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Abstract
Memory researchers have studied learning behavior and
extracted regularities describing learning and forgetting over
time. Early work revealed forgetting curves and the benefits
of temporal spacing and testing for learning. Computational
models formally implemented these regularities to capture
relevant trends over time. As these models improved, they
were applied to adaptive learning contexts, where learning
profiles could be identified from responses to past learning
events to predict and improve future performance. Often times,
past performance is expressed as accuracy alone. Here we
explore whether a model’s predictions can be improved if
past performance is expressed by an integrated measure that
combines accuracy and response times (RT). We present a
simple, data-driven method to combine accuracy and RT on a
trial-by-trial basis. This research demonstrates that predictions
made using the Predictive Performance Equation improve
when past performance is expressed as an integrated measure
rather than accuracy alone.
Keywords: Learning; forgetting; cognitive model; accuracy;
response time; integrated measure

Introduction
What data from fact learning trials are needed to predict
whether a student will know the correct answer some time
in the future? Does it help to know how often (and when) the
student has previously answered correctly? Or how long it
took them to provide the answer?

These questions are at the heart of models that describe
learning and forgetting over time. Computational models
are often fit to historical data to demonstrate that they
can capture relevant behavioral effects exhibited by human
learners (e.g. Pavlik & Anderson, 2008; Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018). Yet, the
strongest test of a model is accurately predicting future
performance—especially if predictions are made for each
item studied by each student. The Second Language
Acquisition Modeling (SLAM) challenge recently posed
by Duolingo required such predictions (Settles, Brust,
Gustafson, Hagiwara, & Madnani, 2018). Data from a
subset of Duolingo users were made available and users
submitted model performance predictions as part of a
modeling competition..

As in these challenges, adaptive fact-learning systems
must decide which features of the available data are taken
into account to detect differences in item difficulty and
participants’ abilities to make accurate predictions. An
obvious candidate is accuracy, since it indicates whether the
student knew an answer previously. Forgetting then reduces
the probability that responses are correct over time. Systems
such as Duolingo (Settles & Meeder, 2016) strive to ensure
that study repetitions occur before knowledge is forgotten.

Yet, if most responses are correct, there is very little
information in the responses if only accuracy is considered,
making it difficult to optimally adapt to learning and item
difficulty. Response times (RT) can provide an additional
source of information to differentiate between otherwise
identical responses. The basic assumption is that observed
RTs correlate with the difficulty of memory retrieval (e.g.,
Pavlik & Anderson, 2008; Pyc & Rawson, 2009). Indeed,
analyses of the models submitted to the SLAM challenge
support the view that RTs provide valuable information for
predicting later performance (see Table 4 in Settles et al.,
2018).

As accuracy and RT are often correlated (e.g.,
speed-accuracy trade-offs), methods have been proposed to
combine them into a single performance metric. A recent
suite of simulation studies discusses the merits of seven such
integrated performance measures (Vandierendonck, 2017).
All these measures, however, are aggregate measures: For
example, the mean RT is combined with the average accuracy
to express performance per participant, per condition. As
this discards all information pertaining to when responses
are given, these measures are less suited for parametrizing
adaptive learning systems.

To our knowledge, there are at least two adaptive
fact-learning systems that use both accuracy and RTs
on a trial-by-trial level. Adaptive Response-Time-based
Sequencing (ARTS; Mettler & Kellman, 2014; Mettler,
Massey, & Kellman, 2016) schedules repetitions adaptively
by continuously computing priority scores and presenting
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the item with the highest priority. If the previous response
was incorrect, that item’s priority is increased drastically
to ensure timely repetition. If the previous response
was correct, however, the priority score is a function of
the (log-transformed and scaled) RT associated with that
response.

