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Yielding transitions and grain-size effects in dislocation theory

J. S. Langer
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

(Received 29 January 2017; published 24 March 2017)

The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis
of yielding transitions and grain-size effects in polycrystalline solids. Calculations are based on the 1995
experimental results of Meyers, Andrade, and Chokshi [Metall. Mater. Trans. A 26, 2881 (1995)] for
polycrystalline copper under strain-hardening conditions. The main assertion is that the well-known Hall-Petch
effects are caused by enhanced strengths of dislocation sources at the edges of grains instead of the commonly
assumed resistance to dislocation flow across grain boundaries. The theory describes rapid transitions between
elastic and plastic deformation at yield points; thus it can be used to predict grain-size dependence of both yield
stresses and flow stresses.

DOI: 10.1103/PhysRevE.95.033004

I. INTRODUCTION

Here is another chapter in my recent efforts to develop a
theory of polycrystalline plasticity based on the principles of
nonequilibrium statistical thermodynamics. There is much that
remains to be done to complete this project; but I hope to make
it clear that the next steps need to be experimental.

The preceding papers in this series [1–4] are based on
two unconventional ideas. The first of these is that, under
nonequilibrium conditions, the atomically slow configura-
tional degrees of freedom of deforming solids are characterized
by an effective disorder temperature that is substantially
different from the ordinary thermal temperature. These two
temperatures play analogous roles in the sense that both are
thermodynamically well defined dynamical variables whose
equations of motion determine the irreversible behaviors of
these systems. The second principal idea is that entanglement
of dislocations is the overwhelmingly dominant cause of
resistance to deformation in polycrystalline materials. These
two ideas have led to successfully predictive theories of strain
hardening, steady-state stresses over exceedingly wide ranges
of strain rates, and adiabatic shear banding.

Two related subjects that so far have been touched on only
briefly in the preceding papers are the nature of yielding
transitions and the roles played by the grain size. I use the
term “yield stress” here in the conventional way. That is, yield
stress denotes the minimum stress required to cause a material
to deform plastically, implying that the material deforms only
elastically below that stress. However, this term is often used
more generally in the literature to denote the flow stress. I will
not do that here because I want to focus on yielding as an
important dynamical phenomenon that needs to be understood
by itself.

The Hall-Petch formula [5,6] describing the effects of grain
size was first published in 1951. It generally is written

σ = σ0 + ks√
d

, (1.1)

where σ is a measured stress, d is the average grain diameter,
and σ0 and ks are fitting parameters. In the 2014 review by
Armstrong [7], and in the 1995 paper by Meyers, Andrade, and
Chokshi [8] on which all of the following analysis is based,
σ0 is said to be a “frictional” stress. By using this term, these

authors imply that σ0 is a generalization of the Peierls-Nabarro
drag stress that resists the motion of dislocations when they are
moving freely through a crystal. In other recent reviews such
as those by Armstrong et al. [9] and Gray [10], σ0 becomes
a function of strain rate and temperature that purportedly
describes stress-strain relations more generally. I have learned
a great deal from the 2003 review by Kocks and Mecking
[11]. These authors agree with Cottrell’s famous assertion [12]
that a true theory of strain hardening is beyond the range
of theoretical physics, but they speak optimistically about
phenomenological models as the best possible alternatives. I
disagree, and will continue to argue here that a physics-based
approach is feasible and absolutely essential.

Hall and Petch, and almost everyone else working in
this field for the past 60 years, have interpreted the term
proportional to d−1/2 on the right-hand side of Eq. (1.1) to
mean that dislocation motion is impeded at grain boundaries,
i.e., that the dislocations “pile up” (see [7]) at those places and
measurably increase the stress required to move dislocations
across the system as a whole. In 1946, Zener [13] may have
been the first to point out that stress concentration factors
proportional to d−1/2, near shear cracks or other obstacles
with length scales d, may be relevant to dislocation dynamics.
Thus it has long seemed reasonable to suppose that the HP
formula describes a combination of drag and grain-boundary
forces opposing dislocation motion.

It is unclear to me, however, why these two resistive
mechanisms should appear additively in the HP equation if,
indeed, that equation is fundamentally a relation between
stress and plastic flow. In general, flows are governed by
what Cottrell called “the weakest links” [12] or, equivalently,
the narrowest bottlenecks. According to [1–4], by far the
narrowest of these bottlenecks are the thermally activated
processes by which entangled dislocations are depinned from
one another. For example, in [1] we showed that the times
taken for depinned dislocations to move to their next pinning
sites are completely negligible in comparison with the pinning
times, so that the Peierls-Nabarro drag forces disappear from
relations between stress and strain rate in most experimentally
interesting situations.

