Lawrence Berkeley National Laboratory Recent Work

Title

SPIN AND PARITY OF THE 1385-MeV Y1* RESONANCE

Permalink

https://escholarship.org/uc/item/9sz1d1sp

Authors

Shafer, Janice B.
Murray, Joseph J.
Huwe, Darrell O.

Publication Date

1963-01-11

University of California

Ernest O. Lawrence Radiation Laboratory

SPIN AND PARITY OF THE $1385-\mathrm{MeV} \mathrm{Y}_{1}^{*}$ RESONANCE

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

UNIVERSIEY OR CALAFORPLA
 Lawroneo Radiakoz Iaboratory
 Berkeley, California

Contract No. W-7405-eag-48

SPIN AND PARITY OF TEE 1385-MCV Y ${ }_{1}^{*}$ RESONANCE
Janice B. Shafer, Joseph J. Murray, and Dartell O. Huwe January 11, 1963

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Spin and Parity of the $1385-\mathrm{MeV} \mathrm{Y}_{1}$ Resonance
 Janice B. Shafer, Joseph J. Murray, and Darrell O. Huwe

 Lawrence Radiation Laboratory

 Lawrence Radiation Laboratory

 University of California

 University of California

 Berkeley, California

 Berkeley, California}

January 11, 1963

INTRODUCTION

Study of the reaction

$$
\begin{equation*}
\mathrm{K}^{-}+\mathrm{p} \rightarrow \mathrm{X}^{* *}+\pi^{ \pm} \rightarrow \Lambda+\pi^{+}+\pi^{-} \tag{1}
\end{equation*}
$$

at a momentum of $1.22 \mathrm{BeV} / \mathrm{C}$ Eas shown conclusively that the spin of the $1385-\mathrm{MeV} \mathrm{Y}_{1}{ }^{*} \dot{\mathrm{i}} \geqslant 3 / 2$, as reported earlier by Ely et al. ${ }^{1}$ it has also indicated that the Y_{1} atate is $P_{3 / 2}$ (even Y. Λ paxity) rather than $D_{3 / 2}$ (odd paricy). These conclusions result from the angular diatribution of the lambda and the angular dependence of the lambda polarization.

The events were obtained through the use of the 72 -inch hydrogen bubble chamber placed in a beam of high-enexgy F^{*} mesons extracted from the Bevatron. The momentum opread of the beam was $\pm 2.5 \%$, and the pion background was about $10 \%{ }^{2}$

Approximately 1650 events were analyzed which satisfied the $K^{-}+p \rightarrow \Lambda+\pi^{+}+\pi^{-}$hypothesis. Some reoults from a partial sample were reported earlier. ${ }^{3}$ The events, were identified by kinematic fitting, first at the decay vertex and then at the production vertex, with the IBM 7090 prograrm "PACKAGE". Affer this two-step fitting, the number of ambiguous events that might have been K production rather than lambda production was appronimately 1% of the total. Almost complete separation of che $\Sigma^{\circ} \pi^{+} \pi^{-}$from the $\Lambda \pi^{+} \pi^{-}$events was accomplishec by examination of the ratio $x^{2}(\Lambda \pi \pi) / 2 x^{2}(\Sigma \pi \pi)$ for each event, the $\Sigma^{1} \pi \pi$ being weighted by a factor of two because of the difference in average x^{2} values.

Thefinal $\Lambda \pi^{+} \pi^{-}$sample included about 93% of the true $\Lambda \pi r$ events and about 5% of the true $\Sigma^{n} \pi \pi^{2}$ events. The $\Lambda 3 \pi$ events were excluded from the $\Lambda \pi \pi$ gample by eliminating all events with $x^{2}(\Lambda 3 \pi)$ lese than 10 .

The cross section for production of the $\Lambda \pi^{+} \pi^{-}$final state by $1.22-\mathrm{BeV} / \mathrm{C}$ K^{*} mesons was determined by comparison with the observed number of tau decays in the same film sample; its value is $2.2 \pm 0.2 \mathrm{mb}$. The angular distributions of \mathbf{X}^{*+} and \mathbf{X}^{*-} production were found similar to that of \mathbf{Y}^{*+} production in the work of Ely et al. ${ }^{1}$ (seéreference 3).

