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THE PRIMITIVE EQUATIONS APPROXIMATION OF THE
ANISOTROPIC HORIZONTALLY VISCOUS NAVIER-STOKES
EQUATIONS

JINKAI LI, EDRISS S. TITI, AND GUOZHI YUAN*

ABSTRACT. In this paper, we provide rigorous justification of the hydrostatic
approximation and the derivation of primitive equations as the small aspect
ratio limit of the incompressible three-dimensional Navier-Stokes equations in
the anisotropic horizontal viscosity regime. Setting € > 0 to be the small
aspect ratio of the vertical to the horizontal scales of the domain, we investi-
gate the case when the horizontal and vertical viscosities in the incompressible
three-dimensional Navier-Stokes equations are of orders O(1) and O(e®), re-
spectively, with a > 2, for which the limiting system is the primitive equations
with only horizontal viscosity as € tends to zero. In particular we show that for
“well prepared” initial data the solutions of the scaled incompressible three-
dimensional Navier-Stokes equations converge strongly, in any finite interval
of time, to the corresponding solutions of the anisotropic primitive equations
with only horizontal viscosities, as € tends to zero, and that the convergence

B
rate is of order O (55>7 where 8 = min{a — 2,2}. Note that this result is

different from the case a = 2 studied in [Li, J.; Titi, E.S.: The primitive
equations as the small aspect ratio limit of the Navier-Stokes equations: Rig-
orous justification of the hydrostatic approximation, J. Math. Pures Appl.,
124 (2019), 30-58], where the limiting system is the primitive equations with
full viscosities and the convergence is globally in time and its rate of order

O (¢).

1. INTRODUCTION

The hydrostatic approximation is a fundamental assumption in the geophysics
and a building block in the large scale oceanic and atmospheric dynamics, see
[37, 48] [49] 511 53] [55]. It can be derived by either the scale analysis or taking the
small aspect ratio limit to the incompressible Navier-Stokes equations. Thought it
is proved to be accurate in the practical applications, the corresponding rigorous
mathematical justification has been only given in the case that the horizontal and
vertical viscosities have some particular orders of the aspect ratio, see Azérad-
Guillén [I] and Li-Titi [38] in the weak and strong setting, respectively. The aim
of the current paper is to investigate the more general case that the horizontal and
vertical viscosities are not necessary to be of the particular order. As shown in
the below that the limiting system considered in the current paper is anisotropic
primitive equations with only horizontal viscosities, while those in [Tl B8] have full
viscosities.
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1.1. Incompressible Navier-Stokes equations in thin domains. Given a two
dimensional domain M = (0, L) x (0, La) with L1, Ly > 0. Let Q7 = M x (—¢,0)
be a three-dimensional box, where ¢ > 0 is small representing the aspect ratio.
Consider the anisotropic incompressible Navier-Stokes equations in €2

(11) ou+ (u-Vu — pAgu — vd*u+ Vp =0,

' V-u=0,

where the vector field u = (v, w) representing the velocity, with v = (v1,v2), and
the scalar function p representing the pressure are the unknowns, p and v are the
horizontal and vertical viscous coefficients, respectively. Assume that ¢ = O(1) and
v = O(e%) for some positive «, as ¢ — 0. The initial-boundary value problem will

be studied in this paper and, thus, we complement system ([LI]) with the following
boundary and initial conditions:

u and p are periodic in z and y,
(12) (8zvvw)|z:7570 = (0,0),
ult=0 = (vo,wo).

Note that by extending v, w, and p, respectively, evenly, oddly, and evenly in z,
one can extend the initial-boundary value problem ([LI)-(L2) defined in Q2 to the
corresponding problem defined in the extended domain Q. := M x (—e&,g). The
extended initial-boundary value problem in Q. := M X (—¢,¢) is as follows

ou+ (u-Vu — pAgu — vd*u+ Vp = 0,
V-u=0,

(1.3) v, w and p are periodic in z, y and z,
v, w and p be even, odd and even in z,

U|t:0 = (UO; wO)-

On the one hand, for any solution (u,p) to (LI)-(L2), if extending v, w, and p,
respectively, evenly, oddly, and evenly in z, then the extension, denoted by (4, p),
is a solution to (L3). In the setting of strong solutions, this can be verified by
noticing that extensions as above preserve the Sobolev regularities of v and w due
to the boundary conditions in ([2]), while in the setting of weak solutions, this is
based on the fact that regular testing functions satisfying the symmetry conditions
in (L3) fulfill the boundary conditions in (L2) and thus can be chosen as testing
functions for (LI)-(TZ). On the other hand, if (u,p) is a solution to (L3) in €.,
then the restriction of (u,p) on Q_ is a solution to (LI)—(T2). Therefore (LI)—(T2)
is equivalent to (I3). Due to this equivalence, one only needs to consider (L3).

We are interested in the small aspect ratio limit as ¢ — 0 to the above system.
Since only the regime of the primitive equations will be considered in the current
paper, we assume that o > 2. In fact, in the case o € (0,2), one can show in a
similar way as in [2] that system ([3]) converges to a limiting system with only
vertical dissipation, which is different from the primitive equations.

In order to investigate the small aspect ratio limit, we first carry out some scaling
transformation to system ([L3]) such that the resulting system is defined on a fixed
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domain independent of €. Similar to [38], we define the following new unknowns

ve(x,y, 2,t) = v(x,y,e2,t), we(x,y, 2,t) = éw(x,y,sz,t),
pe(x,y, 2, t) = p(x,y,e2,1), ue = (ve,we), V(z,y,2) € M x (—1,1).
Then, u. and p. satisfy the following scaled Navier-Stokes equations
Opve + (ue - Vv — Agv, — e 7200, + Vp. =0,
(1.4) V-ue =0,
e (Oywe + ue - Vwe — Agwe — e*?07w.) + 0.pe = 0,
in the fixed domain Q := M x (—1,1), subject to

(1.5) Ve, we and p. are periodic in x,y, 2,
(1.6) ve, we and p. are even, odd and even in z, respectively,
(1.7) (Ve, we)|t=0 = (vo, wo)-

Since system ([L4]) preserves the above symmetry, one only needs to impose the
required condition on the initial velocity. Due to this, throughout this paper, we
always assume that

(1.8) vg and wy are even and odd in z, respectively.

Throughout this paper, we set Vi and Ay to denote (9, d,) and 92 + 85 , respec-
tively. For any 1 < ¢ < oo and positive integer k, we denote by L?(Q) and H*(Q),
respectively, the standard Lebesgue and Sobolev spaces, and we use the notation
Il - 1lg and || - |[4,s to denote the L9(€2) and L9(M) norms, respectively. Since we
consider the incompressible Navier-Stokes equations, we use L2(Q) to denote the
space consisting of all divergence-free functions in L?(Q). It should be emphasized
that all the functions considered in this paper are supposed to be periodic in the
spatial variables.

