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In this work, the capability of computing adjoint-weighted kinetic parameters, including effective
delayed neutron fraction and neutron generation time, was implemented in the Reactor Monte Carlo
(RMC) code based on the iterated fission probability (IFP) method. Three algorithms, namely, the Non-
Overlapping Blocks (NOB) algorithm, the Multiple Overlapping Blocks (MOB) algorithm and the super-
history algorithm, were implemented in RMC to investigate their accuracy, computational efficiency and
estimation of variance. The algorithms and capability of computing kinetic parameters in RMC were
verified and validated by comparison with MCNP6 as well as experimental results through a set of multi-
group problems and continuous-energy problems.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The Reactor Monte Carlo (RMC) code (Wang et al., 2015a;
2015b), developed by the Department of Engineering Physics,
Tsinghua University, is a modern Monte Carlo particle transport
code mainly designed for nuclear reactor modeling and simula-
tions. In the previous work, a capability of quasi-static dynamic
calculation (Xu and Wang, 2014) was developed in RMC. However,
it should be noted that RMC computes the point reactor kinetic
parameters by weighting a constant instead of adjoint flux due to
the difficulty of obtaining adjoint flux in continuous-energy Monte
Carlo transport calculations. Recently, based on the concept of
iterated fission probability (IFP), capabilities of computing adjoint-
weighted kinetic parameters have been implemented in several
Monte Carlo codes includingMCNP5 (Kiedrowski and Brown, 2009;
Nauchi and Kameyama, 2010), McCARD (Choi and Shim, 2014),
TRIPOLI-4 (Truchet et al., 2013), SERPENT2 (Lepp€anen et al., 2014),
etc. In previous works, the IFP method was adopted by RMC to
Physics, Tsinghua University,

iu).

al., Calculation of adjoint-w
.doi.org/10.1016/j.pnucene.20
compute eigenvalue sensitivity coefficients with regard to nuclear
data (Qiu et al., 2015). Therefore, these experiences should be used
to compute adjoint-weighted kinetic parameters and improve the
dynamic simulation capability in RMC. In this work, three algo-
rithms based on the IFP method were implemented in RMC to
investigate their accuracy and computational efficiency of
computing adjoint-weighted kinetic parameters. These algorithms
can apply in continuous-energy Monte Carlo simulations as well as
multigroup Monte Carlo simulations. Additionally, as several
studies have found that the correlation of fission source between
cycles may cause underestimation of variance of keff and fluxes
(Gelbard and Prael, 1990), the differences in estimation of variance
of keff and kinetic parameters among different algorithms were
compared.
2. Theory

2.1. Adjoint-weighted kinetic parameters

The adjoint-weighted kinetic parameters this work is concerned
with are the effective delayed neutron fraction (beff ) and the
neutron generation time (Leff ) which are defined as
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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where
J is the neutron flux Jðr;U; EÞ which is a variable of position r,
direction U, energy E,
v is the speed of neutron,

FDJ is the delayed neutron production term which can be
expressed as

FDJ ¼ b
cDðr; EÞ
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0
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FJ is the total neutron production termwhich can be expressed
as

FJ ¼ cðr; EÞ
4p

Z ∞

0

Z 4p

0
n
X
f

ðr; E0ÞJ�
r;U0; E0

�
dU0dE0; (4)

cD is the delayed neutron emission spectrum,
c is the total neutron emission spectrum,
b is the total delayed neutron fraction,
J* is the adjoint flux,
and 〈〉 is the integration over all space, angle, and energy
variables.
B*J* ¼
�U,VJ*ðr;U; EÞ þ

X
t
ðr; EÞJ*ðr;U; EÞ �

Z ∞

0

Z
4p

X
s
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�
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The terms on the right hand side of Eqs. ((1)e(2)) can be
expressed in the form of
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where V means the entire space of the system in question.
As it is known, the flux J is the solution of the Boltzmann

Equation

BJ ¼ 1
k
FJ; (8)

where

BJ is the transport operator which can be expressed as

BJ ¼ U,VJðr;U; EÞ þ
X
t
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Z ∞

0

�
Z
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X
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and k is the effective multiplication factor.

And the adjoint flux J* is the solution of the adjoint Equation

B*J* ¼ 1
k
F*J*; (10)

where

B*J* is the adjoint transport operator which can be expressed
as
and F*J* is the adjoint neutron production term which can be
expressed as
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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For deterministic codes, the adjoint fluxJ* can be computed by
solving Eq. (10) explicitly after which the adjoint kinetic parame-
ters can be calculated based on Eqs. ((1)e(2)).
Fig. 2. Schematic diagram of adjoint-weighted tally approach for the superhistory
method.
2.2. IFP method

To calculate adjoint-weighted parameters with a higher fidelity,
the IFP method (Nauchi and Kameyama, 2010; Kiedrowski and
Brown, 2009) is used to estimate adjoint flux for the Monte Carlo
transport calculations.

The IFP method interprets the adjoint flux f*ðr;U; EÞ as the
asymptotic increase of fission rates caused by a neutron with en-
ergy E flying towards U which is introduced at position r (Hurwitz,
1964). According to this physical meaning, adjoint flux can be
computed directly in the forward transport calculations by dividing
the active cycles into blocks. Each block contains an original cycle,
sufficient latent cycles and an asymptotic cycle. Numerical experi-
ments show that a block size of ten can produce a convergent
adjoint flux at the asymptotic cycle for most problems. And the
adjoint-weighted tally (Kiedrowski et al., 2011) method is put for-
ward to compute adjoint-weighted reaction rates in the form of
Eqs. ((5)e(7)).

To be more specific, in the original cycle, every fission neutron
produced by the source neutron is taken as a progenitor and con-
cerning reaction rates are scored between the position of the source
neutron and where every progenitor was born. An ID number is
assigned to every progenitor and then inherited by all corre-
sponding progeny neutrons in the latent cycles. In the asymptotic
cycle, fission production rates of all progeny neutrons having the
same ID number are collected to obtain the importance of pro-
genitor neutrons, which are used to weight the corresponding re-
action rates in the original cycle. Finally, the adjoint-weighted
reaction rates can be computed in every block based on the
estimator
Fig. 1. Schematic diagram of adjoint-weighte
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bR ¼
X
m

TmIm; (13)

where

bR is a score of concerning adjoint-weighted reaction rates at any
block,
m is the index of progenitor in the original cycle,
Tm is the reaction rates produced by the progenitor m in the
original cycle and
Im is the iterated fission probability of the progenitor m, which
can be computed in the asymptotic cycle by summing up the
d tally approach for the power method.

eighted kinetic parameters with the Reactor Monte Carlo code RMC,
17.03.023



Y. Qiu et al. / Progress in Nuclear Energy xxx (2017) 1e114
fission production rates of all progeny neutrons produced by the
progenitor m, in the form of

Im ¼
X
n2m

Fn; (14)

where
n is the index of progeny neutron in the asymptotic cycle, and
Fn is the fission production rates of progeny neutron n in the
asymptotic cycle, which can be scored by using the track length
estimator, in the form of

Fn ¼
X
t2n

�
nSf

�
t
wtlt; (15)

where
t is the track index of neutron n,
lt is the length of track t,
wt is the neutron weight at track t and
ðnSf Þt is mean neutron emission timesmacroscopic fission cross
section.

