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Abstract 

We present new fast algorithms for solving the Toeplitz and the Toeplitz-plus-Hankel 
least squares problems. These algorithms are based on a new fast algorithm for solv­
ing the Cauchy-like- least squares problem. We perform an error analysis and provide 
conditions under which these algorithms are numerically stable. We also develop im­
plementation techniques that significantly reduce the execution time. Our numerical 
results indicate that these algorithms are highly efficient and numerically stable for 
proble!JlS ranging from well-conditioned to ill-conditioned to numerically singular. 
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1 Introduction 

1.1 Displacement Equations 

The Sylvester type displacement equation for a matrix ME cmxn is 

D.·M-M·A=tl. (1.1) 

where D. E cmxm and A E cnxn; fl. E cmxn is called the generator of M with respect to 

n and A; and r = rank( fl.) :s; min( m, n) is called the displacement rank of M with respect 

to n and A. M is considered to possess a displacement structure with respect to n and A 

if r « min(m, n). 
In general, there is no simple relationship between rand rank(M). For r « min(m, n), 

we usually factorize fl. as fl.= A·B for matrices A E cmxr and BE crxn. This decomposi­

tion is not unique. For numerical stability reasons, we often choose A to be well-conditioned. 

The displacement. equation (1.1) does not in general reflect the potential symmetry 

structure in M. The symmetric Stein type displacement equation for a Hermitian matrix 

M ( m = n and M* = M) is 
M- n* . M. n = e , (1.2) 

where D. E cmxm; e E cmxm is Hermitian and is called the generator of M with respect 

to D.; and r = rank( e) :s; m is called the displacement rank of M with respect to D.. M is 

considered to possess a displacement structure with respect to n if r « m. 

For r « m, we usually factorize ease= A·J ·A* for matrices A E cmxr and J E crxr 

with J being Hermitian. Similar to above, this decomposition is not unique, and we often 

choose A to be well-conditioned. 

The concept of displacement structure was first introduced in Kailath, Kung, and 

Morf [31]; the symmetric variant of which, the displacement equation of the form (1.2), 

first appeared in Chun, Kailath, and Lev-Ari [12]. Displacement equations of the form (1.1) 

first appeared in Heinig and Rost [28] for the special case m = n. The most general form 

of displacement structure for square matrices, which includes equation (1.1) form= nand 

equation (1.2) as special cases, was introduced in Kailath and Sayed [33]. For a compre­

hensive discussion on the displacement structure theory and applications, see Kailath and 

Sayed [34]; 

.1.2 Fast Algorithms for Structured Matrices 

A special case in (1.1) is when both D. and A are diagonal. Let C E cmxn be a matrix 

satisfying 

D.·C-C·A=A·B (1.3) 

with 

D.=diag(wll···,wm), A=diag(.Xll·.-·,-Xn) and A= ( a:
1

), B=(bl,···,bn), 

a~ 
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where Wk, Aj are scalars; and ak and bj are r-dimensional row and column vectors. C 

is called a Cauchy-like matrix. Usually we assume that wk =I= Aj for all 1 ::; k ::; m and 

1 ::; j ::; n. In this case the (k,j) entry of C is ak · bi . In particular, C is a Cauchy 
Wk- j 

matrix if m = n, r = 1, and ak = bj = 1 for all k and j (see Heinig [25]). In the case 

where wk = Aj for some pairs of (k,j), equation (1.3) requires that ak · bj = 0 and allows 

the corresponding entries in C to be· arbitrary. A Cauchy-like matrix C has the interesting 

property that any submatrix of C is again a Cauchy-like matrix. In addition, if C is a non­

singular square Cauchy-like matrix, then c-1 is a Cauchy-like matrix as well. For square 

Cauchy-like matrices with wk =I= Aj for all k and j, Heinig [25] developed a fast algorithm for 

computing an implicit LU factorization of C with partial pivoting in O(n2 ) floating point 

operations; and Gohberg, Kailath, and Olshevsky [18] developed an explicit fast Gaussian 

Elimination with Partial Pivoting (GEPP) procedure for factorizing C based on this work. 

Sweet and. Brent [44] showed that the generator of C could suffer large internal element 

growth in the procedure of [18]; and Gu [23] presented a modified procedure that avoids 

such internal element growth and that can perform a fast variation of Gaussian Elimination 

with Complete Pivoting (GECP). 

Some symmetric/Hermitian Cauchy-like matrices satisfy displacement equation (1.2). 

Let 0 E cmxm be a diagonal matrix and let M = M* E cmxm be a Hermitian matrix 

satisfying the displacement equation 

M - 0* · M · n = A · J · A ( *) , (1.4) 

where ll ~ diag( w, · · · , wm); A ~ ( :~ } and J E C'" is Hermitian. For wl· w; # 1, the 

ak · J ·a· 
(k,j) entry of His * 1 

• For wZ · Wj = 1, Equation (1.4) requires that ak · J · aj = 0, 
1- wk · Wj 

and allows the corresponding entries in H to be arbitrary. Assume that Wk =I= 0 for all k, 

equation (1.4) can be rewritten in the form of (1.3) as 

Hence M is a Hermitian Cauchy-like matrix. Kailath and Olshevsky [32] have developed a 

fast Bunch-Kaufman Pivoting procedure for factorizing symmetric/Hermitian Cauchy-like 

matrices. 

Other classes of structured matrices include the Toeplitz matrices and the Hankel ma­

trices. A Toeplitz matrix T is a matrix whose entries are constant along every diagonal 

· (T = (tk-ih::;k::;m,I::;i::;n)i and a Hankel matrix His a matrix whose entries are constant 

along every anti-diagonal (H = (hk+i-2h::;k::;m,I::;j::;n)· Let Sm E Rmxm be the matrix that 

is 1 on the main anti-diagonal and 0 everywhere else (for example 82 = ( ~ ~ ) ) . It is 

well-known that for every Hankel matrix H E cmxn, Sm · H is a Toeplitz matrix. Toeplitz 

and Hankel matrices are included in the larger class of Toeplitz-plus-Hankel matrices, which 
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are sums of Toeplitz and Hankel matrices. These matrices often arise from signal processing 

and control theory applications (see, for example, Bunch [7] and Nagy [38]). We will discuss 

the displacement equations the Toeplitz matrix and the Toeplitz-plus-Hankel matrix satisfy 

in §3. Our main goal in this paper is to present new fast algorithms for solving the linear 

least squares problem 

min liM· x- hll2, 
:z: 

(1.5) 

where M E Rmxn is the Toeplitz or the Toeplitz-plus-Hankel matrix; and h E Rm is a 

vector. We will also consider the case where M is a real or complex Cauchy-like matrix. 

Throughout this paper, we assume that M is non-singular and that m 2: n + r, where r is 

the displacement rank of M. The problem (1.5) has a unique solution 

XM =(M* ·M)-1 ·M* ·h. (1.6) 

Fast algorithms for solving the least squares problem (1.5) when M is a Toeplitz matrix 

have been developed by Bojanczyk, Brent, and de Hoog [4], Chun, Kailath, and Lev-Ari [12], 

Cybenko [14, 15], Nagy [37], Park and Elden [39], Qiao [40], and Sweet [42] that require 

O(mn) floating point operations, as opposed to O(mn2 ) floating point operations normally 

required for general dense linear least squares problems. Fast parallel algorithms have also 

been developed by Bojanczyk and Brent [3, 6]. However, some of these algorithms have 

unknown stability properties (see Brent [6]) and others are known to be unstable (see Luk 

and Qiao [36]); most of these .methods suffer from loss of accuracy for very ill-conditioned 

problems. 

A special case of the Toeplitz least squares problem is the Toeplitz linear system of 

equations, where one solves for x in M · x = h with M being a square Toeplitz matrix 

(m = n). For discussions on some of the earlier fast and superfast methods (performing 

O(n2 ) and O(nlog~n) floating point operations, respectively) for solving such equations, see 

Bojanczyk, Brent and Sweet [5], Bunch [7], Cybenko [13], Sweet [43] and the references 

therein. 

Recently, Heinig [25] showed that the square Toeplitz matrix can be transformed into. 

a Cauchy-like matrix via the fast Fourier transforms; and Gohberg, Kailath, and 01- · 

shevsky [18] and Heinig [26] further showed that the Toeplitz-plus-Hankel matrix can be 

transformed into a Cauchy-like matrix via the fast trigonometric transforms. Hence fast 

algorithms for solving Cauchy-like linear systems of equations can be used to solve Toeplitz 

and Toeplitz-plus-Hankellinear systems of equations. Independently, Chandrasekaran and 

Sayed [9] presented a modified version of the QR type algorithm of [12] and showed it to 

be fast and backward stable for solving non-singular Toeplitz linear systems of equations. 

1.3 Main Results 

We present a new fast algorithm for solving the least squares problem (1.5) when M is a 

Cauchy-like matrix. This algorithm reduces the least squares problem into two Cauchy-like 

systems of linear equations and solves these systems by generalizing triangular factorization 

5 



techniques developed in [18, 23, 25, 32]. Our error analysis shows that this algorithm is 

backward stable if the L matrix in the LU factorization of M with fast partial/complete 

pivoting is well-:-conditioned. 

We also present new fast algorithms for solving the least squares problem {1.5} when 

M is a Toeplitz or Toeplitz-plus-Hankel matrix. These algorithms transform M into a 

Cauchy-like matrix via the fast Fourier or trigonometric transforms and solves the resulting 

Cauchy-like least squares problem using the fast algorithm above. Since the choices of trans­

formations are not unique, we compare different choices in terms of efficiency and numerical 

accuracy in solving the Toeplitz and the Toeplitz-plus-Hankelleast squares problems. Our 

error analysis shows that these algorithms are as backward stable as the algorithm for solv­

ing the resulting Cauchy-like least squares problem. Since the Hankel and Toeplitz matrices 

are simply related (see §1.2}, the new fast algorithms for solving the Toeplitz and Toeplitz­

plus-Hankelleast squares problems are also new fast algorithms for solving the Hankel least 

squares problem; and the numerical stability results are the same. 

We develop implementation techniques that significantly reduce the execution time. We 

also perform a large number of numerical experiments on the new fast Toeplitz and Toeplitz­

plus-Hankelleast squares problem solvers and compare them with the straightforward QR 

type least squares problem solver that ignores the Toeplitz and Toeplitz-plus-Hankel struc­

tures. Our numerical results indicate that these fast algorithms are significantly faster than 

the straightforward solver and yet are essentially as accurate on problems ranging from 

well-conditioned to ill-conditioned to numerically singular. 

1.4 Overview 

In §2 we present the new fast algorithm for solving the Cauchy-like least squares problem. In 

§3 we show how to transform Toeplitz and Toeplitz-plus-Hankel matrices into Cauchy-like 

matrices and compare different choices of transformations in terms of efficiency and numer­

ical accuracy. In §4 we perform an error analysis for these algorithms. In §5 we develop 

implementation techniques that reduce the execution time and present numerical results. 

And in §6 we discuss some extensions, draw conclusions, and ask some open problems. 

1.5 Notation and Conventions 

i is the unit imaginary number ( i 2 = -1). For a matrix M, M* denotes its complex 

conjugate; in case M is real, both M* and MT denote its transpose. O"max(M) and O"min(M) 

denote the largest and the smallest singular values of M, respectively; and ~~::(M) = :::f:j 
is the 2-norm condition number of M. 

Mp:q,s:k is a submatrix of M that selects rows p to q of columns s to k; M:,s:k and Ms:k,: 

select sth through kth rows and columns, respectively; and when s = k, we replace s: k by 

s. However, for matrices A and B with or without superscripts, we further set 

As:k = As:k,: and B s:k = B:,s:k ; 
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.• 

for matrices C and L with or without superscripts, we set 
I 

C1 = Cl:n,l:n , C2 = Cn+l:m,l:n and L1 = Ll:n,l:n , £2 = Ln+l:m,l:n ; 
) 

and for matrices 11 and A, 11s:k and As:k select both rows and columns s to k of 11 and A, 
respectively. 

IMI is the matrix of moduli of the {Mk,j}· We use the max norm, the co-norm, the 
2-norm, and the Frobenius norm: 

IIMIImax = m~ IMk,jl, IIMIIoo =max L IMk,jl , IIMII2 = max liM· ull2 , 
k,J k . . llul/2=l 