The Dalitz plot for the $\Lambda \pi^{+} \pi^{+}$events is shown in Fig. 1. Projection onto the $\Lambda \pi^{+}$mass axis is displayed; the $\Lambda \pi^{-}$projection (not shown) is similar. Theae mass spectra of the $\Lambda \pi^{+}$and the $\Lambda \pi^{-}$systems are well fitted by Y^{*+} and Y^{*-} resonance curves alone, without background; values of $M\left(Y^{*}\right)=1385 \mathrm{MeV}$ and $\Gamma=50 \mathrm{MeV}$ are required. The production ratio of $\mathrm{Y}^{\text {tht }}$ to $\mathrm{Y}^{\text {商 }}$ is 0.80 . Background of 5 to 10% cannot be ruled out.

On the basis of these mass apectra, the limita $1340 \mathrm{MeV} \leqslant \mathrm{M}(\mathrm{X}) \leqslant 1430 \mathrm{MeV}$ were utilized in the analysis discussed below. Only events with large production angles in the center of masa were used because the $Y^{\text {t/ }}$ polarization was expected to increase with the sine of the production angle. For the atudy of lambda nomentut correlation, only evente with $\boldsymbol{Q}^{\boldsymbol{\beta}} \mathbb{K} \leqslant 0.5$ were included; additional data were required for the polarization study, and events with $\hat{\mathbf{Y}}^{*} \cdot \hat{\mathbb{K}} \leqslant 0.8$ were analyzed.

ANGULAR DISTRIBUTION OF LAMBDA

A particle of spin $3 / 2$ may decay preferentially along an axis perpendicular to the incident K^{*} direction, ad discussed by Stapp. ${ }^{4}$ In this experiment as well as that of reference 1. the decay of the X^{*} was found to produce a correlation between the lambda direction (in the $\mathbb{Y}^{\text {th }}$ rest frame) and the production normal [defined as
 the combined data for X^{+4} and Y^{*-} were used for the $\hat{X} \cdot \hat{n}$ distribution shownin Fig.
with the mass and angle limits apecified above. There is no evidenco for odd powers of $\hat{\Lambda} \cdot \hat{n}$ in the distribution. The coefficient of the second-order term $(\hat{\lambda} \cdot \hat{n})^{2}$ was found to be

$$
\begin{equation*}
a_{2}=0.69 \pm 0.22 \tag{2}
\end{equation*}
$$

in a fit of the experimental data to the distribution

$$
\begin{equation*}
1+a_{2}(\hat{n} \cdot \hat{n})^{2} \tag{3}
\end{equation*}
$$

This value is to be compared with that found by Ely et al. ${ }^{1}$

$$
\begin{equation*}
a_{2}=1.5 \pm 0.4 \tag{4}
\end{equation*}
$$

The probability that the distribution of Fig. 2 be isotropic was found to be 6%, a value somewhat larger than that of reference 1 . Thus spin $1 / 2$ for the $Y^{\text {to }}$ is not ruled out by the lambda angular distribution presented here.

In comparing with this earlier work of Ely et al. . it should be noted that their incident beam momentum was $1.11 \mathrm{BeV} / \mathrm{c}$, appreciably lower than the momentum in this experiment. This could account for larger $y^{\text {th }}$ polarization. A considerably larger mass band was used for the ' Y events in the former experimen also various corrections had to be applied to the data. It would therefore not be very surprising if there were a real difference between the two experimental results ANGULAR DEPENDENCE OF LAMBDA POLARIZATION