Take Fig. 1 as an example. The diamondmark “n, fn” and “n, 2fn”
in Fig. 1 mean one fission neutron induced by one neutron and two
fission neutrons induced by one neutron respectively. It should be
noted that the implicit capture technique is used in this work. In
this case, instead of killing a neutron immediately after it is
captured, its weight is reduced. Therefore, the source neutron 2 in
Fig. 2 may have a “n, 2fn” after a “n, fn”. In the original cycle, two
source neutrons produce four progenitors in total, and the reaction
rates of these progenitors are T1, T2, T2 þ T3 and T2 þ T3 respec-
tively. And the iterated fission probability of these progenitor are
F1;1 þ F1;2, F2, F3;1 þ F3;2 and F4 respectively. Therefore, the score of
adjoint-weighted reaction rates is T1 � ðF1;1 þ F1;2Þ þ T2�
F2 þ ðT2 þ T3Þ � ðF3;1 þ F3;2Þ þ ðT2 þ T3Þ � F4.

Eq. (13) provides a general approach to obtain a score for
adjoint-weighted reaction rates. Now consider the specific scores
for Eqs. ((5)e(7)). The track length estimator is used to estimate

hJ*; 1v Ji, in the form of

Tm;1 ¼
X
d2m

1
vd
w0;mld; (16)

where

d is the index of track for neutron m,
ld is the length of track d,
vd is the speed of neutron at track d, and
w0;m is the initial weight of neutron m.

And a collision estimator is used to estimate hJ*; FDJi and

hJ*; FJi in the form of

Tm;2 ¼
X
m

dm;Dw0;m; (17)

and

Tm;3 ¼
X
m

w0;m; (18)

where dm;D ¼ one if the progenitor number m is a delayed fission
neutron and zero otherwise.

It should be noted that in Eqs. ((16)e(18)), the initial neutron
weight instead of the current weight of each track is used since
Please cite this article in press as: Qiu, Y., et al., Calculation of adjoint-w
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each progenitor is required to start with an equal weight.
In this way, one can obtain a score of the adjoint-weighted ki-

netic parameters in Eqs. ((1)e(2)) at each block, in the form of

Leff ¼
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3. Algorithms of the IFP method

3.1. Non-Overlapping Blocks algorithm

The representative implementation of the Non-Overlapping
Blocks algorithm is MCNP5 (Kiedrowski et al., 2011), which di-
vides the active cycles into contiguous blocks. In this algorithm,
each cycle belongs to one block uniquely.

The NOB algorithm can be expressed in the form of

R ¼ 1
B1

XB1

i¼1

X
m

Tbði�1Þþ1
m Ibim; (21)

where

i is the block index,
b is the number of cycles in each block or the block size,
B1 is the total number of blocks for the NOB algorithm,
Tbði�1Þþ1
m is the reaction rates produced by progenitorm, which is

stored in the cycle bði� 1Þ þ 1, i.e., the original cycle in block i
and
Ibim is the iterated fission probability produced by progenitor m,
which is computed in the cycle bi, i.e., the asymptotic cycle in
block i.

And the total number of blocks of the NOB algorithm is

B1 ¼
hc
b

i
; (22)

where ½� means to reserve the integer part of the inside value and c
is the total number of active cycles.

Thus, in the NOB algorithm, the adjoint-weighted tally can only
be computed in specific cycles, i.e., the asymptotic cycles in all
blocks.
3.2. Multiple overlapping blocks algorithm

The representative implementations of the Multiple Over-
lapping Blocks algorithm are SERPENT 2 (Lepp€anen et al., 2014) as
well as RMC (Qiu et al., 2015). In this algorithm, there are multiple
overlapping blocks in each cycle and each active cycle starts with a
new block. Therefore, cycle i is taken as the original cycle of block i,
the latent cycle of blocks i� bþ 2 to i� 1 as well as the asymptotic
cycle of the block i� bþ 1.

The MOB algorithm can be expressed in the form of
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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R ¼ 1
B2

XB2

j¼1

X
m

TjmI
jþb�1
m ; (23)

where

j is the cycle index and also the block index for the MOB
algorithm,
B2 is the total number of blocks for the MOB algorithm,
Tj
m is the reaction rates produced by progenitor m, which is

stored in the cycle j, and
Ijþb�1
m is the iterated fission probability produced by progenitor
m, which is computed in the cycle jþ b� 1.

And the total number of blocks of the MOB algorithm is

B2 ¼ c� bþ 1: (24)

Therefore, in the MOB algorithm, the adjoint-weighted tally can
be computed in c� bþ 1 cycles totally. Therefore, the MOB algo-
rithm can achieve lower uncertainties of results than the NOB al-

gorithm by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffih
c
b

i
c�bþ1

s
. However, it should be noted that the

memory consumption of the MOB algorithmwill also increase by a
factor of a block size compared to the NOB algorithm. In addition,
another concern is that the MOB algorithm may cause underesti-
mation of uncertainties due to inter-cycle correlation of the tally
scores. Therefore, the differences in estimation of uncertainties
among different algorithms were studied by numerical tests in this
work.
3.3. Superhistory algorithm

The IFP method needs to store the concerning reaction rates for
all progenitors in the original cycle until the end of the asymptotic
cycle. Consequently, the memory consumption of the IFP method is
proportional to the number of progenitors in the original cycle
which is roughly equal to the number of source neutrons per cycle.
This may produce considerable memory consumption if the num-
ber of concerning adjoint-weighted reaction rates is large. There-
fore, the superhistory algorithm (Brissenden and Garlick, 1986) is
adopted by RMC to reduce memory consumption of computing
adjoint-weighted parameters. As opposed to the NOB algorithm
and the MOB algorithm which are implemented in the power
method, the superhistory algorithm of the IFP method is based on
the superhistory method (Brissenden and Garlick, 1986; Blomquist
and Gelbard, 2002; She et al., 2012). The superhistory method has
the advantage of reducing inter-cycle correlation and biases of re-
sults because it reduces the frequency of source renormalization
(Brissenden and Garlick, 1986).