The second system is an extension of ACT-R’s declarative
memory module and uses the associated equations to
approximate an item’s memory strength (or “activation”)
through observed RTs (Pavlik & Anderson, 2008). Instead
of using priority scores, items are repeated based on their
estimated activation, a value that decreases over time (van
Rijn, van Maanen, & van Woudenberg, 2009). Note that
the observed RT of incorrect responses is replaced by a
fixed, long RT, reflecting that it took “too long” for the
correct response to be retrieved. These two examples
demonstrate that combining information from accuracy and
RTs is feasible in practice. Neither system really uses an
integrated performance measure, however—they both use a
transformation of RT that is conditional on accuracy.

Here, we will present an approach to computing an
integrated, trial-level performance measure that combines
accuracy and RT. Ideally, such a measure is purely
data-driven, easy to interpret, computationally simple, and
applicable to existing datasets. We are most interested in
situations in which item-level data of the learning history are
available and the goal is to validly predict future performance.

In the following, we will outline two datasets that we
use as a test bed. Both datasets concern learning of paired
associates, which provides a context in which the RT reflects
relevant memory processes. We will demonstrate how our
trial-level integrated performance measure can be computed
for such data. Lastly, we describe how these integrated
“Readiness” scores can be used as input to a computational
model (the Predictive Performance Equation, Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018) to generate
predictions based on past performance.

The central focus of this research seeks to explore whether
use of this “Readiness score improves model predictions
compared to scores that do not integrate accuracy and latency.

Methods
Datasets
We leverage two existing datasets, labelled WSU and TopiCS,
to explore the idea of an integrated, trial-level performance
measure. Each dataset consists of a study and a test phase.
Trial-level information for response accuracy and RT is
available for both datasets but they vary drastically in the
structuring of the study phase and in the time between study
and test. Importantly, accuracy during study is very high in
both datasets (85.9% in WSU and 89.8% in TopiCS).

Washington State University (WSU) data WSU data is
part of an (as of yet) unpublished multi-day fatigue study.
Participants spent four days in a sleep lab and completed a
battery of tests throughout that period. Here, we will focus

on the paired-associates learning data of 36 participants who
were not withheld any sleep (the control group). Fifty-one
nonsensical line drawings—e.g., —were used as cues and
participants learned two-digit numbers—e.g., “79”—as a
response. Each paired associated was repeated 20 times
according to different presentation schedules.

Table 1: Number of repetitions of an item at each test moment
depending on the schedule in the WSU data. RI = retention
interval between the last encounter of an item and the test.

Study phase Test phase
Schedule 9am 1pm 3pm 7pm 9pm 9am
Spaced 4 4 4 4 4 2 (36h RI)
Massed early 20 · · · · 2 (48h RI)
Massed late · · · · 20 2 (36h RI)

We will focus on three schedules that distributed the 20
repetitions across a single day. Table 1 shows that the spaced
schedule distributed the 20 repetitions equally among five
study periods throughout the day (four repetitions each),
while the massed schedules presented each item 20 times
either early or late in the day. The test phase featured two
repetitions for each paired associate, and the retention interval
(RI; i.e., the temporal space between the last encounter of
an item and the test) depended on which study schedule the
paired associate was assigned to. Each participant studied
with all schedules and encountered three unique paired
associate per schedule, resulting in 6,156 observations from
the study phase that were used to make predictions for the
648 observations from the test phase.

The recorded RT corresponds to the first key press. If
participants did not respond within 6 seconds, the trial was
recorded as incorrect (with RT set to 6 sec, hence the spike in
the lower right panel of Figure 1A).

TopiCS data The TopiCS data were taken from Sense,
Behrens, Meijer, and van Rijn (2016), published in Topics
in Cognitive Science. Participants completed three sessions
of two blocks each (six total). In each block, material was
studied for 20 minutes using an adaptive fact-learning system
(van Rijn et al., 2009), followed by a five-minute distractor
task (Tetris), followed by a test of the studied material. Here,
we will only use the first block of each session. In each
of these three blocks, participants studied Swahili-English
vocabulary word pairs. Each Swahili block featured 25
unique paired associates.