The polarization of the lambda can be expected to give additional information on the spin and also on the parity of the decaying X^{*} : The polarization component along a particular axis can be determined by analyeis of the pions from lambia decay. The distribution of the pions is of the form

$$
\begin{equation*}
1+a_{\Lambda} \vec{P}_{\Lambda} \cdot \hat{p}_{\pi}=1+a_{\Lambda}\left[\left(P_{\Lambda} \cdot \hat{3}\right)\left(\hat{p}_{\pi} \cdot \hat{2}\right)+\left(P_{\Lambda} \cdot \hat{r}\right)\left(\hat{p}_{\pi} \cdot \hat{r}\right)\right] \tag{5}
\end{equation*}
$$

where \hat{p}_{π} refers to the pion direction in the lambda rest frame, \hat{z} refers to a unit vector along the axis of interest, $\vec{F}_{\Lambda} \cdot \hat{\vec{y}}$ is the polarization tranoverse to \hat{z}, and a_{Λ} is the lambda decay asymmetry with value -0.67 . The number of pions
going parallel minus the number of pions going antiparallel to this z axis, divided by the total number of pions is proportional to $a_{\Lambda}\left(\overline{P_{\Lambda}} \cdot \hat{z}\right)$.

In the experiment under discussion, the average value of polarization for the events with $\hat{X}^{*} \cdot \hat{K} \leqslant 0.5$ (and also for $\hat{\mathbf{X}}^{*} \cdot \hat{\mathbf{K}} \leqslant 0.8$) was close to zero. Along the normal, it was found equal to 0.15 ± 0.08; along the "magic direction" $[\hat{m}=-\hat{n}+2(\hat{n} \cdot \hat{n}) \hat{\Lambda}]$, the polarization dropped to $-0.02 \pm 0.08 .{ }^{5}$ However, a more detailed study of polarization became possible as the number of measured events increased. For certain values of $\hat{\Lambda} \cdot \hat{\mathrm{a}}$, the polarization of the lambda along the normal was found co be almost 60%.

The unnormalized quantity $N_{\Lambda}{ }^{a} \Lambda^{P}{ }_{\Lambda}$ is of more interest than the polarizarion for a P_{Λ}, since the theoretical distributions for the former under various apinparity asoumptions take simple forms. The evaluation of $N_{\Lambda}{ }^{a} \Lambda^{P} \Lambda_{\Lambda}$, with P_{Λ} designating a polarization component along a particular axis, is made by finding the sum over all events $\sum_{i=1}^{N_{\Lambda}} \cos \theta_{i}$ (θ_{i} being defined as the angle between the decay pion and the axis of interest). This quantity is shown in Fig. 3 as a function of lambda momentum projection, both for the normal and the magic directions;i.e., the ordinate of Fig. 3 A ropresents $\mathrm{N}_{\Lambda}{ }^{a} \Lambda^{5} \bar{\Lambda}^{\cdot} \hat{\mathbf{n}}$ and the ordinate of Fig. $3 B$ represents $N_{\Lambda}{ }^{a} \Lambda^{\bar{p}} \bar{\Lambda}^{\prime} \cdot \hat{m}^{\prime}$. The amall inset at the lower left in this figure indicates the successive Lorentz transformations which are necessary for the evaluation of the lambda polarization components. Values of polarization components as well as the number of lambdas in each interval are given in Table 1.

Fitting with only even terms to the data of Fig. 3 gives the reaults seated in Table II. (Confidence levels for the best fits improve somewhat with the admixture of small contributions of odd terma.) Figure 3 displays the best-fit curvea-a quadratic for the normal distribution and a quartic for the magic-direction distribution. These can be expressed ae: ${ }^{6}$

$$
\begin{array}{ll}
\text { (normal) } & -1+3.5(\hat{\Lambda} \cdot \hat{n})^{2} \\
\text { (magic) } & 1-9.7(\Lambda \cdot \hat{n})^{2}+11.2(\hat{K} \cdot \hat{n})^{4} \tag{6b}
\end{array}
$$