In the superhistory method, the fission neutrons of each source
neutron are tracked through a specific number of generations,1

namely, a supergeneration (Blomquist and Gelbard, 2002),
instead of only one generation before they are placed into the
fission bank for the next cycle. The history of the source neutron
1 It should be noted that the superhistory method is also a powering strategy.
Therefore, interpretation of “cycle”, an iteration for updating the keff and the fission
source distribution, should be suitable for the conventional method as well as the
superhistory method. For the conventional power method, since the fission bank
for the next cycle is made of the 1st generation fission neutrons of the source
neutrons, “cycle” and “generation” have the same meaning. However, for the
superhistory method, a “cycle” is a “supergeneration”, which has L generations (L
being some fixed input integer).

Please cite this article in press as: Qiu, Y., et al., Calculation of adjoint-w
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and all of its fission neutrons within a supergeneration is called a
superhistory. Practically, superhistories are simulated one by one.
Therefore, a supergeneration can be regarded as a block just like the
Non-Overlapping Blocks algorithm. The first generation in a
supergeneration can be taken as the original generation while the
last generation in a supergeneration can be regarded as the
asymptotic generation. As a result, a score of the adjoint-weighted
tally can be obtained in every superhistory, in the form of

bR ¼
X
m

T1mI
s
m; (25)

where bR is a score of concerning adjoint-weighted reaction rates at
any block (in the superhistory algorithm, every supergeneration
can be taken as a block),

m is the index of progenitor in the first generation of a
supergeneration,
T1m is the reaction rates produced by progenitor m, which is
stored in the first generation of a supergeneration,
Ism is the iterated fission probability produced by progenitor m,
which is computed in the last generation of a supergeneration,
s is the number of generations in a supergeneration, which can
be set to be the same value as the block size b of the Non-
Overlapping Blocks algorithm and Multiple Overlapping Blocks
algorithm.

Take Fig. 2 as an example. In the original generation, the source
neutron has produced a progenitor whose reaction rates is T1. And
the iterated fission probability of this progenitor is F1;1 þ F1;2,
which can be computed in the last generation of the super-
generation. Therefore, a score of the adjoint-weighted reaction
rates in this superhistory is T1 � ðF1;1 þ F1;2Þ.

And the average score of the adjoint-weighted tally for the
superhistory algorithm is

R ¼ 1
hc

Xc
i¼1

Xh
j¼1

X
m2j

T1;i;jm Is;i;jm ; (26)

where

i is the cycle index,
j is the index of particle history in cycle i,
h is the total number of particle superhistories in cycle i,
m is the index of progenitor in the first generation within
superhistory j in cycle i,
T1;i;jm is the reaction rates produced by progenitorm and is stored
in the first generation within superhistory j in cycle i, and
Is;i;jm is the iterated fission probability produced by progenitor m
and is computed in the last generation within superhistory j in
cycle i.

Instead of being proportional to the number of particle histories
in every cycle, the memory consumption of the superhistory algo-
rithm depends on the number of progenitors produced in the first
generation of each supergeneration, which is roughly equal to one.
Furthermore, since every superhistory may contribute to the con-
cerning adjoint-weighted tally, it can be inferred that the super-
history algorithm can achieve the same uncertainties as the Non-
Overlapping Blocks algorithm, as long as the number of genera-
tions in a supergeneration is set to be equal to the block size in the
Non-Overlapping Blocks algorithm and both algorithms simulate
the same number of effective particle histories.
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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Fig. 3. Effective delayed neutron fractions with different block sizes for the FLAT23
problem.
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4. Verification and results

In this work, three algorithms based on the IFP method, namely,
the Non-Overlapping Blocks (NOB) algorithm, the Multiple Over-
lapping Blocks (MOB) algorithm, the superhistory algorithm, have
been implemented in the Reactor Monte Carlo (RMC) code to
compute adjoint-weighted kinetic parameters. While the NOB and
MOB algorithms are implemented in the power method, the
superhistory algorithm is implemented in the superhistory
method. The new capability in RMC has been verified and validated
by comparison to MCNP6 (Goorley et al., 2013) and experimental
results through a set of multi-group problems and continuous-
energy problems (Kiedrowski, 2010; Mosteller and Kiedrowski,
2011) covering a wide range of uranium, plutonium and U-233
fueled experiments from fast to thermal spectrum, which are
summarized in Table 1.

All calculations were performed on the Tsinghua High Perfor-
mance Computational Platform, the Inspur TS10000 HPC Server
having 740 nodes total. Each node is composed of 12 CPUS (Intel
Xeon X5670 at 2.93 GHz) sharing 32 Gb or 48 Gb memory. The
MCNP6 version in this work utilizes shared-memory platform,
OpenMP, while RMC uses the Message Passing Interface (MPI) for
parallelism.

As discussed above, the adjoint-weighted kinetic parameters
could only be computed at the asymptotic generations. In order to
Table 1
Description of test problems.

ID Problems Energy
structure

Short description

1 ONEINF One group Infinite medium problem
2 THRESLAB Two group A three region slab which is composed of metallic core
3 TWOINF Four group Infinite medium problem
4 BARESLAB Four group Bare fast slab
5 BARESPHR Four group Bare fast slab
6 REFLSLAB Four group Metallic slab surrounded by moderating material
7 REFLSPHR Four group Metallic sphere and reflector
8 SUBCSLAB Four group Subcritical bare fast slab
9 SUPCSLAB Four group Supercritical bare fast slab
10 INTRSLAB Eight group Intermediate spectrum bare slab
11 BIG TEN

(1)
Continuous-
Energy

Large all-uranium-metal cylindrical core surrounded b

12 BIG TEN
(2)

Continuous-
Energy

Four intermediate-enriched uranium cylinders surroun
uranium and normal uranium and enclosed by a deple

13 FLAT23 Continuous-
Energy

An inner sphere of U-233 enclosed in an annulus of no

14 Flattop-25 Continuous-
Energy

Solid, homogeneous sphere of highly enriched uranium

15 Flattop-Pu Continuous-
Energy

Sphere of delta-phase plutonium reflected by an annul

16 GODIVA Continuous-
Energy

Bare, homogeneous sphere of highly enriched uranium

17 JEZPU Continuous-
Energy

Bare sphere of plutonium

18 Jezebel-
233

Continuous-
Energy

Bare, homogeneous sphere of U-233

19 STACY29 Continuous-
Energy

Water-reflected cylindrical tank with uranyl nitrate so

20 STACY-30 Continuous-
Energy

Unreflected cylindrical tank with uranyl nitrate solutio

21 STACY-46 Continuous-
Energy

Water-reflected cylindrical tank with uranyl nitrate so

22 THOR Continuous-
Energy

Sphere of plutonium enclosed in the center of a right c

23 Zeus-1 Continuous-
Energy

Cylindrical highly enriched uranium platters separated

24 Zeus-4 Continuous-
Energy

Cylindrical highly enriched uranium platters separated

25 Zeus-6 Continuous-
Energy

Plates of highly enriched uranium reflected by copper

Please cite this article in press as: Qiu, Y., et al., Calculation of adjoint-w
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investigate how many generations are sufficient to establish a
stable population of fission neutrons, the effective delayed neutron
fractions and neutron generation times with different block sizes
for the FLAT23 problem, with ID 13 in Table 1, are computed and
presented in Fig. 3 and Fig. 4 respectively. As can be seen, a block
size of 5 is enough for the FLAT23 problem. And numerical tests
, thermal neutron shield and moderator