A total of 50,665 responses are available from 67
participants. Since the introduction and repetition schedules
of items during study were governed by an adaptive model,
these data do not have the controlled temporal structure of the
WSU data: The number of repetitions as well as their timing
varied between items and participants. The test was the same
for everyone, however. After a five-minute delay, participants
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were tested on all 25 potential Swahili cues at the end of each
block and accuracy was recorded (4,965 observations).

The study phase was entirely self-paced and RTs
correspond to the first key press recorded after a Swahili word
appeared on screen. The RT distributions, split by accuracy,
are shown in Figure 1A.

Computing integrated “Readiness” scores
The goal is to derive a trial-level, quasi-continuous
performance metric from accuracy and RT data. This
“Readiness” value can take any value between 0 and 1. Values
closer to 1 correspond to a correct, fast response. There are
two versions of the metric: For R0, all incorrect responses
are treated equally and set to 0. For Rc, incorrect responses
are transformed such that faster incorrect responses are more
severely penalized (i.e., closer to 0) than slow incorrect
responses (cf. Klinkenberg, Straatemeier, & Van der Maas,
2011). The term “Readiness” is used because values close to
the 1 indicate that a response was readily available, resulting
in a fast RT. Overall, the higher the “Readiness” value, the
better the performance. In the following, we will detail how
R0 and Rc are computed from behavioral data.

Figure 1A depicts the distribution of RTs for correct (top
panels) and incorrect (bottom panels) responses from the two
datasets. For a more precise depiction of the data, the axes
across the panels vary and only RTs faster than 15s are shown
for the TopiCS data (99% of all observations). Since the vast
majority of responses were correct, there are fewer RTs for
the incorrect responses in the bottom panels.

Figure 1B makes the mapping from observed RTs to the
probability of a correct response explicit: In both datasets,
the log-transformed RTs (in ms) are strong predictors of
accuracy, such that slower RTs reduce the probability of
a correct response. The exact mapping differs in the two
datasets: Responses are generally faster in the WSU data and
time out after 6 seconds. The mapping is expressed as the two
coefficients estimated by a simple logistic regression, which
is β0 +β1 · log(RT). For the WSU data, β0 is 24.26 and β1 is
-3.09. For the TopiCS data, β0 is 12.99 and β1 is -1.39. All
four coefficients differ significantly from 0 with p < 0.001.

The relationship shown in Figure 1B provides the
quantitative basis for the “Readiness” metrics. The mapping
provided by the logistic regression allows an unbound
performance metric (RT) to be transformed to a continuous
metric with range [0, 1].

For the first metric, R0, all correct responses are
transformed using the mapping provided by the logistic
regression coefficients. Incorrect responses are treated as
performance of 0 (as with accuracy; hence the subscript
0). Using this approach, a correct response given quickly
is considered “more correct” than a correct response given
after longer deliberation, which is in line with behavioral
data and theoretical assumptions (Pavlik & Anderson,
2008). Numerically, R0 is computed by taking the inverse
logit (L−1) of the regression formula shown above, using
log-transformed RTs (in ms) when accuracy (A) is 1:

R0 =

{
A = 0 : 0
A = 1 : L−1(β0 +β1 · log(RT))

}
(1)

The second “Readiness” metric, Rc, assumes that latencies
for incorrect responses are informative too. Specifically, the
assumption is that a fast incorrect response is worse than an
incorrect response given after longer deliberation, a notion
also present in other learning systems (e.g., Math Garden—an
adaptive, online arithmetic-learning environment used by
many schools in the Netherlands—formalized the same idea
in the ”high speed, high stakes” scoring rule; Klinkenberg
et al., 2011, see section 2.3.3. and Fig. 2 specifically).
Numerically, this is formalized by using the same approach
as for correct responses but then subtracting 1 and taking the
absolute value1:

Rc =

{
A = 0 : |L−1(β0 +β1 · log(RT))−1|
A = 1 : L−1(β0 +β1 · log(RT))

}
(2)

For example, a correct response with an RT of 1,834ms
would result in the same R0 and Rc scores but they would
depend on the dataset the response was observed in. In
the WSU data, the “Readiness” score would be 0.739
(L−1(24.26− 3.09 · log(1,834)) but in the TopiCS data it
would be higher (L−1(12.99 − 1.39 · log(1,834) = 0.927)
because RTs are generally longer, which results in a different
mapping (cf. Figure 1A and B). If the RT is the same but
associated with an incorrect response, the R0 score is simply
0 (see Eq. 1). The Rc score, on the other hand, would be 0.261
(i.e., |0.739− 1|) in the WSU and 0.073 (i.e., |0.927− 1|) in
the TopiCS data (see Eq. 2).

