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Abstract 

Categorization is a fundamental cognitive strategy employed 
to ease information processing and to aid memory formation. 

Past research on how humans categorize objects has used 
images of objects as experimental stimuli. Concurrently, 
studies in the past 10 years have found dif ferences in the 

processing of images as compared to real-world objects. One 
proposed explanation is that these results are due to differences 
in the affordances of images versus objects. Using a similarity 

judgement paradigm, we explored the effect of affordances in 
a categorization task including words (object names), images, 
and objects. Consistent with previous research, we found 
significant differences in how participants made similarity 
judgements of images and objects. Moreover, we found that 
similarity judgments using object names were much more 
similar to the judgments of pictures than of objects. An 
exploratory cluster analysis opens the possibility of framing 
such differences as affordance driven. These results suggest a 
need for more ecologically valid categorization tasks, more 

conservative inferences when using images as stimuli in these 
tasks, and the need for further exploring the role of affordances 
in categorization. 

Keywords: categorization; affordances; similarity judgment; 
real-world object 

Introduction 

Categorization is the fundamental cognitive ability of 

grouping different objects or events under abstract, general 
classes or types on the basis of their shared properties or their 
similarity (for example, the grouping of different objects in a 
house under the concept of “chair”). Categorization eases 
information processing and helps guide new information into 
memory (Bornstein & Arterberry, 2010), and there is 

evidence that people may categorize objects based on abstract 
linguistic categories (Mur et al., 2013; Schmitt & Zhang, 
1998).  

    The similarity judgement paradigm, in which objects that 
are judged to be more similar are grouped together and those 
that are judged to be less similar are placed apart, has been 
used to study categorization. For reasons of convention and 

convenience, experimenters typically use pictures of objects 
and not real-world objects in their categorization studies. 
They then generalize their findings to the case of real-world 
objects, sometimes even referring to them interchangeably 
(e.g., Chao et al., 1999; Haxby et al., 2001; Mur et al., 2013; 
Valyear et al., 2006; Van Weelden et al., 2011). There is, 

however, reason to believe that this inference may be 
inappropriate.  
    Research in the last decade has shown that we treat objects 
and pictures of objects differently in a variety of 
psychological processes (for a review, see Snow & Culham, 
2021). For example, there is a well-established effect that the 

hemodynamic response in the inferio-temporal cortex 
decreases with repeated presentation of 2D visual stimuli, 
known as “fMRI adaption” or “repetition suppression” (Grill-
Spector & Malach, 2001; Valyear et al., 2012). Snow et al. 
(2011) found that when the stimuli used were real-world 
objects (i.e., 3D visual stimuli) rather that pictures (i.e., 2D 

visual stimuli), the classic repetition suppression effect was 
not observed. Other examples include differences in memory 
retention (e.g., real world objects are remembered better than 
pictures; see Snow et al, 2014), differences in attention (e.g., 
graspable objects grab attention more readily that images; see 
Gomez et al., 2018), and differences in decision-making (e.g., 

willingness-to-pay and satiety expectations are greater for 
real food compared to images of food; see Romero et al., 
2017).  
    A proposed reason for the differences found between our 
treatment of and responses to real-world objects and pictures 
is that they differ in their affordances (Gibson, 1979/2015; 

Turvey, 1992; Chemero, 2003; Heras-Escribano, 2019). 
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Affordances are defined as opportunities for action that 
organisms can perceive in their environment. For instance, a 
floor affords “walkability” to an adult human being and 
“crawlability” to a baby. Since affordances were first 

introduced by Gibson (1979/2015) they have been described 
as dispositional properties of the environment (Turvey, 1992; 
Heras-Escribano, 2019), as perceivable relationships 
between animals’ abilities and environmental properties 
(Chemero, 2003), or even as a form of action-oriented mental 
representation (Cisek, 2007; Clark, 2015; Pezzulo & Cisek, 