J 

and IIMIIF = j'"E,k,j 1Mk,jl2. For a matrix ME cmxn, the following inequalities hold: 

~~~ ~ IIMIImax ~ IIMII2 and ~~~_2 ~ IIMIIoo ~ Vn · IIMII2 · (1.7) 
ymn · ym 

When the norm in II · II is not specified, it is one of the 1, 2, and oo norms. 

Ik is the k-by-k identity matrix, ek E Rk is the vector of all 1's. Pm E Rmxm and 

Qn E Rnxn are permutation matrices; and Pm(j, k) and Qn(j, k) denote the permutations 

that interchange the lh and kth rows of matrices with m and n rows, respectively. 

A flop is a real floating-point operation a o {3, where a and {3 are real floating-point 

numbers and o is one of +, -, x, and +. Taking the absolute value or comparing two 

floating-point numbers is also counted as a flop. We count a complex addition or subtraction 

as 2 flops; a complex multiplication 6 flops; and a complex division 11 flops. 

€ is the machine precision. In our error analysis, we take the usual model of arithmetic:1 

fl(a o {3) =(a o {3)(1 + 77), 

where fl(a o {3) is the floating point result of the operation o; and 1771 ~ €. For simplicity, we 

ignore the possibility of overflow and underflow. It is well-known that for any A E cmxr 

and B E crxn, when the matrix-matrix product A · B is computed in the straightforward 

way, we have 

lfl (A· B)- A· Bl :S 11 • r ·IAI·IBI , (1.8) 

where 17 is a small multiple of €. 

2 The Cauchy-like Least Squares Problem 

2.1 Reducing One Cauchy-like Least Squares Problem into Two Cauchy­
like Linear Systems 

Let C E cmxn be a Cauchy-like matrix satisfying (1.3) and define 

·'· I I I ' I ·'· . I ' I '1/J '1/Jmax '~' = max Wk + A · '~' • - rmn Wk - A· - --max l~k~m,l~j~n 1 J ' mm - l~k~m,l~j~n 3 ' - '1/Jmin (2.9) 

rPmax = 2. max lwkl , rPmin = min lwk- Wjl , (/J = rPmax . 
l~k~m l~k#j~m rPmin (2.10) 

1This model excludes some CRAY machines that do not have a guard digit. Our error analysis still holds 
for such machines with a few easy modifications. 
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We assume that C is a non-singular matrix and '¢ > 0 and ¢ > 0. Hence the diagonal 

entries of n are distinct and Cis the unique solution to (1.3). In §2.1 we consider the least 

squares problem (1.5) for M =C. The notation established in §1.5 will be heavily used in 

this section. 

The expression in the solution (1.6) is not suitable for direct numerical computation for 

ill-conditioned C. The standard approach is to use the QR factorization of C. Let 

C=Q·R, 

where Q E cmxn is column unitary andRE cnxn is upper-triangular. The least squares 

solution is 

xc = (C* · C)-1 · (C* ·h)= (R* · Q* · Q · R)-1 
· (R* · Q* ·h)= R-1 

· (Q* ·h). (2.11) 

Although this scheme is backward stable, it is slow for large m and n. The QR factorization 

requires O(mn2 ) flops to compute in general; and no known algorithm can stably compute 

a QR factorization of a Cauchy.-like matrix in O(mn) flops. 

Fortunately, This scheme is not the only way to compute xc. Partition (see §1.5 for 

notation) 

and h _ ( h1:n ) 
- hn+1:m . 

We assume that C1 is non-singular and define 

Z = C2 · C:l1 E c<m-n)xn and K = In+ Z* · Z E cnxn . (2.12) 

The least squares solution xc can now be rewritten as 

xc - (C{ ·(In+ Z* · Z) · C1)-
1 

· C{ ·((In Z*) · ( h
1

:n )) 
hn+1:m 

In this formula, C1 is a square Cauchy-like matrix (see gl.2), and hence xc can be computed 

as the solution to the Cauchy-like linear system 

c1 · xc = g, (2.13) 

where 

g = (In+ Z* · Z)-1 
· (h1:n + Z* · hn+l:m) . 

In Theorems 2.1 through 2.3 that follow, we show that for the types of Cauchy-like matrices 

C that are transformed from the Toeplitz or Toeplitz-plus-Han.kel matrices, both Z and 

K are Cauchy-like matrices as well, with K being symmetric/Hermitian positive definite. 

Hence g can be computed as the solution to the symmetric/Hermitian positive definite 

Cauchy-like linear system 

K · 9 = h1:n + Z* · hn+1:m · (2.14) 
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Theorem 2.1 Let C be a Cauchy-like matrix satisfying the displacement equation {1.3}. 

Then the matrix Z in {2.12} is a Cauchy-like matrix satisfying the displacement equation 

Sln+l:m · Z- Z · S11:n = (An:l:m- C2 · C:L1 
· Al:n) · (B · C:L1

). (2.15) 

Proof. Equation (1.3) can be rewritten as 

which can be further rewritten as 

and 

On the other hand, 

Plugging in the above two relations and simplifying, we obtain (2.15). I 

· Since both factors in the generator for Z in (2.15) can be ill-conditioned, we rewrite the 

generator of Z as 

(2.16) 

where Q E C(m-n)xr and WE crxn with Q being well-conditioned. In §2.2 we will discuss 

how to compute Q and W without computing An+l:m - C2 · C:L1 
· A1:n and B · C:L1. 

Theorem 2.2 below shows that K is a Cauchy-like matrix if all the matrices involved 

in (1.3) are real. 

. Theorem 2.2 Let C be a Cauchy-like matrix satisfying the displacement equation (1.3}. 

Assume that all the matrices n, A, A, and B are real. Then the matrix K in (2.12} is a 

symmetric Cauchy-like matrix satisfying the displacement equation 

where 

A= ( zT. Q wT) and ..7 = ( 1 -:r ) ~ 
with Q and W being defined in (2.16}. 

Proof. 

S11:n · K - K · S11:n = S11:n · (In + zT · Z) - (In + zT · Z) · S11:n 

- (Z · Sll:nf · Z- zT · (Z · Sll:n) . 

(2.17) 
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On the other hand, Combining (2.15) and (2.16) gives 

z . nl:n = nn+l:m . z - Q . w . 

Theorem 2.2 follows by plugging this relation into above and simplifying. I 
Remark 1: To compute A for a given generator Q · W of Z, we need to form the 

matrix Z and then perform the matrix-matrix product zT · Q. The total cost is about 

(4r + 1)(m- n)n flops. 

The following theorem shows that His a Cauchy-like matrix if all diagonal entries inn 

are on the unit circle in the complex plane. 

Theorem 2.3 Let C be a Cauchy-like matrix satisfying the displacement equation {1.3}. 

Assume that lw;l = 1 for 1 :::; j ~ m. Then the matrix K in {2.12} is a Cauchy-like matrix 

satisfying the displacement equation 

K- fli:n · K · fl1:n = A· :J ·A* 

where 

A = (W* Z* · n~+l:m · Q) and :1 = ( - Q;r. Q ; ) , 

with Q and W being defined in {2.16}. 

Proof. By assumption, we have 

Hence 

K- fli:n · K · fl1:n = (In+ Z* · Z)- fli:n ·(In+ Z* · Z) · fl1:n 

Z* · Z- (Z · fll:n)* · (Z · fll:n) . 

On the other hand, Combining (2.15) and (2.16) gives 

z . nl:n = nn+l:m . z - Q . w . 

Theorem 2.3 follows by plugging this relation into above and simplifying. I 

(2.18) 

Remark 2: To compute A for a given generator Q· W of Z, we need to form the matrix 

Z and then perform the matrix-matrix product Z* · (n~+l:m · Q). The total cost is about 

(16r + ll)(m- n)n flops. 
In §2.2 through§ 2.4 that follow, we will solve linear systems (2.13) and (2.14) by devel­

oping fast algorithms for computing the generator of Z and factorizing C1 and K. 
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2.2 Gaussian Elimination for Cauchy-like Matrices 

Let C be a Cauchy-like matrix satisfying {1.3) and let the LU-factorization of C be 

C=L·U, (2.19) 

where L E cmxn is unit lower triangular and U E cnxn is upper triangular. This factor­

ization, -:-,when exists, can be computed via Gaussian Elimination (GE). Given (2.19), the 

factorization for C1 is simply L1 · U (see §1.5 for notation). 

The first step of Gaussian elimination is to zero-out the first column of C below the 

diagonal entry: 

C=(: u 
C2:m,2:n ) = ( ~ 0 

Im-1 ) . ( ~ u 
c(2) (2.20) 

where U1,1 = 1 is the pivot; L2:m,1 = l = v h; U1,2:n = u; and C(2) = C2:m,2:n - l · u is the 
Schur complement of I· Theorem 2.4 below asserts that C(2) is also a Cauchy-like matrix. 

Variations and generalizations of this theorem have appeared in [18, 19, 20, 25, 33]. The 

algorithms of Gohberg, Kailath, and Olshevsky [18] are based on it. 

Theorem 2.4 Let matrix C in (2.20} satisfy the displacement equation (1.3} with wk # Aj 

for all1 ::::; k :S m and 1 :S j :S n. Assume that 1 # 0. Then C(2) satisfies the displacement 

equation 

fh:m · C(2) - C(2) · A2:n = A (2) · B(2) (2.21) 

with A(2) = A2:m -l· A1,: E C(m-l)xr and B(2) = B2:n- B:,l · uh E crx(n-l). 

Hence the first step of Gaussian elimination on the matrix C involves computing 1, v, and 

u of C from equation (1.3); computing the vector l; and computing the matri~es A(2) and 

B(2) in equation (2.21). Gaussian elimination then proceeds bl recursively applying this 

step to C(2). If all the pivots are non-zero, then at the end of this procedure, C is factored 

into (2.19). , 

While the generator of Z can be computed directly from formula (2.15) using the fac­

torization (2.19), numerical accuracy could be compromised for ill-conditioned C1. In the 

following we present an alternative procedure that computes the generator for Z during the 

course of Gaussian elimination on C. To this end, we define C(1) = C, £(0) = Im, and 

L(k) = ( Ll:k,l:k 0 ) E cmxm 
Lk+1:m,l:k lm-k 

(2.22) 

and 

C (k+1) c c c-1 c~ = k+1:m,k+1:n - k+l:m,l:k · 1:k,l:k · 1:k,k+1:n ' 

for k = 1, 2, · · ·, n - 1. C(k+l) is the Schur complement of Cl:k,1:k· 
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Lemma 2.1 Let the Cauchy-like matrix C in {1.3} have LU factorization {2.19}. Then for 

2 ~ k ~ n, the Schur complements {C(k)}k=1 satisfy the displacement equation 

(2.23) 

where {A(k)} and {B(k)} satisfy the recursion: A(I) =A, B(I) = B and 

A(k) = A~7~:?k- Lk:m,k-1 · Al~:-I) , B(k) = B~~n-!k- B:~~-I) · (Uk-I,k:n/Uk-I,k-1) , (2.24) 

as well as the identities 

A(k) - Ak:m- Ck:m,1:k-I · C~~-I,I:k-1 · AI:k-1 

B(k) - Bk:n - BI:k-1 · C~~-I,I:k-I · CI:k-I,k:n · 

(2.25) 

(2.26) 

Proof. It is well-known (see, for example, Wilkinson [48]) that after the first (k -1)st steps, 

Gaussian elimination performs the elimination procedure on C(k). Partition 

C(k) _ I 

( 

"'(k) u(k) ) 
- (k) (k) 

V C2:m-k+I,2:n-k+l 

Then Uk,k = 'Y(k), Uk,k+l:n = u(k), Lk+1:m,k :: l(k) = vCk) /'Y(k), and 

c(k+l) = C~~~-k+1,2:n-k+l - Lk+l:m,k · u(k) . 

Equations (2.23) and (2.24) follow immediately by applying Theorem 2.4 to every C(k). 

To show (2.25), we note that 

0 0 ) 1 0 
l(k) Im-k 

0 
1 

-l(k) 

Now a straightforward induction using this relation and (2.24) shows that A(k) is the last 

m- k + 1 rows of (L(k))-1 ·A for all k. On the other hand 

where 

Hence 

(L(k))-1 = ( Ll:l,I:k _ 1 0 ) , 
-Lk+1:m,1:k · L1:k,I:k Im-k 

Lk+l:m,1:k · Ll:l,1:k - (Lk+l:m,1:k · U1:k,1:k) · (L1:k,1:k · U1:k,1:k)-
1 

- ck+l:m,l:k . c~~,1:k . 

(L(k))-1 . A= ( LI:L:kAl:k -1 ) ' 
Ak+1:m - Ck+1:m,1:k · C1:k,1:k · A1:k 

from which equation (2.25) follows. Similar arguments show that equation (2.26) holds. I 
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To compute the generator of Z, we define 

Z (k) c c-1 = k+l:m,lik · l:k,l:k for k = 1, 2, · · · , n . (2.27) 

In particular, for k = n we have zCn) = Z (see (2.12)). Theorem 2.1 implies that every 

z(k) is a Cauchy-like matrix of displacement rank at most r. In the following we introduce 

a simple recursion for computing {z(k)} via {A(k)} and {B(k)}. 

First, by applying Theorem 2.1 to z(l) we have 

n2:m,2:m. z(l) - z(l) . WI = A(2) . y(l) ' 

where y(I) = B:,d'Y· 
To compute the generator for z(k), we set 

and 

(2.28) 

Theorem 2.5 for k = 2, · · · , n, 

Proof. Combining Theorem 2.1 and equation (2.25), we see that the generator of z(k) is 

simply A(k+l) · B:,l:k · C!;~,l:k for all k. Hence in the following we will show inductively that 

Y (k-1) B c-1 = :,l:k-1 . l:k-l,l:k-1 . (2.'29) 

Equation (2.29) is obviously true for k = 2 by construction. Assuming that it holds for 

some k ;::: 2, we want to show it to hold for k + 1. To this end, partition r/ 

C _ ( Cl:k-l,l:k-1 C1:k-l,k ) , 
l:k,l:k - ck,l:k-1 ck,k · · 

It is well-known that Uk,k is the Schur complement of Cl:k-1,1:k-1, 

-1 . 
Uk,k = Ck,k - Ck,l:k-1 · Cl:k-l,l:k-1 · C1:k-l,k · 

~Hence 

c-1 = ( c:;;Ll,l:k-1 + f · g/Uk,k - f/Uk,k ) 
l:k,l:k -g/Uk,k 1/Uk,k ' 

'-

where f = c:;;Ll,l:k-1 . Cl:k-l,l:k and g = ck,l:k-1 . c:;;L1,1:k-1" Consequently 

Bl:k . c:;;~,l:k = (B B ) . ( c:;;Ll,l:k-1 + f · g/Uk,k 
1:k-1 :,k /U -g k,k 