Figure 1C gives an overview of the Rc values computed
in the two datasets, split again by accuracy and dataset.
Note that the y-axes differ due to the unequal number of
observations. For both datasets, the correct responses (top
panels) mostly have values between 0.75 and 1. The incorrect
responses (bottom panels) are more spread across the range
for the Rc metric2. For the TopiCS data, most incorrect
responses have Rc values between 0 and 0.5 but mostly
values are <0.25. In the WSU data, the values are spread
more widely. The distributions of correct and incorrect
responses barely overlap within a dataset, though (note the
small numbers on the y-axis for incorrect reponses from the
WSU data). For the R0 metric, all values corresponding to
incorrect responses are simply 0 (cf. Eq. 1).

Taken together, the approach outlined here has multiple
advantages. A binary and an unbound performance metric
(accuracy and RT) are combined into an integrated, trial-level
measure that is continuous and bound between 0 and
1. Importantly, a trial-level performance metric preserves

1This could be thought of as flipping the mapping in Figure 1B
along the horizontal axis at 0.5.

2For the WSU data, timed-out observations with RTs of 6s (N =
35) were transformed to the fastest observed RT (391ms) to make
them “very wrong”. If these observations are simply dropped, none
of the reported results change qualitatively.
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Figure 1: A: The observed RT in seconds split by accuracy and dataset; B: Logistic regression lines showing the mapping from
observed RTs in seconds to the probability of a correct response; C: The continuous “Readiness” (Rc) values computed using
the mapping in B, split by accuracy and dataset. In all plots, color indicates the dataset. See text for additional details.

information about the timing of individual encounters that
would be lost if one simply computed, for example, the mean
accuracy during study. The approach is also computationally
extremely simple and makes minimal theoretical assumptions
that are easily checked: Are longer RTs associated with a
lower probability of giving an accurate answer? If the logistic
regression’s slope coefficient (β1) does not differ significantly
from 0, computing “Readiness” values is probably not
sensible. Visual checks akin to Figure 1B and C also
provide easy sensibility checks. Finally, the interpretation of
“Readiness” values is straightforward: Higher values indicate
better performance and values at the boundaries indicate
faster responses.

Predictive Performance Equation (PPE)

To explore whether the “Readiness” scores are useful, we will
explore their utility as input to the Predictive Performance
Equation (PPE), a computational model developed to capture
individual differences in learning and forgetting (for an
extended description of the model see Walsh, Gluck,
Gunzelmann, Jastrzembski, Base, et al., 2018). If the scores
expressed meaningful individual differences, a computational
model should more closely mimic a participant’s learning
and forgetting process than when other scores are used. The
end result would be more accurate predictions of future
performance based on past performance.

In two recent studies, PPE was compared to other models
to test “the theoretical adequacy and applied potential
of computational models” more generally (Walsh, Gluck,
Gunzelmann, Jastrzembski, & Krusmark, 2018) and to
shed light on “the mechanisms underlying the spacing
effect in learning” specifically (Walsh, Gluck, Gunzelmann,
Jastrzembski, Base, et al., 2018). Due to space constraints, we
will keep the current description of the model mechanics brief
and refer the interested reader to those papers for a detailed
overview.