By the classic theory, see, e.g., [I2] and [50], for any initial data uy € LZ(£2),
there is a global weak solution u to ([4), subject to (LA and (7). Note that if
the initial data ug satisfies the symmetry condition (L)), then one can construct,
in the same way as in [12] and [50], such weak solutions that satisfy the additional
symmetry condition (6. In fact, in this case, the approximate solutions satisfy the
additional symmetry condition (L) and, as a result, the weak solutions achieved
as the limits of the approximated solutions also satisfy (LG). Therefore, for any
up € L2() satisfying the symmetry condition (L)), there is global weak solution
u to system (L4) subject to (LI)—(LH). Here the weak solutions are defined as
follows.

Definition 1.1. Let ug = (vo,wo) € L2(2) satisfy the symmetry condition (I.8).
w is called a Leray-Hopf weak solution to system (L) subject to (L3)—-(LT), if
(i) u € Cy([0,00); LZ(Q))NLZ ([0, 00); H'(S2)) is spatially periodic and satisfies
the symmetry condition (@), where C,, means weakly continuity;

(ii) The following energy inequality holds:
t
lo(@)II3 + *lw(®)]I3 + 2/ (||VHUH§ + 72 0:0]3 + €2 Vawl3
0

+8a||8zw|\§>ds < ||UOH§ +52||w0||§, for a.e.t € [0, 00);
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(iii) For any spatially periodic function p = (o, p3) € C(Qx[0,00)) satisfying
V - ¢ = 0 and the symmetry condition (L4), where g = (¢1,p2), the following
integral identity holds:

/ / [— (v - Orpn + 2wdps) + (u - Vver + e2u - Vwps
o Jo

+ Vv : Ve +e°7200- 0,05 +Vyw - Vigps + aaazwazwg} dQdt

— [ (10 o.0) + Punpa(,0)) a2
Q
where dQ2 = dxdydz.

1.2. Small aspect ratio limit and the primitive equations (PEs). By taking
the formal limit as e — 0, it is natural to expect that ([L4]) converges in some suitable
sense to the following limiting systems

O+ (u-V)v—Av+Vyp=0,
(1.9) Vy-v+0,w=0,

9.p =0,
if « =2 in ([4), and

o+ (u-V)v—Agv+Vgp=0,
(1.10) Vi v+ 0w =0,

d.p =0,

if & > 2 in (), where the vector field u = (v, w) and the scalar function p are
the velocity and pressure, respectively. Both (C9) and (LI0) are the simplest form
of the primitive equations (PEs). Note that in the case o = 2 the limiting system
in (L9) has dissipation in all directions, while in the case a > 2 the corresponding
system in ([LI0) has dissipation only in the horizontal directions.

Recalling that we consider the periodic initial-boundary value problem to the
scaled incompressible Navier-Stokes equations (L4), it is clear that one should im-
pose the same boundary conditions and symmetry conditions to the corresponding
limiting system (LI0). However, one only needs to impose the initial condition
on the horizontal velocity. In fact, by (L8), wo is odd and periodic in z, one
has wg|.=4+1 = 0. Then, wy can be uniquely determined by the incompressibility
condition as

(1.11) wo(z,y,2) = —/ Vi vo(z,y,)dE, Y(x,y,z) € Q.
—1

We call initial data (v, wo) satisfying condition (ILIII) well prepared initial data.
Similarly, w can also be uniquely determined by the incompressibility condition
as

(1.12) w(z,y,2,1) = - / Vi@ 60l @) 9

Due to these facts, throughout this paper, concerning the solutions to (LI0), we
only specify the horizontal components v, and w is uniquely determined by (LI12).
The primitive equations, no matter with full or partial dissipation, play funda-

mental roles in the geophysical fluid dynamics and, in particular, in the large scale
oceanic and atmospheric dynamics, one can see the books [25] [37, 48] 49 [51], 53], [55]



HYDROSTATIC APPROXIMATION AND PRIMITIVE EQUATIONS JUSTIFICATION 5

for the applications and backgrounds of the primitive equations. They are the core
in the weather prediction models. Due to the presence of strong turbulent mixing
in the horizontal direction in the large scale atmosphere, the eddy viscosity in the
horizontal direction is much stronger than that in the vertical direction. As a re-
sult, both physically and mathematically, it is necessary to investigate the primitive
equations with anisotropic viscosities and, in particular, the system that with only
horizontal eddy viscosities.

The first systematical studies of the the primitive equation was made by Lions—
Temam-Wang [41], [42] [43] in the 1990s, where they established the global existence
of weak solutions to the system that with full viscosities; however, the uniqueness
of weak solutions is still unclear, even for the two-dimensional case. By making full
use of the hydrostatic balance to exploit the two-dimensional structure of the key
part of the pressure and decomposing the velocity into barotropic and baroclinic
components, Cao—Titi [9] established the global well-posedness of strong solution
to the three dimensional primitive equations, see also Kobelkov [34] and Kukavica—
Ziane [35]. One can see [23| B0, B3] B0, B9] for the global well-posed results with
weaker initial data, and see [40] for the results taking the topography effects into
considerations. The global well-posedness results in [9, 34, B5] are established in
the L? type spaces, for the corresponding results in the LP type spaces based on
the maximal regularity technique, one can see the works by Hieber et al. [26] 27]
and Giga et al. [21] 22]. Recently, global well-posedness of strong solutions to the
coupled system of the primitive equations to the moisture system with either one
component or multi components of moisture, and the hydrostatic approximation
from compressible Navier-Stokes equations to compressible primitive equations were
also established, see [13] 24, 28 29] and [I8| [47], respectively. For the results of
compressible primitive equations, one can see [44] [45] [46] 19, [32, 52].

All the results mentioned in the above paragraph are for the system that with
full dissipation. In the last few years, some developments concerning the global
well-posedness to the anisotropic primitive equations were also made, see Cao—Titi
[B] and Cao-Li-Titi [3], 4} [6] [7, [§], which in particular imply that the primitive
equations with only horizontal viscosities are globally well-posed as long as one
still has either horizontal or vertical diffusivities, see also [I5] and [30]. Notably,
different from the primitive equations with either full viscosity or only horizontal
viscosity, the inviscid primitive equations may develop finite time singularities, see
Cao et al. [I1], Wong [54], Ghoul et al. [20] and Ibrahim et al. [31].

1.3. Main results: rigourous justification of hydrostatic approximation.
As already mentioned at the beginning of this introduction, the rigorous justifica-
tions of the limiting process in the case a = 2, i.e., the convergence from (L)) with
a = 2 to ([[3) has been established by Azérad-Guillén [I] in the weak setting and
by Li-Titi [38] in the strong setting, respectively, see also Furukawa et al. [16] and
[I7] for some generalizations in the LP-L? type spaces. To our best knowledge, the
corresponding justification in the case a > 2, i.e., the convergence from from (L4)
with o > 2 to (LI0), is still unknown, and we are going to address this problem in
the current paper.

Now, we are ready to state our main results.