= (Bl:k-1 · y-:;;L1,1:k-1 - f · g/Uk,k J /Uk,k) 

-J/Uk,k) 
1/Uk,k 

(2.30) 
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where 
~ -1 
f = B:,k - B1:k-1 · f = B:,k - B1:k-1 · C1:k-1,1:k-1 · C1:k-1,1:k , 

which, according to (2.26), is simply B::~). 
On the other hand, we observe that g is the :first row of z(k-1), which satisfies the 

displacement equation 

nk:m · z(k-1) - z(k-1) · n1:k-1 = A(k). y(k-1) . 

Hence 

g = ((Al~? · y(k)) · (wklk-1- nl:k-1)-1 . 

By setting j /Uk,k - y(k) and g = z(k) in (2.30) and comparing the resulting equation 

with (2.28) and (2.29), we have y(k) = B1:k • CI;~,1:k· I 

2.3 Pivoting and Generator Re-decomposition 

The factorization (2.19) does not always exit. One celebrated property of the Cauchy-like 

matrix C is that performing partial and complete pivoting on C does not change the Cauchy­

like structure (see Heinig [25]). To perform pivoting on C, one :finds a large magnitude entry 

(kmax,imax) in C, permutes it to the (1, 1) entry to get 6 = Pm(1, kmax) · C · Qn(1,jmax), 

and then applies the elimination step to 6. Let C be a Cauchy-like matrix satisfying 

equation (1.3). Then for every 1 ::; k ::; m and 1 ::; j ::; n, 

(Pm(1, k) · n · Pm(1, k)) · 6- 6 · (Qn(1,j) ·A· Qn(1,j)) 

- (Pm(1, k) ·A)· (B · Qn(1,j)) 

It follows that 6 is still a Cauchy-like matrix. 

To perform partial pivoting, one chooses ima:c = 1; finds the largest magnitude entry 

(kmax, 1) in the first column of C; and permutes the k:t:ax and the :first rows of C. As in 

straightforward GEPP for den,se matrices, performing partial pivoting ensures that an LU 

factorization can always be computed. There is, however, a potential problem of element 

growth. Let 

be the element growth factor. It is well-known that gpp ::; 2n-1 for GEPP, and although 

very rare, this bound is attainable for certain dense matrices (see Golub and van Loan [21, 

pages 115-116]). It is not clear whether this bound is attainable for Cauchy-like matrices 

with low displacement rank. When large element growth does occur, the computed L U 

factorizations can have a large backward error. 

One way to reduce this element growth is to perform complete pivoting, whereby one 

chooses the largest magnitude entry in the entire matrix C and permutes it to the (1, 1) 

entry. This is an overall O(mn2 ) procedure. To reduce the cost, we adopt the fast variation 
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of complete pivoting proposed in Gu [23] to find an entry that is sufficiently large in mag­

nitude. Since this method involves re-decomposing the generators of both C(k) and z<k-1), 

in the following we show how it works on C(k) instead of on C. 

In equation(2.23), we QR factorize A(k) to get A(k) = A·R, where A is column unitary, 

and R is upper-triangular. We then compute B = R · B(k) and y = R · y(k- 1). It follows 

that 
A(k) · B(k) =A· B and A(k) · y(k-l) =A· y. 

In other words, we have re-decomposed the generators of C(k) and z(k) as A· B ~nd A· Y, 
respectively. 

Since A is column unitary, the jth columns of A(k) · B(k) and B have the same 2-norm, 

for all j. Hence we choose imax by looking for the largest 2-norm column of B. We then 

choose the (kmax,imax) entry to be the largest magnitude entry in the f:;a:x. column of C(k). 

The following lemma relates ICk~ax,imaJ to the max and Frobenius norms of C(k); it is a 
straightforward generalization of Lemma 2.1 in [23]. -

Lemma 2.2 Let C be a Cauchy-like matrix satisfying equation {1.3}. Then 

IIC(k)llmax:::; .;m ·1/J ·ICk~ax,imaxl and IIC(k)IIF:::; .;mn ·1/J ·ICk~ax,imaxl' 

where 1/J is defined in ( 2. 9). 

In addition to the potential element growth in the LU factorization, Sweet and Brent [44] 

show that the matrices A(k) and B(k), if updated as in equation (2.24), could also grow so 

that 

IIIA(k)I·IB(k)1ll2 ~ JJA(k). B(k)ll2 

for some k. And if this happens, the backward error in the L U factorization could be large. 

The same arguments show that if 

then the backward error in the computed Z matrix could be large. However, such element 

growth goes away when re-decomposition is performed; in fact it will not occur as long as 

A(k) is well-conditioned (see [23] and §4). 

A-lgorithm 1 below computes an LU-factorization of the form 

(2.31) 

where L E cmxn is unit lower triangular and U E cnxn is upper triangular; and Pm E 

Rmxm and Qn E Rnxn are permutation matrices. Let 

Algorithm 1 also· computes a generator of the matrix Z = C2 · <\~- 1 • It performs column piv­

oting at every (steps, where (is a user supplied positive integer. In particular, Algorithm 1 

performs column pivoting at every step if ( = 1. In practice we set ( ~ r. Algorithm 1 

assumes that the matrix A is initially column unitary. 
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Algorithm 1 L U factorization of C with pivoting. 

L ·- 0 E cmxn. U ·- 0 E cnxn. n ·- I . Q ·- I . . - , .- , rm ·- m, n ·- n' 

for k := 1 to n do 

if (mod(k, () = 0) then 

Ak:m := Ak:m · R (QR factorizes Ak:m)i 

Bk:n := R · Bk:ni Y;,1:k-1 := R · Y;,1:k-1i 

imax := argmaxk::;j::;n IIB:,jll2; 

if imax > k then 

Qn := Qn(k,jmax) · Qn; A:= Qn(k,jma:x) ·A· Qn(k,jma:x)i 

B := B · Qn(k,imax)i U := U · Qn(k,jma:x)i 

endif 

endif 

Lk:m,k := (f!k:m- >.kim-k+I)-
1 

· Ak:m,: · B:,ki 

kmax := argmaxk::;j::;m ILj,kli 

if kmax > k then 

Pm := Pm · Pm(k, kmax); n := Pm(k, kmax) · n · Pm(k, kmax); 

A:= Pm(k, kmax) ·A; L := Pm(k, kmax) · L; 

end if 

Uk,k := Lk,ki Uk,k+1:n := Ak,: · Bk+1:n · (wkln-k- Ak+1:n)-\ 

Lk,k := 1; Lk+1:m,k := Lk+1:m,k/Uk,ki 

Ak+l:m := Ak+1:m - Lk+l:m,k · Ak,:i Bk+1:n := Bk+1:n - B:,k · Uk,k+1:n/Uk,ki 

z := Ak,: · Y;,l:k-1 · (wkh-1- A1:k-1)-1; y := B:,k/Uk,ki 

Y;,l:k := (Y:,1:k-1 - y . z y ); 

endfor 

Remark 3: If the input data A, B, n and A are real, Algorithm 1 costs about ( 4r + 
4)mn + (2r -1)n2 flops, plus an extra cost of about (4m- n)nr2 /(flops for redecomposing 

the generators; there is also potentially about n 2(( + 1)/(2() swaps of memory locations. 

For a matrix transformed into a Cauchy-like matrix from a Toeplitz-plus-Hankel matrix 

(see §1 and §3), the displacement rank r is at most 4. If we choose ( ~ 4, then the cost of 

Algorithm 1 is about (20m+ 7n)n flops. 

Remark 4: If the input data are complex, Algorithm 1 costs about (16r + 22)mn + 

8rn 2 flops, plus the cost for comparisons and the cost of about 4( 4m - n )nr2 / ( flops for 

redecomposing the generators; there is also potentially about n2(( + 1)/( swaps of memory 

locations. For a matrix transformed into a Cauchy-like matrix from a Toeplitz matrix (see 

§3), the displacement rank r is at most 2. If we choose ( ~ 2, and choose pivots that have 

the largest sum of real and imaginary parts in absolute value, the cost for comparisons is 

about 4mn- 2n2 flops, and the cost of Algorithm 1 is about 2(29m + 7n)n flops. 
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Remark 5: If r ~max((, 1), then the cost ofredecomposing the generators dominates 

the computation of Algorithm 1. In this case we use QR updating techniques similar to 

those of Daniel, Gragg, Kaufman and Stewart [16] (see also Golub and van Loan [21, §12]) 

to perform the QR factorization at every step, bringing the total redecomposition cost down 

to O(mnr). 

To get an upper bound on the element growth factor for Algorithm 1, let 

W(k) = ( k ft s1i(•~1)) 112 

= 0 ( k~+tm•). 
This is Wilkinson's upper bound on the growth factor for GECP on a k x k general dense 

matrix. Although W(k) is not a polynomial ink, it does not grow very fast either [47]. The 

following theorem trivially generalizes a similar result in [23]. 

Theorem 2.6 Let C be a Cauchy-like matrix satisfying (1.3}; and let equation {2.31} be 

the LU factorization generated by Algorithm 1 in exact arithmetic for ( = ( Then the 

element growth factor gcp = max1~k~n IIC(k) llma.x/IICIImax satisfies 

. 2+ 2:"-1 1/k 
gcp ~ v'n· '1/J "=1 

• W(n). 

2.4 Factorizing A Positive Definite Cauchy-like Matrix 

In this subsection, we compute the Cholesky factorization of a symmetric/Hermitian positive 

definite Cauchy-like matrix K of the form (2.12): 

K = C·'D·C*, (2.32) 

where C E cnxn is unit lower triangular and 'DE Rnxn is positive diagonal. We will assume 

that K satisfies either equation (2.17) or equation (2.18). In both cases, the displacement 

equation specifies all the off-diagonal entries of K; the diagonal entries of K have to be 

provided separately. 

The first step of Cholesky factorization is to zero-out the first column and row of K 

below and above the diagonal entry: 

( 
'"Y v* ) ( 1 

K = V K2:n,2:n = l 
0 

In-1 ) . ( ~ ) . ( ~ 0 
In-1 

(2.33) 

where 'D1,1 = 'Yi L2:m,1 = l = vh; and K(2) = K2:m,2:n- v · v* /'"Y is the Schur complement 
of '"Y. 

2.4.1 Real Cholesky Factorization 

·First assume that K satisfies equation (2.17). Then K is a real s'ymmetric positive definite 

matrix. Similar to (2.20), K(2) is a Cauchy-like matrix. Theorem 2.7 below is a direct gen­

eralization of Theorem 2.4. More discussions on fact<?rizing symmetric Cauchy-like matrices 

can be found in Kailath and Olshevsky [32]. 
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Theorem 2.7 Let matrix K satisfy the displacement equation (2.17}. Then K(2) satisfies 

the displacement equation 

fh:n · K(2)- K(2) · fh:n = A(2) • :J · (A<2>)T 

with A(2) = A2:n- l · A1,:· The diagonal entries of K(2) satisfy 

(2) 2/ 
Kk-1 k-1 = Kk,k - vk 'Y , , for k = 2, · · · , n . 

Hence the first step of Cholesky factorization on the matrix K involves computing v of K 
from equation (2.17); computing the vector l; computing the matrix A(2); and computing the 

diagonal entries of K(2). Cholesky factorization then proceeds by recursively applying this 

step to K(2 ). Since K is symmetric positive definite, all the diagonal entries are positive and 

hence this procedure never breaks. At the end of this procedure, K is factored into (2.32) 

with .C E Rnxn. 

It is well-known that Cholesky factorization on a general dense symmetric positive clef .. 

inite matrix is always backward stable, and, there is no element growth in TJ. However, the 

above Cholesky factorization procedure may not necessarily be backward stable forK. This 

is because, as in Algorithm 1 without generator re-decomposition, there might be potential 

element growth in the generators. To avoid this problem, we perform diagonal pivoting on 

K and re-decompose the generators as well. Since K is symmetric positive definite, 'Y is the 

largest magnitude entry in the entire matrix K after diagonal pivoting. Algorithm 2 below 

computes a Cholesky factorization with diagonal pivoting: 

where .C E Rnxn is unit lower triangular and 1) E Rnxn is positive diagonal. Algorithm 2 

performs generator redecomposition every ( steps; and it assumes that on input, the diag­

onal entries of 1) are those of K and that A is well-conditioned. 

Algorithm 2 Real Cholesky Factorization 

.C := 0 E Rnxnj Qn :=In; 

for k := 1 to n do 

if (mod(k, () = 0) then 

At.::n := Ak:n · R (QR factorizes Ak:n)i :J := R · :J · RT; 

endif 

kmax := argmaxk:Sj:Sn 'Dj,ji 

if kmax > k then 

Qn := Qn. Qn(k, kmax)i n1:n := Qn(k, kmax). n1:n. Qn(k, kmax); 

1) := Qn(k, kmax) ·'D · Qn(k, kmax); 

A:= Qn(k, kmax) ·A; L:,1:k := Qn(k, kmax) · L:,1:ki 

end if 
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. -

.Ck+l:n,k := (Ok+l:n- Wkln-k)-
1 

· Ak+1:n · .J · A[/'Dk,ki 

Ak+1:n := Ak+1:n - .Ck+1:n,k · Ak,:i 

for j := k + 1 to n do 

'Dj,j := 'Dj,j - .c;,k ·'Dk,k· 

endfor 

endfor 

Remark 6: Algorithm 2 costs about ( 4r + 2.5)n2 flops, where 2r is the displacement 

rank of K (see equation (2.17)), plus an extra cost of about 2nr2 /(flops for redecomposing 

the generators; there is also potentially about n2 /2 swaps of memory locations. For a matrix 

transformed into a Cauchy-like matrix from a Toeplitz-plus-Hankel matrix (see §1 and §3), 

the displacement rank of K is 2r ~ 8. In this case, Algorithm 2 costs about 18.5n2 flops 

for ( » 4. 
( 

2.4.2 Complex Cholesky Factorization 