(For errora on coefficients, see Table II.)
The magic direction has the useful property of yielding maximum polarization for the lambda coming from a certain parent state if the opposite-parity state with the same total apin givee maximum polarization along n. In fact, a more general theorem has been proved for opin $1 / 2$ and apin 3/2: Whatever the angular dependence of the polarization component along the normal. the angular dependence of the polarimation component along the magic direction is exactly the same for the opposite-parity initial btate. The following polarization diatributions are obtained for the various Y^{4} states of interest: ${ }^{6}$

$$
\begin{align*}
& S_{1 / 2:} \text { (normal) or } P_{1 / 2} \text { (magic): } 1 \tag{7a}\\
& \begin{array}{lll}
S_{1 / 2} \text { (magic) or } P_{1 / 2} \text { (normal) : } 1+2\left\langle\hat{N} \cdot \hat{r}_{2}\right\rangle^{2} \\
P_{3 / 2}^{ \pm 3 / 2} \text { (mormal) or } D_{3 / 2}^{+3 / 2} \text { (magic): } 1-\left(N \cdot x_{i}^{2}\right)^{2}
\end{array} \tag{7b}\\
& \mathrm{P}_{3 / 2}^{ \pm 1 / 2} \text { (normal) or } \mathrm{D}_{3 / 2}^{ \pm 1 / 2} \text { (magic): }-1+5(\hat{\Lambda} \cdot \hat{\mathrm{n}})^{2} \tag{7d}\\
& P_{3 / 2}^{ \pm 3 / 2} \text { (magic) or } D_{3 / 2}^{ \pm 3 / 2} \text { (normal) : }-1+3(\Lambda \cdot \hat{n})^{2}-2(A \cdot \tilde{n})^{4} \\
& p_{3 / 2}^{ \pm 1 / 2} \text { (magic) or } D_{3 / 2}^{* 1 / 2} \text { (normal) : } 1-15(\hat{R} \cdot)^{2}+18(\Lambda \cdot \hat{n})^{4} \text {. }
\end{align*}
$$

(The normal diatributiong agree with expressions developed earliex by Richard Cappe. ${ }^{7}$) The distribution for che magtc-direction polarization, $\overline{\mathrm{B}} \cdot \stackrel{\text { m, gives }}{ }$ additional information over that for the normal polarization, $\bar{P} \cdot \hat{x}$. This is apparent from Eq. (5), the distribution of deçay pions; ff \hat{z} is defined as the normal, the distribution in genaral has a nonzero P. Fterm, which contributes to the magic-direction polarization but not to the normal polarizacion.

INTERPRETATION OF POLARIZATION FITS

The assignment of spin $1 / 2$ for the Y_{1} can be conciusively ruled out by the polarization results (Table II and Fig. 3). Figure 3A would have to be isotropic and Fig. 3B quadratic if the state were $S_{1 / 2}$ [aee Eq. (7a) and (7b)]. The situation
would be reversed if the state were $P_{1 / 2}$. Both diatributions fit isotropy very badly, with confidence levels of $\leqslant 10^{-3}$.

Spin $3 / 2$ is compatible with the polarization data. Further, $P_{3 / 2}$ is definitely favored over $D_{3 / 2}$. If a quartic term is added to the expression for 3 A [in accordance with Eq. (7e)], not only does the confldence level decrease, but the coefficient of the fourth-power term is negligibly small. A second-order fit to $3 B$ [Eq. (7d)] is very poor, with a confidence level of 2×10^{-3}. It may be noted also that the cocfficiente of the beat-fit distribution, as given in Eq. (6), agree well in relative sign and in magnitude with the theoretically predicted coefficients for the $P_{3 / 2}$ decay [$\left.E q .(7)\right]$ for an incoherent mixture of $J_{z}= \pm 1 / 2$ and $J_{z}= \pm 3 / 2$ states. (The contribution from each of the Eq. (7) diatributions fo proportional to the differenc between the populations of $J_{2}(t)$ and $J_{2}(-)$ stases. At present it is not clear how inferference in decay amplitudes from the different initial states may be expected to affect the polarization distributiona.)

further restriction of polarization mis

The lambda polarization components along the normal and the magic direction can be analyzed simultaneously. The coefficients of the various powers of $(\hat{\Lambda} \cdot \hat{\mathrm{n}})$ or $(\hat{\mathrm{K}} \cdot \hat{\mathrm{m}})$ in the two distributions are related for any possible $Y_{\text {* }}$ atate by two conditions.