We first consider the case that vg € H*(£2). In this case, noticing that ug can be
only regarded as an element in L?({2) in general, one can only consider the weak
solutions to the anisotropic incompressible Navier-Stokes equations (L4]). For the
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primitive equations (LI0), the local well-posed result in [3] guarantees a unique
local in time strong solution and, moreover, it can be extended to be a global one,
if one has further that d,v9 € L™(Q) for some m > 2. As a result, we have the
following local and global strong convergence results:

Theorem 1.1. Suppose that a > 2. Let vg € HY(Q) be a periodic function satis-
fying Vi - f_ll vodz = 0 on M. Assume that vo satisfies the symmetric condition
([@TR) and that wy is determined by (LII). Denote by (ve,w:) and v an arbitrary
Leray-Hopf weak solution to (L) and the unique local strong solution to (IO,
respectively, subject to (LI) (L) and with the same initial data (vy,wo). Let ty be
the time of existence of v and set

(‘/E;chvps) = ('Us — U, We — W, Pe _p)-

Then, the following two items hold:
(i) It holds that

-
sup ||Vs,sws||§(t)+/ IV Ve, eV We, e T 0, V., 50, W.|[3 dt <Ce”,
o<t<t* 0

for any e > 0 and « > 2, where f := min{2,« — 2}, and C is a positive constant
depending only on ||vo|| g1, t*, L1 and Lo. As a direct consequence, one has

(ve, ewe) = (v,0), in L(0,%; L*(€2)),
(VH’US,EOLTJBZ’UE,Evaa,E%az’wg,’wg) — (Vyv,0,0,0,w), in L*(0,t*; L*(Q)),

and the convergence rate is of the order O(ag).

(ii) Suppose in addition that 0,v9 € L™ () for some m > 2. Then, all the above
convergence and estimate still hold if replacing t. by any finite time T € (0,00). In
particular, it holds that

T
sup (IVElB+ 21wl O+ [ (IVaVell + 21 9u Wl
0<t<T 0

e 20V} + 0.} )t < K(T)e,

where K is a nonnegative continuously increasing function on [0, 00) determined by
lvoll e, |0zv0l[m, L1, L2, and t*.

Next, we consider the case that vy € H?(€2). In this case, by (LII), it is clear
that ug = (vo,wo) € H'(2). Then, by the local well-posedness theory of strong
solutions to the incompressible Navier-Stokes equations, see, e.g., [12, 50], for each
e > 0, there is a unique local strong solution (v.,w.) to ([4]), subject to (LCH)-
(). For the primitive equations (II0), the global well-posedness results in [3] []
guarantee the global existence of strong solutions to (LI0), subject to (L3)—(L71).
Then, we have the following strong convergence results.

Theorem 1.2. In addition to the conditions in Theorem [, suppose that vy €
H?(Q). Denote by (ve,w.) and v the unique local strong solution to (L) and the
unique global strong solution to (IO, respectively, subject to (LD) 1) and with
the same initial data (vg,wq). Set

(‘/vEuWE) = (UE —V,We — 'LU),

and let T} be the maximal time of existence of (ve,we).
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Then, for any finite time T" > 0 and o > 2, there is a small positive constant er
depending only on ||vo|lg2, T, L1 and La, such that T > T, as long as € € (0,e7),
and that

T

sup |\VE,5W5||§,1(15)+/ IV Ve, eV uWe, e 0.Ve, e3 0,We||% (£)dt <K3(T)e?,
0<t<T 0

where f = min{2, « — 2} and K3 is a nonnegative continuously increasing function
on [0,00) determined only by ||vo|| 2, L1 and La. As a consequence, one has

(ve,ew.) — (v,0), in L>(0,T; H()),
(Vive, e "7 0,0, eVgwe, e 3 0w, we) = (Vg,0,0,0,w), in L*(0,T; H'(Q)),
we — w, in L>=(0,T; L*(Q)),

and the convergence rate is of the order O(sg).

Remark 1.1. Comparing with the results obtained in [38], where the strong conver-
gence and error estimates are globally in time or in other words uniformly in time
for the primitive equations that with full dissipation, the convergence and error es-
timates in the current paper depend on the time intervals in which the problems
are considered, as shown in Theorem [l and Theorem [L.3. This is caused by the
absence of the vertical viscosity in the primitive equations (II0) which is treated
carefully in the current paper, as both the strong convergence and error estimates
depend crucially on the a priori estimates for the relevant limiting system, i.e., the
primitive equations, while these a priori estimates available for the primite equa-
tions (LI0) depend on the time interval.

It is interesting to compare the results in the case o > 2 with those in the case
a = 2. On the one hand, in the case a > 2, as shown in Theorem [[.T] and Theorem
[[2] the convergence rate O(sg), B = min{2, « — 2}, becomes weaker and weaker
when « approaches 2. On the other hand, in the case a = 2, the results in [3§]
show that the corresponding convergence rate is O(¢). By comparing the results
[38] in the case @ = 2 and our results, one may expect some better convergence
rate, say O(£"(®)), such that x(a) > kg for some positive ko when o approaches
2. Unfortunately, this seems impossible, as the following subtracted system for
(Vz, W) has the quantity e*~20%v as a source term in the V. equations:

Ve — AgVe —e*20*V. + (U. - V)V. + Vg P.
+(U. - Vv + (u- V)V = e*20%0,
Vi Vet 0:We =0,
e2(OWe — AgW. — e 202W. + U. - VW, + U. - Vw +u - VW)
+0,P, = —52(8,5111 — Agw — 50‘7282211} +u- V).
While in the case a = 2 as studied in [3§], the corresponding subtracted system does
not have any source terms in V. equations. These indicate the essential differences
between the cases a > 2 and o = 2, or in other words, the differences of the
convergence from the incompressible Navier-Stokes equations to the isotropic and
anisotropic primitive equations.
The rest of this paper is arranged as follows: in section 2, we collect some

preliminary results which will be used in the subsequent sections; in section 3, we
cite some results about the local and global well-posedness of strong solutions to
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the primitive equations with only horizontal viscosity and carry out some a priori
estimates; finally, we give the proofs of Theorem [[.I] and Theorem in section 4
and section 5, respectively.

2. PRELIMINARIES

The following inequality will be used frequently in the a priori estimates. Since
it can be proved exactly in the same way as in [I0] and [3], we omit the proof here.

Lemma 2.1. The following trilinear inequalities hold:

/M </_11 |¢(“”yvz)|dz> </_11 Iw(x,y,z)w(x,y,z)wz) dedy

< Clellaliels (Ielle + 1V aelz) " 113 (Il + 1V ale)

/M (/11 |¢(;v,y,z)|d2> (/11 Iw(x,y,z)w(x,y,zﬂdz) dxdy

< Cllaliel (el + 19 melz) * 1613 (16l + 1V r6l)”

here we still denote || - ||q = || - [|La(q), for any ¢, v and 1, such that the quantities
on the right hand sides are finite.

and

The following anisotropic Morrey inequality allows to control the Hélder norm
by using different regularities in different directions.