Now assume that K satisfies equation (2.18). Then K is a complex Hermitian positive 

definite matrix. Again K(2) in (2.33) is a Cauchy-~e matrix. Theorem 2.8 below is a slight 

modification of Lemma 3.2 in [32]. 

Theorem 2.8 Let matrix K satisfy the displacement equation {2.18). Then K(2) satisfies 

the displacement equation 

K(2) - 02:n · K(2) · 02:n = A (2) · .J (A (2)) * 

with 

A(2) = A2:n- (1- t/2) · A1,: where t = A2:n · .J · Ai,JY. 

The diagonal entries of K(2) satisfy 

(2} I 12/ Kk-l,k-1 = Kk,k - Vk 1 ' for k = 2, · · · , n . 

Similar to Algorithm 2, Algorithm 3 belows computes a Cholesky factorization with 

diagonal pivoting: 
(2.34) 

where .C E cnxn is unit lower triangular and 1J E Rnxn is positive diagonal. Algorithm 3 

performs generator redecomposition every ( steps; and it assumes that on input, the diag­

onal entries of 1) are those of K and that A is well-conditioned . 

Algorithm 3 Complex Cholesky Factorization 

.c ·- 0 E Rnxn. Q ·- I · ·- ' n ·- n, 

for k := 1 to n do 

if (mod(k, () = 0) then 
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Ak:n := Ak:n · R (QR factorizes Ak:n); .J := R · .J · R*; 

end if 

kmax := argmaxk:=;j:=;n 'Dj,ji 

if kmax > k then 

Qn := Qn. Qn(k, kmax); fh:n := Qn(k, kmax). nl:n. Qn(k, kmax); 

'D := Qn(k, kmax) ''D · Qn(k, kmax)i 

A:= Qn(k, kmax) ·A; C.:,l:k := Qn(k, kmax) · C.:,l:ki 

endif 

t := Ak+l:n . .:r. Ak)'Dk,ki c.k+l:n,k := (In-k - Wk . nk+l:n) -l . t; 

Ak+l:n := Ak+l:n - (C.k+l:n,k - t/2) 'Ak,:i 

for j := k + 1 to n do 

'Dj,j := 'Dj,j - l£j,kl 2
• 'Dk,k· 

endfor 

endfor 

Remark 7: Algorithm 3 costs about (16r + 14)n2 flops, where 2r is the displacement 

rank of K (see equation (2.18)), plus an extra cost of about 8nr2 /(flops for redecomposing 

the generators; there is also potentially about n2 swaps of memory locations. For a matrix 

transformed into a Cauchy-like matrix from a Toeplitz matrix (see §3), the displacement 

rank of K is 2r s 4. In this case, Algorithm 1 costs about 46n2 flops for for ( » 2. 

3 Toeplitz and Toeplitz-plus-Hankel Least Squares Problems 

3.1 Toeplitz Least Squares Problems 

For any integer k > 0, define 

0 0 0 8 
1 0 0 

T(o)-
k - 0 1 E Rkxk. 

0 0 1 0 

Let n = Tg) and A = T~o). It is easy to show that every m-by-n Toeplitz matrix 

satisfies the displacement equation (1.1) with D. having non-zero entries only in its first 

row and last column, and hence the displacement rank is rank(D.) s 2. To ensure that 

equation (1.1) always has a unique solution, we choose 8 > 1 in A. The following result is 

a generalization of that in Heinig [25]. 

Lemma 3.1 Let ME cmxn be a matrix satisfying the displacement equation 

T(l) · M- M · T(o) =A· B 
m n ' (3.35) 
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where A E cmxr and iJ E crxn. Then C ::: Fm · M · g-1 · :F~ is a Cauchy-like matrix: 

n · C- C ·A = (:Fm ·A) · ( B · g-1 
· (:Fn)*) , (3.36) 

where 

Fm = fl. (e 2,:i{k-1}(j-1)) 
V ;;; 1~k,j~m 

and Fn = fT.· (e 
2
:; {k-1}(j-1)) v; 1~kJ~n 

are the normalized Inverse Discrete Fourier Transform matrices; 

g = diag(l, 8, ... '8n-1 ) 
- 1 

where 6 = 6;; ; 

and 

( 

2,-; 2,-; {m 1)) S1=diag 1,e-;;;-, ... ,e-;;;-- and A=6·diag 1,e-;;-, ... ,e-;;-- . - ( 2,-i 2,-i (n 1)) 

The diagonals of n and A satisfy 

- 8+1 ( 7r)-1 
'1/Jmax ~ 6 + 1 , 'If; ~ 

8 
_ 

1 
, ¢max ~ 2 and ¢ ~ sin m , 

where '1/Jmax, 'lj;, and ¢max' ¢ are defined in {2.9) and {2.10). 

Proof. It is well-known that 

T$,;) = (:Fm)* · n · Fm . 

On the other hand, T~c) = 8 · g-1 · T~1 ) · g and hence 

T~c) = g-1 
· (:Fn)* ·A· Fn · g . 

Equation (3.36) follows by plugging these relations into (3.36) and simplifying. 

The relations for '1/Jmax, 'If;, and ¢max, ¢follow from direct verification. I 
A matrix M is called Toeplitz-like if it satisfies the displacement equation (3.35) with 

r « n (d. [18]). To solve the least squares problem (1.5) when M is a Toeplitz-like matrix, 

we transform Minto a Cauchy-like matrix using Lemma 3.1. Setting 

M = (:Fm)* • C · ;:(n) · g 

in (1.6) and simplifying, 

XM = 'g-1 . (:Fn)*. (C*. c)-1 . C*. (:Fm. K) 

= g-1 · (:Fn)* ·XC , 

where xc i~ the solution to the Cauchy-like least squares problem 

miniiC ·X- (:Fm ·h) ll2 · 
X 

(3.37) 

The idea of transforming a Toeplitz linear system of equations into a Cauchy-like system of 

linear equations was first proposed by Heinig [25]. 

We summarize the above into Algorithm 4 that follows, assuming that M satisfies equa­

tion (3.35) with A column orthogonal. 
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Algorithm 4 Solving the Toeplitz-like Least Squares Problem 

1. Choose 6; compute nand A in Lemma 3.1; 

2. ·compute h := Fm · h; A:= Fm ·A; and B := B · g-1 · (Fn)*; 

3. choose (1; compute the LU factorization for C1 in (2.13) and the generator for Z 

in (2.12) via Algorithm 1; 

4. choose (3; compute the initial generator for K in (2.12) and compute its Cholesky 

factorization via Algorithm 3; 

5. compute the right hand side in (2.14) and compute xc by solving the linear sys­

tems (2.13) and (2.14) via forward and backward substitution; 

6. compute XM := g-1 · (Fn)* · xc. 

Remark s; The total cost of Steps 1, 2, and 6 is 0( m log2 m) flops via the forward and 

backward FFTs; the cost of Step 3 is about (16r + 22)mn + 8rn2 flops, plus the cost for 

comparisons and the cost of about 4(4m- n)nr2 /(1 flops for redecomposing the generators 

(see Remark 4); the cost of Step 4 is about (16r + ll)mn + 3n2 flops, plus an extra cost 

of about 8nr 2 /(3 flops for redecomposing the generators (see Remarks 2 and 7); Since the 

matrix Z is computed in Step 4 (see Remark 2), the cost for Step 5 is about 8(m + n)n 

flops. Hence the total cost of Algorithm 4 is about (32r + 41)mn + (8r + ll)n2 flops, plus 

the cost for comparisons and generator redecompositions. In particular, let M be a Toeplitz 

matrix, then r :::; 2. We choose pivots in Algorithm 1 to have the largest sum of real and 

imaginary parts in absolute value so that the cost for comparisons is about 4mn- 2n2 flops 

(see Remark 4), and we choose (1 ~ 2 and (3 ~ 2. Thus the total cost of Algorithm 4 is 

about (109m+ 25n)n flops. 

3.2 Toeplitz-plus-Hankel Least Squares Problems 

For any integer k > 0, define 

1 1 0 0 

1 0 1 
7.(6) -

k - 0 1 0 E Rkxk. 

0 1 
0 0 1 6 

Since 7k(c) is symmetric, it has an eigendecomposition of the form 
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where Q~c5) is orthogonal and vic5) is diagonal. Q~6) is a fast cosine transformation matrix 

for 8 = ±1: 

- {2. (qj cos (2p- 1)(j - 1)71") ' 
V k 2n 1$p,j$k 

= f!. (cos (2p- 1)(2j - 1)71") v k 4k 1$p,j$k 

where q1 = ~ and qi = 1 for 2 ~ j ~ k; and the corresponding diagonal matrices are 

1)(-1) 
k 

= . ( 71" (k- 1)71") 2 · d1ag 1, cos k, · · · , cos k , 

= 2 · diag (cos.!!.._ cos 
371" · · · cos (

2
k -

1)71") 
2k' 2k' ' 2k 

Let n = T.J61 ) and A= ~62 ). It is easy to verify that every Toeplitz-plus-Hankel matrix 

satisfies the displacement equation (1.1) with A having non-zero entries only in its first 

and last rows and columns, thus the displacement rank of a Toeplitz-plus-Hankel matrix is 

rank(A.) ~ 4 (cf. [18, 27]). In particular, This result is true for every Toeplitz or Hankel 

matrix. Let gcd( m, n) be the greate~t common divider of m and n. 

Lemma 3.2 Let ME cmxn is a matrix satisfying the displacement equation 

(3.38) 

where A E cmxr and B E crxn. Then C := ( Q~l)) T · M · Q~2 ) is. a Cauchy-like matrix 

satisfying: 

n · C - C · A = ( ( Q~l)) T . A) . ( B . Q~62)), , 

where n = 1>~1 ) and A= vi62
). In particular, we choose 82 = -81 where 

81 = { 
1 

. -1 

if . m is odd; 
gcd(m,n) 

otherwise . 

Then the diagonals of n and A satisfy 

.t. ( . gcd(m, n) · 71") -
2 

( 71" ) -2 
V;max ~ 4 , '¥ ~ sm 4m . n , <Pmax ~ 4 and <P ~ sin 2m , 

where V;max, V;, and <Pmax' <P are defined in (2.9} and {2.10}. 

Proof. The displacement equation can be proved using arguments similar to those in the 

proof of Lemma 3.1. 

As to the relations for V;max' V;, and <Pmax' ¢, it is obvious that V;max ~ 4 and <Pmax ~ 4. 
Let m1 = m/ gcd(m, n) and n1 = n/ gcd(m, n). Then both m1 and n1 are integers and 

gcd(mr, n1) = 1. 
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First assume that m1 is odd. Then 81 = 1 and 82 = -1. It follows that 

2 I 
(k- 1)7r (2j -1)7rl . cos - cos ..:.......:; _ ___..:..._ 

m 2n 

4 1
. (2((k-1)·n1-j·m1)+m1 )I = Sill . •7r 

4m1 · n1 · gcd(m, n) 

·lsin(2((k-1)·n1+j·mi)-m1·7r)l 
4m1 · n1 · gcd(m, n) 

4 Sin . ·Sin > I. ( 1r ) • ( 1r )I 
4m1 · n1 · gcd(m, n) 4m1 · n1 · gcd(m, n) 

4 
. 2 gcd(m,n) ·1r 

= Sin 4m. n ' 

where we have used the fact that both 

are odd integers and hence are never integer multiples of 4m1·n1·gcd(m, n), the denominator. 

On the other hand, if m1 is even, then it follows that n1 is odd, and that 81 = -1 and 

I I 
. 2 gcd(m,n)·1r 

82 = 1. Similar arguments show that wk - Aj :2: 4 Sin . 
4m·n 

In both cases, the bound on ¢ follows from direct verification. I 
A matrix M is called Toeplitz-plus-Hankell-like if it satisfies the displacement equa­

tion (3.38) with r « n (cf. [18]). In the least squares problem (1.5), if the matrix M 

is real Toeplitz-plus-Hankel-like, we transform it into a real Cauchy-like matrix C using 

Lemma 3.1: 
M = Q~!) . C . ( Q~2)) T 

Plugging this relation into (1.6) and simplifying, 

where 
xc = (cr. c) -1

. cr. ( ( Q~l))r. h) 
Similar to Algorithm 4, Algorithm 5 that follows solves the least squares problem with 

M satisfying (3.38). We assume that both M and hare real. 

Algorithm 5 Solving the Toeplitz-plus-Hankel-like Least Squares Problem 

1. Choose 81 and 82 and compute nand A in Lemma 3.2; 

2. compute h := ( Q~1 ))T ·h; A:= ( Q~1 ))T ·A; and B := B · Q~2 ); 

3. choose (1; compute the LU factorization for C1 in (2.13) and the generator for Z 
in (2.12) via Algorithm 1; 

4. choose ( 2 ; compute the initial generator for K in (2.12) and compute its Cholesky 

factorization via Algorithm 2; 
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5. compute the right hand side in (2.14) and compute xc by solving the linear sys­

tems (2.13) and (2.14) via forward and backward substitution; 

6. compute XM := Q~62 ) • xc. 

Remark 9: The total cost of Steps 1, 2, and 6 is O(mlog2 m) flops via fast cosine 

transforms; the cost of Step 3 is about (4r. + 4)mn + (2r - 1)n2 flops, plus the cost of 

about (4m- n)nr2 /(1 flops for redecomposing the generators (see Remark 3); the cost of 

Step 4 is about (4r + 1)mn + 1.5n2 flops, plus an extra cost of about 2nr2 /(2 flops for 

redecomposing the generators (see Remarks 1 and 6); Since the matrix Z is computed in 

Step 4 (see Remark 1), the cost for Step 5 is about 2(m + n)n flops. Hence the total 

cost of Algorithm 5 is about (8r + 7)mn + (2r + 2.5)n2 flops, plus the cost for generator 

redecompositions. In particula~, let M be a Toeplitz-plus-Hankel matrix, then r ~ 4. We 

choose ( 1 ~ 4 and (2 ~ 4. Thus the total cost of Algorithm 5 is about (39m+ 10.5n)n 

flops. 

3.3 Efficiency and Accuracy Considerations 

Every Toeplitz matrix is a Toeplitz-plus-Hankel matrix, hence Algorithm 5 is an algorithm 

for solving Toeplitz least squares problem as well. For a real Toeplitz least squares problem, 

Algorithm 4 performs 2.7 times as many flops as Algorithm 5 (see Remarks 8 and 9). 

However, Algorithm 4 could be more accurate than Algorithm 5. The upper bound on 

9CP in Theorem 2.6 and the error analysis of §4 suggest that the smaller 1/J and <P are, the 

smaller the potential element growth and backward error. In our numerical experiments, 

we took 6 ~ n in- Algorithm 4. Hence 1/J = 0( n) and <P = 0( m) for Algorithm 4, whereas 

1/J = O(m2n2 / gcd2(m, n)) and <P = O(m2) for Algorithm 5. Thus the upper bound on 9CP 

in Theorem 2.6 is smaller for Algorithm 4. We will talk more about this trade-off between 

efficiency and stability in §4 and §5. 

4 Error Analysis 

In this section, we do a backward error analysis for Algorithms 1 through 5. In §4.1 

we analyze Algorithm 1; in §4.2 we analyze Algorithms 2 and 3; and in §4.3 we analyze 