If the Y^{4} resonance has $L=J-1 / 2_{\text {, }}$ the polarization distributions may be written:

$$
\begin{aligned}
& \bar{P} \cdot \hat{n}=A_{n}^{(0)}+A_{n}^{(2)}(\Lambda \cdot \hat{n})^{2}+\cdots \cdots+A_{n}^{(2 J-1)}(\Lambda \cdot \hat{n})^{(2 J-1)} \\
& \bar{P} \cdot \hat{m}=A_{m}^{(0)}+A_{m}^{(2)}(\hat{\Lambda} \cdot \hat{a})^{2}+\cdots \cdot+A_{m}^{(2 J+1)}(\hat{\Lambda} \cdot \hat{n})^{(2 J+1)}
\end{aligned}
$$

It can be shown that the following relations must always hold:

$$
\begin{aligned}
& A_{n}^{(0)}+A_{m}^{(0)}=0 \\
& A_{n}^{(0)}+A_{n}^{(2)}+A_{n}^{(4)}+\cdots+A_{n}^{(2 J-1)}-A_{m}^{(0)}-A_{m}^{(2)} \cdots \cdots-A_{m}^{(2 J+1)}=0_{i}^{8}
\end{aligned}
$$

If the $Y^{(\$ r e s o n a n c e ~ h a s ~} L=J+1 / 2$, these relations still hold if n and m subscriptsarre interchanged.

The folded data for the polarization distribution along the normal and the magic direction were simultaneously fitted to the expressions given above, subject to the stated constrainta. The distributions and constraints assumed were those appropriate to the Y^{*} states $S_{1 / 2}, P_{1 / 2}, P_{3 / 2}, D_{3 / 2}, D_{5 / 2^{\prime}}$ and $F_{5 / 2}$. The results are given in Table III.

BACKGROUND AND INTERFERENCE EFFECTS

The distributions of Fig. 2 and Fig. 3 have been studied as functions of Y^{*} mass to determine whether the small background that may be present could influence the results. The value of the $(\hat{\lambda} \cdot \hat{n})^{2}$ coefficient for Fig. 2 data is somewhat higher for low-mase than for high-mass Y^{4} s; but the coefficients of the normal polarization distribution, Fig. 3A, are the same within statistics for low-mass and high-mass Y^{*} events.

The interference of the $\mathrm{Y}^{+\boldsymbol{+}}$ and $\mathrm{Y}^{\boldsymbol{*}-}$ is small, as shown by the Dalitz plot of Fig. 1 and by the $\mathbb{A} \cdot \hat{\mathrm{Y}}^{\text {W }}$ plots of reference 3. The latter have slight backward slopes, comparable with those of reference 1. ,

The $D_{5 / 2}$ and $F_{5 / 2}$ atates cannat be ruled out. However, if itis:assumed that the spin of the Y^{*} is most likely $\leqslant 3 / 2$, the only good fit is that for $F_{3 / 2}$. As shown in Table II, the constrained fite to polarization data yield a confidence level of 0.23 for the $P_{3 / 2}$ state; the confidence levels for the other three states with $J \leqslant 3 / 2$ are all of the order of 10^{-5}. Inspection of the results for separate fits to the normal and magic-direction polarization distributiona (Table II) confirms this last conclusion; the conditionstated above which relate the two polarization distributions are considerably better satisfied for the $P_{3 / 2}$ than for the $D_{3 / 2}$ state. ${ }^{9}$

ACKNOWLEDGMENTS

The authors wish to acknowledge fruitiul conversations with Prof. Robert Tripp, who suggested that the magic direction was useful in yielding maximum polarization in a special case of spin-3/2 decay, and with Prof. Charles Zemach, who has developed the theorem relating parity to interchangeability of normal and magic axes from first principles and shown it to be anplicable to any order of spin.