2016). Snow and Culham (2021) point to this definitional 
ambiguity and advocate for the term “actability” to best 
describe the potential for genuine interaction between an 
organism and its environment. Their definition of actability 
is consistent with the Chemero (2003) definition of 
affordance and is the one we will use in this paper. Despite 

these diverse ontological characterizations, affordances are 
generally understood as a primary object of perception and 
that perception is fundamentally devoted to the control of 
successful action.  
    Experimental research on affordances has explored the 
way affordances are perceived to guide one’s interaction with 

the environment (for a review, see Fajen et al. 2009; Dotov et 
al. 2012). But if affordances are a primary object of 
perception, one would expect they also play a role in the way 
we categorize objects and events in our environment. And if 
affordances are a primary object of perception, one would 
expect they would be part of the explanation for the observed 

differences in the neural and psychological effects of objects 
vs. pictures. After all, objects and pictures of those objects 
afford very different actions—e.g., a hammer affords 
hammering while a picture of a hammer does not.  Yet, there 
is very little research into the possible effects of affordances 
in this context and, crucially, in the similarity judgement 

paradigm for categorization tasks. For instance, while Holler 
and Snow (2020) recently found differences in how images 
and real-world objects are categorized, they did so without 
paying attention to the hypothesis that affordances may be 
responsible for those differences. Also, Castellini et al. 
(2011) found that affordances potentiated object recognition 

but did not investigate the effect on similarity judgements. 
So, considering the literature on the differences in how we 
treat real-world objects and pictures of those objects, and the 
fact that each afford different actions, will these differences 
in affordances influence the way objects and pictures are 
categorized?  

    To lay out a framework to start answering this question, we 
developed an experiment in which we asked participants to 
make similarity judgments of either real-world objects, 
pictures of those objects, or the names of those objects. We 
predicted that the similarity judgements would be different 
for objects, pictures, and words. We also predicted that, 

considering the evidence that pictures of objects are often 
categorized based on abstract linguistic categories (e.g., Mur 
et al., 2013), the similarity judgements for words would more 
closely resemble those for pictures than those for objects. We 
expected the greatest differences to be found between objects 

and words. Finally, we preliminarily explored the hypothesis 
that the different affordances of objects with respect pictures 
and words at least partially explain these differences. 

Methods 

Data collection took place in the Spring of 2016 at Franklin 

& Marshall College (Lancaster, PA, USA). The study was 
conducted in accordance with Franklin & Marshall’s 
Research Integrity Policy and the protocol was approved by 
the Institutional Review Board.  

Participants 

48 undergraduate students from Franklin & Marshall College 

were recruited to participate in the experiment (N = 48). The 
sample consisted of 17 males and 31 females (1:1.8). 

Experimental Paradigm  

We used a categorization task based on the one used in Mur 
et al. (2013). There, participants were asked to make 
similarity judgments by arranging pictures on a computer 
screen such that pictures judged more similar were closer 

together on the screen, and those less similar were placed 
further apart. We moved this procedure into the real world 
and, in addition to the picture condition, included real objects 
and object names as additional experimental conditions in a 
between-subjects design. The degree of similarity between 
the two stimuli was represented by the geometrical distance 

between them after placement. 

Experimental Set-up  

The experiment took place in an empty room with a plain 
desk. A Canon Vixia hfs20 HD video camera was mounted 
in the ceiling directly above the desk. The stimuli consisted 
of 9 familiar objects: an apple (red delicious); a full roll of 

duct tape; a leather glove; a carpenter’s hammer; a lollipop; a 
pinecone; a wooden ruler; a seashell; and a tablespoon. 
Importantly, these objects could each be categorized using 
multiple criteria (e.g., typical location, colour, size, shape, 
typical usage, etc.) giving the participants multiple degrees of 
freedom in making their judgments. Three different 

representations of the 9 objects were used: the real-world 
objects (the Object Condition, Figure 1A); the pictures of 
those objects reflecting the same size and viewing angle as 
the real objects (the Picture Condition, Figure 1B); and the 
names of those objects (the Word Condition, Figure 1C). The 
pictures were printed on white letter-size card stock paper, 

and the names of the objects were printed in plain black 
lettering on the same card stock paper used for the pictures. 
We used a between-group experimental design: each 
participant experienced the same 9 different stimuli, but only 
in one of the three conditions; therefore, each condition 
contained 16 participants. 
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Figure 1: Diagram of the experimental setup for the three 
conditions. Participants were asked to place (A) real objects, 
(B) pictures, or (C) word names of the object on the table. 
They placed them at a distance that reflects how similar they 

judge the objects to be—the closer, the more similar.  

