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Elements of Cellular Blind Interference Alignment —
Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

Syed A. Jafar

Center for Pervasive Communications and Computing

Department of Electrical Engineering and Computer Science

University of California Irvine, Irvine, California, 92697

Abstract

We explore degrees of freedom (DoF) characterizations of partially connected wireless net-
works, especially cellular networks, with no channel state information at the transmitters.
Specifically, we introduce three fundamental elements — aligned frequency reuse, wireless in-
dex coding and interference diversity — through a series of examples, focusing first on infinite
regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally
on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency
reuse refers to the optimality of orthogonal resource allocations in many cases, but according
to unconventional reuse patterns that are guided by interference alignment principles. Wireless
index coding highlights both the intimate connection between the index coding problem and
cellular blind interference alignment, as well as the added complexity inherent to wireless set-
tings. Interference diversity refers to the observation that in a wireless network each receiver
experiences a different set of interferers, and depending on the actions of its own set of interfer-
ers, the interference-free signal space at each receiver fluctuates differently from other receivers,
creating opportunities for robust applications of blind interference alignment principles.
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1 Introduction

We use the compact phrase Cellular Blind Interference Alignment (CB) to refer broadly to the
study of degrees of freedom (mainly interference alignment) of partially connected (mainly cel-
lular) wireless networks with no channel state information (blind) at the transmitters. Since the
class of partially connected wireless networks is quite extensive, our goal is not to be exhaustive
but to shed light into the non-trivial nature of the problem, and highlight the basic princi-
ples relevant to these settings through carefully chosen examples. We start with a motivating
example, and then summarize the background for this work.

1.1 Locally Connected 4-Cell Downlink Network

Consider the 4 cell downlink setting shown in Fig. 1(a). To model propagation path loss the
network is assumed to be partially (locally) connected. Specifically, each base station is heard
only within the cell area shown as a shaded disk centered at that base station. This gives rise to
interference for the users located in the overlapping cellular regions. In the figure we show two
users in each boundary region, one for each of the two cells that overlap at that boundary. For
example, receivers a1, a2 want to receive independent messages Wa1,Wa2 from the base station
A, but have to deal with interference from base stations B,C, respectively.

Figure 1: (a) Locally connected 4-cell downlink network, (b) Equivalently, a partially connected X network

In order to emphasize robustness, suppose we wish to investigate this partially connected
network under fairly pessimistic assumptions — that all the non-zero channels are independent
and identically distributed (i.i.d.) at any given time, and vary in an i.i.d. manner across
blocks according to the standard block fading model applied identically to all users, there is
only one antenna at each transmitter and receiver, there is no channel state information at
the transmitters (no CSIT) other than the knowledge of the topology (connectivity) of the
network, and the receivers only know their own channels from the base stations that they
can hear. Because the users inhabiting the same boundary are statistically indistinguishable
from the transmitters’ perspective, they have the same ability to decode messages and hence
may be combined into one equivalent user without loss of generality, as shown in Fig. 1(b),
producing a partially connected X network setting [1] with 8 independent messages, one from
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each transmitter to each connected receiver. So, e.g., the receiver labeled ‘ab’ wants to decode
two independent messages sent from transmitters labeled A,B.

We wish to find out the degrees of freedom (DoF) of this setting. A natural scheme would
be an orthogonal (frequency reuse) scheme which eliminates interference, e.g., cells A,D are
simultaneously active for half the time (or over half the frequency band) and cells C,D are
simultaneously active for the remaining half of the time. This orthogonal scheme achieves 0.5
DoF per cell, and it is easy to see that no orthogonal scheme can achieve higher DoF. But is
this the optimal DoF value for this network? Because there is no CSIT, one might think so.
The reader might enjoy giving this question some thought to find the best possible achievable
DoF value before proceeding to the solution which will be presented in a later section of this
paper.

1.2 Background

The idea of interference alignment highlights both the opportunities and the challenges inherent
in a wireless communication network [2]. On the one hand, interference alignment schemes show
remarkable potential to increase the number of available signal dimensions [3]. On the other
hand, most interference alignment schemes assume global availability of vast amounts of channel
knowledge (even if it is delayed [4, 5]), which implies excessive training and feedback overheads.
The extent to which these substantial overheads are essential, is the central issue that could
define the role of interference alignment schemes in future wireless networks. One particularly
interesting aspect of this broader question is the feasibility of interference alignment without
any knowledge (not even delayed knowledge) of the actual channel coefficient realizations at the
transmitters, and only local channel knowledge at the receivers.

The challenging nature of the problem is evident in the observation that the degrees of free-
dom with no channel state information at the transmitter(s), i.e., DoF with no CSIT, remain
unknown in general for all those wireless networks where interference alignment is relevant in the
presence of CSIT. Conventional wisdom, consistent with a few conjectures [6, 7], has consistently
predicted a collapse of DoF, and therefore the infeasibility of interference alignment, with no
CSIT. However, except under additional assumptions of homogeneity1 such as isotropic fading
conditions, degradedness or statistical indistinguishability of receivers where indeed the collapse
of DoF has been established [8, 9, 10, 11], the DoF remain unknown. A case in point is the
Lapidoth-Shamai-Wigger conjecture [6] on the collapse of DoF of a MISO BC (multiple input
single output broadcast channel) which remains unresolved, except when the users are (essen-
tially) statistically indistinguishable. On the other hand, there are recent results that support
the feasibility of interference alignment even with channel uncertainty. A notable example is
the compound setting with arbitrary (finite) number of states where the DoF are shown to be
robust to channel uncertainty [12].

Perhaps the strongest evidence so far, of the feasibility of interference alignment with no
CSIT, is presented in [13, 14, 15] through the idea of blind interference alignment. The central
idea of blind interference alignment, introduced in [13], is that the knowledge of distinct chan-
nel coherence patterns associated with different receivers, without any knowledge of the actual
channel coefficient realizations, may be enough to achieve interference alignment. For example,
the MISO BC with two antennas at the base station, where one user experiences primarily time-
selective fading and the other user experiences primarily frequency-selective fading, is shown to
achieve 4

3 DoF (which is also the information theoretic DoF outer bound for this setting), with-
out any knowledge of the actual channel coefficient realizations at the transmitter. Since the

1It is important to clarify that while i.i.d. isotropic fading is the most commonly studied example of the “no CSIT”
setting, the “no CSIT” assumption does not necessarily imply isotropic fading conditions or statistical equivalence of
receivers. Knowledge of long term channel statistics, e.g., the fading distribution, coherence intervals etc., which can
vary from user to user, may be assumed within the no CSIT framework. What is not allowed in the no CSIT setting
is the knowledge of the actual channel coefficient realizations.
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overhead of learning long term channel statistics (in this case the channel coherence intervals)
is small, this is easily one of the most overhead-free examples of interference alignment. How-
ever, there is a caveat here, in that one must rely on nature to create suitably heterogeneous
coherence intervals for blind interference alignment. Another apparent limitation is that the
scheme relies strongly on the block fading model, requiring both that the channel coefficients
stay constant within a coherence interval and that they change from one block to another. While
the requirements can be clearly softened for practical applications at finite SNR by limiting to
those settings where the channel coefficients are sufficiently constant over a coherence interval
and sufficiently distinct across coherence intervals, it does considerably narrow down the scope
of practical applications.