y a thick reflector of natural uranium

ded by annuli of normal uranium or a homogeneous mixture of highly enriched
ted-uranium reflector
rmal uranium

reflected by an annulus of normal uranium

us of normal uranium

lution

n

lution

ircular cylinder of thorium

by graphite platters and enclosed in a copper reflector

by graphite platters and enclosed in a copper reflector

eighted kinetic parameters with the Reactor Monte Carlo code RMC,
17.03.023



Fig. 4. Effective neutron generation times with different block sizes for the FLAT23
problem.
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suggest that a block size of ten is sufficient to obtain accurate es-
timate of the asymptotic population for most cases. Therefore, a
block size of ten is applied for all the calculations with MCNP6 and
RMC in this work.

All MCNP6, the NOB algorithm, MOB algorithm calculations
were run using 100 inactive and 50,000 active cycles of 10,000
source neutrons while those of the superhistory algorithm were
performed with 10,000 superhistories � 100 inactive cycles and
5000 active cycles since every supergeneration is set to contain ten
generations. Both MCNP6 and RMC use the ENDF/B-VII.0 based
cross section library. And all calculations were performed with 12
processors in parallel.

Table 2 lists the effective multiplication factors computed by the
power method of MCNP6, the power method of RMC and the
superhistorymethod of RMC. And the standard deviations (Std) and
Table 2
Comparison of effective multiplication factors between MCNP6 and RMC.

ID MCNP6 RMC-superhistory
method

RMC-power method EF

keff Std keff Std Diff keff Std Diff

1 1.00003 1 0.99998 1.5 �5a 1.00003 1.5 �1 1.00
2 1.00043 3 1.00041 2.5 �2 1.00047 2.5 4 1.00
3 1.00001 3 1.00000 3.0 �1 1.00008 3.1 7 1.03
4 0.99998 3 1.00002 3.0 4 1.00000 3.0 2 1.00
5 0.99999 3 0.99993 2.8 �7 0.99995 2.6 �4 0.93
6 1.00012 4 1.00012 4.2 0 1.00016 4.1 4 0.98
7 1.00080 3 1.00081 2.8 1 1.00085 2.7 5 0.96
8 0.77966 3 0.77971 2.8 5 0.77974 2.7 8 0.96
9 1.14007 3 1.14010 3.1 3 1.14012 3.1 5 1.00
10 1.00036 3 1.00039 2.9 3 1.00044 2.9 8 1.00
11 0.99498 2 0.99499 2.7 1 0.99498 2.3 0 0.85
12 1.00491 2 1.00481 2.7 �10 1.00483 2.3 �8 0.85
13 0.99943 3 0.99925 3.6 �18 0.99932 3.1 �11 0.86
14 1.00290 3 1.00289 3.3 �1 1.00290 2.9 0 0.88
15 1.00009 3 1.00010 3.6 1 1.00009 3.1 0 0.86
16 0.99983 3 0.99990 3.1 7 0.99980 2.7 �3 0.87
17 0.99993 3 0.99986 2.9 �7 0.99989 2.6 �4 0.90
18 0.99962 3 0.99961 2.9 �1 0.99958 2.5 �4 0.86
19 1.00191 3 1.00196 2.9 5 1.00199 2.7 8 0.93
20 1.00241 3 1.00242 2.7 1 1.00244 2.4 3 0.89
21 0.99826 3 0.99826 3.1 �1 0.99832 2.8 6 0.90
22 0.99802 3 0.99799 3.0 �3 0.99801 2.8 �1 0.93
23 0.99362 3 0.99306 3.6 �56 0.99304 3.4 �58 0.94
24 1.00732 3 1.00736 3.5 4 1.00735 3.3 3 0.94
25 1.00882 3 1.00880 3.1 �2 1.00884 2.9 2 0.94

a It should be noted that the standard deviations (Std) and the differences (Diff)
are given in pcm, i.e., 10�5. Therefore, a difference of 5 should be read as 5 � 10�5.
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the differences (Diff) in Table 2 are given in pcm, i.e., 10�5. It should
be noted that the relative difference, i.e., Dk=k, is traditionally used
to quantify the difference of metrics measured in pcm. However, Dk
is used to show the absolute difference in this work. Therefore, the
differences in Table 2 are defined as the results of RMC minus the
corresponding results of MCNP6. As can be seen, except the twenty-
third case where the differences are about ten standard deviations
(but still within 60 pcm), the differences in keff between MCNP6
and either method of RMC, i.e., the power method or the super-
history method, are within three standard deviations.

Among the different methods, one of the main concerns is the
level of underestimation of variance. Therefore, in order to inves-
tigate the underestimation of variance, a term, Estimation Factor
(EF) is defined. As it is known, the relationship between the relative
uncertainties of a tally score, R, and the effective particle histories
contributing to the tally score, N, is

R2 ¼ 1
f0N

; (27)

where f0 is some constant for a specific problem with a specific
method. Because the superhistorymethod reduces the frequency of
fission source normalization (Brissenden and Garlick, 1986), the
apparent variance is closer to the real variance and it may have
smaller f0 than the power method. Assuming the variance of the
superhistorymethod is the reference value for the real variance, the
estimation factor is defined as

f0;s
f0;p

¼ NpR2p
NsR2s

; (28)

where the subscript index s represents the superhistory method
and the subscript index p represents the power method.

Therefore, the estimation factor in Eq. (28) describes the level of
underestimation of variance of the power method. Since a super-
generation is set to have ten generations, the number of effective
particle histories contributing to tally scores of keff for the super-
history method, is the same as that for the power method, i.e.,
Table 3
Computational time (minutes) for the test problems.

