expressed gene sets between the four conditions as: E1 (WT versus

WT + nutrient), E2 (KO versus KO + nutrient), G1 (WT versus KO),

and G2 (WT + nutrient versus KO + nutrient). The differential gene

set of the combination of environmental and genetic perturbations

is defined as the union of the following sets: {{E2ME1}\G1 and {G2

\G1}. The gene sets for the three experiments are provided in

Supplementary Dataset S5. To globally determine prediction accu-

racy, we used RegulonDB to determine whether a gene set was

enriched (P < 0.05, hypergeometric test, Bonferroni correction) in

genes of a particular transcription factor. A prediction was deemed

correct if the enriched transcription factors had known associations

with the environmental shift.

Supplementary information for this article is available online:

http://msb.embopress.org
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