An alternative application of blind interference alignment is introduced in [14, 15] where
instead of relying on nature to provide suitable heterogeneous coherence intervals, distinct an-
tenna switching patterns are employed at various receivers that are equipped with reconfigurable
antennas (equivalently, antenna selection). Assuming that the length of the switching pattern is
well within the coherence interval of all channels, small scale coherence patterns are artificially
imposed by the switching of antennas. While no feedback overhead is required to communicate
the coherence patterns resulting from antenna switching (which is performed in a pre-determined
fashion), the caveat here is the need for reconfigurable antennas, which limits the application of
this form of blind interference alignment.

1.3 Robustness Assumptions

In this work we continue the search for more robust blind interference alignment principles.
As a measure of progress, at the very least we wish to avoid the limitations of the previous
approaches. We would like to neither be dependent on nature to create coherence patterns
that vary from user to user in a suitable manner, nor require additional hardware in the form
of reconfigurable antennas to artificially impose those patterns. In order to allow only robust
schemes, we pre-emptively enforce the following 5 assumptions throughout this work.

1. Ordinary Coherence Model: Much of this work, especially the next section on aligned
frequency reuse requires no assumptions on physical coherence intervals. In subsequent
sections, when we do require physical channel coherence, we ensure robustness by applying
the standard block fading model identically to all channels, so that all channels have the
same coherence time, called the network coherence time. Note that the blind alignment
solution of [13], which requires naturally occurring heterogeneous block fading models, is
precluded.

2. Ordinary antennas: The antennas are not reconfigurable, i.e., there exists no mechanism
to artificially switch the channel coefficient value between two nodes. Thus, the blind
alignment solution of [14, 15] does not apply.

3. Blind Transmitters: The transmitters have no knowledge of actual channel coefficient
values. Thus there is no feedback overhead for acquiring CSIT.

4. Local CSIR: Channel state information at the receiver (CSIR) is limited to only the channel
coefficients directly associated with the receiver. Thus, each channel coefficient value is
precisely known to only one node (the associated receiver), and there is no overhead of
sharing channel coefficients among nodes.

5. Partial Connectivity: While we assume that the transmitters do not know the actual
channel coefficient realizations, a knowledge of the connectivity of the network, is assumed.

It is the last assumption, of local (or partial) connectivity, that is the most critical2. Wireless
networks invariably possess a locally connected character due to the universality of propagation

2What is critical is the significant difference in signal strengths from adjacent base stations versus those that are
farther away. It is notable that the Wyner type connectivity model, where distant base stations are assumed to
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path loss. The main contribution of this work is the idea that local or partial connectivity
naturally creates opportunities for robust interference alignment with no CSIT. Since local
connectivity is most directly associated with cellular networks, we refer to this research direction
as cellular blind interference alignment.

2 The Cellular Blind Interference Alignment Problem CB(C,Wt,Wr)

2.1 Problem Formulation

Let T = {t1, t2, · · · } be the index set of transmitters, R = {r1, r2, · · · } be the index set of
receivers, and W = {W1,W2, · · · } be the set of messages in a partially connected wireless
network. The number of elements in these sets corresponds to the number of transmitters,
receivers and messages, respectively, and may be infinite for extended networks. All messages
are independent.

A cellular blind interference alignment setting is defined by a connectivity set C and a
mapping of messages to transmitters and receivers.

C 4
= {(r, t) such that crt = 1, r ∈ R, t ∈ T } (1)

where crt ∈ {0, 1}, r ∈ R, t ∈ T , is a binary random variable that takes the value 1 if receiver r
is “connected” to transmitter t, and 0 otherwise. Let us define message sets corresponding to
each transmitter and each receiver.

∀ t ∈ T , Wt ⊂ W (2)

∀ r ∈ R, Wr ⊂ W (3)

∀ t 6= t′, Wt ∩Wt′ = φ (4)⋃
t∈T
Wt =W (5)

i.e.,Wt is the set of messages originating at transmitter t ∈ T ,Wr is the set of messages desired
by receiver r ∈ R, each message originates at a unique transmitter but may be intended for
multiple receivers.

With this notation, the locally connected 4-cell network presented in the introduction is
described as follows.

T = {A,B,C,D} (6)

R = {a1, a2, b1, b2, c1, c2, d1, d2} (7)

W = {a1, a2, b1, b2, c1, c2, d1, d2} (8)

WA = {a1, a2},WB = {b1, b2},WC = {c1, c2},WD = {d1, d2}
Wa1

= {a1},Wa2
= {a2},Wb1 = {b1},Wb2 = {b2},Wc1 = {c1},Wc2 = {c2},Wd1

= {d1},Wd2
= {d2}

Evidently, detailed notation can be quite cumbersome even for small networks. For this reason,
whenever possible, we will simply describe the problem through a network graph. The notation
will be useful especially when dealing with arbitrary settings, e.g., in Section 5 where we will
refer to arbitrary problem formulations as CB(C,Wt,Wr).

Further context is provided by the channel model.

be entirely disconnected, is used in this work only for analytical simplicity and is not a make-or-break assumption.
Extensions to GDoF settings for example can be made to include more elaborate connectivity models.
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2.2 Channel Model

While we will adapt the notation from section to section to keep it from becoming too cumber-
some, the basic channel model throughout this work is the standard Gaussian network, described
as:

∀r ∈ R, Yr(n) =
∑
t∈T

crtHrt(n)Xt(n) + Zr(n) (9)

where during the nth channel use, Yr(n) is the observed signal at receiver r, Zr(n) is the additive
white Gaussian noise term, Hrt(n) is the channel coefficient between transmitter t and receiver
r, Xt(n) is the symbol sent from transmitter t, and crt ∈ {0, 1} is the connectivity parameter.
Note that connectivities are assumed to be fixed for the duration of communication. The
input symbols are subject to a power constraint P , i.e., ∀t ∈ T , E|Xt|2 ≤ P . We will assume all
symbols are complex. The AWGN is assumed to be zero mean unit variance circularly symmetric
complex Gaussian. To avoid degeneracies, each channel coefficient magnitude is restricted to
a finite interval bounded away from zero and infinity. The receivers have knowledge of their
channels from all transmitters to which they are connected, i.e., receiver r knows Hrt(n) for
all t such that crt = 1. We refer to this as the local CSIR assumption, because no receiver is
required to learn channels associated with other receivers.