Lemma 2.2. Let Q = M x(—1,1) and let 1 < p; < 0o (i =1,2,3) with Y>_ p; ' <
1. Then, we have

3 3 —1
L= 1p;
lelo,n) < C D) IDiollp;, A = T,
; 1_23:1%14’31’1'1

for any ¢ such that the quantities on the right hand sides are finite, where C' depends
on p; and Q. Here (D1, D2, D3) = (04,0y,0.) and

p\r) — oy
(Ploay = sup () +  sup A= LW]
e z,yEQ,xH#y |.’II - y| ‘
where
2=y =[xy — M A+ |z — 2™ + Jas — s,
Proof. See [14]. O

3. GLOBAL WELL-POSED OF PRIMITIVE EQUATIONS WITH ONLY HORIZONTAL
VISCOSITIES

The global well-posedness of strong solutions to the primitive equations with
only horizontal viscosities has been established in [3] and [4]. In this section, we
improve slightly the result in [3], see Proposition B3] below.

The following H' local well-posedness result is proved in [3].
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Proposition 3.1. Given a periodic function vo € H*(Q) with Vg - fil vodz = 0
and satisfying the symmetric condition ([L8). Then,
(i) There is a unique local strong solution v to ([(LITQ)), subject to (L3 -(LT).
252
(i1) The local existence time t* = 629307 where Cy depends only on 0y and rg,
do € (0,1] and o are positive constants such that

1
sup / / |0,v0|? dadydz < 63.
zHeM J—1J Doy (xl)

Here we denote by ™ a point in R? and Day,(x) an open disk in R? of radius
2ro centered at xf .
(i11) Moreover, the following estimate holds

.
swp ol + [ (IVaols + orel3)at < .
0

0<t<t*
where the positive constant C' depends only on t*, ||vo||g1, L1 and Lo.

Proof. This is a direction consequence of Theorem 1.1 and Proposition 3.21in [3]. O

Note that 0.v has higher integrability in [0, ¢*], in case it has higher integrability
at the initial time. In fact we have the following:

Proposition 3.2. Assume in addition to the conditions in Proposition [31] that
0.v9 € L™(Q) with m > 2. Then, it holds that

sup [|0,v|m < C||02v0||m.s
0<t<t*

where C depends only on m, t*, ||vo|| g1, L1 and Lo.

Proof. Set v, = 0,v. Then, v, satisfies
O, +v, -Vygv+v-Vyv, — Vg -vv, — (/ Vu -Ud§> 0,v, — Agv, = 0.
-1

Multiplying the above by |v,|™ 2v,, m > 2, and integrating over €, it follows from
integrating by parts and the incompressibility condition that

1d 2
EE/Q|vz|mdQ+/Q|vz|m_2 (|VHUZ|2—|—(m—2)’VH|vz| )dQ
= —/ (’UZ SVav|v|™ v, — Vi - vvz|vz|m72vz)dﬂ
Q

< 2/ |V ol|v | dS2
Q

1 1 1
g/ (2/ |VHvz|dz+/ |VHv|dz> (/ |Uz|mdz> M =1,
M 1 1 1

where the fact that |Vyou| < %fil |Vav|dz + fil |Viv,|dz has been used. It
follows from Lemma 2.1] and the Young inequality that
L< C(IVavsla + 1 Vavlla) [Jo=1 7 [, ([[lo= 7 |, + [V arloa1 ],)

1 . -
< Z/Q|VH’UZ|2|UZ| 2dQ+ C(1+ | Vav:ll3 + [Vaol3)|v- I
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As a result, it follows from Gronwall inequality that

sup v || < el (IIVHvzH§+IIVHvII§+1)dt||3zv0||27
o<t<t*

which leads to the conclusion by Proposition Bl O

Now, we can extend the local strong solution to be a global one as stated in the
following proposition. Note that in comparison to the global well-posedness result
in [3], the required condition vy € L>°(€2) in [3] is removed here.

Proposition 3.3. Under the assumption of Proposition[3.2, the unique local strong
solution v stated in Proposition[31] can be extended uniquely to be a global one such
that for any finite time T € (0, 00),

T
sup ol + [ (IVaolf +0]3)dt < I(D),
0<t<T 0

where J : [0,00) — RT is a continuously increasing function determined only by
lvoll &1, [[02v0llm, m, t*, L1 and Lo. Here t* is given in Proposition [3]]

Proof. Due to (iii) of Proposition 3] it has

"
[ (193003 + 1V s0.018) e <

%

2

Choose a time ¢’ € (%, t*) such that

C
IVEI5#) + IVao-vl3(#) < =

By the Sobolev imbedding inequality, this implies ||V zv|l¢(t') < &. Thanks to this

and applying Lemma 2.2 with p; = po = 6 and p3 = 2, one obtains

Suglv(%t’)l < C@IVavlst) + [10:v]2() < tg
S
and in particular v(#') € L>°(£2). With the aid of this and by (iii) of Proposition
BT and Proposition B2 one has v|—y € L>®(Q)NH'(Q) and 0,v|i—y € L™(Q). As
a result, by viewing ¢’ as the initial time, one can apply the result in [3] to extend
the local solution v uniquely to be a global one and the corresponding estimate as
stated in Proposition 3.3 holds. The proof is complete.

O

Finally, for the H? initial data, the following global well-posedness and a priori
estimate are cited from [4].

Proposition 3.4. Given a periodic function vo € H?(Q) with Vi - f_ll vodz = 0
and satisfying the symmetric condition (L8)). Then, there is a unique global strong
solution v to ([LI0), subject to (LH)-(D) and the following estimate holds

T
sup [l + [ (I9mvlfye + 10l )de < GO,
0<t<T 0

where G(T) is a continuously increasing function determined only by ||vol| gz, L1
and Lo.
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4. PROOF OF THEOREM [ 1]

Since vg € H*(Q) and recalling (I.I)), the initial data ug = (vo,wp) can only
be regarded as an element of L2 (). Thus, one needs to consider the weak form of
the scaled Navier-Stokes equations ([L4]). By Proposition Bl the unique solution
v to (LI0), subject to (LH)-(LD) has the regularities v € L>(0,t*; HY(Q)), dv €
L2(0,t*; L2(2)), and Vv € L?(0,t*; HY(Q)). Thanks to these facts, by virtue of a
density argument, one can check that (v, w) can be chosen as testing function in the
weak form in (iii) of Definition 1.1. As a result, we have the following proposition.

Proposition 4.1. Given a periodic function vo € H*(Q) with Vg - fil vodz =0
and satisfying the symmetric condition (L8). Let (ve,we) an arbitrary Leray-Hopf
weak solution to (LAl and v the unique local strong solution to (LIQ) , subject to
CR)-@T). Then, the following integral equality holds

22 to
— —|lw(to)|2 + [/ (v&. cv+ g2w€w> dﬂ] (to) —/ / VO dQdt
2 Q 0o Ja

to
+ / / (VHU€ Vv + e 20,0, - 0,0 + 2V gw. - Vgw + 5“82w562w> dQ)dt
o Jao

52 to z
=lvo||3 + ?||w0||§+52/ /VHWE- (/ 8tvd§> dQdt
0 Q —1

to
- / / ((us - V)vev + 2u - wsw) dQudt,
o Ja

for any to € [0,t*], where t* is the time of existence of v.