Procedure 

A bucket with (initially) 48 slips of paper each bearing the 
number 1, 2, or 3 (16 slips each) was prepared in advance. 
Each participant selected a slip of paper to determine the 
condition they were placed in, and that slip was discarded. 

Before each participant began their first trial, the 
experimenter shuffled a set of cards on which all possible 
triples of the 9 stimuli were written to determine the order of 
the trials. Thus, both the condition and the trial order were 
arbitrary for each participant. For each of the 84 trials, the 
experimenter placed the three stimuli indicated on the card in 

the centre of the table and instructed the participant: "Please 
arrange these so that the things that are more similar are 
closer together, and those that are less similar are further 
apart." The participant had as much time as they needed to 
arrange the stimuli, and importantly, they spontaneously 
made their similarity judgements without suggestion of how 

the stimuli should be categorized. After the participant was 
happy with their arrangement, a picture of the arrangement 
was taken using the camera mounted in the ceiling. This 
procedure continued until all cards in the set were used, 
concluding the 84th trial for the participant.  

Measurement 

The distances between stimuli were measured in pixels from 

the photographs taken after each trial using the software 
Greenshot (https://getgreenshot.org). Measurements were 
made from the geometrical centre of each stimulus. Each 
pair-wise distance was recorded in a Microsoft Excel 
spreadsheet, noting which trial and participant number the 
distance was taken from. 

Data Preparation 

We used Microsoft Excel to prepare our raw data for analysis. 
We first performed an outlier analysis on our data testing all 
pair-wise distances for each participant, looking for any pair-
wise distance that was greater than 4 standard deviations 
above or below the mean pair-wise distance for that 

participant. In doing so, we found 4 outlying distances: 3 
outliers for one participant in the picture condition, and 1 
outlier for one participant in the word condition. For all 4 
outliers, we replaced the outlying value with the average pair-
wise distance for the respective participant.  

    Next, since relative rather than absolute distance between 
stimuli represents perceived similarity for our research 
question, we normalized our data (in two different ways to 
ensure our normalization procedure did not distort our results 

in undesired ways). First, we normalized every raw pair-wise 
distance for each participant using the following equation: 
ND = D • (MR/IR); where ND is the resulting normalized 
pair-wise distance, D is the raw pair-wise distance being 
normalized, MR is the mean range of pair-wise distances for 
the condition, and IR is the range of pair-wise distances for 

that individual. Second, we additionally normalized every 
raw pair-wise distance for each participant using the 
following equation: ND = D • (MD/TD); where ND and D 
are the same as above, MD is the mean pair-wise distance for 
the condition, and TD is the total distance (the sum of pair-
wise distances) for the participant in question.  

    After normalizing our data, for each participant, we 
averaged the pair-wise distances for each pair of stimuli 
across trials and then constructed an individual 9x9 
dissimilarity matrix using the averaged pair-wise distances. 
This procedure resulted in 48 individual 9x9 dissimilarity 
matrices – one for each participant, and 16 in each condition. 