Next we describe the assumptions regarding channel random processes [Hrt(n)] across space
(r, t) and across time (n). In the spatial dimension, we will always assume channel variables
are independent across r, t. If we additionally impose the condition that [Hrt(n)] are identically
distributed across r, t then we simply refer to it as the spatially i.i.d. fading model.

In the time dimension, we make the block fading assumption where all channel coefficients
are constant within a network coherence block and switch to an independent realization from
one block to the next. The fading across blocks is assumed i.i.d. according to a continuous
distribution. There are some subtle issues with block fading models, that we overcome through
a novel set of assumptions, which we explain next.

The block fading model captures the channel coherence phenomenon which is certainly real-
istic. However, a predetermined setting of block boundaries gives rise to artificial “edge effects”
because the achievable schemes, which may require symbol extensions, must conform to the
externally imposed block structure. To avoid these artificial issues, and to retain the focus on
essential aspects, we will assume that the choice of the channel fading block length, τ , is in the
hands of the codebook designer, up to a finite pre-set upper bound, τmax and subject to the
constraint that all channels have the same coherence block length. In other words, the physical
network coherence time is captured by the parameter τmax which is intended to be a coarse
metric, as coherence time should be in practice. Within the confines of this coarse coherence in-
terval, an achievable scheme can decide precisely how much coherence it needs without worrying
about edge effects by setting the theoretical network coherence interval τ to any integer value
in the range [0, τmax], which must be held fixed throughout the duration of communication. A
converse must therefore hold for all possible choices of coherence intervals in this range. Note
that τ , chosen offline, is a constant network parameter known to all nodes. In general we will
only distinguish between two cases: the assumption that τmax is large enough will simply be
called “sufficient coherence” in time, and the assumption that τmax = 1 will be called i.i.d.
fading in time.

To summarize, we have four basic statistical channel models: i.i.d. or sufficient coherence in
time, and i.i.d. or not (only independent but not identically distributed) in space. Note that
the temporal statistics do not distinguish one channel from another, only spatial statistics (if
not assumed i.i.d.) can.

Regarding CSIT, the transmitters are aware only of the channel statistics, i.e., properties
that do not change with n. This includes the connectivities crt, and the network coherence time
τ , and of course, does not include channel coefficients Hrt(n).
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The small set of basic models is chosen for convenience rather than necessity. Most of our
results are valid for less restrictive assumptions than the chosen models. Occasionally, we will
highlight the generalizations. For instance, in the next section, all the results continue to hold
as long as the channels have magnitudes bounded away from zero and infinity. Beyond this,
we need no other assumption. The channels may or may not be block fading, may be drawn
from continuous distributions or chosen arbitrarily, may not even be ergodic or stationary, they
may stay constant or vary, independently or according to some arbitrary spatial and temporal
correlation model, it will not impact the DoF results.

Finally, the achievable rates, capacity region and degrees of freedom are defined in the
standard Shannon theoretic sense, and we are interested in the DoF value for the network.

3 Aligned Frequency Reuse

Frequency reuse, i.e., an orthogonal allocation of signaling dimensions based on connectivity, is
a central concept for cellular networks. For example, consider the simplified cellular downlink
setting shown in Fig. 2(a) where a series of base stations is evenly spaced along a straight
line, defining an infinite array of cells. Due to path loss, each base station is heard within
its own cell and to a certain extent in its two neighboring cells, but no further than that.
The conventional frequency reuse plan for this setting is to divide the total spectrum into two
equal and orthogonal sub-bands and alternately allocate these bands to successive cells. Note
that all inter-cell interference is avoided by this simple scheme. Here we make an interesting
observation — that this frequency-reuse is in fact a simple form of interference alignment. Each
cell experiences two interferers besides its own desired signal, and yet each cell is able to access
one-half of the total spectrum. This is accomplished only because both interferers are aligned
within the same half of the spectrum. The similarity is explicitly evident from Fig. 2(b), where
the analogous (locally connected) K user interference channel setting is shown. Moreover, since
no knowledge of channel coefficient values is need at the transmitters, this simple example is in
fact a (trivial) case of blind interference alignment.

The interpretation of cellular frequency-reuse as interference alignment offers us a new per-
spective. It also highlights the significance of path-loss in the study of IA schemes. K/2 DoF
are achieved (and also optimal) in the K user interference channel, regardless of whether it is
fully connected (no path loss) or locally connected (due to path loss). The difference in the two
settings is in the degree of difficulty. Without path loss one would typically need highly sophis-
ticated IA schemes, requiring instantaneous, global, perfect channel knowledge. However, with
path loss, i.e., local connectivity, achieving K/2 DoF is as simple as the alternating orthogonal
frequency re-use pattern illustrated in Fig. 2.

In this section we consider infinite arrays of uniformly placed cells that are locally connected.
Three topologies are considered: 1) Linear Cellular Array, where cells are placed uniformly along
a straight line, 2) Square Cellular Array, where the cell placements fall on a square grid, and
3) Hexagonal Cellular Array, where the cells are placed uniformly in a hexagonal grid pattern.
We are interested primarily in the users located at the boundaries between adjacent cells, since
this is where interference is the most severe and where frequency planning is most needed.3

A one-dimensional cellular model is shown in Fig. 3. Since in a linear model, each cell has 2
adjacent cells with which it shares boundaries, Fig. 3 shows two representative users in each
cell, one at each shared boundary.

3This is consistent with the fractional frequency reuse principle used, e.g., in Mobile WiMAX, which allows users
near the cell center to follow a reuse factor of 1 and requires frequency planning only for cell edge users.
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Figure 2: Frequency reuse as a simple form of interference alignment. (a) A simple frequency reuse
pattern, and (b) An interference alignment setting. Red and yellow represent two halves of the
spectrum. Alignment is achieved at the receivers as the two undesired interferers occupy the same
half of the spectrum while the desired signal occupies the other half.

Figure 3: Locally connected one-dimensional cellular array where boundary users hear both adjacent
base stations.

3.1 Linear Cellular Array

As shown in Fig. 3, each base station is heard by all users around the cell boundary, both in its
own cell as well as the immediately adjacent cells. However, due to path loss, the signals do not
travel further beyond. Conventional spectral-reuse pattern used in this setting is shown in Fig.
4(a) where active cells that share a common cell edge are assigned different spectral bands, or
equivalently, only alternating cells are activated, the even numbered cells for half the time, and
the odd numbered cells for the remaining half of the time. Thus, each cell achieves 1/2 DoF and
all inter-cell interference is eliminated. The conventional frequency reuse solution, 1/2 DoF
per cell, is the baseline that we compare against, as we present next an alternative approach —-
aligned frequency reuse.