ID superhistory NOB MOB

1 1.9 2.0 3.2
2 200.1 211.9 256.5
3 0.9 1.0 1.5
4 12.2 10.3 12.7
5 0.6 0.8 1.3
6 311.8 258.4 305.4
7 0.9 1.0 2.3
8 8.5 9.4 10.4
9 11.9 11.5 14.3
10 10.8 9.0 11.3
11 76.5 72.3 89.1
12 83.9 79.8 99.9
13 32.4 31.3 32.4
14 35.5 35.0 35.8
15 41.0 39.7 41.1
16 5.8 4.3 6.1
17 2.9 2.9 3.5
18 2.9 3.0 3.6
19 119.8 115.2 131.3
20 117.4 112.0 120.4
21 78.2 75.5 80.0
22 21.6 21.7 22.2
23 71.7 67.9 88.3
24 78.8 148.6 158.5
25 213.5 197.5 214.6

eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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Np ¼ Ns. As shown in Table 2, the average EF is 0.93, which means
the variance of keff obtained by the power method in RMC is
underestimated by a factor of 0.93 compared to the superhistory
method in RMC.

Table 3 lists the computational time of different algorithms in
RMC for the test problems. The superhistory algorithm consumes
the same time as the NOB algorithm on average while the MOB
algorithm increases the run time by a factor of 30% on average.

Table 4 presents the effective delayed neutron fractions
computed byMCNP6 and the different algorithms in RMC and their
differences. The MCNP6 results are regarded as the reference and
the differences are defined as the RMC results minus by the cor-
respondingMCNP6 results. All values and differences in Table 4 and
the standard deviations in Table 5 are given in pcm. The differences
in the effective delayed neutron fractions between MCNP6 and any
of the three algorithms of RMC, i.e., the superhistory algorithm, the
NOB algorithm and the MOB algorithm, are within three standard
deviations.

Similar to Table 2, the estimation factors of effective delayed
neutron fractions are given in Table 5, where the variances obtained
from the superhistory method are taken to be the reference values
for the real variances. For convenience, the variance are the sum of
squares computed for the ratio, i.e., the left hand side of Eq. (20) and
they are not computed for the numerator and denominator sepa-
rately along with the correlations, although the latter is a more
statistically sound method for computing them. It should be noted
Table 5
Standard deviations and estimation factor of effective delayed neutron fractions.

ID MCNP superhistory NOB MOB

Std Std Std EF Std EF

11 4 3.9 4.0 1.02 1.2 1.00
12 4 3.8 3.9 1.02 1.2 1.02
13 3 3.1 3.0 0.99 1.0 1.00
14 4 4.1 4.2 1.01 1.3 1.00
15 3 2.7 2.7 1.01 0.8 0.99
16 4 4.0 4.0 1.01 1.3 1.01
17 2 2.1 2.1 1.02 0.6 1.01
18 3 2.6 2.6 1.00 0.8 1.00
19 6 3.4 3.4 1.03 1.1 1.02
20 5 3.2 3.2 1.01 1.0 1.00
21 6 3.5 3.4 0.98 1.1 0.99
22 2 2.2 2.1 0.97 0.7 0.99
23 4 4.1 4.2 1.01 1.3 1.00
24 4 4.2 4.3 1.02 1.3 1.01
25 4 4.1 3.9 0.98 1.3 0.98

Table 4
Comparison of effective delayed neutron fractions between MCNP6 and RMC.

ID MCNP6 superhistory NOB MOB

beff beff Diff beff Diff beff Diff

11 723 722 �1 723 0 722 �1
12 716 719 3 722 6 725 9
13 372 375 3 371 �1 372 0
14 686 686 0 690 4 689 3
15 279 278 �1 274 �5 278 �1
16 644 652 8 654 10 650 6
17 187 187 0 187 0 183 �4
18 291 296 5 296 5 295 4
19 732 735 3 728 �4 728 �4
20 716 718 2 713 �3 713 �3
21 740 732 �8 734 �6 735 �5
22 210 209 �1 210 0 209 �1
23 741 735 �6 741 0 738 �3
24 724 729 5 728 4 730 6
25 687 685 �2 679 �8 684 �3
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that the number of effective particles contributing to scores of beff
for both the NOB algorithm and the superhistory algorithm are
10,000 � 5000 whilst that for the MOB algorithm is
10,000� (50000-9). As shown in Table 5, the average EF of both the
NOB and MOB algorithms are 1.00, which means both algorithms
avoid underestimation of the variances of effective delayed neutron
fractions compared to the superhistory algorithm.

Moreover, in order to compare efficiencies of different algo-
rithms in RMC, a term, Figure of Merit (FOM), is introduced, which
is defined as

1
R2T

; (29)

where T is the computational time which is defined as the run time
multiplied by the parallel processors (i.e., 12) in this work. As
shown in Table 6, the ratio of the FOMs of the NOB algorithm to
those of the superhistory algorithm is 1.01 on average while the
ratio of the FOMs of theMOB algorithm to those of the superhistory
algorithm is 8.92 on average, indicating in terms of computing
effective delayed neutron fractions, the efficiency of the NOB al-
gorithm is almost the same as that of the superhistory algorithm
while the MOB algorithm is more efficient than the other two al-
gorithms by a factor of 8.92.

Table 7 displays the effective neutron generation times
computed byMCNP6 and the different algorithms of RMC and their
differences. All the effective neutron generation times, the differ-
ences in Table 7 and the standard deviations in Table 8 are given in
ms. Again, the MCNP6 results are considered to be the reference
results. Except the twenty-forth and twenty-fifth cases where the
differences are about ten standard deviations, the differences in the
effective neutron generation times between MCNP6 and any of the
three algorithms of RMC, i.e., the superhistory algorithm, the NOB
algorithm and the MOB algorithm, are within three standard
deviations.

The estimation factors of effective neutron generation times are
also given in Table 8, where the variances obtained from the
superhistory method are taken to be the reference values for the
real variances. For convenience, the variance are the sum of squares
computed for the ratio, i.e., the left hand side of Eq. (19) and they
are not computed for the numerator and denominator separately
along with the correlations, although the latter is a more statisti-
cally soundmethod for computing them. The average EF of the NOB
algorithm is 0.99 while that of the MOB algorithm is 1.01, which
suggests both algorithms nearly avoid underestimation of the var-
iances of effective neutron generation times compared to the
superhistory algorithm. It should be noted that in some cases the
Table 6
Figure of merits of effective delayed neutron fractions.

ID superhistory NOB MOB

11 3.69Eþ01 3.77Eþ01 3.15Eþ02
12 3.54Eþ01 3.55Eþ01 2.85Eþ02
13 3.82Eþ01 4.08Eþ01 3.83Eþ02
14 6.51Eþ01 6.48Eþ01 6.44Eþ02
15 2.20Eþ01 2.25Eþ01 2.24Eþ02
16 3.86Eþ02 5.06Eþ02 3.63Eþ03
17 2.39Eþ02 2.30Eþ02 1.91Eþ03
18 3.72Eþ02 3.66Eþ02 2.99Eþ03
19 3.31Eþ01 3.23Eþ01 2.91Eþ02
20 3.49Eþ01 3.60Eþ01 3.38Eþ02
21 4.70Eþ01 5.06Eþ01 4.69Eþ02
22 3.52Eþ01 3.69Eþ01 3.46Eþ02
23 3.67Eþ01 3.82Eþ01 3.00Eþ02
24 3.22Eþ01 1.63Eþ01 1.57Eþ02
25 1.12Eþ01 1.25Eþ01 1.16Eþ02

eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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Table 7
Comparison of effective neutron generation times between MCNP6 and RMC.