FOOTNOTES AND REFERENCES

Work done under the auspices of the U. S. Atomic Energy Commission.

1. R. P. Ely, S. Y. Fung, G. Gidal, X. L. Pan, W. M. Powell, and H. S. White, Phys, Rev. Letters 7, 461 (1961).
2. K. K. Ticho, G. Kalblleisch, J. Kirz, D. Miller, J. B. Shafer, and D. Stork, Lawrence Radiation Laboratory, unpublished work.
3. J. Eutton-Shafer, D. Huwe, and J. J. Murray, in Proceedings of the 1962 International Conference on High-Energy Physics at CERN (CERN, Geneva. 1962, p. 303.
4. H. P. Stapp; Lawrence Radiation Laboratory Report UCRL-9526, December 21, 1960 (unpublished):
5. As discussed by R.K. Adair, Revs. Modern Phys. 33, 406 (1961), the "magic direction" would be the direction of maximum polarization of the lambda in $P_{1 / 2}$ decay, while the normal would be the direction of maximum polarization in $S_{1 / 2}$ decay. Adair has pointed out that \hat{m} can readily be seen to be a direction in the $\hat{A} \Lambda$ plane maling an angle of $2 \theta_{\Lambda n}$ to the normal if one observes that the only operator that can change the parity of the decay, $\bar{\sigma} \cdot \hat{K}$, is equivalent to a rotation of π about the $\bar{\Lambda}$ axis.
6. Note that ($\boldsymbol{\lambda} \cdot \hat{m}$) equals $(\lambda \cdot \hat{n})$. If thio were not 80 , the labibda angular distribution of Fig. 2 would depend on the $Y^{\text {parity. }}$
7. RichardH. Capps. Phys. Rev. 122, 929 (1961).
8. These conditions are most deadily found by requiring that $\overline{\mathrm{P}} \cdot \hat{\mathrm{m}}=\overline{\mathrm{P}} \cdot \hat{\mathrm{n}}$ for $\hat{\Lambda} \cdot \hat{n}$ or $\hat{N} \cdot \hat{m}=\dot{\operatorname{m}}(\hat{m} \hat{m} \hat{n})$, and $\overline{\mathrm{P}} \cdot \hat{m}=-\bar{p} \cdot \hat{n}$ for $\hat{\Lambda} \cdot \hat{n}$ or $\hat{\Lambda} \cdot \hat{m}=0(\hat{m}=-\hat{n})$.
9. Work has recentiy been reported which gave indication (two standard deviations) of $P_{3 / 2}$ as the Y geate if the spin of $3 / 2$ were assumed. The final etate, from \%"pinteractions, was complicated by the presence of \&he K resonance (37%; D. Colley, N. Gelfand, U. Nauenberg, J. Steinberger. S. Wolf, IX. R. Brugger, P. R. Kramer, and R, J. Plano, Phys. Rev. 128, 1930 (1962).

Table I. Lambda polarization

$\cdots \hat{\lambda} \cdot \hat{n}=\lambda \cdot m$	-0.9	-0.7	-0.5	-0.3	-0.1	0.1	0.3	0.5	0.7	0.9
N_{Λ}	105	99	82	97	69	82	78	93	81	109
$\vec{p}_{\Lambda} \cdot \hat{\mathbf{n}}$	0.58	0.50	40.15	-0.11	-0.29	- -0.52	-0.35	-0.53	0.59	0.51
$\hat{P}_{\Lambda} \cdot \hat{m}$	-0.03	-0.78	0.15	0.27	0.58	0.15	-0.30	-0.04	-0.51	0.48