Analysis Methods 

Using MATLAB 2020a, we performed a one-way ANOVA 
and followed-up with a Tukey’s HSD post-hoc test of the 
mean pair-wise distances in our experimental conditions to 
confirm that they come from different populations.  
    For our main analyses, we also used MATLAB 2020a to 

design and implement a custom analysis program to test our 
hypotheses. First, from the individual 9x9 dissimilarity 
matrices, we created an average dissimilarity matrix for each 
of the three conditions (Figure 2). We then performed 
planned comparisons between each of our conditions: 
Object-Picture, Object-Word, and Picture-Word. For each 

comparison we performed a Mantel test and a Procrustes 
Analysis. The script for the Mantel tests was provided by 
Glerean et al. (2016). A Mantel test returns a measure of 
similarity between two matrices in the form of a Pearson 
correlation coefficient. A Procrustes test returns the measure 
of dissimilarity of two matrices by performing a linear 

transformation between the two. For the Mantel test, the 
higher the Pearson correlation coefficient the more similar 
the matrices; in contrast, the higher the Procrustes value the 
greater the transformation needed to line up the matrices, and 
thus the less similar the matrices are. Together these two tests 
provide complementary results of how similar the similarity 

judgements were across experimental conditions. 
    Next, to provide the context to test for whether any 
differences found between our conditions could be 
considered significant, we performed a bootstrapping 
procedure to construct population distributions of Procrustes 
scores and Pearson correlations by scrambling our condition 
labels. This procedure is based on the representational 

similarity analysis permutation method for comparing two 
dissimilarity matrices (Kriegeskorte et al., 2008). We iterated 
through the 48 individual 9x9 dissimilarity matrices 10,000 
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times, each time selecting three sets of 16 matrices (random 
selection without replacement).  After averaging the pairwise 
distances across the sets, we then performed a Procrustes test 
and Mantel test between each of the three resulting averaged 

matrices. This resulted in two distributions of 30,000 values 
each, one for Pearson correlations and another for Procrustes 
scores, that we used to determine whether our experimental 
conditions resulted in a significant effect.  
    Also using MATLAB 2020a, we then performed an 
exploratory hierarchical agglomerative cluster analysis to see 

how the sets of 9 stimuli were categorized in each condition. 
We used a linkage method (Ward’s minimized variance) and 
set the colour threshold (each node having a unique colour) 
for the resulting dendrograms at 60% the maximum linkage 
between nodes. Using this method, the distance between two 
clusters (i.e., linkage distance) is how much the sum of 

squares will increase when the two clusters are merged; 
therefore, the smaller the linkage distance, the less variability 
under the respective node. So, this method creates clusters 
where the variance within each cluster is less than the 
variance between clusters. In the context of similarity 
judgement measurements, this means that those stimuli 

clustered together are considered more similar than those in 
differing clusters, in turn reflecting the underlying category 
representations for objects, pictures, and words, respectively.  
 

 
 
Figure 2: Dissimilarity matrices for Object Condition (A), the 
Picture Condition (B), and the Word Condition (C). Matrices 
depict all average pairwise distances (in pixels) between each 
pair of experimental stimuli.  

Results 
As noted in the Methods section, we normalized our data in 

two different ways. We performed the described analyses on 
both sets of normalized data and found the same results. So, 
for the sake of brevity, the results presented below are only 
for the data normalized using the first method described in 
the Methods (i.e., the range of pair-wise distances: ND = D • 
(MR/IR)). 

Differences in Mean Pair-wise Distances  

We performed a one-way ANOVA testing for the effect of 
the condition on mean pair-wise distance and found a highly 
significant difference between at least two conditions, F(2, 
3453) = 652.01, p < .001.  A Tukey’s HSD post-hoc test 
revealed significant differences between all three conditions’ 

mean pair-wise distance (Figure 3). The mean distance 

between object pairs (N = 1,152, M = 220.11, SE = 2.58) was 
significantly less than the mean distance between picture 
pairs (N = 1,152, M = 313.33, SE = 2.58), q(3, 3453) = 41.41, 
p < .001. The object mean distance was also significantly less 

than the mean distance between words (N = 1,152, M = 
347.13, SE = 2.58), q(3, 3453) = 57.60, p < .001. And finally, 
the mean distance between pictures was significantly less 
than that for words (q(3, 3453) = 16.19, p < .001).  