What, then, is the physical meaning of the HP formula?
I think that the answer to this question comes directly and
unambiguously from the experimental data of Meyers et al. [8].
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In the thermodynamic equation of motion for the dislocation
density, Eq. (2.2) below, the factor κ1 is proportional to the
fraction of the input power that is converted into the formation
energy of new dislocations. As I will show, these experiments
tell us that κ1—and only κ1 to any substantial degree—has
the HP form shown in Eq. (1.1). There may be many different
kinds of dislocation sources in these systems; but, to a first
approximation, it seems safe to assume that these sources are
independent of each other and, therefore, appear additively in
the formula for κ1. Apparently, a substantial number of these
sources occur on grain boundaries. The main theme of this
paper is that this term, by itself, accounts for the Hall-Petch-
like behaviors.

In what follows, I start by briefly restating the equations
of motion for the relevant dynamic state variables as given in
[4]. I then revisit my earlier analysis [2] of the data from [8],
largely to exhibit the d dependence of κ1. Finally, by using this
theory to simulate a variety of loading histories, I demonstrate
how HP behaviors appear in measurements of yield stresses
and flow stresses.

II. EQUATIONS OF MOTION

Consider a strip of polycrystalline material, of width 2 W ,
oriented in the x direction, being driven in simple shear at
velocities Vx and −Vx at its top and bottom edges. Let y

denote the transverse position. perpendicular to the x axis.
The total strain rate is Vx/W ≡ Q/τ0, where τ0 = 10−12 s
is a characteristic microscopic time scale. The local, elastic
plus plastic strain rate is ε̇(y) = dvx/dy, where vx is the
material velocity in the x direction. This motion is driven by
a time dependent, spatially uniform, shear stress σ . Because
this system is undergoing steady-state shear, we can replace
the time t by the accumulated total strain, say ε, so that
τ0 ∂/∂t → Q∂/∂ε. Then denote the dimensionless, possibly
y-dependent, plastic strain rate by q(y,ε) ≡ τ0 ε̇pl(y,ε).

The internal state variables that describe this system are
the areal density of dislocations ρ ≡ ρ̃/b2 (where b is the
length of the Burgers vector), the effective temperature χ̃

(in units of a characteristic dislocation energy eD), and the
ordinary temperature θ̃ (in units of the pinning temperature
TP = eP /kB , where eP is the pinning energy defined below).
Note that 1/

√
ρ is the average distance between dislocations.

All three of these dimensionless quantities, ρ̃, χ̃ , and θ̃ , are
functions of ε and y.

The central, dislocation-specific ingredient of this analysis
is the thermally activated depinning formula for the dimen-
sionless plastic strain rate q as a function of a non-negative
stress σ :

q(y,ε) =
√

ρ̃ exp
[
−1

θ̃
e−σ/σT (ρ̃)

]
. (2.1)

Here, σT (ρ̃) = μT

√
ρ̃ is the Taylor stress, and μT

∼= μ/31,
where μ is the elastic shear modulus. The pinning energy eP is
large, of the order of electron volts, so that θ̃ is very small. As a
result, q(y,ε) is an extremely rapidly varying function of σ and
θ̃ . This strongly nonlinear behavior is the key to understanding
yielding transitions as well as many other important features
of polycrystalline plasticity. For example, the extremely slow
variation of the steady-state stress as a function of strain rate

discussed in [1] is the converse of the extremely rapid variation
in Eq. (2.1).

The equation of motion for the scaled dislocation density ρ̃

describes energy flow. It says that some fraction of the power
delivered to the system by external driving is converted into
the energy of dislocations, and that that energy is dissipated
according to a detailed-balance analysis involving the effective
temperature χ̃ . This equation is

∂ρ̃

∂ε
= κ1

σq

ν2
0μT Q

[
1 − ρ̃

ρ̃ss(χ̃)

]
, (2.2)

where ρ̃ss(χ̃) = e−1/χ̃ is the steady-state value of ρ̃ at given
χ̃ . As stated earlier, much of the physics of this equation
is contained in the coefficient κ1, which is proportional to an
energy conversion factor, and is given in terms of the hardening
rate at the onset of plastic flow by the relation

κ1 = 2

μT

(
∂σ

∂ε

)
onset

. (2.3)

The other quantity that appears in the prefactor in Eq. (2.2) is

ν0 ≡ ln
(1

θ̃

)
− ln

[
ln

(√
ρ̃0

Q

)]
, (2.4)

where ρ̃0 is the value of ρ̃ at onset. Because this quantity
appears here only as the argument of a double logarithm, it is
best approximated for computational purposes just by ρ̃ itself.
See [4] for a more detailed derivation of Eq. (2.2).