Table I. Polarization fits

Polarization component	Order of fit	Deg. of x^{2} freedom		Confidence level	Coefuicients			
				1	$(\hat{\Lambda} \cdot \hat{n})^{2}$	$(\lambda \cdot \hat{n})^{4}$		
	0	4	24.2		7.5×10^{-5}	-0.09*5.2		
	$2^{\text {a }}$	3	4.0	0.26	-23.7*7.4	83.0 ± 18.4		
	4	2	4.0	0.13	-23.8 ± 9.1	84.5 ± 66.7	$-2.1481 .2$	
$N_{\Lambda} \Lambda^{\text {a }}{ }^{B} \Lambda^{\text {a }}$	0	4	16.4	0.003	$-0.03=4.9$			
	2	3	15.3	0.002	5.4x 7.1	-19.5 ± 18.2		
	$4^{\text {a }}$	2	5.3	0.07	22.0才8.8	-213 ± 64	247士 78	

Table III. Constrained simultaneous fits of $N_{\Lambda} a_{\Lambda} \bar{p}_{\Lambda} \cdot \hat{n}$ and $N_{\Lambda} a_{\Lambda} \bar{P}_{\Lambda} \cdot \hat{m}_{i}$

$Y^{*} \operatorname{state}$	Degree of frecdorn	x^{2}	Confidence level
$S_{1 / 2}$	9	40.4	6.6×10^{-6}
$P_{1 / 2}$	9	36.7	3.1×10^{-5}
$P_{3 / 2}{ }^{2}$.	7	9.4	0.23
$D_{3 / 2}$	7	31.9	4.3×10^{-5}
$\mathrm{D}_{5 / 2}$.	5	8.3	0.14
$\mathrm{F}_{5 / 2}$	5	8.5	0.13

$\hat{a}_{3 / 2}$ sit $\begin{cases}\text { normal: }(-23.0 \pm 5.6)+(81.3 \pm 15.4)(\hat{\Lambda} \cdot \hat{n})^{2} \\ \text { magic: }(23.0 \pm 5.6)+(220 \pm 46)(\hat{\Lambda} \cdot \hat{n})^{2}+(256 \pm 50)(\hat{\Lambda} \cdot \hat{n})^{2}\end{cases}$

FIGURE LEGENDS
Fig. 1: Dalitz plot of $A \pi^{+} \pi^{*}$ events from $K^{+} p$ interactions at $1.22 \mathrm{BeV} / \mathrm{c}$. The square of $\Lambda \pi^{+}$effective masa is plotted against the square of $\Delta \pi^{-}$effective mass. Scales giving the masaes in MeV are also shown. Projection of the evenis onto the $\Lambda \pi^{+}$mass axis is displayed to the right of the figure; the curve zepresents the fitting of Breit-Wigner resonance expressions to the $\Lambda \pi^{+}$and Λr^{*} gystems:

Fig. 2. Lambda angular distribution with respect to the normal to the production plane. The abscisea represente the dot product of a unit vector along the lambda momentum with the unit vector along the normal (in the Y^{*} rest frame). The data from this experiment (K72) are shown, with a fitted distribution of the form $1+(0.69 \pm 0.22)(\hat{\Lambda} \cdot \hat{n})^{2}$. Folded data from reference 1 (Ely et al.) are also shown, with a fitted distribution of the form $1+(1.5 \pm 0,4)(\hat{\Lambda} \cdot \hat{\tilde{n}})^{2}$.

Fig. 3. The components of lambda polarization (multiplied by the number of lambdas and the lambda decay asymmetry) are shown as function of the
 ordinate of Fig. 3B represencs $N_{\Lambda} \Lambda_{\Lambda} \bar{p}_{\mathrm{ran}}$. The dashed curves represent ine best fis [Eq. (6) in the text]. The small sketch in the lower lef indicates how successive Lorentz transformations are caxried ouf to End first the $\mathbb{Y}^{\text {ts }}$ direction in the production center of mass (1), then the Λ direction in the Y^{*} conter of mass (2), and finally the pion direction in the lambda center of nasa (3). The lambda momentum and also the lambda polarization are projected onto the normal or the magic direction in the \bar{F} rest frame (2).
gLsI-gnW
I•8!.s

Fig. 2
MU.29029

$M U-29030$
Fig. 3

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