 

 
 

Figure 3: Mean pair-wise distance for each of the three 
experimental conditions: the Object Condition (blue bar), the 
Picture Condition (green bar), and the Word Condition 

(yellow bar). Each mean pair-wise distance was significantly 
different from the others (*** = p < .001). Error bars indicate 
the standard error of the means (SEM) for each condition’s 
mean pair-wise distance. 

Between-Condition Planned Comparisons 

Mantel Test We performed a Mantel test between the 
averaged dissimilarity matrices for each of the conditions to 

assess their degree of similarity. The Mantel tests returned a 
Pearson correlation coefficient for each comparison: Object-
Word, Object-Picture, and Picture-Word. As expected, given 
the nature of the stimuli, all the matrices were significantly 
correlated. However, each also differed from the others. The 
object and word dissimilarity matrices were the least similar 

(r = 0.88, p < 0.001). The object and picture dissimilarity 
matrices were the second least similar (r = 0.90, p < 0.001). 
And the picture and word dissimilarity matrices were the 
most similar (r = 0.95, p < 0.001). All correlations were 
statistically significant. 

Situating the Mantel Test Results in the Mantel Test 

Distribution To test whether the observed differences were 
significant, we performed a bootstrapping procedure to build 

a population distribution of Pearson correlation coefficients 
in which we could situate our results (see Methods). The 
observed correlation coefficient for the Object-Picture 
comparison fell far into the tail of the distribution, with only 
1% of the distribution showing lower values. The Object-
Word comparison was even further into the tail, with only 

0.02% lower values in the distribution. In contrast, the 
Picture-Word comparison was in the middle of the 
distribution, being higher than 39% of the values (Figure 4A). 
This suggests that the Picture and Word matrices do not 
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significantly differ from one another (their differences can be 
accounted for by chance). In contrast, the Object matrix, 
despite being significantly correlated with the other two, also 
significantly differs from them as shown by the improbability 

that the difference in conditions had no effect on the 
correlations.  

Procrustes Analysis We also performed a Procrustes 
Analysis between the averaged dissimilarity matrices for the 
conditions. A Procrustes analysis returns a score that is a 
measure of dissimilarity between two matrices, in our case 
we once again made three comparisons: Object-Picture, 
Object-Word, and Picture-Word. The Procrustes scores were 

as follows: the most dissimilar was 0.08 for the Object-Word 
comparison, the next most dissimilar was 0.07 for the Object-
Picture comparison, and the most similar was 0.02 for the 
Picture-Word comparison.   

Situating the Procrustes Analysis Results in the Procrustes 

Score Distribution As with the Mantel results, the Procrustes 
scores showed that all three matrices are quite similar, but we 
wanted to know if the observed differences were significant. 

We performed the same bootstrapping procedure to build a 
population distribution of Procrustes scores (see Methods) 
and situated the Procrustes scores from our planned 
comparisons within that distribution. As with the Mantel 
results, the Object-Picture comparison fell far into the tail of 
the distribution, with only 0.02% of results being higher 

(more dissimilar) and the Object-Word comparison was the 
very last value in the distribution. In contrast, the Picture-
Word comparison was in the middle of the distribution, with 
57% of the comparisons being more dissimilar (Figure 4B). 
These results converge with the Mantel distribution results in 
showing that the similarity judgements in the object condition 

were significantly different from those in the picture and 
word conditions, with the greatest difference being between 
the object and word conditions.  
 

 
 
Figure 4. Mantel and Procrustes Analysis results situated in 

the bootstrapped distributions. (A) The histogram of the 
Pearson correlation coefficients (the outcome of the Mantel 
test). (B) The histogram of the Procrustes scores (the outcome 
of the Procrustes test). Dashed lines show the position of the 
correlations between the matrices of the experimental 
conditions in each distribution, indicating their significance. 