The PPE component we are ultimately interested in is the

predicted performance, P, which is a logistic function of
activation (M) that has two free parameters, τ and s:

P =
1

1 + exp( τ − M
s )

(3)

The activation M is the product of learning and forgetting,
expressed as N0.1 · T−d . The learning term increases
exponentially as a function of the number of repetitions (N)
and the forgetting term decreases exponentially. The latter
has two components: The elapsed time (T ) is the weighted
sum of the time since each previous repetition (see Eq. 3 and
4 in Walsh, Gluck, Gunzelmann, Jastrzembski, & Krusmark,
2018) and the decay rate (d), which has free intercept (b) and
slope (m) parameters and is a function of the lag between
consecutive repetitions:

d = b + m ·

(
1

n − 1
·

n−1

∑
j=1

1
ln(lag + e)

)
(4)

Model fitting In the form outlined above, PPE has four
free parameters (b, m, τ, and s) and requires two pieces of
information to be fit: The time point of each repetition (to
compute T and d) and the observed performance at each
time point. The model is agnostic with regards to what the
performance metric represents and only requires it to fall in
the range of [0, 1], as the ”Readiness” measure provides.
The best-fitting parameters are found by minimizing the error
between the supplied performance metric and the predicted
performance P (see Eq. 3) produced by a given combination
of the free parameters. The error is defined as the
summed squared error between the performance metric and
P across the data available for each unique participant-item
combination.

Here, we only vary the performance metric that is used
during model fitting, using either accuracy, R0, and Rc. All
other factors—free parameters, allowed parameter ranges3,

3The ranges for the free parameters are b = [0, 0.5], m = [0, 0.5],
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and timing-related information—are held constant.

Results
For both datasets, we determined the best-fitting PPE
parameters for each participant-item combination, and then
computed item-level predicted performance, P, on the test.
The model fit will be evaluated for the predictions—i.e.,
comparing predicted P with recorded accuracy—rather than
fit to the study data because we consider the ability to predict
future performance given historical data most relevant.

For each dataset, PPE was fit three times, using the three
performance metrics outlined above: Accuracy, which is
binary; R0, which is continuous for correct responses but
all incorrect responses are 0 (see Eq. 1); and Rc, which
is continuous for both correct and incorrect responses (see
Eq. 2 and Figure 1C). The main results of the comparison are
presented in Table 2, which lists two model fit statistics for
each performance metric. Also included is a baseline, which
simply predicts that all responses during the test are correct.

In both datasets, performance on the test is expressed as
accuracy. PPE, on the other hand, predicts the probability of
a correct response. To evaluate the model predictions, we use
fit statistics commonly used when evaluating performance in
binary classification problems. The fit statistics are: (1) The
area under the receiver operating characteristic curve (AUC),
which can be interpreted as the probability of a randomly
drawn correct response outranking (i.e., having a higher
P value) a randomly drawn incorrect response. Note that
the baseline condition, in which all responses are predicted
to be correct, would result in an AUC of 50%. (2) Log
loss, expressing the accuracy of a classifier by penalizing
inaccurate classifications. The AUC measure can range from
.5 to 1, higher values are better. Log loss is unbound and
lower values are better. In Table 2, the best-performing metric
is highlighted in bold for each fit statistic.

Table 2: Fit statistics for predictions made in the two datasets.
The baseline predicts that all responses on the test are correct.

Dataset Statistic Baseline Accuracy R0 Rc

WSU AUC 0.500 0.687 0.768 0.769
Log loss 19.635 6.170 1.900 1.141

TopiCS AUC 0.500 0.679 0.712 0.755
Log loss 1.298 3.110 1.701 0.638

Table 2 shows the fit statistics for the 648 predictions
made in the WSU data. All three measures outperform the
baseline. Of these, using accuracy as performance measure
scores lowest, and there is no clear difference between the
two “Readiness” scores. This impression is confirmed by
statistical comparison of the AUC values, which tests the null
hypothesis that the difference between two AUCs is 0 against

τ = [0, 1], and s = [0, 0.1].

the alternative hypothesis that it is not (DeLong, DeLong, &
Clarke-Pearson, 1988). The tests yield significant differences
between the accuracy- and R0-based AUCs (z = -4.449; p <
0.001) and accuracy- and Rc-based AUCs (z = -3.850; p <
0.001) but not between R0- and Rc-based AUCs (z = -0.063;
p = 0.950). The log loss is very high for the baseline because
the actual accuracy on the test was only 45.5%, resulting in a
high penalty.