Proof. The proof is exactly the same as in Proposition 4.1 of [38] and, thus, it is
omitted here. (]

Remark 4.1. If we further assume that 9,vy € L™ (), m > 2, then by Proposition
[Z3, for any finite time T > 0, we can obtain the unique strong solution v in [0, T
to (LIQ), and the result in Proposition[{-1] holds for any finite time, in other words,
one can replace t* by any positive time T € [0, 00).

Thanks to the Proposition 1] and Remark 4.1, we are ready to establish the
proof of Theorem [T.11

Proof of Theorem [Tl (i) It suffices to prove

.
sup (V3 +IWAB) @+ [ (IVaVell + 21 9u Wl
(4.1) 0<t<t- 0

+e 720 Vel3 + 8°“||5zWL-||§)dt < C(llvollm, L, Lo, t)e’,
where § = min{a — 2, 2}.
As v is the unique local strong solution of (LI0), then (LIQ) holds in L*(Q x

(0,+)) and consequently one can multiply (LI0) by v., and integrating over  x
(0,%0). By integrating by parts, it follows

t() t()
(4.2) / / (Btv “v: + VRHU VH’US)det = —/ / (u-V)v-v. dQdt,
0o Ja o Ja
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for any tg € [0,t*]. Multiplying (II0) by v and integrating over  x (0,tp), it
follows from integrating by parts that

1 fo 1
(43) Sletto)lB+ [ Vot = ool
0

for any to € [0,t*]. The energy inequality in Definition 1.1 gives

1 2 2 2

5(”%(150)”2 + &%|Jw.(to)||3)

to
(44) b [ (19l + 221000l + T w3 + 0.l e
0

<5 (llollz +*lwoll3),

N =

for a.e. tg € [0,t*], in particular for ¢ty = 0. Summing (L3) and [@4]), and then
subtracting ([£2) as well as the integral equality in Proposition A1l we obtain

(IV=(to)lI3 + *[IW=(to)113)

N | =

to
b [ (IVVeIB + IVl + 220V + <0 W )
0

to
S - / / (52VH’U} . VHW5 + Ea—2azv . az‘/a + Eaazwang)det
0 Q

t() z t()
—£? / / VW, - < / 8tvd§> dQdt + / / e2u. - VIWow dQdt
0 Q —1 0 Q

to
-|-/ / ((u Vv v + (ue - V)vg - v)det =0 + I+ I3+ Iy,
0o Jo

for a.e. tg € [0, ¢*].
I, and I can be estimated directly by the Holder and Young inequalities as

to
I = —/ / (g2va VuW. +e*20,0-0,V. + s“azwazWa-)det
0 Q

< VW] 2@ IV EWEll 22(Qu0) + € 72110201 22(01) 10: Vel 22 (1)
+ e 0w L2(Qey) 10 Well L2(Quy )

1 o— «
< 5(52||VHW5||%2(Qt0) te 2||8Z‘/6||%2(Qt0) te ||8st||%2(Qt0))

+C? (IVrwliaq,) +10:0]72,,) + 19:wlli2q,,))-

and
to z
I = —&2 / VW, - ( / Btvdg)dﬂdt
0 Q —1
52
8

< ||VHW5||%2(Q%) +C€6||atv||%2(Qt0),

where Q¢, = Q x (0,10).
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By the incompressibility condition (IZI2)), one obtains

to
13:5‘2/ /usvwg’u)det
0 Q
to
282/ / (UavHWaw_wa(vH‘/a)w)det = I31+I32'
0 Q

For I3; and I32, by Lemma [2.0] and using the Young inequality, one deduces

t() z
< [ [ poltVawl ([ 190 -olae) doan
1
1
<g/ / (/ |vg||VHW|dz> (/ |VHv|dz)det
—1

1 1 1
<ce? / oell3 (loellz + 1V s l2) IV £ Wella |9 vl 5 | Aol dt
0
to
<Ce? / (1013 (1013 + 7m0 3) + IV mvl3I Anol3] de

g2 5
+ gHVHWsHLz(QtO)

Iy <2 / [ttt ([ 19olac )
<a/ / /|w5||VHV|dz) </ |VHv|dz)det

SCE/O el 1V el 1V Vllo [V ol | Aol § dt

and

to
§C€2/O (e lwe BV we |13 + Vol 3 Anvl3) dt

+ LIVaVelBa
Therefore, combining the estimates of I3; and I3z, one gets
g2 1
I3 < gHVHWEH%?(QtD) + gHvH‘/;:H%?(QtD) + Ce?,
where we have used the result of Proposition B and the energy inequality for
(ve, we) in Definition 1.1.

Finally, for I, by the incompressibility condition and integrating by parts, it
follows

to
I4—/ / (u- V). - v—i—(ug-V)vg-v)det

to
:/ /(U5~V)vs-dedt:/ /(U5~V)V5-vdﬂdt
0o Jo 0o Jo

t() t()
= / /(Va . VH)VE -v dQddt +/ / W0, Ve - v dQdt =: 141 + Iso.
0 Q 0 Q
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Using |v] < fl |0,v|dz + L fil |v|dz, it follows from Lemma 2] that

In < //(/ |V||VHV|dz) </11(|8zv|+|v|)dz>det

1 1
sc/ IV Vel VAR (IVENE + IV Vall3)

1 1 1 1 1 1
% (192013 (10013 + IV 0-013) + loll3 lollF + 1V arvl3)] e

~T6
+l3(v]E + 1V av]2) + 1}dt

to
Vel Qo) +C/ II‘éII%[II@szI%(II@zvllﬁ+IIVHasz%)

to
<gIVaVellia, +C [ IVEIBO+ IVm-0l)ar

where Proposition B.1] has been used. For I9, it can be estimated in the same way
as follows

to
Iio :/ (Vi VeVe o= WoVe - 0.0) it
Q

/to/ (/ IvHvllv|dz) (/_111(|azv|+%|v|)dz> M dt
/to/ (/ 'VHVWZ) (/ Iv;||6zv|dz) dMdt

< IV +C [ IR+ Vvl

Therefore, we have

1 to
< §IVAVilEs 1o+ C [ VB0 + V00 e

Combining the above estimates of I7, I, I3, and Iy, by Proposition Bl one
obtains

F) = Va3 + e ()13

t
b [ (I Vel + IV a Wl + e 20.V5 + <0 W. ) ds
0

t
<cef 4 C / VLR + IV i0s0l2)ds = F(b),

for a.e. t € [0,¢*]. Therefore,
F'(t) = C(L+ [V |DIVE]3 < CL+[[Vrd:v]3) f(t)
< C(1+ | Vud.o|3)F(t).
Then, by the Gronwall inequality and Proposition Bl we have
F(8) < F(t) < eCJo HIVaovIdit pg) < P,

for a.e. t € [0,t*], where C' depends only on t*, ||vg|| g1, L1 and Lo. This proves
(@1 and, thus, (i) holds.
(ii) Similar to (i), it suffices to show that
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sup ([IVZlI3 +&*[|Well3) (1)
0<t<T

T
(45) +/ (IV VI3 + 2NV AWl + 22 0.Vell3 + 0. |3 )t
0
< K(T)eP,

where K(T) > 0 is a continuously increasing function determined by |lvgl| 1,
[0:v0llm, L1, L2, and t*. This can be proved exactly in the same way as (i),
as in this case the a priori estimates used for proving (i) are valid up to any finite
time T (]

5. PROOF OF THEOREM

Suppose vg € H?(Q) with Vg - filvodz = 0. Then, by ([CII), it has ug =
(vo, wp) € H'(Q) and V-ug = 0. By the classical theory of Navier-Stokes equations
(see [12] and [50]), there is a unique local strong solution (v, w.) to (4], subject
to (LA)-(Cd). Denote by T the maximal existence time of (v.,w.). Let v be the
global strong solution to (I.I0) established in Proposition B4l

Here we still denote U, = (V;, W,), and V. = v. — v, W, = w. — w. Since both
v and (ve,w.) are strong solutions to (LI0) and (4]), respectively, one can check
that (Vz, We) satisfies

Ve — AgVe —e*20°V. + (U. - V)V. + Vg P.