The equation of motion for the scaled effective temperature
χ̃ is a statement of the first law of thermodynamics for the
configurational subsystem:

∂χ̃

∂ε
= κ2

σq

μT Q

(
1 − χ̃

χ̃0

)
. (2.5)

Here, χ̃0 is the steady-state value of χ̃ for strain rates
appreciably smaller than inverse atomic relaxation times, i.e.,
much smaller than τ−1

0 . The overall, dimensionless factor κ2 is
inversely proportional to the effective specific heat ceff . Unlike
κ1, whose value can be determined directly from experiment
via Eq. (2.3), κ2 must be determined on a case by case basis
by fitting the data. I have omitted a term on the right-hand
side of Eq. (2.5) that accounts for storage of energy in the
form of dislocations. In [2], I thought that this term might be
significant, but I now think that it is not relevant for present
purposes.

The equation of motion for the scaled, ordinary temperature
θ̃ is the usual thermal diffusion equation with a source term
proportional to the input power. I assume that, of the three state
variables, only θ̃ may diffuse in the spatial dimension y. Thus

∂θ̃

∂ε
= K

σq

Q
+ K1

Q

∂2θ̃

∂y2
− K2

Q
(θ̃ − θ̃0). (2.6)

Here, K = β/(TP cp ρd ), where cp is the thermal heat capacity
per unit mass, ρd is the mass density, and 0 < β < 1 is a
dimensionless conversion factor. K1 is proportional to the
thermal diffusion constant, and K2 is a thermal transport
coefficient that assures that the system remains close to the
ambient temperature θ̃0 = T0/TP under slow deformation, i.e.,
small Q.
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It remains to write an equation of motion for the stress σ (ε)
which, to a very good approximation, should be independent
of position y for this model of simple shear. I start, therefore,
with the local relation σ̇ = μ[ε̇(y) − ε̇pl(y)], which becomes

dσ

dε
= μ

[
τ0

Q

dvx

dy
− q(y,ε)

Q

]
. (2.7)

One simple strategy for enforcing spatial uniformity of σ is to
integrate both sides of this relation over y and divide by 2W

to find

dσ

dε
= μ

[
1 −

∫ +W

−W

dy

2W

q(y,ε)

Q

]
. (2.8)

An even simpler strategy for numerical purposes is to replace
Eq. (2.8) by

∂σ

∂ε
= μ

[
1 − q(y,ε)

Q

]
+ M

∂2σ

∂y2
, (2.9)

and to use a large enough value of the “diffusion constant”
M that σ remains constant as a function of y. I have chosen
M = 105, and have checked by direct comparisons with the
predictions of Eq. (2.8) that this procedure is accurate. I also
have set W = 1 in order to define the length scale.

III. GRAIN-SIZE DEPENDENCE OF THE
HARDENING CURVES

In Ref. [2], I showed how the preceding equations of motion
can be used to analyze the data of Meyers, Andrade, and
Chokshi [8], who report measurements of stress-strain curves
for polycrystalline copper at two very different strain rates,
ε̇ = 10−3 s−1 and 3 × 10+3 s−1, and for four different grain
diameters: d = 9.5, 25, 117, and 315 μm. Their experimental
results are shown by the points in Figs. 1 and 2 along with my
theoretical fits to this data. As in previous work, the basic
system parameters used in these equations are TP = 40800 K,
T0 = 298 K, μT = 1600 MPa, and μ = 49.6 GPa.

I have slightly readjusted the parameters used in plotting
the solid curves in Figs. 1 and 2 in order to focus on the fact
that the conversion factor κ1 in the equation of motion for ρ̃,
Eq. (2.2), exhibits a strong and unambiguous Hall-Petch
behavior. Apparently, the stress concentrations at the edges of
the grains, proportional to d−1/2, amplify the strengths of the
dislocation sources by factors as large as ten for the smallest
grain sizes. This effect is strain-rate dependent, so that the
sequence of values of κ1 is different for the high strain rate
than it is for the low one. These two HP-like behaviors are
shown in Fig. 3. The analytic approximations shown by the
solid and dashed curves are

κslow
1

∼= 2 + 21√
d

, κ fast
1

∼= 2 + 60√
d

(3.1)

for the slow and fast cases, respectively. Note that the rate
dependence disappears at large grain sizes, in accord with the
discussion in the paragraphs following Eq. (2.2) in [3].