Algorithms 4 and 5. 

4.1 Backward Errors in L U factorization 

We assume that ( = 1 in Algorithm 1, so that column pivoting is done at every step; we 

also assume without loss, of generality that no column or row swaps actually occur during 
r 

the execution of Algorithm 1. At the end of §4 we discuss the case ( > 1. 

Define 

(4.39) 

25 



where C E cmxn is the Cauchy-like matrix to be factored; L · (J is the computed LU 

factorization; and HE cmxn is the backward error matrix. Since the part of Algorithm 1 

that computes the L U factorization is exactly Algorithm 2 of [23] on a rectangular matrix, . 

we can obtain an oo-norm upper bound on H by applying the error analysis of [23] to 

Algorithm 1 with a few simple changes on the matrix dimensions and related constants (see 

Theorem 4.1). 
Let z(k) E c<m-k)xk be the computed z(k) matrix and let Z = z(n). To analyze the 

accuracy in z(k), we define X(k) E cmxm to be a lower triangular matrix with unit diagonal 

entries such that 

X (k) - z<k). d x<k) - _zU-1) £ 2 · k-1. k+1:m,1:k - - ' an j,1:j-1 - 1,1:j-1 o: :::; J :::; 1. 

2. All other entries of X(k) are zero. 

Lemma 4.1 Let L(k) be as defined in (2.22). Then L(k) · X(k) = Im. 

Proof. By definition, we can partition X(k) as 

Since 

( 

(k) 
x<k) = x1:k,1:k 

_z(k) 
0 

In-k 
) . 

(L(k))-1 = ( Ll:k_l:k 0 ) _ ( Ll:k,I:k 0 
-Lk+l:m,1:k · Ll:l,1:k Im-k - -z(k) Im-k 

), 
to show that X(k) = (L{k))-1 , it is sufficient to show that the first k- 1 rows of X(k) and 

(L(k))-1 are the same. Since (L(k))-1 is unit lower triangular, for any 1:::; j :::; k -1, its lh 
row is 

( -Lj,1:j-1 · Ll:J-1,1:i-1 , 1 , 0) , 

which is exactly the lh row of X(k) by construction. I 
Let £<k) and X(k) be the finite-precision counter-parts of L(k) and X(k), respectively. In 

§4.1.3, we inductively establish an oo-norm upper bound on the matrix E(k) in the equation 

£(k) . _x(k) = Im + E(k) ; (4.40) 

we also establish an oo-norm upper bound on the matrix Fin the equation 

( 4.41) 

Relations (4.39) and (4.41) provide the backward error matrix produced by Algorithm 1: 

(4.42) 
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4.1.1 Preliminary Results 

' Assume that after the first k- 1 steps of Gaussian elimination in finite arithmetic, we arrive 

at the the Cauchy-like matriX 

~ (k) - ( /(k) 
C - v(k) 

that satisfies the displacement equation 

' u(k) ) 
~ (k) 

c2:m-k+1,2:n-k+1 

(4.43) 

with .A_(k) numerically column unitary. Let z(k-1) be the finite precision counter-part of 

z(k-1) and partition it as 

( 

Z (k-1) ) 
A (k 1) z - = ~(k-1) . 

z2:m-k+1,1:k-1 

z(k-1) is a Cauchy-like matrix satisfying the displacement equation 

..... . z~ (k-1) _ z~ (k-i) . ..... _ A~(k) . YA (k-1) 
Hk:m H):k-1- • (4.44) 

The kth step of Gaussian elimination is to eliminate the first column of 6(k) below the 

diagonal: 
A (k) - ( 1 0 ) . ( /(k) u(k) 

C - z(k) Im-k 0 C(k+I) 

where 
z(k) = v(k)l"'(k) and c<k+1) = c(k) - z(k) . u(k) . 

1 2:m-k+1,2:n-k+1 

c<k+1) is a Cauchy-like matrix satisfying the displacement equation 

...., · c<k+1) - c<k+1) · A - A(k+1) · B(k+1) Hk+1:m k+1:n - ' 

where A(k+l) = .A_(k) _z(k) · a(k) and B(k+1) = B2. -k+1 - b(k) · u(k)j"'(k) with a(k) and 
2:m-k+1 .n 1 ' 

b(k) being the first row of .A_(k) and first column of iJ(k), respectively. It follows from (4.43) 

that 

,<k) = a<k) . b(k) 

Wk- Ak 

Similarly from ( 4.44) we have 

z(k-1) = (a(k) . y(k-1)) • (wklk-1 - nl:k-1,1:k-'1)-1 

The matrix z(k) is a Cauchy-like matrix satisfying the displacement equation 

nk+1:m • z(k) - z(k) · 01:k = A(k+1) · y(k) , 

where 

(4.45) 

( 4.46) 

( 4.47) 
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Lemma 4.2 In above notation, we have 

zCk) - (zCk) 
- 1:m-k,1:k-1 ' 

(k) ) - ( A (k-1) (k) (k-1} 
z1:m-k,k - z2:m-k+1,1:k-1 - l . z ' 

Proof. From equation ( 4.45) we have 

a,(k) · y(k) = wk - Ak and .A.~7~-k+l · y(k) = (nk+1:m - Aklm-k) .z(k) . 

Hence 

= A(k) . yCk) _zCk). a,Ck>. yCk> 
2:m-k+1 

- (nk+1:m- .Aklm-k) .z(k) - (wk - .Ak) .z(k) 

= (nk+1:m- wklm-k) .z(k) • 

It follows from equation ( 4.47) that 

zi~-k,k = (nk+1:m- Wklm-k)- 1 . A(k+l) . y(k) = z(k) . 

On the other hand, from equation ( 4.46) we have 

A (k+l) . ( y(k-1) _ y(k) . z(k)) 

.J(k) k . y(k-1) _z(k). a,(k). y(k-1) _ A(k+l). y(k). z(k) 
- 2:m- +1 

- .A~7~-k+l . y(k-1) - z(k) . z(k) • (wklk-1 - nl:k-1) 

- (nk+l:m- wklm-k) .z(k) · zCk) 

.A~7~-k+l • y(k-1) + z(k) • z(k) . nl:k-1 - nk+1:m . z(k) • z(k) . 

Combining this with equation (4.47) gives 

nk+l:m·(zi~~-k,1:k-1 +l(k) .z(k))-(zi~l-k,1:k-1 +l(k) .z(k)).nl:k-1 = .A~7~-k+1.y(k-1). 

Comparing this relation with equation (4.44) yields Lemma 4.2. I 
Let the finite precision counterparts of r(k), v(k), z(k), and y(k) be i'kl iJ(k), _z(k), and 

y(k). We assume that z(k) is computed as [(k) = fl.( iJ(k) /i'k). 
Let G(k) = A(k+l) · y(k) and (;(k) = .J(k+1) · y(k) with 

_A(k+l) = .J(k) _ [(k) . a,(k) and y(k) = (:Y(k-1) _ YA(k) . _z(k) YA(k)) . 
k+1:m k ' 

It follows from Algorithm 1 that the generator of z(k) is (;(k) ::::: .JCk+1) . y(k), where 

.J(k+l) is the computed Q factor in the QR factorization of fl(.JCk+1)); and y(k) is the 

numerical product of the R factor with fl(Y(k)). 

Define 
J.L = max IIC(k}lloo and ll = max IIZ(k)lloo. 

l:Sk:Sn 1:Sk:Sn 

Using arguments similar to those in the proof of Lemma 4.1, it can be shown that 

J.L ~ (v + 1) ·IICIIoo + 0(€) and IIZIIoo ~ IIL-1 IIoo ~ 1 + v ~ n ·IIL-1 IIoo. 
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In particular, v is large only if L is ill-conditioned. 

The round-off errors of the QR factorization in redecomposing the generators and the 

LU factorization (4.39) for the case m = n are analyzed in [23]. Different error analysis has 

also been done by Sweet and Brent [44] for the algorithm of [18] that LU factorizes Cauchy­

like matrices, and by Chandrasekaran and Sayed [10] for a generalized Schur algorithm that 

L U factorizes more general structured matrices. 

Theorem 4.1 below is a direct generalization ofrelated results in§ 4.2 of [23]. Throughout 

§4 we will use the same fJ in many error bounds; and every fJ is a small multiples oh:. We 

will also assume that' both '1/Jma.x in (2.9) and cf>ma.x in (2.10) are constants at most 2, as in the 

case where the Cauchy-like matrix is transformed from a Toeplitz or Toeplitz-plus-Hankel 

matrix. 

Theorem 4.1 The round-off errors of the QR factorization in generator redecomposition 

satisfy 

IIG(k)- G(k)lloo :S r3 • m~ · cf>ma.x ·v · 'fJ + 0(€2), 

' and the backward error H in the LU factorization of C in (4.39} satisfies 

As remarked in [23], both 0(€2 ) terms in Theorem 4.1 can be avoided by more detailed 

error analysis. This is also true for all the 0(€2) terms that appear in §4. 

4.1.2 Error Propagation at the kth Step of Elimination 

Our objective in §4.1.2 is to derive an upper bound on IIZ(k)- z(k) lloo, from which an upper 

bound on IIE(k) lloo of ( 4.40) will be derived in §4.1.3. 

Lemma 4.3 In the notation of §4.1.1, 

li'(k)- ')'(k)l 
lf'(k)l 

I:Y(k)- y<k)l < 

llz(k) - z(k) lloo 

where) p = , . r . rm . 'lj;. 
Proof. The fact that Algorithm 1 performs row pivoting gives 

where we have used the fact that .A_(k) is numerically column unitary. 

(4.48) 

( 4.49) 

(4.50) 
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On the other hand, it follows from (1.8) and (4.43) that 

~(k) (k) la(k)l·lb(k)l lr --y I~TJ·T· . 
lwk- >.ki 

Combining these two relations, 

which implies the first relation in (4.48). 

To derive an upper bound on lf(k) -z(k)l, we first note from (1.8) and (4.45) that 

lv(k)- v(k)l < r7JIOk+1:m- >.kim-kl-1 ·IA~~~-k+ll·lb(k)l 

< TT] J1 b~k) 112 "em-k + 0(€) ~ TVm "1] ·lr(k)l· '1/J • em-k + 0(€) . 
mm 

Since Algorithm 1 performs row pivoting, we have I'Y(k)l ~ llv(k)llmax + O(E) and 

(4.51) 

By our model of computation (see §1.5), we have 

lz(k) - ~~:~ 1 ~ 1] ·lf(k)l ~ 1]. em-k + 0(€). 

Plugging this relation and the upper bounds on lv(k)- v(k)l and j-y(k) - -y(k) j into (4.51) and 

simplifying, we obtain the second relation in ( 4.48). 

The bound on IY(k) - y(k)l and IIY(k)llmax follow from similar arguments. As to llz(k)­
z(k)ll=, we note from (1.8) and (4.46) that 

(4.52) 

On the other hand, 

lila(k)I·IY(k-1)111= < .;n ·lila(k)I·IY(k-1)1IIF ~ .;n ·lly(k-1)11F + O(€) 

- .;n ·II.A(k) · y(k-
1)11F + o(€) ~ <Pmax · .;n ·iizk-1 11F + o(€) 

< <Pmax · .../m · n ·jjzk-11L + O(E) ~ <Pmax · .../m · n ·v + O(E). 

Plugging this relation into ( 4.52) we obtain ( 4.50). I 

Lemma 4.4 below gives an upper bound on IIG(k+1) - G(k+l) II=· 

Lemma 4.4 In the notation of §4.1.1, 
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Proof. First of all, we note that 

()(k+l} _ G(k+l} =· .J(k+l} . y(k} _ A(k+l}. y(k) 

= (.J(k+l}- A(k+l)). y(k} + A(k+l} ~ (f(k)- y(k}). (4.53) 

Now we derive co-norm upper bounds on the two terms in the right hand sum. Since 

.J(k+l) _ A(k+1} = (z(k} _ f(k}) . a(k}, 

it follows from Lemma 4.3 and its proof that 

IJ ( .J(k+l}- A(k+l)) · y(k)lloo $ P ·</>max· v'm · n · V + 0(€2) .. 

On the other hand, 

lly(k} - y(k) lloo = II ( -y(k} . z(k} + y(k) . z(k) , g<k) -Jy(k)) lloo 

_ II ( _ (g<k) '- y(k)) . 2(k) ~ y<k). (z<k) _ z(k)) , g(k) _ y(k)) lloo 

< II (g(k)- y(k)) . z(k) lloo + lly(k). (z(k)- z(k)) lloo 

+ llg(k)- y(k)lloo . 

Applying Lemma 4.3 and simplifying, 

lly(k)- y(k)lloo S 1] • r · m · tPmax · (t/J + Vn · ¢>) · (v + 1) + 0(€2
). 

Taking norms on both sides of ( 4.53) and plugging in these relations, we have 

ll()(k+l)- G(k+l)lloo < II ( .J(k+l)- A(k+l)). y(k)lloo + IIA(k+l). (f(k)- y(k)) lloo 

< p. </>max . ..;m::n. V + r ·llf(k)- y(k)lloo + 0(€2) 

< p · </>max · v'm · n · v 

+77 · r 2 
• m · tPmax · (t/J + Vn · ¢>) · (v + 1) + 0(€2

) • 

Lemma 4.4 follows immediately by simplifying the last expression. I 

4.1.3 Backward Errors in Z 

Our objective in §4.1.3 is to derive an oo..;norm backward error bound on E(k). 

· Theor.em 4.2 Let E(k) be as defin~d in (4.40). Then for all1 $ k $ n, 

IIE(k)lloo $ 1] • r 3 
· m ·n · ¢> ~ (Vn · (t/1 + ¢>) + fo) · (v + 1) + 0(€2). 

Proof. By definition, E(k) is a lower triangular matrix and E~~~,k+l:n = 0. In addition, 

j)k) can be constructe~ from l_<k-l) by replacing the zero vector ti~-;_~~,k by f(k); and X(k) 

can be constructed fro~ .X(k-1) by replacing the matrix 

~ (k-1) - ( ~ (k-1) ) 
Xk+1:m,1:k- -Z2:m-k+1,l:k-1 '0 
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by -z(k). It follows that Ei~2,1:k = Ei~k~f:~· Consequently, 

E<k> _ t<k> . .x<k> _ z<k> 
k+1:m,1:k - k+1:m,1:k 1:k,1:k 

( ~(k) A(k) A(k) A(k) A(k) A(k) A(k) ) 
Lk+1:m,1:k-1 . X1:k-1,1:k-1 + Lk+1:m,k · Xk,1:k-1 - z1:m-k,1:k-1 ' Lk+1:m,k - Z1:m-k,k 

(ZA (k-1) E(k-1) z~<k> A<k-1) zA (k) zA<k> zA (k) ) (4 54) 
- 2:m-k+l,l:k-1 + k+l:m,l:k-1- · Z - l:m-k,l:k-1 ' - l:m-k,k ' · 

where we have used the fact that 

t<k-1) - j(k) _K(k) -- A(k-1) 
k+1:m,k- ' k,1:k-1- Z 

and that 
t<k> .x<k> _ .z:<k-1) E<k-1) z<k> 

k+1:m,1:k-1 · 1:k-1,1:k-1 - 2:m-k+1,1:k-1 + k+1:m,1:k-1 · 

Applying Lemma 4.2 to ( 4.54), we have 

Ek~1:m,1:k - (Ek~~;~,1:k- 1 , 0) + ( z(k)- z(k)) 

+ ( _f(k) . .z(k-1) + z(k). z(k-1)' j(k) _z(k)) 

Taking the oo-norm on both sides, and recalling the fact that entries of E(k) and E(k-1) are 

identical elsewhere, we get 

IIE(k)lloo ~ IIE(k-1)1L + llz(k)- z(k)IL 

+II (i<k) . .z<k-1) _z(k). z<k-1) , j(k) -z<k>) IL . (4.55) 

In this relation, 

IIG(k)- c](k)ll'oo 

</>min 

IIG(k)_Q(k)lloo + IIQ(k)_Q(k)lloo. 

</>min </>min 
< 

Combining the results in Theorem 4.1 and Lemma 4.4 and simplifying, we have 

On the other hand, 

II ( _z(k) . .z(k) + z(k). z(k) , j(k) -z<k>) lloo 

- II (- (f(k) _z(k)) . .z(k) _z(k). (.z<k)- z<k>) j(k) -z<k>) lloo 

< II (z<k) -z<k>) . .z(k) IL + llz(k). (.z<k)- z<k>) IL 

+ IIW> - z(k) lloo . 

Applying Lemma ( 4.3) to above and simplifying, 

II ( _j(k). _z(k) + z(k). z(k) ' j(k) _z(k)) IL :::; TJ. r . ..;m. ('!f; + Vn. </>) . (11 + 1) + O(t:2) . 
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Plugging these relations into (4.55) and simplifying, 

Theorem 4.2 is proved by solving this recursion with E(0) = 0. I 