5.1

(5-1) + (U - Vv + (u-V)Ve = 2202,
(5.2) Vi Ve+d,W. =0,

53) e2(OW. — AgW,. — e 202°W. + U, - VW, + U - Vw +u - VIV,.)

+0.P. = —*(0iw — Agw — 50‘*282210 +u - Vw),
in L2(0,T; L*(9)), where P. = p. — p.

Since vy € H?(), it is clear that ([X) still holds when ¢t € [0,7). In other
words, the following holds:

sup ([|Vel|3 + || Well3) (s)
0<s<t

t
(54) b [ (IVaVel + 1T a Wl + e 20.Vi3 + =0 W. ) ds
0
S Kl (t)Eﬁ,

for t € [0,T7), where Ky(t) : [0,00) — R is a continuously increasing function
determined by |lvo|| gz, L1 and Lo.

Besides the basic energy estimate stated in the above, we also have the first order
energy estimate of (Vz, We) in the following proposition.
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Proposition 5.1. There exists a small constant o > 0 depending only on Ly and
Lo, such that the following inequality holds

sup ([|VVZ[13 + 2| VWL]3)(s)
0<s<t

t
b [ (IVVaVeIB + IV + 2 DOV + 2 [VOLIWC]3)ds
0

< K?(t)gﬂa
for any t € [0,TF), as long as
sup ([VVEl[3 +e*[[VWe]3) (s) < o?,
0<s<t

where Ka(t) : [0,00) — RT is a continuously increasing function determined by
H’U()”Hz, L1 and LQ.

Proof. Since (5] holds in L?((0,77) x Q) and —AV. € L?((0,T7) x ), one can
multiply (&) with —AVL, integrating over 2, and by integration by parts, to get

1d
A R NACAA PR WA A +/ ViP. - AV.dQ
Q
:/ [(UE-V)X/;JF(UE-V)H(U-V)I@] LAV dQ—/sa_263v-AI/; ).
Q Q

We estimate the terms on the right hand side of the above equality as follows. By
Lemma 2] and using |f(z,y, z)| < %fil |fldz + fil |0 f|dz, one deduces

A(UE-V)%-A% dQ)
=/Q (Ve Vin)Ve - AgVi + Wo0.Ve - Ag V. )
+/Q (V2 Ve 2V2 4 We. V- 22 )
=/Q (Ve Vi)V AgVi + Wo0.Ve - Ag V. )

~ [ (Ve Vi)Ve- 0., = Vi - V2.V )
Q

1 1
S/ (/ (laz‘faIHV;I)dz) (/ |VHVa||AHVa|dz>dM
M —1 1
1 1
[ ([ wwvidas) ([ lovilianvila: ) s
M -1 -1
1 1 1
+2/ (/ (IVHaz%H—IVHVaI)dz) (/ |5z1/;|2dz>dM
M \J-1 2 .

1 1 1
<CIARVIVaVell3 (IVnVal3 + 1AnVEl)
1 1 1 1 1 1
x [10V213 (10:-VEN3 + IV 30 Ve3) + IVl (IVN3 + 19 V23]
+ C(IVHO:Vell2 + IVHVEl2)110:Vell2(10:-Vell2 + IV 5 0:Vel|2)

1
<l VVEVAE + C(IVaVllz + Va3 ARVEIZ) + ClIV VA3
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+ C(10:Vellz + 18- Ve 31V 0 Vel + [IVellz + V231 Ve Vell3)

Integrating by parts, using |f(z,y,2)| < %fil |fldz + fil |0 fldz and applying
Lemma 2] one deduces by the Young inequality that

/(U5~V)U-A‘/E a0

Q

:/ (Ve Va)v- AuVe = (0.Ve - Va)v- 0.Ve = (Ve - Vig)ov - 9.V. )9
Q

+ / (W&.azu AV + Vi Vb 9.Ve — Wed?v - azu.)dﬂ
Q

S/ </ (IVel +10:Vel)d ) (/11|VHU||AHVE|dz> dM
+ [ </ o.v. P </1 (9l + Vudiol)iz ) ans
+/M< (V| + |azvs|)dz) </_11|vHazv||an5|dz> dM
o ([ waveias) ([ oaiisaviaz ) an
o [ ([ wavapereies) ([ zoias) ans
+/M (/1 IVHV;|dz) (/11 |a§v||azv;_.|dz) M

<CIAa VLIV ol 1A mv]3
x [10:VlE (10:VEl3 + 1900 Ve3) + VU3 (IVED + IV arVel)]
C(|Vavllz + [VaO.v||2)
x [10:Vela(10:Vella + IV 0:Vella) + Ve 21V 2 + [V Ve l2)]
+ CllARVE 210003 (10:013 + [V 003V VoIS | AnVell3
+ ClO20 oIV VIR I A VAR O.VENE (10-VEIZ + 1V 0.Vl D)
<29V VLR + OO+ ol )+ olle)IVe e
and
/Q(u-V)VE-AVE Fig)

Q

:/ ((v Va)WVe - AgVe +wd,Ve - AgVe — (00 - Vi)Ve - 8.V + Vi -U|azv;|2)d9
Q

<[ ([ v ioanes) ([ 1vaveizuviies)a
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1 1
+/ (/ |VHv|dz) (/ |8ZVE||AHVE|dz>dM
M —1 —1
1 1
[ ([ eas) ([ 1vaviiovia: ) s
M —1 —1
1 1
+2/ </ (|VHU|+|VH8ZU|)dz> (/ |8ZV5|2dz>dM
M —1 —1

1 1
<CIl AV 2V VL3 1A VE] 3
1 1 1 1 1 1
x 1013 (I3 + 11V 0l3) + 10013 (10013 + IV r0:013)]
)

Nl

+ Ol AR VIV arvll3 [ Amoll3 10Vl 10Vl + 1V 0 Vell3
o B A H N A
< 10 VEE (19:VEI3 + IV . ValI3)
+ C(|Vavll2 + | VEO:v|2)[|0-Ve|l2([|0:-VE|l2 + [[VEO. Ve ||2)
<29V R VLR + CUTVI + IVIB) ol + 1wl +1),

where the Poincaré inequality ||V f|l2 < C||V% f||2 has been used in several places.
The Cauchy inequality yields