In the TopiCS data, on the other hand, the observed
accuracy on the test was extremely high: 96.4% of the 4,965
responses were correct. Thus, the all-correct baseline gets
less than 4% of the predictions wrong, resulting in a relatively
low log loss value. Only the Rc score yields predictions
that result in a lower log loss value than the baseline.
Regarding the AUC values, all predictions derived from the
computational model outperform the baseline. The statistical
test for the comparison of the accuracy- and R0-based AUC
is inconclusive (z = -1.451; p = 0.147), while the Rc-based
predictions are significantly better than both the accuracy- (z
= -2.809; p = 0.005) and R0-based predictions (z = -2.148;
p = 0.032).

Discussion
Here, we explored the predictive power of an integrated
performance measure that combines accuracy and
RT information. Unlike aggregate measures (see
Vandierendonck, 2017, for an overview), the “Readiness”
scores presented here are computed for each observation
individually. Using two datasets, we demonstrated how
“Readiness” scores are computed. The practical utility of the
resulting integrated performance measures was demonstrated
by fitting a computational model to past performance in
order to predict future performance. Statistical analyses
reveal evidence that predictions are more accurate when past
performance was expressed as a “Readiness” score rather
than accuracy.

We present two variations of the “Readiness” score that
differ in how they treat incorrect responses. The R0 score
regards all incorrect responses equally, setting them to 0
(analogously to accuracy). The continuous score, Rc, scales
both correct and incorrect responses (see Figure 1C) such
that fast incorrect responses are considered worse than slow
incorrect responses. Both versions express performance
as scores between 0 and 1, with higher values indicating
better performance. For Rc, scores closer to either boundary
correspond to responses that were given quickly.

Whether R0 or Rc should be preferred—or whether either
should be used—depends on the context and the assumptions
the researcher can make, especially regarding incorrect
responses. Since the “Readiness” scores are based on
empirical data, the data can provide an immediate check. If
the slope of the logistic regression model that provides the
mapping (cf. Figure 1B) does not significantly differ from
0, the crucial assumption that observed RTs and accuracy are
associated is violated and “Readiness” scores are probably
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not meaningful. As discussed in the Methods section,
visualizations such as those in Figure 1B and C can also
inform the researcher’s choice. In a very large dataset,
for example, the logistic regression model might have a
significant but very small slope coefficient, resulting in a
mapping (cf. Figure 1B) for which even very slow RTs result
in near-ceiling performance, which would in turn yield Rc
values that are quasi-equivalent to accuracy.

Exploring to which extent “Readiness” scores could be a
useful expression of past performance in different contexts
would be a logical extension of the current work, which
presents an initial exploration of the idea in two relatively
small datasets. This first exploration is promising, however,
given that even though both datasets differed in a number
of important aspects, the “Readiness” measure outperformed
accuracy in both. Most importantly, the retention intervals
differed dramatically (five minutes in the TopiCS data and
36–48 hours in the WSU data), which meant that test
performance was near-perfect in the TopiCS data and lower
than 50% in the WSU data. Another possible extension
of the current work would be to investigate the utility of
“Readiness” scores in computational models other than PPE.

In conclusion, we present a simple, data-driven way
to combine accuracy and response time information into
an integrated, trial-level performance measure that we call
“Readiness.” This approach makes minimal assumptions that
are easy to check and resulting performance scores are
easy to interpret. This research demonstrates that a single
computational model can capture the general learning and
forgetting patterns observed across two very diverse sets of
paired associate learning data, and that the model’s predictive
validity is enhanced when past performance is expressed in
terms of an integrated “Readiness measure, rather than use of
simple accuracy alone.
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