Now we analyze the backward error in Z. In equation (4.40), we set k = n to get 

A A(n) (n) A A(n) A (n) 
L1 · Xl:n,l:n =In+ El:n,l:n and L2 · Xl:n,l:n - Z = En+l:m,l:n · 

It follows that 

A A A A A (n) A A (n) A 

Z · L1 - L2 - L2 · Xl:n,l:n · L1 - L2 - En+l:m,l:n · L1 
A A _ 1 (A (n) ) A A (n) A 

- L2 · L1 · L1 · Xl:n,l:n · L1 - L2 - En+l:m,l:n · L1 

A A _ 1 ( (n) ) A A (n) A 

- L2 · f:1 · In + El:n,l:n · L1 - L2 - En+l:m,l:n · L1 

= LA LA -1 E(n) LA E(n) LA , 2 · 1 · l:n,l:n · 1 - n+l:m,l:n · 1 · 

On the other hand, 

j}n) t-1 
2 . 1 

A A(n) (A A(n) )-1 
- L2 · Xl:n,l:n · L1 · Xl:n,l:n 

- (z + E~~l:m,l:n) ·(In+ Ei~,l:n) -l = Z + 0(€). 

Hence 
A A A A (n) A ' (n) A 2 

Z · L1 - L2 = Z · El:n,l:n · L1 - En+l:m,l:n · L1 + 0( € ) • ( 4.56) 

Theorem 4.3 Let F be defined in (4.41}. Then 

l!FIIoo ~ TJ • r 3 
· m · n · </> · (vn · ('1/J +</>)+vim)· (v + 1) · (llZIIoo + 1) ·IICIIoo + 0(€2). 

Proof. From equation (4.39) we have C2 = L2 · U- Hn+l:m,l:n· Hence 

F = z · t1 · u - c2-
= Z · L1 • (J - L2 · (J + Hn+l:m,l:n 

= (z · L1- t2) · U + Hn+l:m,l:n 
A (n) A A (n) A A 2 - Z · El:n,l:n · L1 · U - En+l:m,l:n · L1 · U + Hn+l:m,l:n + 0( € ) ' 

where we have used relation (4.~6). Taking the oo-norm, 

IIFIIoo < IIZiloo ·IIE(n)lloo ·IIL1 · Ulloo + IIE(n)lloo ·IIL1 · Ulloo + IIHlloo + 0(€2) 
< (llZIIoo + 1) ·IIE(n) lloo ·IICIIoo + IIHIIoo + 0(€2). 

Theorem 4.3 is proved by plugging in related upper bounds in Theorems 4.1 and 4.?, and 

observing that 

'max{JL, IIUIIoo} ~ (1 + v) ·IICIIoo + 0(€). 

I 
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4.2 Backward Errors in Cholesky Factorization 

We assume without loss of generality that no column or row swaps actually occur during 

the execution of Algorithms 2 and 3. Define 

f, . iJ . f,* = K + 1t ' (4.57) 

where K is the symmetric/Hermitian positive definite Cauchy-like matrix to be factored; 

C · iJ · C* is the computed Cholesky factorization with C being unit lower triangular; and 

1t is the backward error matrix. For Algorithm 2, K, 1t, C E Rnxn, and for Algorithm 3, 

K, 1t, C E cnxn. Our objective in§ 4.2 is to derive an upper bound on IIHII2· 

4.2.1 Preliminary Results 

Assume that after the first k - 1 steps of Cholesky Factorization in finite arithmetic, we 

arrive at the symmetric/Hermitian positive definite Cauchy-like matrix 

~ {k) ( ')'(k) (v(k))* ) 
K = (k) ~ (k) · 

V K2:m-k+1,2:m-k+l 
(4.58) 

For Algorithm 2, /((k) is real and satisfies the displacement equation 

( 4.59) 

and for Algorithm 3, /({k) is complex and satisfies the displacement equation 

k<kl- nk:m. k<kl. nk:m = .A<kl. j(k). (.A<kl)* ( 4.60) 

with diagonal entries of n being on the unit disk in the complex plane. In both cases, 

the diagonal entries of /((k) are positive and are provided separately from the displacement 

equation. 

The kth step of Cholesky factorization eliminates the first column and row of /((k) below 

and above the diagonal: 

where 

0 
In-k 

0 
K(k+l) 

0 

In-k 

and K(k+l) = j((k) - v(k) · (v(k))*/""(k) 
2:m-k+1,2:n-k+l I • 

Let a,(k) be the first row of _A(k). For Algorithm 2, K(k+l) is a symmetric positive definite 

Cauchy-like matrix satisfying the displacement equation 

n . K{k+l) - K{k+l) . n - A(k+l) . -7-(k) . (A(k+l))T 
Hk+l:m Hk+l:m - ..1 ' 
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where A(k+l) = ..4~7~-k+l - z<k) · aCk). It follows from ( 4.43) that · 

1 ~(k) ~(k) ( (k))T 
(k)- (nk+l:m- Wklm-k)- . A2:m--:-k+l . ..J . a 

l - 'Y(k) ( 4.61) 

For Algorithm 3, K(k+l) is aHermitian positive definite Cauchy-like matrix satisfying the 

displacement equation 

K(k+l)- nk+l:m · K(k+l) · nk+l:m = A(k+l) · j(k) · ( A(k+l)) * , 

where A(k+l) = ..4~7~-k+l - (z<kJ_ tCk) /2) · aCk), with t<k) = ..4~7~-k+l · j · ( a<k))* h(k) 

and z(k) = (In-k-Wk. nk+l:n) -l . t(k). For both Algorithms 2 and 3, the diagonal entries 

of K(k+l) satisfy 

K~k.+l) = K~k) . - lv~k) 12/-v(k) for J. = 1, · · ·, n- k . 
J,J J+l,J+l J I l 

Let the finite precision counterparts of v(k), tCk), and z(k) be iJ(k), i(k), and f(k); and let 

the finite precision counterpart of KJ,~+l) be kj~+l) for j = 1, · · ·, m ,- k. We also define 
I 

with 
.ACk+l) = _A(k) _ (f<k) _ i<k)/2) . a<k) 2:m-k+l · 

It follows from Algorithms 2 and 3 that the generator of _k(k+l) is 

_.&(k+l) = _A(k+l). j(k+l). (.ACk+l)r , 

where _A(k+l) is the computed Q factor in the QR factorization of fl(A(k+l)); and 

with 'R being the computed R factor in the QR factorization. 

4.2.2 Error Propagation at the kth Step of Cholesky Factorization 

Our objective in §4.2.2 is to derive an upper bound on IIK(k+l)- _k(k+l)ll2· 

Lemma 4.5 In the notation of §4.2, 

IIJCk)IIF < </>max ·llkCk)IIF + 0(€}, llfCk) -zCk)ll2:::; TJ • r1.s · n · </> + 0(€2), 

lli(k)- t(k)ll2 < TJ • rl. 5 
• n · 4> + 0(€2) , llill2 :S 3 · Vn + 0(€), 

IKJ~+l)- KJ,~+l)l < TJ ·IIK(k)llmax + 0(€) for }= 1, 2, · · ·, n- k. 
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Proof. We start by proving the F-norm upper bounds on .J(k). Since _4(k) is numerically 

column unitary, by relation (1. 7) we have 

where we have used the fact that the diagonal entries in the matrix _4(k) · j(k) · (_4(k)) * are 

0(€). Since both Algorithms 2 and 3 perform diagonal pivoting on a symmetric/Hermitian 

positive definite matrix, it follows that r(k) = Jl_k(k)llmax + 0(€) and that (see (1.7)) 

IIJ(k)IIF:::; n · ,<k) + 0(€). 

Let y = .4~7~-k+l · j(k) · (a<k))* and iJ be its finite precision counterpart. Then we get 

from (1.8) that 

lliJ- Yll2 < r ·1] ·IIIA~7~-k+li·IJ(k)l·l ( a(k))T 111 2 

< r ·1] ·ll1...t~7~-k+llll 2 ·IIIJ<k)lll2 ·Ill (a<k))T 1jl2 
< rl.s ·1J ·Jij(k)IIF + 0(€2) 
< r1.s ·1J • <l>ma.x ·JIK(k)IIF + 0(€2), 

where we have used relation (1.7) and the fact that _4(k) is numerically column unitary. 

Similarly, 

lliJII2:::; Jr · <l>ma.x ·llk(k)IIF + 0(€). 
We now derive 2-norm upper bound on [(k) - z(k) for Algorithm 2. From (1.8) we have 

II 

A(k) II llv(k)- v<k>ii IIA(k)ll llv(k)- v<k)ii llffk) -z<k)ll2 < i<k> - !::..__ + 2 < 1J. v 2 + 2 
- . ,(k) ,(k) - ,(k) ,(k) ' 

2 

where lliJ(k)llma.x:::; r(k) + 0(€); and 

llv(k)- v(k)ll2 < llv(k)- (nk+1:m- wkim-k)-
1 

• iJII
2 
+ ll(nk+1:m- wkim-k)-

1 
• (y- y)ll2 

< 1] • IIYII2 + IIY - Yll2 . 
</>min </>min 

Plugging the corresponding upper bounds on llfJ- Yll2, llfJII2, we obtain the desired 2-norm 

upper bound. 
To derive 2-norm upper bound on j(k) - t(k) for Algorithm 3, we note that from (1.8) 

lli(k)- t(k)ll2 < ll£(k)- _j_ll + lliJ- Yll2 < 1]. lliJII2 + lliJ- Yll2 . 
- ,(k) 2 ,(k) - ,(k) ,(k) 

Plugging the corresponding upper bounds on lliJ - Yll2, lliJII2, and IIK(k)JIF, we obtain 
the desired upper bound. Since z(k) = (In-k - Wk . nk+l:n) - 1 

• t<k)' it follows that t(k) = 

(In-k - Wk . nk+l:n) . z(k) and hence 
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As to the upper bound on IKJ,~+l)- Kj,~+ 1 )1, we write(see the model of arithmetic in 

§1.5) 
A (k+1) (k) ( ) I (k)l2/ (k) K · · = K ·+1 ·+1 · 1 + f/1 - v · 1 · (1 + 'r/2) J,J J ,J J 

for ITJ1I ~ fJ and ITJ2I ~ TJ. It follows that 

l k~k.+1)- K~k.+l)l < n · (K~k) · + jv(k)l 2 /~(k)) < 2 · n · IIK(k)ll + 0(€) 
J,J J,J - 'I J+1,J+1 J I - 'I max • 

I 
Lemma 4.6 below gives an upper bound on ll.fi(k+l)- .6,.(k+l)ll2. 

Lemma 4.6 In the notation of §4.2, 

ll.fi(k+l)- .6.(k+1)ll2 ~ fJ • (r · n)1.5 · </> ·llk(k)IIF + 0(€2). 

Proof. Similar to the proof of Lemma 4.4, we have 

ji (k+1) _ .6. (k+1) = _A(k+l) . j(k) . (_4(k+1)) * _ A(k+l) . j(k) . (A(k+l)) * 

= (_A(k+l) _ A(k+l)) . j(k). (_A(k+l)r 

+A(k+l). j(k). (_4(k+1)- A(k+l)) * . (4.62) 

Now we derive 2-norm upper bounds on the two terms in the right hand sum for Algorithm 3. 

These bounds for Algorithm 2 can be derived similarly. 

Since 

we have 

II (_A(k+l) - A(k+1)) . j(k) . ( A(k+l)) * 112 

< (ui<k> .:.. z<k> 112 . iia<k> 112 + lli<k> - t<k> 112 · iia<k> 11212) ·ll.r<k> 11
2 

·II (A<k+l) )* 11
2 

< 2TJ. r1.5. n. </> ·IIA(k+1)"2 + 0(€2) 

Since _A(k) is column unitary, it follows from Lemma 4.5 that 

IIA(k+l)ll
2 

< II.A~7~-k+lll 2 + llf(k)ll2 ·lla(k)ll2 + llt(k)ll2 · lla(k)ll2/2 

< 3·Jn. 

Combining all these bounds, and apply Lemma 4.5 and simplifying, we obtain 

II (.A(k+l)) * - A(k+1) . j(k) . (A(k+l)) * 112 ~ 3fJ. (r. n)1.5 . </>. iik(k) !IF+ 0( €2) . 

Similar arguments give 

IIA(k+l) . j(k) . ( _A(k+l) - A(k+1)r 112 ~ 3fJ. (r. n)1.5. </>. iik<MIIF + 0(€2) . 

Taking 2-norms on both sides of ( 4.6~) and plugging in the above upper bounds; we arrive 

at the lemma. I 
The round-off errors of the QR factorization in redecomposing the generators are ana­

lyzed in [23] and are generalized in Theorem 4.1. Lemma 4.7 performs a similar analysis. 
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Lemma 4. 7 The round-off errors of the QR factorization in redecomposing the generators 

satisfy 
A (k) - (k) 2 A (k) 2 

II~ - ~ ll2 :::; fJ · r · n ·¢max ·IlK IIF + 0(€ ) · 

Proof. Define 

_A.(k+l) · 'R = _A(k+l) + E1 and j(k+l) = 'R · j(k) · 'R* + E2 , 

where E 1 and E2 are round-off error matrices. 

Since the numerical QR factorization is performed on fi.(A(k+l)), instead of _A(k+l) itself, 

we write 

IIEIII 2 :::; II.A.<Hl) · n- fl(.A<Hl))ll2 + llfi.(.A<Hl))- .A<Hl)ll2 · (4·63) 

In the following, we derive 2- norm upper bound on E1. Applying the standard round-off 

error bounds for QR factorization (see [21]), we have' 

II.A.(k+l) · n- fi.(A(k+l))ll2 < 17 • r · n llfi.(A(k+l))ll2 

< fJ • r · n (11.A.~7~-k+1ll2 + (11f(k)ll2 + lli(k)ll2/2) ·lla(k)ll2) 

+0(€2) 

< rJ·r·n(1+ (vn+2·vn/2)) +0(€2) 

::; 3fJ · r · nl.5 + 0(€2
) , 

where we have used Lemma 4.5 and the fact that _A.(k) is numerically column unitary. 

On the other hand, 

llfi.(.A<Hl))- _A(k+l)ll
2 

:::; "'· (11.A~7~-k+1ll2 + (11f<k)ll2 + lli(k)ll2/2) ·lla(k)ll2) + 0(€2) 

< 11. (1 + (vn + 2. vn/2) ·1) + o(€2):::; 3"'. vn + o(€2). 

Similarly II.A(k+l) 11
2 

::; 3y'n. Plugging these upper bop.nds in ( 4.63) and simplifying, we 

obtain 

Now we derive a 2-norm upper bound on E2. It follows from (1.8) that 

Since 

it follows that 

IIE2II2 < 9TJ • r · n ·IIJ(k)IIF + 0(€2) 

< 9fJ. r. n. IIA(k). j(k). (.A(k)r IIF + 0(€2) 

A (k) 2 < 9fJ ·¢max· r · n ·IlK IIF + 0(€ ) · 
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With all these relations, we now have 

~(k) _ Li(k) = _.4{k+1). j(k+l). (.A.{k+l)r _ _A{k+l). j(k). (.A{k+l)r 

_ _A(k+l). (n. j(k). n* + E2). (_A{k+l)r _ _A(k+l). j(k). (.ACk+1))* 

= (.A.Ck+1). n) . j(k). (_A(k+l). n) * + _A(k+l). E2. (.A.Ck+l)) * 

-.A{k+1). j(k). (.A{k+l)r 

_ (_A(k+l) + E1) . j(k). (_A(k+l) + ~1 ) * + _A{k+1). E2. (.A.Ck+1)) * 

-.A<k+1). j(k). (.A{k+1)) * 

= E1. j(k). (.ACk+l)r + (.ACk+l) + E1). j(k),. E; + _.A,Ck+1). E2. (.A<k+~))* 

Taking 2-norm on both sides, 

ll~{k)- .!i(k)ll2 ~ IIE111 2 ·llj{k)ll2 ·II(.A<k+1))*112 + II(.A<k+1) +E1)112 ·llj{k)ll2. IIE;II 2 

+ II.A{k+l) 112. IIE2112 ·II (.A.Ck+1))*112 . 

Lemma 4. 7 follows by plugging all the corresponding upper bounds into this relation and 

simplifying. I 

4.2.3 An Upper Bound on the Backward Errors 

Our objective in §4.2.3 is to derive a 2-norm backward error bound on 1-iin (4.57). Let 

(4.64) 

be the computed Cholesky factorization of j((k), where j((k) is the symmetric/Hermitian 

positive definite Cauchy-like matrix in ( 4.58); and 1-t(k) is ~he backward error matrix .. In 

the following we derive an upper bound on 111-i(k) ll2· 
It is well-known that 

iJ(k) = 'Y(k) and f,(k) = j(k) 1,1 2:n-k+1 ' 

and that the Cholesky factorization can be rewritten as 

~(k) ~(k) ( ~(k))*- ( ,(k) -y(k). (f(k)r ) ( 0 0 ) 
.c .1) • .c - 'Y(k). j(k) 'Y(k). [(k). (f(k)) * + 0 f,(k+1). 2){k+1). (£(k+1)) * . 

Replacing the two Cholesky factorizations by the corresponding right hand sides in (4.64), 

we get 

j((k) + 'LI(k) - + 0 
( 

'Y(k) 'Y(k). (f(k))* ) ( 0 ) 
,.. - ,(k). j(k) ,(k). j(k). (f(k)r 0 j((k+l) + 1i{k+1) 
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On the other hand, §4.2.1 implies that 

Plugging this into above and simplifying, 

1i(k) = 
( 

0 ( v(k) _ 1 (k). j(k))* ) 

v(k) _ 1 (k) . j(k) v(k) . ( v(k))* h(k) _ 