*** = p < .001; ** = p < .01; ns = not significant 

Exploratory Cluster Analysis  

We performed a hierarchical agglomerative cluster analysis 
(linkage method: Ward’s minimized variance) to explore the 
categorization of the 9 stimuli in each condition (see 
Methods). In the object condition, there were two main 

clusters, in the picture condition there were three main 
clusters, and in the word condition there were four main 
clusters. This indicated an increase in variability between 
categories when moving from objects to pictures to words 
being categorized.  
     The first distinct cluster in the object condition consisted 

of the seashell, pinecone, spoon, lollipop, and apple. Within 
this cluster there were subclusters of seashell and pinecone  
and spoon, lollipop, and apple, with the lollipop and apple 
being subsumed by the spoon-lollipop-apple cluster. The 
second distinct cluster in the object condition consisted of the 
tape, glove, ruler, and hammer objects, with a subcluster of 

glove, ruler, and hammer, with the ruler and hammer 
subsumed by the glove-ruler-hammer subcluster (Figure 5A). 
The first principal cluster in the picture condition consisted 
of the spoon and the lollipop. The second included the 
seashell, pinecone, and apple, with the pinecone and apple 
subsumed under the seashell-pinecone-apple subcluster. The 

third cluster in the picture condition contained the glove, tape, 
ruler, and hammer with subclusters of tape-ruler-hammer and 
ruler-hammer (Figure 5B). For the word condition, the first 
main cluster contained the seashell and pinecone, the second 
contained the lollipop and apple, the third contained the 
spoon and glove, and the fourth contained the tape, ruler, and 

hammer with the ruler-hammer forming a subcluster (Figure 
5C).  
 

 
 
Figure 5: Results from hierarchical agglomerative cluster 
analysis (linkage method, Ward’s minimized variance; 
colour threshold: 60% maximum linkage). Vertical axis: 

linkage distance; horizontal axis: stimuli. (A) The Object 
Condition – two main clusters: hammer, ruler, glove, tape 
(dark blue); apple, lollipop, spoon, pinecone, seashell (light 
blue). (B) The Picture Condition – three main clusters: 
hammer, ruler, tape, glove (turquoise); apple, pinecone, 
seashell (light green); and lollipop, spoon (dark green). (C) 

The Word Condition – four main clusters: hammer, ruler, 
tape (yellow); glove, spoon (orange); apple, lollipop (pink); 
and pinecone, seashell (burgundy).  

Discussion 

Our findings in this experiment comparing similarity 
judgments made on objects, pictures, and words are 
consistent with the growing consensus that real objects affect 
us and are treated by us differently from representations of 
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those objects (Snow et al. 2011; 2014; Gomez et al. 2018; 
Romero et al. 2017). In the current case, we compared 
dissimilarity matrices constructed in our three conditions 
using both Procrustes and Mantel tests, employing a 

bootstrapping procedure to assess statistical significance. 
    In both constructed distributions, the Object-Picture and    
Object-Word comparisons fell significantly into the tail ends 
of the distributions. This indicates that the experimental 
manipulation using pictures of objects versus real objects 
created significant differences between the similarity 

judgments of those stimuli, and likewise with objects and 
words. The Picture-Word comparison falling into the middle 
of the distribution indicates that the stimuli being a picture 
rather than a word did not significantly affect the similarity 
judgements of those stimuli. 
    From this and previous results (for a review, see Snow & 

Culham, 2021) it is clear that researchers should exercise 
great caution when generalizing to the case of real objects 
when experimental results are obtained using object 
representations. This is the case even when considering 
experimental settings with different delivery apparatus. For 
instance, Holler & Snow (2020) found convergent results in 

an experimental setting where the real-world objects were 
handled physically whereas the pictures were manipulated on 
a computer screen. Our complimentary results were obtained 
in an experimental setting in which both real objects and 
pictures are physical manipulated. The combination of both 
results suggests that the difference between real world objects 

and object representations is robust in the case of diverse 
ways of delivering object representations. 
    We also found support for the hypothesis that the observed 
differences between real objects and representations of them 
are partly explained by differences in affordances. Taking the 
Word condition first, there it seems clear that the two main 