Aligned frequency reuse is illustrated in Fig. 4(b), where a periodic reuse pattern with
period 3 cells is repeated along the infinite sequence of cells. Every third cell (shown as the grey
shaded cells in Fig. 4(b)) is sacrificed, i.e., switched off. Since the transmitter of the sacrificed
cell generates no signal, all the boundaries of sacrificed cell become interference free and therefore
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Figure 4: (a) Conventional frequency reuse (periodic with period 2) allows 1/2 DoF per cell. (b) Aligned
frequency reuse (periodic with period 3) allows 2/3 DoF per cell, an improvement of 33% per cell. All
transmissions are isotropic. Red arrows point out active receivers.

all the neighboring cells can serve users that are located on the boundary of the sacrificed cell4.
Clearly the throughput per cell and per user can be symmetrized by shifting the pattern so that
each cell becomes the sink cell for 1/3 of the time. The resulting bandwidth allocation from
this aligned frequency reuse is 2/3 DoF per cell, which corresponds to an improvement of 33%
over the baseline. Next we establish the optimality of this aligned frequency reuse pattern.

Theorem 1 For the locally connected linear cellular model illustrated in Fig. 3, the optimal
DoF value is 2/3 DoF per cell.

Proof: First let us prove the information theoretic DoF outer bound. Recall that each base
station has two independent messages, one for each user located on either boundary. Because of
the symmetry of the problem, there is no loss of generality in assuming that each message carries
the same DoF. Now we claim that each message cannot have more than 1/3 DoF. Let us consider
any user in Fig. 3, e.g, the user in Cell 2 located at the boundary with Cell 3. Let us eliminate
all messages except the desired message from BS 2 and the two undesired messages from BS 3.
Clearly eliminating other messages cannot hurt the rates of the remaining messages. Now we
argue that all three remaining messages are resolvable by this user. Since the desired message is
decodable by design, the user can reliably reconstruct and subtract it from its received signal.
This gives the user an invertible channel to BS 3 (within bounded variance noise distortion),
from which it can reliably resolve both messages originating at BS 3. Thus, one user is able to
resolve all 3 messages. Since the user has only 1 antenna, the total DoF of all three messages
cannot be more than 1. This gives us an outer bound of 1/3 DoF per message. Since each cell
has two messages, it gives us an outer bound of 2/3 DoF per cell.

Achievability of 2/3 DoF per cell is already shown in Fig. 4(b), and clearly requires no
knowledge of channel realizations at the transmitters.

Remark: It is remarkable that not only is the 2/3 DoF per cell the optimal DoF value in
the absence of channel knowledge at the transmitters, but also that it is the optimal value even
with global and instantaneous channel knowledge. The difference between the two settings is
that if we consider multiple users at each boundary, the DoF outer bound without CSIT will
still be only 2/3 per cell (assuming here the users are statistically equivalent in the absence of

4Note that the red arrows in Fig. 4 do not indicate directional transmission (all transmission is isotropic), but
rather the choice of the receiver to be served within each active cell. The remaining receivers are turned off.
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CSIT), but with global CSIT the DoF per cell will approach 1 as the number of users increases,
i.e., as if all interference is eliminated.

3.2 Square Cellular Array

The one-dimensional setting shows that the benefits of aligned frequency reuse can be significant,
i.e., 33% improvement over the baseline corresponding to conventional frequency reuse. As we
go from one dimensions to two, perhaps the most interesting question is to determine if the
benefits diminish, increase, or remain the same.

Figure 5: Baseline frequency reuse pattern, achieves 1/2 DoF per cell.

To answer this question, we consider a two dimensional square cellular grid with the same
local connectivity assumptions as in the previous section. We assume, as before, that each user
on the boundary between two cells, hears comparable signal strengths from both base stations,
and each base station can be heard within its own cell and in the vicinity of its boundary with
its adjacent cells. The conventional frequency reuse solution for this setting is shown in Fig. 5,
and corresponds to 1/2 DoF per cell as before.

The aligned reuse pattern is shown in Fig. 6, where again the interference sinks are shown in
grey. The red arrows indicate the intended users whose messages are being transmitted. Recall
that the BS antennas are isotropic, so the red arrows do not represent directional transmissions.
From Fig. 6 it is clear that the achieved DoF value is 4/5 per cell. This corresponds to an
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Figure 6: Aligned frequency reuse, 60% improvement over the baseline. All transmissions are isotropic. Red
arrows only point out active receivers. All active receivers are adjacent to inactive (grey) cells.

improvement of 60% over the baseline. Next we establish the optimality of this result.

Theorem 2 For two dimensional square cellular grid model with local connectivity, as described
above, the optimal DoF value is 4/5 DoF per cell.

Proof: The proof of the outer bound is similar to the one-dimensional setting. Consider any
user at the boundary between two cells. We claim that this user can resolve not only its desired
message, which it must by design, but also all 4 messages from its neighboring interfering BS.
This is because if we eliminate all other messages, then the user can reconstruct and subtract
the signal from its desired BS, and then invert the channel to its interfering BS, thus resolving
all 5 messages. Since a user with only 1 antenna can resolve 5 messages, the DoF per message
cannot be more than 1/5. Then, since each cell has 4 independent messages, the DoF per cell
cannot be more than 4/5.

Achievability of 4/5 DoF per cell is already shown in Fig. 4(b), and clearly requires no
knowledge of channel realizations at the transmitters.

Remark: Once again it is remarkable that not only is the 4/5 DoF per cell the optimal DoF
value in the absence of channel knowledge at the transmitters, but also that it is the optimal
value even with global and instantaneous channel knowledge. This is because the outer bound
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argument presented above is not affected by the presence or absence of CSIT.

3.3 Hexagonal Cellular Array

Next, Fig. 7 shows the aligned frequency reuse pattern for a hexagonal cellular layout.

Figure 7: Aligned frequency reuse, 157% improvement over the baseline. All active receivers are adjacent
to inactive cells. While not shown explicitly, users are located on the cell boundaries, one on each side of the
boundary. All transmissions are non-directional. Red arrows only indicate the locations of the active users.
The base station transmitters in the grey cells are switched off.

Theorem 3 For two dimensional hexagonal cellular network with local connectivity, the optimal
DoF value is 6/7 DoF per cell.

Proof: The achieved value is 6/7 DoF per cell, as obvious from the choice of active users
illustrated in Fig. 7. Compared to the conventional 3 frequency reuse pattern, which results
in 1/3 DoF per cell, this represents a 157% improvement per cell. The information theoretic
optimality of 6/7 DoF per cell for this setting, both with or without CSIT, follows from similar
arguments as the previous theorems. Considering any user let us eliminate all messages except
the desired message and all the messages from the interfering base station. These 7 messages
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cannot have a total of more than 1 DoF because the single user with a single receive antenna
can resolve all 7 messages. This follows from the logical argument that the user must be able
to reliably decode his desired message by design, so he must be able to subtract the signal from
the desired base station, which allows the user to re-construct the transmitted symbol from
the interfering base station within bounded variance noise distortion, and thereby decode all 7
messages.