ID MCNP6 superhistory NOB MOB

Leff Diff Leff Diff Leff Diff

1 1.00E-02 1.00E-02 �2.85E-06 1.00E-02 �2.02E-06 1.00E-02 2.80E-07
2 4.93E-02 4.92E-02 �8.80E-05 4.92E-02 �1.16E-04 4.92E-02 �7.80E-05
3 1.42E-02 1.42E-02 8.76E-06 1.42E-02 4.26E-06 1.42E-02 5.66E-06
4 9.79E-03 9.79E-03 2.91E-06 9.79E-03 �4.22E-06 9.79E-03 1.33E-06
5 1.72E-03 1.72E-03 �2.52E-06 1.72E-03 �6.80E-07 1.72E-03 �1.15E-06
6 1.35Eþ02 1.35Eþ02 1.05E-01 1.35Eþ02 1.05E-01 1.35Eþ02 5.75E-02
7 1.02E-02 1.02E-02 �1.41E-05 1.02E-02 �1.89E-05 1.02E-02 �5.47E-06
8 1.02E-02 1.02E-02 �1.81E-06 1.02E-02 �1.51E-06 1.02E-02 �6.10E-07
9 9.67E-03 9.68E-03 8.48E-06 9.68E-03 7.48E-06 9.67E-03 �1.00E-07
10 1.13E-01 1.12E-01 �5.46E-04 1.12E-01 �4.83E-04 1.12E-01 �5.71E-04
11 6.25E-02 6.25E-02 �1.60E-05 6.24E-02 �4.24E-05 6.24E-02 �5.83E-05
12 6.15E-02 6.15E-02 1.10E-06 6.15E-02 8.16E-05 6.15E-02 8.65E-05
13 1.27E-02 1.27E-02 �4.38E-05 1.27E-02 �3.43E-05 1.27E-02 �3.01E-05
14 1.74E-02 1.74E-02 �2.25E-05 1.74E-02 �1.16E-05 1.74E-02 �2.24E-05
15 1.33E-02 1.33E-02 �2.27E-05 1.33E-02 �2.07E-05 1.33E-02 �2.47E-05
16 5.70E-03 5.70E-03 �5.40E-07 5.70E-03 2.24E-06 5.69E-03 �5.35E-06
17 2.88E-03 2.87E-03 �1.85E-06 2.87E-03 �2.31E-06 2.87E-03 �3.43E-06
18 2.75E-03 2.75E-03 5.77E-06 2.75E-03 2.01E-06 2.75E-03 2.96E-06
19 5.97Eþ01 5.97Eþ01 2.45E-02 5.97Eþ01 �1.21E-02 5.97Eþ01 3.31E-02
20 6.72Eþ01 6.72Eþ01 �9.90E-03 6.72Eþ01 �3.12E-02 6.72Eþ01 3.70E-03
21 5.86Eþ01 5.86Eþ01 �6.74E-03 5.86Eþ01 �4.65E-02 5.86Eþ01 �3.84E-02
22 9.99E-03 1.00E-02 8.26E-06 1.00E-02 2.50E-05 1.00E-02 2.92E-05
23 2.04Eþ00 2.03Eþ00 �9.30E-03 2.03Eþ00 �1.21E-02 2.03Eþ00 �7.77E-03
24 2.26E-01 2.21E-01 �4.71E-03 2.22E-01 �4.08E-03 2.22E-01 �4.41E-03
25 1.67E-01 1.64E-01 �2.82E-03 1.64E-01 �2.67E-03 1.64E-01 �2.86E-03

Table 8
Standard deviations and estimation factors of effective neutron generation times.

ID MCNP6 superhistory NOB MOB

Std Std Std EF Std EF

1 8.50E-07a 4.30E-06 4.34E-06 1.01 1.37E-06 1.01
2 1.02E-04 4.32E-05 3.83E-05 0.89 1.83E-05 1.34
3 5.25E-06 5.03E-06 5.14E-06 1.02 1.66E-06 1.04
4 5.94E-06 5.92E-06 5.98E-06 1.01 1.89E-06 1.01
5 1.02E-06 1.03E-06 1.02E-06 0.99 3.22E-07 0.99
6 1.07E-01 1.03E-01 1.07E-01 1.03 3.40E-02 1.04
7 7.37E-06 7.36E-06 7.34E-06 1.00 2.33E-06 1.00
8 7.30E-06 7.33E-06 7.23E-06 0.99 2.31E-06 1.00
9 5.26E-06 5.28E-06 5.27E-06 1.00 1.67E-06 1.00
10 4.40E-04 4.41E-04 4.27E-04 0.97 1.37E-04 0.98
11 5.10E-05 4.90E-05 4.89E-05 1.00 1.54E-05 1.00
12 4.99E-05 4.84E-05 4.73E-05 0.98 1.52E-05 0.99
13 2.15E-05 2.14E-05 2.15E-05 1.00 6.79E-06 1.00
14 2.39E-05 2.35E-05 2.39E-05 1.01 7.48E-06 1.01
15 2.22E-05 2.20E-05 2.18E-05 0.99 6.93E-06 1.00
16 4.72E-06 4.69E-06 4.73E-06 1.01 1.49E-06 1.01
17 2.52E-06 2.54E-06 2.48E-06 0.98 7.94E-07 0.99
18 2.24E-06 2.25E-06 2.26E-06 1.01 7.06E-07 0.99
19 4.02E-02 2.55E-02 2.53E-02 0.99 8.01E-03 0.99
20 4.18E-02 2.70E-02 2.67E-02 0.99 8.49E-03 0.99
21 3.79E-02 2.45E-02 2.44E-02 1.00 7.63E-03 0.99
22 1.77E-05 1.80E-05 1.78E-05 0.99 5.61E-06 0.98
23 3.67E-03 3.70E-03 3.68E-03 0.99 1.17E-03 1.00
24 3.01E-04 2.90E-04 2.94E-04 1.01 9.27E-05 1.01
25 1.85E-04 1.82E-04 1.80E-04 0.99 5.70E-05 0.99

a It should be noted that the standard deviations (Std) are given in ms. Therefore, a
Std. of 8.50E-07 should be read as 8.50 � 10�13 s.

Table 9
Figure of merits of effective neutron generation times.