This revised interpretation of the grain-size effects allows
some simplification in evaluating other parameters. I now
find that the prefactor κ2 in the equation of motion for the
effective temperature χ̃ , Eq. (2.5), is strain-rate dependent but
approximately independent of the grain size, so that κ2 = 17
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FIG. 1. Theoretical stress-strain curves for polycrystalline cop-
per at the small strain rate ε̇ = 10−3 s−1, for grain diameters
d = 9.5, 25, 117, and 315 μm, shown from top to bottom. The
experimental points are taken from [8].

for the slow case and 12 for the fast one. The steady-state values
of the effective temperature χ̃0 seem to increase slightly with
decreasing grain size, going from 0.240 to 0.254 for the small
strain rate, and from 0.237 to 0.250 for the large one, consistent
with the idea that the system becomes more disordered as the
grains become smaller. In all cases, I have chosen the initial
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FIG. 2. Theoretical stress-strain curves for polycrystalline cop-
per at the large strain rate ε̇ = 3 × 103 s−1, for grain diameters
d = 9.5, 25, 117, and 315 μm, shown from top to bottom. The
experimental points are taken from [8].
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FIG. 3. Hall-Petch plots for the conversion factor κ1 as a function
of grain diameter d . The lower solid curve is for the small strain rate,
ε̇ = 10−3 s−1, and the upper dashed curve is for ε̇ = 3 × 103 s−1.
These curves are fit by the formulas shown in Eq. (3.1).

value of ρ̃ to be 10−5. Finally, I have chosen initial values of
χ̃ in the range 0.16–0.17 in order to improve agreement with
the early onset parts of these curves. These last adjustments
could indicate some variability in sample preparation. These,
and the other adjustments just mentioned, are well within my
uncertainties in transcribing the published experimental data.

IV. SIMULATED LOADING HISTORIES

With the parameters determined here, I now can use the
equations of motion for the state variables ρ̃, χ̃ , θ̃ and the stress
σ to simulate a set of loading histories, and thereby look for
Hall-Petch-like behaviors. I do this, as in [4], first by straining
the samples slowly (at ε̇ = 10−3 s−1) up to ε = 0.1, unloading
them, and then reloading each of these prehardened samples
rapidly (at ε̇ = 3 × 103 s−1). In doing this theoretically, I use
the final values of ρ̃ and χ̃ from the first slow deformations as
the initial values of those variables in the fast deformations.

The first set of these experiments is plausibly realistic for
Cu in the sense that I have turned off all of the ordinary thermal
effects by setting K = K1 = 0 in Eq. (2.6), so that the system
remains at room temperature throughout the deformation, and
thermal softening does not occur. (Equivalently, I could simply
have chosen large values for K1 and K2.) The results are
shown in Fig. 4. Here we see four different yielding transitions
corresponding to the four different grain sizes. Enlarged graphs
of these transitions are shown in Fig. 5, where we see more
clearly that these are rapid, but smooth, transitions from elastic
to plastic behavior. The approximate values of the stress at
these transitions are plotted as functions of d−1/2 in Fig. 6. The
Hall-Petch behavior is apparent here, but it is less pronounced
than it is for κ1 in Fig. 3. The constant σ0 part is much bigger
than the stress-enhanced part. As a consistency check, the
dashed curve in Fig. 6 shows the flow stresses at ε = 0.1 on
the slow hardening curves shown in Fig. 1 as a function of d.
The resulting value of ks defined in Eq. (1.1) is consistent with
the corresponding point in Fig. 7(a) of [8].

In a second set of theoretical experiments, I return to the
“pseudocopper” that I introduced in [4], but keep the grain-size
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FIG. 4. Stress-strain curves for prehardened isothermal samples.
The grain diameters are d = 9.5, 25, 117, and 315 μm from top to
bottom.

dependent copper data used throughout this paper. That is,
I now introduce in Eq. (2.6) a nonzero thermal conversion
coefficient K = 10−5 and a transport coefficient K2 = 10−9.
For simplicity, I choose the lateral diffusion coefficient K1 =
0, which produces a maximally sharp banding instability. K

and K2 are chosen solely so that their effects are negligible
at the small strain rate but appreciable at the larger one. Also,
as in [4], I introduce what I called a “pseudonotch”—more
accurately, a small perturbation along the x axis of the sheared
strip—by writing

χ̃(0,y) = χ̃i − δ e−y2/2 y2
0 , (4.1)

where the χ̃i are the same initial values of χ̃ used previously
and δ = 0.02, y0 = 0.05. It is this weak, localized perturbation
that triggers shear-banding instabilities.