1

(k) • j(k) . (f(k)) * 

+ ( ~ ( _k(k+l) _ K(~+l)) + 1f.(k+1) ) 

Taking 2-norm on both sides and simplifying, 

ll1i(k)ll2 :::; 111f.(k+l)ll2 + II.K(k+l)- K(k+l)ll2 +II ( v(k)- '(k). j{k)r 112 

+ llv(k)- '(k). f(k)ll2 + llv(k). (v(k))* h(k)- '(k). f(k). (f(k))*t. (4.65) 

With arguments similar to those used in the proof of Lemma 4.5, it is easy to show that 

Similarly, since v(k) = r(k) · z(k), it follows that 

llv(k) . ( v(k))* h(k) - '(k) . j(k) . (f(k) r 112 

< II (z(k) - j(k)) . ( v(k)) * 112 + llf(k) . ( v(k) - r(k) . j(k)) * 112 

< r1.5 • n ·rJ · ¢> ·llk(k)IIF + 0(€2). 

On the other hand, 

IIA (k+l) - ~ (k+l) 112 
< 

c/>m.in 

< ll.&_(k+l)- Li(k+l)ll2 + IILi(k+l)- ~(k+l)ll2 

¢min ¢min 
2 A (k) 2 < 1] • r · n ·¢>·IlK IIF + 0(€ ) · 

Plugging all these bounds into (4.65) and simplifying, 

Since k is Hermitian positive definite, it follows that IIK(k)IIF :::; IIKIIF for all k. Solve the 

above recursion we obtain 

Theorem 4.4 Let 1i be defined as in (4.57). Then 
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4.3 The Toeplitz and Toeplitz-plus-Hankel least squares problems 

We will only analyze the round-off errors in Algorithm 4; the analysis and results for Al­

gorithm 5 are similar. We set 8 = n and (1 = (a = 1. Let XM be the solution com­

puted by Algorithm 4. We want to identify conditions under which x M can be written as 
I 

XM = XM + 8xM, where 8xM is a small perturbation to XM, which in turn is the exact 
solution to the perturbed linear least squares problem 

minJI(M+8M)·x-(h+8h)li2, 
X 

( 4.66) 

with 8M, 8h being small perturbations toM and h, respectively. As in Stewart [41, pp. 75-

76], we say that Algo:rithm 4 is stable if such small perturbations 8xM, 8M, and 8h exist. 

Let M be a Toeplitz matrix satisfying equation (3.35) with A numerically column uni­

tary. In finite arithmetic, Algorithm 4 performs the following computations. 

1. Compute n = fi(O) and A = fi(A); 

2. compute h := fi (:Fm ·h), A:= fi (:Fm ·A), and iJ := fi (B · g-1 · (:Fn)*); 

3. compute the LU factorization for 61 and the generator for Z = 62 · 61\ where 

6 E cmxn is the Cauchy-like matrix that satisfies the displacement equation n · 6 -
6 ·A= A· B. Let Z be the computed Z. 

4. compute the initial generator for k = In + Z* · Z and solve k · g = h1:n + Z* · hn+l:m 
to get g. 

5. solve 61 · xc = g to get xc. 

6. compute XM := fi (9-1 . (:Fn)*. xc). 

In the following we assume that n = n and A = A so that we can apply the results in §4 

directly. In actual computations, there are round-off errors inn and A with IO- Ol = 0(€) 

and I A- A I = 0 ( €)' and hence n and A must be replaced by n and A, respectively. However 

the corresponding error analysis is almost identical to that in §4, with small increases in 

the value of TJ· Without loss of generality, we assume that no permutation actually takes 

place during the factorization of 6 and k. 
By relation (1.8), we can bound the round-off errors in h, A, and B as 

llh- Fm · hll2 < TJ • m ·IIIFmlll2 ·lllhlll2 :S TJ • ml.S ·llhll2 

IIA- Fm · All
2 

< TJ • r · m ·IIIFmlll2 ·IIIAIII2 :S TJ • (r · m)1.5 

JJii- B · g-1 
· (Fn)*ll2 < TJ • r · n ·IIIBIII2 ·llg-1

11 2 ·111Fnl*ll2 :S TJ • (r · n)1.
5 ·IIBIIF 

It now follows that 

41 



The same error bound holds (with different TJ) if M is given as a Toeplitz matrix and both 

A and Bare computed from M for g chosen in Lemma 3.1. 

We also have 

where £1 · (J is the numerical LU factorization of C1. 
The round-off errors in solving K·g = h1:n +Z*·hn+1:m come from four parts: computing 

the right hand side, computing the initial generator for K; factorizing K; and backward 

and forward substitutions. We will put all these round-off errors into h1:n· First we set 

Applying (1.8) we have 

Let the numerical Cholesky factorization of K satisfy 

where 1i is the round-off error matrix satisfying Theorem 4.4. We also put the round-off 

errors in computing the initial generator into 1-t; this only increases the bound on 1i by a 

constant factor. Hence 9 satisfies 

( K + 1-£ + 1-£1) · 9 = h1:n + Z* · hn+l:m , 

where 1-£1 is the error matrix due to substitutions and hence satisfies ll?-£1ll2 :S TJ • n 3 ·IIKII2· 
The above equation can be re-written as 

In the following, we consider the round-off errors in xc. Since we only need to perform 

substitutions, it follows that 

where ll?-£2lloo :S TJ • n 3 ·IIC1IIoo· 
Set XM = g-1 · (Fn)* · xc and let XM = XM + 8xM. Then it is easy to show that 

ll8xMII2 :S TJ • n2llxMII2· In the following, we identify 8M and 8h in (4.66). Set 

M + 8M - .r:n · ( 1 ) · ( L1 · U + 1-£2) · g · Fn 

- M + _r:n. ( ( 1 ) ·1-£2- (C- C)+ ( H1F,1:n ) ) . g. Fn' 
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and hence 

Similarly, 

h+oh _ (FM)*· ( h1:n-_(1-£+1-£I)·9) 
hn+1:m 

- (FM)' · (FM ·h+ (h-FM ·h);- ( (i.,,.- i.,,.) ~ ('11:+1£1) ·§)) 
and hence 

Taking 2-norm on oM we have 

II6Mif2 < (II ( 1 ) II, ·ll1£2ll + IIC- 6112 + IIH1on,1onll2 + IIFif2) ·119112 

< ((1 + IIZII2) ·IIH2II + IIC- Cll2 + IIH1:n,1:nll2 + IIFII2) · n, 

where we have used the fact that we have chosen.o = n in Alg?rithm 4 and hence 11911 2 :::; n. 

It now follows from Theorems 4.1 and 4.3, as well as (1. 7) that 

To derive an upper bound on oh, we observe that 

IIK-1II2 :::; 1 ·and llk-1 · Zll2 :::; 1 , 

arid hence 119112:::; 2 ·llhll2-+ 0(€). Taking 2-norms on oh we have 

llohll2 :S llh- FM · hll2 + llh1:n- h1:nll2 + 111-£ + 1-£1112 ·llfJII2 · 

Applying theorem 4.4 and the analysis in § 4.3 and simplifying, 

1 5 - 2 < TJ·r·(m·n) · ·ci>·IIKIIF·IIhii2+0(€) 
:::; T}. r. (m. n)l.S. ;p. (vn + IIZII~) ·llhll2 + 0(€2). 

Similar results hold for Algorithm 5. Theorem 4.5 below summarizes these results. 

Theorem 4.5 The computed solutions of Algorithms 4 and 5 to the least squares prob­

lem {1.5) can be written as XM = XM + OXM, where XM is the exact solution to (4.66). 

oxM, oM and oh satisfy 

lloxMII2 < TJ · n2llxMII2 

lloMII2 < TJ · r 3 
• m1.s · n2 · ¢ · (vn · (1/J + ¢) + Vm) · (v + 1) · (IIZIIoo + 1) ·IICIIoo 

+0(€2) 
llohll2 < T}. r. (m. n)l.S. ¢. (vn + IIZII~) ·llhll2 + 0(€2). 
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Remark 10: It can be shown that similar norm upper bounds hold for the case ( 1 > 1, 

(2 > 1, and (3 > 1 as well, provided that there is little element growth within the generators 

for Algorithms 1 through 3 (see §2.3). 

Remark 11: Since IIZIIoo :::; 1 + v, Algorithms 4 and 5 are stable if vis not large, and 

unstable otherwise. It is known that in the LU factorization (4.39), K(L) could be as large 

as 0(2n) in the worst case if C were a general dense matrix; consequently both v and IIZIIoo 
could be as large as 0(2n). Hence the bounds on II8MII2 and ll8hll2 could be as large as 

0( 4n) in the worst case. It is not clear whether a sharper bound on v exists for Cauchy-like 

matrices with low displacement rank. 

Remark 12: It follows from Lemmas 3.1 and 3.2 that the parameters 1/J and ¢> for 

Algorithm 4 are much smaller than for Algorithm 5. Although the above norm upper 

bounds on 8M and 8h are by no means tight, they do suggest that Algorithm 4 could be 

more accurate than Algorithm 5 if v and I!ZIIoo are about the same for both algorithms. On 

the other hand, for both Algorithms 4 and 5, the norm upper bounds on 8M and 8h are much 

larger than those for the standard QR method, which are TJ • m · niiMII 2 and 0, respectively 

(see [21]). Hence Algorithms 4 and 5 appear to be less accurate than QR. Our numerical 

experiments indicate that Algorithm 5 is in general less accurate than Algorithm 4, which 

in turn is in general less accurate than QR; but the lost accuracy can be recovered by one 

step of iterative refinement. See §5 for more details. 

5 Numerical Experiments 

We have implemented Algorithms 1 through 5 in Fortran and have performed a large number 

of numerical experiments with them to investigate their behavior in finite arithmetic and 

to compare Algorithms 4 and 5 with other available algorithms. In this section we discuss 

some issues related to measuring backward errors and implementation, and report some of 

the numerical results. We chose (1 = 10, (2 = (3 = 0, and 8 = n in Algorithms 4 and 5. 

5.1 Backward Perturbation Bounds 

In order to conveniently measure the round-off errors in Theorem 4.5, we use the following 

theorem of Gu [22] to push all of them into perturbations in M. 

Theorem 5.1 Assume that 8xM, 8M, and 8h in (4.66} are small perturbations to XM, M, 

and h, respectively. Then there exists a fM with 

such that x M = x M + 8x M is the exact solution to the least squares problem 

minii(M +fM) · x- hll2. 
X 

(5.67) 
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Let XM be the numerical solution to the least squares problem (1.5) computed by Algo­

rithm 4, Algorithm 5, or QR, we look for the smallest possible 118.M112 in (5.67). If llfl\111 2 
is tiny compared to IIMII2, then XM is a good approximation, otherwise it is not. 

To compute such a llbMII2, we u~e the following theorem of Gu [22], which is a mod­

ification of a result of Walden, Karlson, and Sun [46] and Higham [29, Chapter 19] .. Let 

M = Q · ( ~ ) · wT be the singular value decomposition of M, where Q E Rmxm and 

WE Rnxn are orthogonal; and DE Rnxn is non-negative diagonal. Let 

r = h - M · x M = Q · ( ~~ ) 
llrll2 . 

and fJ = llxMII2 · 

r is the residual. r1 = 0 if XM is the exact solution to (1.5). We assume that XM ¥= 0. 

Theorem 5.2 Define 

&(xM) = min{llbMIIp, where 8.M satisfies (5.67).} 
~--------------------------

t(xM) = min(TJ,a) where a= 
r[. D2. (D2 + fJ2J)-1. r1 

t(xM) v5 + 1 
1 :::; & (xM) :::; 2 · 

- . t(xM) 
We measure II8MII2 by computmg r = Vm ·IIMII

2
. €. Hence XM is a good approximate 

solution if and only if r :::; 0(1). 

5.2 Implementation Issues 

A natural way to implement Algorithm 1 is to keep Pm and Qn in vectors and keep both 

L and U in a single matrix W by storing L in the strict lower triangular part of W and U 

upper triangular part of W. However, arrays are stored column-wise in Fortran. Since U 

is generated and stored row by row in Algorithm 1, columns of W have to be moved into 

and brought out of fast memory for most steps of elimination for large n. This causes a 

significant amount of memory traffic between slow and fast memory levels in the memory 

hierarchy. For more detailed discussions on memory traffic, see for example [17, §2.6]. As 

in Gu [23], we reduce this memory traffic by storing rows of U column-wise in Algorithm 1. 

Let Sn E Rnxn be the matrix defined in §1.2. It follows that (;::::: Sn · UT · Sn is an upper 

triangular matrix, whose kth column is the (n- k + 1)st row of U in the reverse order. The 

backward substitution procedure for computing u-1 · y in Algorithm 1 can be rewritten 

as a forward substitution as Sn · ( ( fJT) -1 
· ( Sn · y)). Gu [23] shows that this tech~que 

significantly reduces memory traffic. 

We further reduce the memory traffic by delaying permuting rows of L in Algorithms 1 

and 2 until the factorization is completed. To be more specific, assume that at kth step of 
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MATRIX ORDER _2_ EXECUTION TIME (SECONDS) 
~~:{T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.30x10 1 2.60x10 1 3.60x10 1 4.30x10° 9.40x10 1 

640 600 1.28x1o-3 8.02x1o-1 8.84x1o- 1 1.60x10° 1.82x10° 6.09x10° 
1 1280 1200 l.08x1o- 3 3.28x10° 3.37x10° 6.62x10° 7.05x10° 4.85x101 

2560 2400 7.95x1o- 4 1.26x101 1.35x101 2.55x101 2.76x101 3.81x102 

320 300 5.78x10 17 2.02x10 1 2.14x10 1 3.80x10 1 4.08x1o-1 8.04x1o-1 

640 600 4.07x10- 17 8.22x1o- 1 8.66x1o-1 1.58x10° 1.70x10° 6.08x10° 
2 1280 1200 2.69x1o- 17 3.17x10° 3.37x10° 6.32x10° 6.92x10° 4.78x101 

2560 2400 1.02x10-17 1.29x101 1.33x101 2.56x101 2.79x101 3.81x102 

320 300 3.81x10 9 2.16x10 1 2.16x10 1 3.92x10 1 4.24x10 1 7.92x10- 1 

640 600 1.93x1o-13 8.66x1o-1 8.24x10- 1 1.55x10° 1.71x10° 5.93x10° 
3 1280 1200 2.01x10- 15 3.16x10° 3.38x10° 6.29x10° 6.92x10° 4.72x101 

2560 2400 5.19xl0-15 1.28x101 1.35x101 2.55x101 2.76x101 3.82x102 

MATRIX ORDER 
