Title
Environmental Genomics Reveals a Single-Species Ecosystem Deep Earth

Permalink
https://escholarship.org/uc/item/9t05073g

Author
Arkin, Adam P.

Publication Date
2009-02-08
Environmental Genomics Reveals a Single-Species Ecosystem Deep Earth

Dylan Chivian1,2,*, Eric J. Alm1,3, Eoin L. Brodie1,4, David E. Culley5, Paramvir S. Dehal1,2, Todd Z. DeSantis1,4, Thomas M. Gihring6, Alla Lapidus7, Li-Hung Lin8, Stephen R. Lowry7, Duane P. Moser9, Paul Richardson7, Gordon Southam10, Greg Wanger10, Lisa M. Pratt11,12, Gary L. Andersen1,4, Terry C. Hazen1,4,12, Fred J. Brockman5, \textbf{Adam P. Arkin}1,2,13, Tullis C. Onstott12,14

*Presenting author (DCChivian@lbl.gov)

1Virtual Institute for Microbial Stress and Survival (http://vimss.lbl.gov), Berkeley, CA, USA
2Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
3Departments of Biological and Civil \& Environmental Engineering, MIT, Cambridge, MA, USA
4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
5Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
6Department of Oceanography, Florida State University, Tallahassee, FL, USA
7Genomic Technology Program, DOE Joint Genomics Institute, Berkeley, CA, USA
8Department of Geosciences, National Taiwan University, Taipei, Taiwan
9Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, NV, USA
10Department of Earth Sciences, University of Western Ontario, London, ON, Canada
11Department of Geological Sciences, Indiana University, Bloomington, IN, USA
12IPTAI NASA Astrobiology Institute, Bloomington, IN, USA
13Department of Bioengineering, University of California, Berkeley, CA, USA
14Department of Geosciences, Princeton University, Princeton, NJ, USA

Acknowledgements

This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.

Environmental genomics is permitting a more complete understanding of life on and in the Earth, even when the isolation of organisms from a given ecosystem has proven intractable. The study of deep subsurface organisms is of particular interest as such investigations illuminate a mode of life that exists without input from the photosphere, giving us a better understanding of the physiology of anaerobic microorganisms that may be used in bioremediation applications. DNA from low biodiversity fracture water collected at 2.8 km depth in a South African gold mine was sequenced and assembled into a single, complete genome. This uncultured Gram-positive bacterium, \textit{Candidatus Desulforudis audaxviator}, is prevalent at depths > 1.5 km and its near-clonal population comprises > 99.9% of the microorganisms inhabiting the fluid phase of the MP104 fracture. Its genome indicates a motile, sporulating, sulfate reducing, chemoautotrophic thermophile that is capable of fixing its own nitrogen and carbon using machinery shared with archaea. \textit{Candidatus Desulforudis audaxviator} appears capable of an independent lifestyle well suited to long-term isolation from the photosphere deep within Earth’s crust, and offers the first example of a natural ecosystem that has its biological component entirely encoded within a single genome.