3.4 Reciprocal (Uplink) Networks

While reciprocal networks, i.e., networks obtained by switching the roles of transmitters and re-
ceivers for all messages, typically have the same DoF when global channel knowledge is available,
duality is not a property commonly associated with the no CSIT setting. Since we presented
all our results in a broadcast channel (BC) or downlink setting, a natural question is whether
the same DoF results hold in the reciprocal (uplink) network. Interestingly, this is the case, as
formalized by the following theorem.

Theorem 4 The reciprocal networks for the locally connected linear, square and hexagonal cel-
lular networks, have 2/3, 4/5, 6/7 DoF per cell, respectively, both with and without CSIT.

In other words, reciprocity holds.
Proof: Because the DoF optimal achievability schemes presented for the downlink settings are
orthogonal, it is easy to see that the same solution can be applied in the reciprocal setting by
reversing the direction of communication. The outer bounds also follow from similar principles
as before. Consider any base station receiver and eliminate all messages except those desired by
this base station and the message from one of the interfering transmitters. After decoding and
subtracting out its desired messages, clearly the base station is able to resolve the only remaining
signal, from the only interfering transmitter. Thus, if the base station has N neighboring cells
with which it shares a boundary, then the total DoF of N + 1 messages cannot be more than 1.
Thus, the DoF per message cannot be more than 1/(N + 1) and the total DoF per cell cannot
be more than N/(N + 1). This gives us the outer bound of 2/3, 4/5, 6/7 DoF per cell for the
linear, square and hexagonal settings, respectively.

While the DoF metric in conjunction with the locally connected models offers new insights,
such as the idea of aligned frequency reuse evident in all topologies considered so far, a natural
question is the robustness of the results as the connectivity model is enriched to account for
reduced but non-zero signal strengths from base stations located farther away. The simplest
metric to capture the diversity of signal strengths is the generalized degrees of freedom (GDoF)
metric. While in this work we are limited to DoF studies, we note that all our solutions can be
just as easily applied (albeit not necessarily optimal) within the GDoF setting by incorporating
the signals from farther base stations as the new noise floor. Since the immediately adjacent
base stations are already accounted for in our connectivity model, for the direct extension to
GDoF setting the only additional parameter that comes into play is the strength of the next
strongest interfering signal. This is captured by the distance of the receiver to the next nearest
base station (not the immediately adjacent base station). Here, we note that for the linear
and square grid models, the distance to the next strongest interferer is the same for both the
conventional frequency re-use solution and the aligned frequency re-use solution. Thus both of
these settings will maintain their relative advantage over conventional frequency reuse in the
GDoF setting. The aligned frequency reuse solution for the hexagonal setting on the other hand,
is a bit more sensitive because the next-nearest interferer is closer than with the conventional
frequency re-use setting. While this is a sobering observation, we note that because the DoF
improvement (157%) is much stronger for the hexagonal setting than the linear or square cellular
grids (33% and 60%, respectively), we do have additional room to accommodate interference.
The magnitude of the net improvement in the GDoF setting is an intriguing question for future
work. Further, in going beyond GDoF, what matters is not only the strengths of the strongest
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interferers, but the number of such interferers as well. Since this is only an SNR offset effect it is
not visible in DoF or GDoF studies but is quite relevant for performance results at finite SNR.
The aligned frequency reuse solution for even the linear and square cellular models will lose
some of its projected multiplicative (DoF) gains over conventional frequency reuse at moderate
SNR values due to this SNR offset. Finally, we conclude this discussion by reminding the reader
that because of the overly pessimistic assumptions regarding CSIT, even modest gains achieved
in this setting bode well for the overall question of practical feasibility of interference alignment
schemes.

4 Locally Connected 4-Cell Network

Having considered only infinite regular arrays of cells so far, we are now interested in finite clus-
ters of cells. While clusters and irregular cell locations are common even in traditional cellular
networks due to the peculiarities of the geographical terrain and propagation environments,
they are unavoidable in customer-deployed networks, such as femtocell architectures, which are
increasingly a part of the cellular landscape. Clusters and irregular topologies are also typical
for mission-centric or tactical networks.

In this section, we focus exclusively on the motivating example of Fig. 1 presented at the
beginning of this paper, solve it under various assumptions and highlight the interesting aspects,
such as the insufficiency of orthogonal solutions, the role of network coherence time and the
amount of channel knowledge needed at the receivers. We start with the sufficient coherence
assumption, and address the issue of orthogonality.

4.1 Are orthogonal solutions sufficient to achieve optimal DoF ?

The simplicity of the DoF optimal solutions for the cellular array models studied in the previous
section, is quite remarkable. Note that the DoF optimal solutions are orthogonal in all DoF
results that we have presented so far, in the sense that there is no interference experienced by
any active receiver, because all undesired transmitters that could be heard by active receivers
are switched off. It is natural to wonder if the optimality of orthogonal solutions is a surprising
coincidence or is it somehow a degeneracy forced by our excessively pessimistic assumptions. In
other words, do there always exist orthogonal solutions that are DoF optimal for partially con-
nected wireless networks with no CSIT, no heterogeneous coherence intervals, no reconfigurable
antennas, and only local channel knowledge at each receiver?

By solving the motivating example, we show that DoF optimal solutions, even with all the
pessimistic assumptions mentioned above, in general cannot be orthogonal. For the motivating
example of Fig. 1 it is clear that orthogonal solutions cannot achieve more than a total of 2
DoF. Here we show that for this network, the optimal DoF value with or without CSIT, is 8/3.

Theorem 5 The locally connected 4-cell downlink network shown in Fig. 1 with sufficient
coherence (τmax ≥ 3), has DoF = 8/3, both with or without CSIT, and both with and without
the spatially i.i.d. fading assumption.

Proof: The DoF optimal solution to the motivating example of Fig. 1 is illustrated in Fig.
8. A total of 8/3 DoF are achieved with no CSIT, with each message achieving 1/3 DoF. The
transmission takes place over three time slots and the transmitted symbols are shown in Fig. 1
next to the corresponding transmitters. The following table lists the received signals.

t Receivers a1, b1 Receivers a2, c2 Receivers c1, d1 Receivers b2, d2
1 hAa1 + hBb1 hAa1 + hCc1 hCc1 + hDd1 hBb1 + hDd1
2 hAa2 + hBb1 + hBb2 hAa2 hDd1 hBb1 + hBb2 + hDd1
3 hBb1 hCc2 hCc2 + hDd1 + hDd2 hBb1 + hDd1 + hDd2
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Figure 8: Transmitted symbols over three time slots. 8/3 DoF are achieved with no CSIT. Orthog-
onal solutions cannot achieve more than 2 DoF. 8/3 is also the optimal DoF value even with global
and perfect CSIT.