clusters map neatly onto a distinction between tools and non-
tools, suggesting a simple conceptual bifurcation in the 
classification scheme. (We will return to some of the lower-
level details after reviewing the other cluster analyses.) 
    One initial cue to what is driving the similarity judgments 
in the Picture condition is the low-level adjacency of spoon 

and lollipop: overall shape. The impression that in the Picture 
condition similarity judgments are shape driven is reinforced 
by the other adjacent sub-cluster: apple, pinecone, and 
seashell are all roundish, roughly fist-sized objects. 
    The most telling feature of the Object cluster are the tuples 
apple-lollipop-spoon and hammer-ruler-glove. The first 

suggests and eating-related cluster, with a specific “edible” 
category, and the second a hand-related cluster with a specific 
“employable” category.  
     There is also evidence here that many different factors 
influenced similarity judgments, and it must be 
acknowledged that we have not in the current set of 

experiments ruled out plausible alternatives to the affordance 
hypothesis. Hammer, ruler glove, tape, for instance, are 
closely related in all cases, indicating sensitivity to a tool 
category across conditions. In fact, hammer-ruler are 
adjacent in all cases. But these items are related in multiple 

ways: the way they might be wielded (affordances); being 
tools (category); and being relatively elongated (shape).  
Similarly, there is evidence in these clusters for the influence 
of natural vs. artificial (e.g., apple, pinecone, seashell being 

closely related). This is why it is crucial to attend not just to 
local adjacency, but also to larger neighborhoods when 
discerning the dominant factor driving similarity judgment in 
a given condition. Hence, when the adjacent pair apple-
lollipop are clustered with spoon, that suggests “edible” is a 
dominant consideration, whereas when apple- lollipop are 

clustered with pinecone-seashell this suggests that a “non-
tools” category is dominant, despite the fact that edibility is 
clearly part of the overall judgment. Similar reasoning applies 
to the hammer-ruler dyad when it appears in the company of 
glove vs. tape; the former indicates hand-related affordances, 
the latter a more general tool category.  

    Cluster analyses are always exploratory, and we 
understand this is just one plausible interpretation among 
others of the relevant factors guiding the categorization of the 
different stimuli. These results therefore point to several 
possibilities for future work. Employing the same behavioral 
paradigm used here, further evidence for the influence of 

affordances on similarity judgments might be found using 
objects with different highly specific and salient affordances, 
such as specialized tools, pitting these against one another 
and/or against the sorts of more “everyday” objects that we 
used in the current case. Taking this notion further, one could 
attempt to manipulate the salience of the affordances by 

altering the context within which they are encountered, e.g., 
a generic lab vs. a workshop vs. a kitchen. Alternately, one 
could manipulate the state of the participants themselves, 
e.g., hungry vs. satiated. Evidence that the effect of 
affordances can be modulated by circumstance would further 
underscore the important role played by affordance 

perception in the first place (one wouldn’t expect such 
manipulations to modulate shape or category perception, for 
instance).  

    Moving into the domain of neuroimaging, it would be 
instructive to repeat the study done by Mur et al. (2013) using 
real objects as a contrast condition. They found, using a 

representational similarity analysis (RSA), that the similarity 
of medial temporal (MT) cortex activation in response to 
different objects closely matched the judged similarity of 
those objects, as measured by the paradigm employed here. 
But they used only pictures as stimuli. Given the observed 
difference in judged similarity using objects vs. pictures, a 

question arises: will MT activation look the same when using 
real objects, or different? If the same, what drives the 
different behavioral result? If different, what modulates MT 
activity so it differs when presented with real objects vs. 
pictures? Either outcome promises new insight into the 
relationship between brain and behavior. 

    Generally, we believe the examination of the differences 
in the experimental effects of real objects and of 
representations of objects is interesting in its own right, and 
also of practical relevance for a field largely dominated by 
the use of representations such as pictures as stimuli. 
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