The results of these experiments are shown in Fig. 7. The
initial yielding transitions are the same as those shown in
Fig. 4. Here, however, these stress-strain curves show moderate
thermal softening at intermediate strains and fail suddenly
via shear-banding instabilities at large strains. The graphs of
local strain rate and temperature near these shear bands look
essentially the same as those shown in [4]. Note that the failure
strains are larger for larger grain sizes and smaller for smaller
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FIG. 5. Enlarged graphs of the elastic-to-plastic transitions shown
in Fig. 4.
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FIG. 6. Hall-Petch plots for the yield stresses shown in Figs. 4
and 5 (upper solid curve), and for the flow stresses at ε = 0.1 on the
hardening curves shown in Fig. 1 (lower dashed curve).

ones. In other words, the samples with larger grains are softer
and more ductile; those with smaller grains are harder and
more brittle.

Finally, as a last theoretical experiment, I show in Fig. 8
what happens if, between the slow prehardening and fast
reloading stages, I slightly decrease χ̃ from its prehardened
value. That is, I simulate an intermediate annealing step in
which I slightly decrease the effective disorder temperature.
The resulting stress anomalies near ε = 0 look much like those
sometimes seen experimentally. For example, this figure looks
very much like Fig. 8 in Marchand and Duffy’s 1988 study of
adiabatic shear banding in steel [14].

V. REMARKS AND QUESTIONS

The most important assertion of this paper is that Hall-
Petch effects arise, not primarily from resistance to dislocation
flow at grain boundaries, but from enhanced creation of new
dislocations at those places. The more familar HP effects,
such as increasing yield stresses, can be understood as indirect
effects of the increased dislocation densities.
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FIG. 7. Stress-strain curves analogous to those shown in Fig. 4,
but with thermal softening and an initial perturbation added to induce
shear-banding failure. Going from left to right, these failures occur
for grain diameters d = 9.5, 25, 117, and 315 μm.
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FIG. 8. Stress-strain curves analogous to those shown in Fig. 7
for grain diameters d = 9.5 and 315 μm, but with initial values of
χ̃ slightly reduced to simulate mild annealing between the slow
prehardening and rapid reloading stages.

There remain many unanswered questions. For example,
in [2], I showed that the rate-hardening anomaly reported in
1988 by Follansbee and Kocks [15] can be understood simply
by adding a linear strain-rate dependence to the coefficient κ1;
and I suggested that this rate dependence might be a grain-size
effect. How could this conjecture be tested and generalized?
How should we write κ1 as a function of both strain rate and
grain size? Similarly, what physical mechanism might explain
why κ2 in Eq. (2.5) decreases as a function of strain rate? Might
the storage factor κ3 in [4] play some role here?

The direct comparisons with experiments in all of these
papers (Refs. [1–4] and this one) are only for polycrystalline
copper with grain sizes in the range of about 10–300 microns.
This is far too narrow a basis for what I propose to be a
general theory of polycrystalline plasticity. Copper seems to
be special in the sense that κ1 can be measured directly, in
effect by using Eq. (2.3). The important onset rate that appears
in that equation is discussed in detail in [11]. Why is there
no comparable information for other metals and alloys? What
differences in interpretation can we expect for polycrystalline
solids with different crystalline symmetries? I have not even
mentioned, so far, the fact that the HP coefficient ks in Eq. (1.1)
may change sign when grain sizes become small of the order
of nanometers [16]. Why might this happen? In short, I think
that the ideas discussed here provide another point of view
from which to look at these questions, but only the beginnings
of some answers.

These issues bring me back to some of the fundamental
questions that I have been asking since the beginning of this
project. Most importantly, the following. In looking at the large
range of phenomena that seem to be relevant to polycrystalline
plasticity, how can we distinguish between causes and effects?
How can we determine whether an observed structural change
such as the appearance of stacking faults or DRX grains
is the cause of a qualitative change in behavior or simply
a side effect of something else that is happening? A more
theoretically sophisticated version of this question is what are
the dynamically relevant state variables?

Consider the strong assumption that was implicit in the way
I simulated the loading histories that produced the yielding

033004-5
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and failure curves in Figs. 4, 7, and 8. I assumed that all of
the memory of the prehardening deformations was carried by
just two internal state variables, the density of dislocations ρ̃

and the effective disorder temperature χ̃ . There are many other
dynamical quantities that I could have—and perhaps should
have—included. The densities of stacking faults or DRX grains
are good examples that appear often in the literature. Another
would be some measure of the scale and intensity of cellular
dislocation structures. The distributions of grain sizes might
make important dynamical differences, especially when these
sizes become small and grains begin to rearrange during
deformation. All of these quantities could be described by their
own internal variables with their own equations of motion, and
those variables and equations could be included in simulations

of loading histories. The only way to determine whether such
extra ingredients are necessary is by careful experimentation.
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