Note that there is some notational abuse in labeling the receivers by their desired symbols, but
we find this notation less cumbersome. For the same reason, AWGN is not explicitly mentioned
in the table. In the first column, t = 1, 2, 3 represents the three channel uses. The variables
hA, hB , hC , hD represent the channel coefficients from transmitters A,B,C,D, respectively, to
the receivers indicated at the top of the column. Note that each receiver at the top of the column
has a different channel to the same transmitter. However, since this is non-consequential, we
choose the less cumbersome notation where the channels are only identified by the transmitter
index. Finally, note that this is clearly not an orthogonal solution.

Since the receivers know the channel coefficients (local CSIR is enough), it is easy to see how
each receiver can resolve its desired symbol from its three received signals. Further, note that
both receivers at the top of the column can resolve each other’s messages as well. For instance,
receivers a1, b1 recover symbol b1 from the third time slot and by subtracting it out, obtain
the symbol a1 from the first time slot. Interference alignment is evident in the observation
that there are only 3 equations available to each receiver, involving 4 unknown (information
carrying) symbols. While in general 3 equations cannot be solved for 4 variables, here it is
possible to resolve the 2 desired variables at each receiver only because the 2 undesired variables
are aligned into one dimension, leaving a two dimensional space free from interference at each
receiver, wherein the desired 2 symbols are resolved. Perhaps the most interesting example is
the last column where receivers b2, d2 are able to resolve their desired symbols only because
the 2 undesired symbols b1, d1 are aligned along the same dimension, specifically along the
[1 1 1]T vector. Equivalently, b1, d1 always appear together in the same linear combination
as hBb1 + hDd1 and therefore can be treated as a single (aligned) variable, leaving us with 3
equations in 3 variables.

Interestingly, 8/3 is the DoF value, not only with no CSIT, but even with perfect and global
CSIT. The proof is identical to the arguments presented in the previous section. Consider any
receiver, say a1. Eliminate all messages except a1, b1, b2. The single antenna receiver can resolve
all three messages (decode desired message a1, remove the signal from A, allowing access to XB

within finite variance noise distortion, from which b1, b2 are resolved), so their sum DoF cannot
be more than 1. Repeating this argument for all receivers, we have the sum DoF bound of 8/3.
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4.1.1 Channel Coherence

A discussion of channel coherence requirements is in order. First, note that a network coherence
time of 3 symbols is sufficient for the scheme to work, i.e., if all channels remain constant for 3
symbols, the scheme works fine. Since 3 symbols is not a long duration by practical coherence
standards, and we do not distinguish between channels based on coherence times, we are well
within the confines of our robust assumptions. Second, note that the coherence is required
only for the users on the B − D boundary, i.e., receivers b2, d2. For all other receivers, the
scheme works even if channels vary in an arbitrary fashion from each symbol to the next. Also
note that receivers b1, a2, c2, d1 require only the channel knowledge to their desired base station
transmitters. However, if all channels are constant over the 3 symbols, there are additional
benefits, as each receiver needs to know the channel coefficient from only its desired transmitter.
This is because the interfering symbols can simple be subtracted out without learning their
channels, e.g., receiver a1 recovers symbol a1 by subtracting the third received signal hBb1 from
its first received signal hAa1 + hBb1, and no knowledge of hB is required.

Figure 9: [Chenwei Wang] Transmitted and received symbols over two time slots. 5/2 DoF are achieved
with no CSIT and without any need for channel coherence. Orthogonal solutions cannot achieve more than
2 DoF.

While the assumption of short term network coherence, i.e., that channels do not change
over a short duration is quite reasonable, we note that it is not required for all the orthogonal
solutions that we found in the previous section. One might wonder if orthogonal solutions would
still be optimal if we did not allow any coherence, e.g., if all non-zero channels varied in an i.i.d.
fashion. An alternative solution to the same 4 cell example, contributed by Chenwei Wang and
shown in Fig. 9, proves that this is not the case.

Fig. 9 shows the transmitted symbols next to the transmitters and the received signals next
to the receivers. hA(i) denotes the channel coefficient from transmitter A in time slot i, and the
receiver index is suppressed as before for compact notation. In two channel uses, transmitters
B,C,D send one symbol each for a total of 3 symbols b2, c1, d1, while transmitter A sends two
symbols a1, a2, to achieve 5/2 DoF. It is easily verified that there is no requirement for the
channels to remain constant from one symbol to the next. Since 5/2 DoF is better than the best
orthogonal solution, which cannot achieve more than 2 DoF, it is clear that even under i.i.d.
fading with coherence time of unity, orthogonal solutions are not sufficient for DoF optimality.
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4.2 Locally Connected 4 Cell Uplink Network

Next we consider the reciprocal setting where the roles of transmitters and receivers are switched
for each message, for the 4 cell cluster example, i.e., the uplink setting for our motivating
example. For ease of exposition we present all the information in Fig. 10 where the optimal
DoF value of 8/3 is achieved with network coherence time of 3 or more symbols, and in Fig. 11
where 5/2 DoF are achieved without any constraints on network coherence time.

Figure 10: (Uplink) Transmitted and received symbols over three time slots. 8/3 DoF are achieved
with no CSIT. Orthogonal solutions cannot achieve more than 2 DoF. 8/3 is also the DoF value
with perfect and global CSIT.

Theorem 6 The 4-cell uplink network, i.e., the reciprocal network of the 4-cell downlink net-
work shown in Fig. 1, with sufficient coherence (τmax ≥ 3), has DoF = 8/3, both with or without
CSIT, and both with or without spatially i.i.d. fading.

Fig. 10 shows the 4 cell uplink solution that achieves 8/3 DoF with no CSIT. The transmitted
and received symbols are shown in the figure. Channel variables fi represent channels to the
desired receiver and channel variables gi represent channels to the undesired receiver. The
index i corresponds to the subscript in the transmitter index. So, for example, the channel
from transmitter a1 to desired receiver A is f1 and the channel from transmitter c2 to undesired
receiver A is g2. The receiver index is suppressed for compact notation, but note that each
receiver experiences a different set of channel values, i.e., f1 for receiver A is different from f1
for receiver C. The difference in these values is inconsequential, however, since each receiver
only processes its own received signals. From the figure, it is easy to verify that receiver A can
resolve symbols a1, a2, receiver B can resolve b1, b2, C can resolve symbols c1, c2 and D can
resolve symbols d1, d2. The role of interference alignment is obvious because each receiver sees
3 equations in 4 variables, from which it needs to recover its two desired variables. This can
be done only because the 2 undesired variables occupy only a 1 dimensional space, because of
interference alignment. A network coherence time of 3 or more symbols is needed. Note also
that each receiver needs to know only the channel coefficients for the channels carrying the
desired information symbols. On the other hand, if each receiver knows all channels that it can
hear, then coherence is only needed for one of the 4 receivers, receiver D in Fig. 10. To see that
8/3 is also the DoF outer bound the argument is essentially the same as before. Consider any
receiver, e.g., receiver A and eliminate all messages except a1, a2, b1. The receiver can resolve
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all three messages (a1, a2 can be decoded by design and therefore subtracted to reveal b1 within
a bounded variance noise distortion), and since the receiver has only 1 antenna, the total DoF
of the three messages cannot be more than 1. Repeating the same argument for all receivers,
we arrive at the outer bound value of 1/3 DoF per message, or a total DoF value of 8/3. The
argument does not depend on the presence or absence of CSIT, so 8/3 is the DoF value with or
without CSIT.