/QEO‘_2831) AV dQ)
<e* 20202 (| Am Vell2 + (|02 Vell2)
<o (IARVEIE + 2 2VaIR) + O (e 4<% 2) 320l
Combining all the above estimates and applying Proposition [34] one deduces

VV. VUV V|2 + 72| VI, V|2 +/v P. - AV.dQ
655 33 IVVI+ S (IVVa Vel + o290 v2 ) + [ Vi

<Ce®?G(1) + C(G*(t) + DIVVEl3 + CIVVLZIVV HVEl3 + ClIVell -

Recall that (53) holds in L2((0,T%) x Q) and —AW,. € L?((0,7) x ). Multi-
plying (&3] with —AW, and integrating over €2, one has
ez d

e A LA PR A /6PAW a9

— / (UE VW.AW. + U, - VwAW. + u - VWEAWE)dQ te / w- VwAW, dQ
Q Q

+e? / (atwAWE — AgwAW, — ga*QagwAWE)dQ,
Q

Using |f(x,y,2)| < f_ (10-f| + 3| f])dz, applying Lemma 2T}, and by the Young
inequality, one deduces

g2 / U. - VW.AW. dQ
Q

g2 / (V- VWA We = Ve V0. Wo0.W. — 0.V. - Vg W0,V
Q



HYDROSTATIC APPROXIMATION AND PRIMITIVE EQUATIONS JUSTIFICATION 19

YW 0. W AW, — %azwngwg?)dﬂ

:52/ (V WAL W, —2V. - vHastaZWE)dQ
Q

—52/621/5- (vH/ VH-VEdz’) Vi - V.dQ
Q —1
+52/ (/ VH-VEdz’> Vi VeAgW.dQ
Q —1
1 1
gcﬁ/ (/ (|V;-|+|6z1/;-|)dz) (/ |VWa||VVHWE|dz) dM
M —1 —1
1 1
+052/ (/ |V§,V€|dz) (/ |an;||vHV;|dz> dM
M —1 —1
1 1
M —1 —1

<C|V VW2 VW2l (IVWEII3 + Ve VWe]3)
% [10-V213 (10:-V2l13 + IV m0Vel$) + IVEIS IV + IV aVell3)
+ OV Vell2 0V (10.Velle + IV 0 Vell2)* [V Vel 193 Va3
+ CE2 |V a Vel 2| [V Vel 2l Ar W2
<EIVTAWLI+ IV + CIVV B VL3 + VY Vel3)
+ O [ VWLV WL 3 + 2V VW2 2) + CIVIZUVEE + IV V2 l2),

where the incompressibility condition (B.2]) and the Poincaré inequality have been
used. Similarly and using further |[W.| = ’f’_zl OWe(x,y,2")dz'| < f_ll |0, W, |dz'

as We|.——1 = 0, one deduces

2 / (U. - Vw) AW, dQ
Q
:52/ ((Va Vaw) AgWe = (9:Ve - Vaw)0:We — (Ve - Vi d.w) 0. We
Q

W0 wA W — |9 W 20,0 — Wgagwazwg)dg

2/ { (V;-VH/ VH-vdz’> AgW. + (azvg-vH/ VH-vdz') azwg] dQ
Q
+a2/ [V ViV -v)) 0, We +</ Vi - de>vH vAHW]dQ
+52/(
1 1
/ < U|dz> </ |I/;||AHWE|dz) M
M —1 —1
1
/ ( v|dz> </ |3ZV5||8ZW5|dz) dm
M —1

)

O.W.>Vy v+ W(Vy - 0.0)0- W)dQ

)
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1
( (Ve + |azv;|)dz) (/ |V%{U||3ZW€|dz) n
—1
1
+Cs ( |VHV|dz) (/ |VHv||AHW€|dz) M
-1

1
|a W. |2dz> </ (IVao| + |VH8ZU|)dz> dM
-1

1
+ Ce? / (/ |3ZW5|dz) </ |VH8ZU||8ZW5|dz> dm
M \J-1 —1

1 1 1 1 1
<C AW 2lIVEIF (VI3 + IV aVell3) 1 Amell3 VAol
1 1 1
+ CE2||AHUH2”8ZWEH22 (H(?ZW5H22 + ||VH8ZWE||22)
1 1 1 1 1 1
% (10 V23 10:-VEIIF + IV m0Val3) + IVEIF (V15 + IV Vel

+Cs

+Ca

1 1 1 1
+ C2|AgWe 2 IV a3 1A 3 | VE V3 | AL VEl3
+ C2([|[VuOv2 + IV avll2) 0-We ll2(10-Well2 + IV 2O-WC]|2)

g? 1
SE”VVHWEH% + @HVVHVEH% + CIIVVel3(Iv[l 52 + 1)

+ C(IVl3 + IV aWelZ) (lvllze + 1ol 3 [V ol + 1)
+CEIWel3 (vl + vl I Vavlz: +1).

The other nonlinear terms can be estimated in the same way, by using Lemma 2.1],
the Poincaré inequality and |f(x,y,z)| < %f_ll |fldz + f_ll |0, f|dz as follows. In
fact, one deduces

52/9u - VW. AW, dQ

:52/9 (v N EWARW. — v Vyd W0, We — v - Vg W0, W,
L wd W AW, — %azw|azws|2)d9

—52/9 (u VW AgW. + Vg - v|8zW€|2)dQ

+E2 (8 v - VH VH . Vsdz’> 0. We — </ Vu -vdz’) 8ZW5AHW5} dQ
Q

—1

1 1
52 (/ (Jo] + 19.v[)d ) </ IVHW5||AHW5|dz> dM
M —1
1 1
IV o] + |VH8ZU|)dz> </ |8ZWE|2dz) M
-1
1
2V |dz> (/ |8zv||8zW5|dz> dM
-1
1
+cg2/ (/ |VH’U|dZ) (/ |8ZWE||AHWE|dz> dM
M -1 -1

1 1
<C | ApWe 2|V Wel|3 [AnWe|3

+ 052

+C’5

L/
Ly
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< (0002 (102012 + [V a0012) + W13 (lo]1F + 1V avl3)
+ C2([|[V 002 + |V av|[2)|0:We |2 (|0:We |2 + |V 0. We||2)
+ O AnVellallowvll3 (19.0113 + [V d-0]3)
< 0 W 12 (1013 + [V 0. W |3)
+ O Au W2 VirolZ | Amo]3
X 0 W3 (10 W3 + |V o We|I3)
< [TVAWLIE + T A Va3 + O [TWL Bl + 1),
and

52/ (u - Vw) AW, d

Q

B L ——
Q

FwdwAgWe — |0, w20, W, — w@fw@zWE)dQ

:52/ [— (v-VH/ e -vdz’) AgW. + (azu-vH/ e -vdz’) 8ZWE} o
Q -1 -1

1 1
gcﬁ/ / |v§1v|dz) (/ |v||AHW€|dz) dM
M —1 —1
1 1
(/ |V§,u|dz> (/ |8zv||8zW€|dz) dM
—1 —1
1 1
+ 082/ </ (Jv] + |3zv|)dz> (/ |V§{v||8zW5|dz> dM
M —1 —1
1 1
—0—082/ </ |VHv|dz> </ |VHU||AHW5|dz) dM
M —1 —1