l 

BACKWARD ERROR ( T) 
~~:(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.07x101 2.18x10 1 1.34x10° 1.19x10 1 3.00x10 2 

640 600 1.28x10-3 8.13x101 2.45x1o-1 1.41xl0° 2.48x10-1 1.79x10- 2 

1 1280 1200 l.08x1o- 3 1.33x103 3.1lxl0-1 2.14x10° 3.10x10-1 1.72x1o-2 

2560 2400 7.95x1o-4 2.89x102 9.67x10- 2 7.65x10° 9.69x 10-2 9.63x1o- 3 

320 300 5.78x10 17 1.06x10° 8.85x10 1 5.97x10 1 5.35x10- 1 2.57x10- 1 

640 600 4.07x1o- 17 1.48x10° 9.92x10- 1 5.18x10- 1 5.22x1o- 1 2.63x1o-1 

2 1280 1200 2.69x1o- 17 7.31x1o-1 5.42x1o- 1 2.01x10° 2.32x10° 2.19x1o-1 

2560 2400 l.02x10- 17 2.23x10° 2.34x10° 2.87x10° 2.48x10° 2.20x1o- 1 

320 300 3.81x10 9 6.61x101 4.48x10 1 3.50x10° 4.57x10 1 1.24x10 1 

640 600 1.93x10-13 9.18x101 1.55x102 4.25x10° 5.04x10- 1 1.33x1o-1 

3 1280 1200 2.01x10-15 1.67x101 2.49x101 8.66x10° 1.13x101 1.45x1o-1 

2560 2400 5.19x10-15 2.79x101 4.26x101 1.76x101 3.35x101 1.35x10-1 

Table 1: FORTRAN BLAS, LARGE RESIDUALS 

elimination, we need to swap two rows of Lin order to bring the pivot to the (k, k) position. 

We achieve this by only swapping the corresponding rows in the generator matrix. After the 

factorization is completed, we restore rows of L to their proper positions. This technique is 

also used to swap columns of U in Algorithm 1. Our numerical experiments indicate that 

Algorithms 4 and 5 are less accurate than straightforward QR algorithm in many cases. To 

enhance accuracy we perform one step of Bjorck iterative refinement [2]. 

Algorithms 4 and 5 are unstable if the parameter 1/ in Theorem 4.5 is exceptionally 

large. We monitor the size of 1/ by computing llf(k)llmax in Algorithm 1. Throughout our 

experiments, IIY(k) II max never exceeded 200. 

5.3 Numerical Results 

The computations were done on an IBM RS6000 workstation in double precision, where the 

machine precision is € ~ 1.1 x 10-16 . 
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MATRIX ORDER ~ EXECUTION TIME (SECONDS) 
~~:(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 

320 300 2.38x10 3 2.40x10 1 2.50x10 1 4.30x10 1 4.50x10 1 8.30x10 1 

640 600 1.28x10-3 8.30x10-1 8.80x1o- 1 1.62x10° 1.77x10° 6.26x10° 
1 1280 1200 l.08x1o- 3 3.21x10° 3.41x10° 6.38x10° 7.06x10° 4.80x101 

2560 2400 7.95x1o-4 1.27x101 1.32x101 2.54x101 2.75x101 3.81x102 

320 300 5.78x10 17 2.02x10 1 2.18x10 1 · 4.24x10 1 4.46x10 1 7.84x10- 1 

640 600 4.07x1o- 17 8.40x1o- 1 8.68x1o- 1 1.57x10° 1.77x10° 5.96x10° 
2 1280 1200 2.69x10-17 3.24x10° 3.41xl0° 6.45x10° 7.10x10° 4.75x101 

2560 2400 1.02x10-17 1.28x101 1.36x101 2.55x101 2.73x101 3.80x102 

320 300 3.81x10 9 2.10x10 1 2.18x10 1 4.22x 10 1 4.44x10- 1 7.60x10- 1 

640 600 1.93x10-13 7.96x10-1 9.08x10- 1 1.59x10° 1.74x10° 6.01xl0° 

3 1280 1200 2.01x1o-15 3.14x10° 3.38x10° 6.30x10° 6.90x10° 4.73x101 

2560 2400 5.19x10-15 1.29x101 1.37x 101 2.54x101 2.75x101 3.80x102 

MATRIX ORDER 
l 

NORMALIZED RESIDUAL (T) 
~~:(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 

320 300 2.38x10 3 6.94x 102 2.65x10° 7.15x10° 2.63x10° 3.41x10 1 

640 600 1.28x1o-3 3.91x103 8.40x10° 1.04x10° 8.42x10° 4.45xl0- 1 

1 1280 1200 l.08x10-3 8.86x104 1.40x101 1.38x 101 1.40x101 2.57x1o- 1 

2560 2400 7.95x1o- 4 3.89x104 4.66x10° 4.54x101 4.65x10° 3.25x1o-1 

320 300 5.78x10 17 2.01x101 9.34x10 1 l.llx10° 4.07x10 1 2.62x10 1 

640 600 4.07x10- 17 2.10x102 7.54x1o- 1 2.80x10° 4.13x1o-1 2.42x1o- 1 

2 1280 1200 2.69x10- 17 4.53x101 5.13x1o-1 2.51x10° 2.52xl0° 2.29x1o- 1 

2560 2400 1.02x10-17 1.69x101 2.34x10° 3.75x10° 3.34x10° 2.12x10- 1 

320 300 3.81x10 9 3.88x101 1.22x10° 1.46x101 1.21x10° 3.33x10 1 

640 600 1.93x10-13 2.15x102 4.43x102 1.34x101 4.62x10° 2.73x1o- 1 

3 1280 1200 2.01x10- 15 5.07x101 2.60x101 1.27x101 1.97x101 3.19x10-1 

2560 2400 5.19x10-15 9.21x101 7.27x101 2.49x101 3.31x101 3.09x10-1 

Table 2: FORTRAN BLAS, SMALL RESIDUALS 

We compared the following algorithms: 

• NEW -I: Implementation of Algorithm 5 without iterative refinement. 

• NEW -11: Implementation of Algorithm 5 with iterative refinement. 

• NEW -III: Implementation of Algorithm 4 without iterative refinement. 

• NEW -IV: Implementation of Algorithm 4 with iterative refinement. 

• QR: LAPACK [1] subroutine DGELS for solving a general dense linear least squares 

problem using the QR method (see §2.1). 

The cost for the first four algorithms is O(mn) flops, and the cost for QR is O(mn2 ) flops. 

We solved the Toeplitz linear least squares problem 

min liT· x- hl12 
X 
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MATRIX ORDER 
l 

EXECUTION TIME (SECONDS) 
~~:(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.10xl0 1 2.10x10 1 4.30x10 1 4.60x10 1 2.90x10 1 

640 600 1.28x1o-3 7.56x10-1 7.70x10-1 1.46x10° 1.53x10° 2.15x10° 
1 1280 1200 l.08x1o- 3 2.89x10° 2.96xl0° 5.7lx10° 6.05x10° 1.53x101 

2560 2400 7.95x10- 4 1.14x101 1.20x 101 2.31x101 2.43x101 1.15x102 

320 300 4.02x10 17 2.00x10 1 2.24x10 1 3.62xl0 1 4.10x10 1 3.00x1o-1 

640 600 3.62x10-17 7.24x1o- 1 7.88x1o-1 1.43xl0° 1.49x10° 2.19x10° 
2 1280 1200 2.40x10- 17 2.86xl0° 2.98x10° 5.72x10° 6.07x10° 1.53x101 

2560 2400 7.15x10- 18 1.13x101 1.18x101 2.32xl01 2.41x101 1.16x102 

320 300 3.81x10 9 2.06x10 1 1.98x10 1 3.80x10 1 3.72x10 1 3.26x10 1 

640 600 1.93x10-13 7.72x1o-1 7.90x1o- 1 1.43x10° 1.53x10° 2.17x10° 

3 1280 1200 2.02x10- 15 2.83><10° 2.98x10° 5.83x10° 5.93x10° 1.52x101 

2560 2400 5.25x10- 15 1.16x 101 1.19x 101 2.30x101 2.44x101 1.16x102 

MATRIX ORDER 
___.:__ BACKWARD ERROR (r) 
~~:(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.40x10 1 2.50x10 1 4.30x10 1 4.50x10 1 8.30x10 1 

640 600 1.28x1o-3 8.65xl01 2.45x1o-1 1.42x10° 2.48x10-1 2.36x1o- 2 

1 1280 1200 l.08x1o-3 1.01x103 3.10x1o-1 2.15xl0° 3.llx1o-1 1.69x1o-2 

2560 2400 7.95x1o-4 3.51xl02 9.67x10- 2 7.70x10° 9.68x1o- 2 l.06x1o- 2 

320 300 4.02x10 17 1.02x10° 6.55x10 1 7.52x10 1 7.06x10 1 2.38x10 1 

640 600 3.62xl0-17 1.52x10° 1.30x10° 5.56x10- 1 7.14x1o- 1 2.66x1o-1 

2 1280 1200 2.40x10-17 9.02xl0-1 6.48x1o- 1 1.92x10° 1.90x10° 2.09x1o-1 

2560 2400 7.15x10- 18 2.07xl0° 2.37x10° 2.82xl0° 2.76x10° 2.30x1o- 1 

320 300 3.81x10 9 6.07x101 4.55x10 1 3.78x10° 4.55x10 1 1.36x10 1 

640 600 1.93x10-13 2.llx102 8.39x102 4.41xl0° 5.09x1o-1 1.32x10-1 

3 1280 1200 2.02x10- 15 2.58x101 4.97x101 1.12x101 2.02x101 1.34x1o-1 

2560 2400 5.25xl0-15 2.22x101 3.76x101 1.75x101 3.20x101 1.38x1o-1 

Table 3: OPTIMIZED BLAS, LARGE RESIDUALS 

for the following types of Toeplitz matrices T = (tk-;h::;k::;m,1::;;::;n: 

• Type 1: {tk} randomly generated froJ?- u~form distribution on (0, 1). A Type 1 

matrix is usually well-conditioned. 

• Type 2: to = 2w and tk = sin(;~wk) for k =I= 0, where w = 0.25. A Type 2 matrix is 

also called the Prolate matrix in Gohberg, Kailath, and Olshevsky [18] and Varah [45]; 

T is very ill-conditioned. 

• Type 3: A set of data was generated as 

-Ot·k J J . . 7r Lm/3J . ( . k ) 
Xk = e . j; . Lm/3J + 1 cos Lm/3J + 1 + f3. rk ' 

where a = 1rjn; rk is taken from a normal distribution, rk E N(O,l); and f3 = 
10-7 , 10-11 , 10-15 , and 10-18 . The matrix T E Rmxn was constructed from tk-s = 
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Xk-s+n· This is a modification of Test. V in Park and Elden [39], which, in turn, is a 

modification of an example from Kolbe! and Schafer [35]. T becomes more and more 

ill-conditioned as (3 becomes smaller and smaller. 

We chose two types of h vectors: 

• components of h are randomly generated from uxrlform distribution on (0, 1). The 

Toeplitz linear least squares problem has a large residual. 

• components of XM are randomly generated from uniform distribution on (0, 1) and 

h = T · XM· The problem has a small residual. 

Numerical results are summarized in Tables 1 through 4. These results confirm that 

both Algorithms 4 and 5 are capable of solving problems ranging from well-conditioned 

to ill-conditioned to numerically singular, both for large residuals and small residuals; and 

they are significantly faster than QR. 

Algorithm 5 is the fastest algorithm, whereas QR is the slowest. For m = 2560 and 

n = 2400, Algorithm 5 is up to 30 times faster than QR in Fortran BLAS and up to 10 

times faster in optimized BLAS; and Algorithm 4 is up to 15 times faster than QR in 

Fortran BLAS and up to 5 times faster in optimized BLAS. However, if these algorithms 

are implemented in systolic arrays, one might expect the speedups of Algorithms 4 and 5 

to be more like the Fortran BLAS speedups. 
, Algorithm 5 is the least accurate algorithm, whereas QR is the most accurate. For 

m = 2560 and n = 2400, the backward error in Algorithm 5 is upto 105 times larger 

than that in QR. With iterative refinement, the backward error in Algorithm 5 is at most ' 

200 times as large. While Algorithm 4 costs at least twice as much as Algorithm 5, it is 

significantly more accurate. With or without iterative refinement,. the backward error in 

Algorithm 4 is at most 200 times larger than that in QR. 

6 Conclusions and Extensions 

We have presented fast algorithms for solving the Toeplitz and Toeplitz-plus-Hankellinear 

least squares problems and shown them to be numerically stable under certain conditions. 

We have discussed implementation techniques that further improve their efficiency. Numer­

ical exp~riments indicate that they are both numerically stable and efficient in practice. 

The algorithms presented in this paper can be modified to solve Mosaic Toeplitz or Block 

Toeplitz linear least squares problems ( cf. [11, 18]). 

As Theorem 4.5 indicates, these new algorithms could be numerically unstable if the 

parameter vis large. The best available upper bound on vis 0(2n), which has never been 

seen in practice. It is not clear whether sharper bound on v exists for Cauchy-like matrices 

with low displacement rank. 

One way to reduce the upper bound on v is to perform a rank-revealing LU (RRLU) 

factorization on C instead of using GEPP /GECP (see, for example, Chan [8], Gu and Eisen-
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MATRIX ORDER ~ EXECUTION TIME (SECONDS) 
K.(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.20x10 1 2.50x10 1 4.00x10 1 4.90x10 1 2.50x10 1 

640 600 1.28x1o-3 7.62x1o-1 7.74x1o-1 1.43x10° · 1.54x10° 2.15x10° 
1 1280 1200 1.08x1o-3 2.88x10° 3.03x10° 5.73x10° 6.04x10° 1.52x101 

2560 2400 7.95x10- 4 1.13x101 1.18x101 2.32x101 2.39x101 1.16x102 

320 300 4.02x10 17 2.00x10 1 2.12x10 1 3.56x10 1 3.74x10-1 2.78x10- 1 

640 600 3.62x10-17 7.32x1o- 1 7.56x1o- 1 1.45x10° 1.55x10° 2.15x10° 
2 1280 1200 2.40x10-17 2.85x10° 2.94x10° 5.77x10° 6.02x10° 1.52x101 

2560 2400 7.15x10- 18 1.12x101 1.19x101 2.31x101 2.40x101 1.17x102 

320 300 3.81x10 9 2.06x10 1 2.10x10 1 3.50x10 1 4.16x10 1 3.02xl0-1 

640 600 1.93x10-13 7.78x1o- 1 7.82x1o-1 1.40x10° 1.46x10° 2.12x10° 
3 1280 1200 2.02x10-15 2.83x10° 3.05x10° 5.69x10° 6.08x10° 1.55x101 

2560 2400 5.25x10-15 1.17x101 1.20xl01 2.32x101 2.44x101 1.17x102 

MATRIX ORDER ~ BACKWARD ERROR ( T) 
K.(T) 

TYPE m n NEW-I NEW-II NEW-III NEW-IV QR 
320 300 2.38x10 3 2.40x10 1 2.50x10 1 4.30x10 1 4.50x10 1 8.30x10 1 

640 600 1.28x1o-3 4.15x103 8.43x10° 1.01x10° 8.45x10° 4.28x10- 1 

1 1280 1200 l.08x1o- 3 6.73x104 1.40x101 1.18x101 1.40x101 5.07x1o- 1 

2560 2400 7.95x1o-4 4.60x104 4.65x10° 4.69x101 4.65x10° 4.29x1o- 1 

320 300 4.02x10 17 1.47x101 9.79x10 1 8.19x10 1 3.65x10 1 2.63x10 1 

640 600 3.62x10-17 2.45x102 7.37x1o-1 6.97x1o- 1 6.85x10-1 2.51x10-1 

2 1280 1200 2.40xlo-17 6.51x101 6.58x1o- 1 2.07x10° 1.16x10° 2.23x1o- 1 

2560 2400 7.15x1o-18 4.00x101 2.30x10° 4.14x10° 3.47x10° 2.24xlo-1 

320 300 3.81x10 9 4.21x101 1.2lx10° 1.88x101 1.21x10° 3.73xlo-1 

640 600 1.93xl0-13 2.33x102 8.25x102 1.08x101 4.60x10° 3.98xlo-1 

3 1280 1200 2.02xlo-15 2.74x101 4.90x101 1.67x101 2.15x101 3.97xlo-1 

2560 2400 5.25x10-15 6.44x101 7.86x101 2.40x101 3.22xl01 3.90x1o-1 

Table 4: OPTIMIZED BLAS, SMALL RESIDUALS 

stat [24] and Hwang, Lin, and Yang [30]). It is interesting to see if fast RRLU factorization 

algorithms can be developed to guarantee that v is always modest. 
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