Figure 11: Uplink. Transmitted and received symbols over two time slots. 5/2 DoF are achieved
with no CSIT and no requirements on channel coherence time. Orthogonal solutions cannot achieve
more than 2 DoF.

Finally, Fig. 11 shows how 5/2 DoF, which is more than the best possible DoF value with
orthogonal solutions, are achievable without CSIT, even if there is no coherence assumption.

4.3 Locally Connected 4-Cell Network with Spatially i.i.d. Fading:
DoF with Cooperation

Here we explore the impact of transmitter cooperation on the 4-cell downlink network with no
CSIT, when all (connected) channels are independent identically distributed, i.e., statistically
equivalent. Because of spatially i.i.d. fading, receivers a2, c2 are equivalent and can be replaced
with a single new receiver, say receiver ca. Similarly, receivers a1, b1 are replaced by receiver ab,
receivers b2, d2 are replaced with receiver bd, and receivers c1, d1 are replaced with receiver cd,
producing the partially connected X network of Fig. 1. Allowing all transmitters to cooperate
and relabeling receivers ca, ab, bd, cd as receivers 1, 2, 3, 4, respectively, gives us a 4 user MISO
BC where the transmitter has 4 antennas and each user has a single antenna, as shown in Fig.
12. For this BC, we will show a DoF outer bound with no CSIT.

The result, stated in the following theorem, shows that there is no DoF benefit of transmitter
cooperation for this network without CSIT.

Theorem 7 The locally connected 4-cell network of Fig. 1 with no CSIT and spatially i.i.d.
fading, has DoF ≤ 8/3 with full transmitter cooperation.

Remark: Note that the outer bound result holds regardless of the network coherence model.
On the other hand if network coherence time τmax ≥ 3 then we know that 8/3 DoF are also
achievable without cooperation, i.e., with sufficient coherence and spatially i.i.d. fading there is
no DoF benefit of transmitter cooperation without CSIT.

Proof: To prove the outer bound, we will use the compound setting. Let us add another
receiver that wants the message W1 and whose channel is also i.i.d. with that of the original
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Figure 12: Partially connected 4 User MISO BC with no CSIT, obtained by allowing full cooperation
among the 4 transmitters.

receiver 1. Let us identify the new receiver as Y ′1 . Similarly, we will add an independent but
statistically equivalent copy of receiver 3 and identify it as Y ′3 . Since the newly added receivers
are statistically equivalent to existing receivers and desire the same messages, any achievable
scheme for the original network is also an achievable scheme for the compound network. Now
that we have a compound setting for receivers 1 and 3, we can even provide full channel knowl-
edge to the transmitter (not a necessary step, but shows the strength of the outer bound), which
also cannot reduce capacity. Since none of these operations reduce capacity, the outer bound
for the compound channel setting with full channel knowledge is also an outer bound for the
original channel. We proceed as follows.

nR1 ≤ I(W1;Y n
1 ) + o(n) (10)

= h(Y n
1 )− h(Y n

1 |W1) + o(n) (11)

≤ n log(P )− h(Y n
1 |W1) + n o(log(P )) + o(n) (12)

Similarly, for receiver Y ′1 which also wants message W1,

nR1 ≤ n log(P )− h(Y ′
n
1 |W1) + n o(log(P )) + o(n) (13)

Adding (12) and (13), we have

2nR1 ≤ 2n log(P )− h(Y n
1 , Y

′n
1 |W1) + n o(log(P )) + o(n) (14)

Repeating the same steps for receiver Y3 and then Y ′3 , we have

2nR3 ≤ 2n log(P )− h(Y n
3 , Y

′n
3 |W3) + n o(log(P )) + o(n) (15)

Adding (14) and (16) we have

2n(R1 +R3) ≤ 4n log(P )− h(Y n
1 , Y

′n
1 , Y

n
3 , Y

′n
3 |W1,W3) + n o(log(P )) + o(n) (16)

= 4n log(P )− h(Xn
1 + Z

n

1 , X
n
2 + Z

n

2 , X
n
3 + Z

n

3 , X
n
4 + Z

n

4 , |W1,W3)

+ n o(log(P )) + o(n) (17)

= 4n log(P )− n(R2 +R4) + n o(log(P )) + o(n) (18)
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where Zi ∼ N (0,O(1)) and i.i.d. in time.
Applying limits n→∞ and then P →∞, we have

2d1 + 2d3 + d2 + d4 ≤ 4 (19)

By symmetry we also have

d1 + d3 + 2d2 + 2d4 ≤ 4 (20)

which leads us to the sum DoF bound

d1 + d2 + d3 + d4 ≤ 8

3
(21)

Thus, cooperation between transmitters does not increase DoF without CSIT, if the network is
sufficiently coherent (specifically, Tmax ≥ 3) and connected channels are spatially i.i.d.

Remark: Combining the results of Theorem 5 and Theorem 7, for the locally connected 4
cell network with spatially i.i.d. fading and sufficient coherence, we have established a curious
duality of DoF results:

1. Without transmitter cooperation, CSIT is not useful (Theorem 5).

2. Without CSIT, transmitter cooperation is not useful (Theorem 7).

Remark: If both CSIT and transmitter cooperation are available, then indeed the DoF are
higher. It is easy to verify that in that case the network has 4 DoF almost surely. Similarly,
if instead of transmitter cooperation, receiver cooperation is available, then it is easily verified
that the network has 4 DoF almost surely, even without CSIT.

Remark: Since the dual of the BC of Fig. 12 is itself, we have also established the DoF of
the locally connected 4 cell uplink network with transmitter cooperation, spatially i.i.d. fading
and no CSIT, in the reciprocal setting.

Remark: The spatially i.i.d. assumption is needed to reduce the 4 cell network into the
MISO BC with 4 receivers, i.e., to combine equivalent receivers. However, the DoF outer bound
presented above does not require spatially i.i.d. fading. Therefore, for the 4 user partially
connected BC shown in Fig. 12, even without spatially i.i.d. fading, the DoF are bounded
above by 8

3 .