ID superhistory NOB MOB

1 2.36Eþ05 2.24Eþ05 1.36Eþ06
2 5.41Eþ02 6.48Eþ02 2.36Eþ03
3 7.54Eþ05 6.40Eþ05 4.03Eþ06
4 1.87Eþ04 2.17Eþ04 1.75Eþ05
5 3.89Eþ05 3.13Eþ05 1.86Eþ06
6 4.59Eþ02 5.18Eþ02 4.32Eþ03
7 1.78Eþ05 1.55Eþ05 6.89Eþ05
8 1.88Eþ04 1.75Eþ04 1.56Eþ05
9 2.36Eþ04 2.44Eþ04 1.96Eþ05
10 5.00Eþ02 6.37Eþ02 4.93Eþ03
11 1.77Eþ03 1.88Eþ03 1.53Eþ04
12 1.60Eþ03 1.77Eþ03 1.36Eþ04
13 9.02Eþ02 9.26Eþ02 8.99Eþ03
14 1.29Eþ03 1.27Eþ03 1.26Eþ04
15 7.43Eþ02 7.80Eþ02 7.44Eþ03
16 2.14Eþ04 2.82Eþ04 2.01Eþ05
17 3.69Eþ04 3.89Eþ04 3.08Eþ05
18 4.26Eþ04 4.17Eþ04 3.49Eþ05
19 3.81Eþ03 4.02Eþ03 3.53Eþ04
20 4.38Eþ03 4.72Eþ03 4.34Eþ04
21 6.11Eþ03 6.36Eþ03 6.14Eþ04
22 1.19Eþ03 1.21Eþ03 1.19Eþ04
23 3.48Eþ02 3.72Eþ02 2.85Eþ03
24 6.17Eþ02 3.19Eþ02 3.01Eþ03
25 3.17Eþ02 3.49Eþ02 3.20Eþ03
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EFs are significantly different from the average value, such as the
second case where the EF for the NOB algorithm is 0.89 and that for
the MOB algorithm is 1.34. For these cases, the real uncertainties
should be examined by repeating the calculations many times with
different random seeds.

Moreover, the Figure of merits of effective neutron generation
times are shown in Table 9. The ratio of the FOMs of the NOB al-
gorithm to those of the superhistory algorithm is 1.03 on average
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whilst the ratio of the FOMs of the MOB algorithm to those of the
superhistory algorithm is 8.18 on average, indicating in terms of
computing effective neutron generation times, the efficiency of the
NOB algorithm is almost the same as that of the superhistory al-
gorithm, while the MOB algorithm is more efficient than the other
two algorithms by a factor of 8.18.

Since some of the experimental results are given in Rossi-alpha,
a,
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
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Table 10
Comparison of Rossi-alphas between MCNP6 and RMC.

ID MCNP6 superhistory NOB MOB

a a Diff. a Diff. a Diff.

11 �1.16E-01 �1.17E-01 �9.48E-04 �1.17E-01 �1.08E-03 �1.17E-01 �1.04E-03
12 �1.17E-01 �1.17E-01 �2.99E-04 �1.17E-01 �5.92E-04 �1.18E-01 �1.08E-03
13 �2.92E-01 �3.01E-01 �8.41E-03 �2.96E-01 �4.12E-03 �2.97E-01 �4.66E-03
14 �3.93E-01 �3.96E-01 �2.97E-03 �3.98E-01 �5.08E-03 �3.98E-01 �4.73E-03
15 �2.10E-01 �2.12E-01 �2.12E-03 �2.09E-01 4.83E-04 �2.12E-01 �2.04E-03
16 �1.13Eþ00 �1.15Eþ00 �1.70E-02 �1.15Eþ00 �2.03E-02 �1.15Eþ00 �1.54E-02
17 �6.49E-01 �6.54E-01 �5.49E-03 �6.51E-01 �1.99E-03 �6.41E-01 8.23E-03
18 �1.06Eþ00 �1.08Eþ00 �1.87E-02 �1.08Eþ00 �2.16E-02 �1.08Eþ00 �1.75E-02
19 �1.23E-04 �1.23E-04 �2.57E-07 �1.22E-04 7.33E-07 �1.22E-04 7.95E-07
20 �1.07E-04 �1.07E-04 �2.09E-07 �1.06E-04 4.73E-07 �1.06E-04 5.38E-07
21 �1.26E-04 �1.25E-04 1.06E-06 �1.26E-04 6.89E-07 �1.26E-04 5.56E-07
22 �2.10E-01 �2.13E-01 �2.39E-03 �2.13E-01 �2.85E-03 �2.12E-01 �1.64E-03
23 �3.64E-03 �3.71E-03 �7.22E-05 �3.74E-03 �1.02E-04 �3.72E-03 �8.57E-05
24 �3.20E-02 �3.29E-02 �8.96E-04 �3.28E-02 �7.54E-04 �3.30E-02 �9.10E-04
25 �4.13E-02 �4.18E-02 �5.10E-04 �4.13E-02 �2.80E-05 �4.16E-02 �3.89E-04

Table 11
Standard deviations and estimation factors of Rossi-alphas.

ID MCNP6 superhistory NOB MOB

Std Std Std EF Std EF

11 6.91E-04 6.44E-04 6.50E-04 1.01 2.04E-04 1.00
12 6.99E-04 6.26E-04 6.44E-04 1.03 2.04E-04 1.02
13 2.56E-03 2.55E-03 2.47E-03 0.98 7.90E-04 0.99
14 2.56E-03 2.45E-03 2.50E-03 1.01 7.77E-04 1.00
15 2.14E-03 2.09E-03 2.08E-03 1.01 6.53E-04 0.99
16 7.41E-03 7.10E-03 7.18E-03 1.01 2.26E-03 1.01
17 7.60E-03 7.20E-03 7.33E-03 1.02 2.26E-03 1.02
18 9.83E-03 9.50E-03 9.52E-03 1.00 3.00E-03 1.00
19 9.38E-07 5.64E-07 5.80E-07 1.04 1.81E-07 1.02
20 7.89E-07 4.83E-07 4.84E-07 1.01 1.52E-07 1.00
21 9.74E-07 5.98E-07 5.87E-07 0.98 1.88E-07 0.99
22 2.33E-03 2.28E-03 2.23E-03 0.97 7.12E-04 0.99
23 2.25E-05 2.22E-05 2.22E-05 0.99 6.98E-06 0.99
24 2.01E-04 1.94E-04 1.96E-04 1.02 6.18E-05 1.01
25 2.57E-04 2.52E-04 2.44E-04 0.98 7.78E-05 0.98

Table 12
Figure of merits and estimation factors and of Rossi-alphas.