1 1
+052/ </ |VHv|dz> </ |VH82v||8ZW5|dz) dM
M —1 —1

<C|AaWellllol3 (loll3 + IV el Amol3 IV aAmol3
+ C2| Aol 0. W |2 (|0 W2 |2 + |V 0. W.3)
x [10-013 (10015 + 1V 0-0013) + w13 (ol3 + IV arol3)]
+ CE | AWzl Viroll2 | Aollz
+ C(|[VuOVel2 + IV V) Va2 Af vl
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) 1 1 1 1 1
+ Ce7|[ V02| 0-We |3 (10-We 13 + (IVa0-Wel|3)IVavlls |Amvl3

g? 1
SEHVVHWEHS + ﬁ“vaVsH%

+ O VVel3 + CE VW3 + C2[[vl3pa (o]l 2 + IV a0l r2).-

By the Holder inequality, the incompressibility condition, and integrating by parts,
one can obtain

2 / (&gwAWa — AgwAW. —5“‘263wAWE>dQ
Q
252/ BtwAHWEdQ—52/ 8t82wazW€dQ—s2/ AgwAgW.dQ
Q Q Q
—|—52/ AHazwazWEdQ—ao‘/ BfwAHWEdQ—i—EO‘/ 8§w8zWadQ
Q Q Q

2
€
SEIIAHWsH% +CE(|0wlEn + IVav]F2) + Ce?(|0.We|l5.
Now, collecting the above estimates yield
1d , 11

- 2 - 2 2 « 2
5 ZEIVILAR + 1o (UYL + < 0. VWI3) —i-/ﬂangAWa a0

<OVV3UIVVEE + IVVEVE3) + %HVVHVEI@
(5.6)  +C? VW5 VWLl3 + e[ VV W |3)
+ OIVEBUVEIE + IVaVER) + CUIV VLS + VWD) ([0l + 1)
+ OE W3 + VIR (ol zre + [0l Vol Fe + 1)
+ C2||oll32 ([[oll a2 + I Vavlmz) + C2(|0ll3n + IV aolFe)-
Combining (5.3]), (5.0) and by Proposition B4 one gets

1d 2 2 2
52 (UYWL + V2 3)

+ 2 (LIVIHWLI + 0.9 3 + VYVl + <2 V0. VaI3)
<Vl + AW ITVEIE + [TV Vel3 + VWLl + 2TV W)
+OEITWLE + [VVRG () + 1) + CIVLBAVLIE + [ VsV )
+ OUVLIB+ S IWLIRE ) + GO ol + 1)
+OSGEO(GH () + [ Varvlme) + Ce*2G(t) + O (|0l 3 + [ VarolFe),

from which, by the assumption supg<,<; ([VVe]3 + €3[| VW.[3)(s) < o2, letting

o? = and recalling (54), one can see

1
16C ?
d
= (2 IVWL + I VaI3)
+ (AITTHWL + 0. 9We 3 + [V a Vel + 272 V. V2 3)
<SC(E|IVWe|3 + IV VEI)G2 () + Ka(t)e” +1)
+ CK1 ()P [K1(t)e” + G2(t) + G()|| Vi v||F2 + 1]
+ CP(G3(t) + 10w |3 + [|[ Vo3 + 1).
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Recalling (Vz, We)|i=0 = 0, it follows from the Gronwall inequality and Proposition
B4 that

sup ([VVElI3 + [ VWe]3) (s)

0<s<t
t
+ [ (IVVaVelB + 2ITTa WL + 222 [T0LVE[ + VoW 3 ) s
0

chﬁect(GQ(t)+K1(t)€B+l) [t(Klz(t) + G4(t) + 1) + K1 ()G(t) + 1:| — KQ(t)SB,
proving the conclusion. O

The next proposition shows that the smallness condition of (Vg V.,eWe) in
Proposition Bl holds for any finite time T > 0 provided ¢ € (0,er), where er is a
positive constant depending on 7'. As a result, the local strong solution (v, w.) of
([T exists in [0, 7] for € € (0,e7).

Proposition 5.2. Let T be the maximal existence time of the unique local strong
solution (ve,we) to (LA, subject to (LA)—([A). Then for any finite time T > 0,
there exists a positive constant ep depending only on ||vo| gz, T, L1 and Lo, such
that T < T, as long as € € (0,e7), and that

sup ([[VallZ + 2 IWellfn) ()
0<t<T

T
b [ 1TVl + U7 a Wy + =210V By + =0 s e
0
< K3(T)€Ba

where K5(t) is a nonnegative continuously increasing function on [0, 00) determined
only by ||vo|lmz, L1 and Lo.

Proof. Set T** = min{T,T>}. Then, by (54, one has
sup — (|VE[I3 + €[ Wel3) (1)
0<t<T>>

T
OO [T (1T + IV WLl + e 20Vl + 0. e
0

< Ky (T)eP.
Let o be the constant in Proposition 5.1l Define

tZ :==sup {t € (0,7)

sup (|[VVe|3 + 2| VWL|I3) < 0 }.
0<s<t

By Proposition .1l one can obtain
sup (|| VVZ|[3 + %[ VWe[3) (s)
0<s<t

t
(5:8) + / (IVVaVel3 + IV W 3+ 2 V0LV + [ VO, |3 ) ds
0

0.2

< Ky (t)e? < Ky(T)eP < 5

@l

for any t € [0,¢) and for any ¢ € (0,e7), where ep = (%) . Therefore,
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o2

(5.9) sup ([[VV[3 +*[[VIVL]3) (1) < 5 Ve € (0,e7).

0<t<t:
By the definition of ¢f, this implies ¢} = T.** and, consequently, (5:8)) holds for any
t e 0,1:%).

We claim that 7)* > T for any ¢ € (0,er). Assume in contradiction that
Tx* < T, ie., T <T. This implies the maximal existence time of (v.,w,) is finite
and, consequently, recalling Proposition [3.4] it must have

lim sup (| VVZ3 + || VIWe[3) = o0,

t=(T2)~
which contradicts to (0.8)). This contradiction implies T}* > T and thus T > T.
Thanks this and combining (57) and (5.8]), one obtains

sup ([IVellFn + W[ 3) ()
0<t<T

T
b [ (I Vel + IV Wl + 2210V s + 20 W )
0

< (KL (T) + Ko(T))e? := K3(T)eP.
This proves the conclusion. 0

Proof of Theorem[.4. For any finite time T > 0, let ep be the constant in Propo-
sition (22 Then, by Proposition 5.2 for any € € (0,e7), the scaled Navier-Stokes
system (L4)—(L1) exists a unique strong solution (ve,w.) in [0, T]. While the fol-
lowing estimate holds

sup ([IVellzr + 2 Wel7) (1)
0<t<T

T
b [ (ITaVelBrs + ITaW By + 2210V e + 20 s )
0

< K3(T)eP.

which is exactly estimate stated in Theorem The convergences are the direct
corollaries of the above estimate. This completes the proof of Theorem O
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