ID superhistory NOB MOB

11 3.57Eþ01 3.71Eþ01 3.07Eþ02
12 3.45Eþ01 3.46Eþ01 2.78Eþ02
13 3.57Eþ01 3.82Eþ01 3.63Eþ02
14 6.16Eþ01 6.06Eþ01 6.10Eþ02
15 2.10Eþ01 2.13Eþ01 2.14Eþ02
16 3.78Eþ02 4.98Eþ02 3.55Eþ03
17 2.38Eþ02 2.29Eþ02 1.89Eþ03
18 3.66Eþ02 3.63Eþ02 2.96Eþ03
19 3.30Eþ01 3.20Eþ01 2.88Eþ02
20 3.46Eþ01 3.57Eþ01 3.36Eþ02
21 4.67Eþ01 5.06Eþ01 4.66Eþ02
22 3.36Eþ01 3.52Eþ01 3.32Eþ02
23 3.23Eþ01 3.48Eþ01 2.69Eþ02
24 3.05Eþ01 1.57Eþ01 1.50Eþ02
25 1.07Eþ01 1.21Eþ01 1.11Eþ02

Y. Qiu et al. / Progress in Nuclear Energy xxx (2017) 1e1110
a ¼ �beff
Lp

; (30)

where Lp is the effective generation time for prompt neutrons, this
parameter should also be computed for verification and validation.

Table 10 exhibits the Rossi-alphas computed by MCNP6 and
different algorithms of RMC and their differences. And the values of
Rossi-alpha, the differences in Table 10 and the standard deviations
in Table 11 are all given in ms�1. Again, the MCNP6 results are taken
as the reference results. As presented in Table 10, the differences in
the Rossi-alpha between MCNP6 and any of the three algorithms of
RMC, i.e., the superhistory algorithm, the NOB algorithm and the
MOB algorithm, are within five standard deviations, indicating all
three algorithms of RMC agree with MCNP6.

Additionally, as shown in Table 11, the average EF for both the
NOB and MOB algorithms are 1.00, which suggests both algorithms
avoid underestimation of the variances of Rossi-alphas compared
to the superhistory algorithm.

Furthermore, according to Table 12, the ratio of the FOMs of the
NOB algorithm to those of the superhistory algorithm is 1.02 on
average while the ratio of the FOMs of the MOB algorithm to those
of the superhistory algorithm is 8.95 on average, which indicates in
terms of computing Rossi-alphas, the efficiency of the NOB algo-
rithm is almost the same as that of the superhistory algorithm,
while the MOB algorithm is more efficient than the other two
Please cite this article in press as: Qiu, Y., et al., Calculation of adjoint-w
Progress in Nuclear Energy (2017), http://dx.doi.org/10.1016/j.pnucene.20
algorithms by a factor of 8.95.
Table 13 exhibits the difference in Rossi-alphas among MCNP6,

RMC and experimental results (Nuclear Science Committee, 2010;
Brookhaven National Laboratory, 1986; Tonoike et al., 2002). The
experimental results are taken as the reference results for the test
problems. As can be seen, the differences in the Rossi-alpha be-
tween the experiments and either MCNP6 or any of the three al-
gorithms of RMC, i.e., the superhistory algorithm, the NOB
algorithm and the MOB algorithm are within nine standard
deviations.

It should be noted that since the memory consumption of the
adjoint-weighted kinetic parameters is not significant compared to
the memory consumption of keff sensitivity coefficients to nuclear
data. Therefore, the memory usage for different methods were not
investigated in terms of the adjoint-weighted kinetic parameters.
For the memory consumption of keff sensitivity coefficients to nu-
clear data, please refer to the reference (Qiu et al., 2016).
5. Conclusions

In this work, three algorithms, namely, the Non-Overlapping
Blocks algorithm, the Multiple Overlapping Blocks algorithm and
the superhistory algorithm were implemented in the Reactor
Monte Carlo code RMC to compute adjoint-weighted kinetic pa-
rameters. These algorithms were compared in terms of accuracy,
efficiency and estimation of variance. All three algorithms in RMC
agree well with both MCNP6 and experimental results. In terms of
eighted kinetic parameters with the Reactor Monte Carlo code RMC,
17.03.023



Table 13
Comparison of Rossi-alphas between experimental results and calculation results.

ID Experimental results MCNP6 Superhistory NOB MOB

a Std

11 �1.17E-01 1.00E-03 1.38E-03 4.28E-04 3.00E-04 3.40E-04
12 �1.17E-01 1.00E-03 4.85E-04 1.86E-04 �1.07E-04 �5.93E-04
13 �2.67E-01 5.00E-03 �2.53E-02 �3.37E-02 �2.94E-02 �3.00E-02
14 �3.82E-01 2.00E-03 �1.13E-02 �1.43E-02 �1.64E-02 �1.60E-02
15 �2.14E-01 5.00E-03 4.03E-03 1.92E-03 4.52E-03 1.99E-03
16 �1.10Eþ00 2.00E-02 �3.06E-02 �4.75E-02 �5.08E-02 �4.59E-02
17 �6.40E-01 1.00E-02 �9.00E-03 �1.45E-02 �1.10E-02 �7.75E-04
18 �1.00Eþ00 1.00E-02 �6.03E-02 �7.90E-02 �8.19E-02 �7.77E-02
19 �1.22E-04 4.00E-06 �6.15E-07 �8.72E-07 1.18E-07 1.80E-07
21 �1.27E-04 2.90E-06 5.16E-07 1.58E-06 1.21E-06 1.07E-06
22 �1.97E-01 1.00E-02 �1.33E-02 �1.57E-02 �1.61E-02 �1.49E-02
23 �3.38E-03 7.40E-05 �2.56E-04 �3.28E-04 �3.57E-04 �3.41E-04
25 �3.73E-02 4.77E-04 �3.98E-03 �4.49E-03 �4.01E-03 �4.37E-03
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efficiency, the Non-Overlapping Blocks algorithm is as efficient as
the superhistory algorithm while the Multiple Overlapping Blocks
algorithm are more efficient than the other two algorithms by
almost a factor of a block size. Moreover, while the variances of keff
obtained by the power method are underestimated by 7%
compared to those obtained by the superhistory method, the dif-
ferences in variances of adjoint-weighted kinetic parameters
among the three algorithms are ignorable, suggesting the three
algorithms almost produce the same level of estimation of variance.
Efforts should be made to understand the reason why there are not
differences in estimation of variances of adjoint-weighted kinetic
parameters among different algorithms in the future work. Addi-
tionally, the superhistory algorithm requires much lower memory
than the other two algorithms and can reduce the large con-
sumption of memory needed for sensitivity coefficient calculations
(Qiu et al., 2016). Future work will focus on developing a capability
of computing generalized sensitivity coefficients based on the
superhistory method.
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