5 Cellular Blind Interference Alignment: a Wireless Index
Coding Problem

In this section we study arbitrarily connected wireless networks, with arbitrary message sets
and no CSIT, and relate it to the index coding problem, which, incidentally, is the context that
produced the first known example of interference alignment [16, 2]. We start with a description
of the index coding problem.

5.1 Index Coding Problem IC(Wr,Wr)

Index coding is a network coding problem that is surprisingly easy to describe but can be
challenging to solve, and is open in general. It is simply a multiple unicast problem where all
links but one have infinite capacity. An index coding problem is defined by the set of receivers,
each specified by the message(s) it wants and the messages that are already available to that
receiver. Let us define Wr to be the set of messages desired by receiver r, and Wr to be the
set of messages already available to receiver r. With this notation we refer to an index coding
problem as IC(Wr,Wr).

An example is shown in Fig. 13 where we have 5 messages W1, · · · ,W5. Only the link shown
in black at the top of the figure has finite capacity, which maybe assumed to be unity without

20



loss of generality. All other links have infinite capacity. This means that receiver 1, who wants
W1, already has knowledge of W2,W5. Receiver 2, who wants W2, has knowledge of messages
W1,W3. Receiver 3 wants message W3 and has knowledge of W1,W2,W4. Receiver 4 wants W4

and knows W1,W2,W3,W5. Receiver 5 wants W5 and knows W1,W2,W3,W4. Equivalently

W1 = {W1}, W1 = {W2,W5}
W2 = {W2}, W2 = {W1,W3}
W3 = {W3}, W3 = {W1,W2,W4}
W4 = {W4}, W4 = {W1,W2,W3,W5}
W5 = {W5}, W5 = {W1,W2,W3,W4}

Figure 13: (a) Index coding problem. (b) Corresponding DoF problem: Gaussian index coding

Shown to the right in Fig. 13 is the corresponding DoF problem for a Gaussian broadcast
channel with cognitive receivers, which we label as GIC(Wr,Wr). In spite of the difference of
finite fields versus real/complex fields, the two are equivalent (i.e., have the same capacity) if
the capacity of the bottleneck edge in the index coding problem is chosen to be the same as the
capacity of the Gaussian link in the Gaussian index coding problem. The equivalence is readily
seen as a direct consequence of the much more general “network equivalence” result of Koetter et
al. [17]. Interestingly, in the network coding formulation over finite fields, it is known that linear
coding is not always sufficient [18]. While it seems that the equivalence of the two networks
might imply a similar insufficiency result for the Gaussian index coding problem, to the best of
our knowledge, such a result has not been formally established. Note that by linear coding in the
Gaussian index coding problem, we mean the DoF achievable through linear beamforming across
multiple channel uses. In the Gaussian index coding problem it is possible to perform network
coding over finite fields at the bit level, i.e., a network coding of messages, entirely before the
channel coding for transmission over the Gaussian channel. The channel coding in that case
only helps to convert the Gaussian channel into a noise-free data pipe, making the Gaussian
index coding problem identical to the index coding problem. For such bit level network coding it
is already known that linear schemes are not sufficient. However, the linearity that is of interest
to us, is where each message is independently linearly pre-coded into beamforming vectors (over
complex numbers) at the physical layer within the vector space created by multiple channel
uses and the separability of interfering messages is only guaranteed by linear independence of
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these vectors. The reason for our interest in linear precoding at the physical layer will soon be
evident. It is the Gaussian index coding formulation that is of immediate interest to us.

5.2 Cellular blind interference alignment as a wireless index coding
problem

Let us define a mapping from a cellular blind interference alignment problem to a (Gaussian)
index coding problem.

Mapping from CB to GIC: To each cellular blind interference alignment problem CB(C,Wt,Wr)
let us associate the Gaussian index coding problem GIC(Wr,Wr), such that the sets of desired
messages Wr are the same in both problems and

∀r ∈ R, Wr =
⋃
t ∈ T
crt = 0

Wt (22)

In other words, the set of messages already available to a receiver in the (Gaussian) index coding
problem is simply the set of all the messages in the CB problem that originate at transmitters
which are not connected to this receiver.

Mapping from GIC to CB: To each Gaussian index coding problem GIC(Wr,Wr), let
us associate the cellular blind interference alignment problem CB(C,Wt,Wr) such that the sets
of desired messages Wr are the same in both problems and

Wt = {Wt} (23)

crt =

{
0 if Wt ∈ Wr

1 otherwise.
(24)

In other words, there is a separate transmitter for each message, and a transmitter-receiver pair
are not connected in the CB problem if and only if the corresponding message was available
a-priori to the receiver in the GIC problem.

The following theorems formalize the general relationship between cellular blind interference
alignment problems and index coding problems.

Theorem 8 The DoF of each cellular blind interference alignment problem under the assump-
tion of spatially i.i.d. fading, are bounded above by the DoF of the corresponding Gaussian index
coding problem.

DoF (CB(C,Wt,Wr)) ≤ DoF
(
GIC(Wr,Wr)

)
(25)

where Wr is defined in (22).

Proof: Starting from the CB problem, we will go through a series of steps, each of which
cannot reduce DoF, to arrive at the corresponding GIC problem.

1. In the CB problem, let a Genie provide the messages Wr to receiver r, ∀r ∈ R.

2. Allow full connectivity, crt = 1, ∀t ∈ T , r ∈ R. This cannot hurt because of the previous
step which provided all the messages from the ”formerly disconnected” transmitters to each
receiver. Knowing all the messages from a transmitter allows the receiver to construct the
transmitted codewords. Since the receiver has full CSIR, it can simply subtract the new
interferers.

3. Allow full cooperation between all transmitters. This gives us a MISO BC with cognitive
receivers, i.e., where some receivers have prior knowledge of some messages.

4. Since the capacity of the BC depends only on the marginals and the channels are spatially
i.i.d., without loss of generality let us make the channel vector for one of the users (say,
the first user), also the channel vector of all the users.
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5. Let us provide full CSIT to the transmitter.

6. Since the transmitter has full CSIT, and the overall channel matrix (from the transmitter
to all receivers) has only unit rank, the transmitter can do a change of basis operation to
discard all redundant dimensions, leaving the transmitter with a single antenna.

7. Without loss of generality for DoF metric, both the channel gain and noise variance at each
receiver can be normalized to unity, e.g., by scaling at the transmitter, or the receivers.
This is only a cosmetic step, since the DoF value is unaffected by these normalizations.

The problem thus obtained is the corresponding GIC problem

Theorem 9 The maximum DoF value achievable through linear beamforming in the Gaussian
index coding problem is equal to the maximum DoF value achievable through linear beamform-
ing in the corresponding cellular blind interference alignment problem under the assumption of
sufficient coherence (i.e., assuming network coherence interval, τmax, is large enough).

Proof: A linear beamforming solution involves simultaneous transmission of information
symbols from each message along different (beamforming) vectors, in the vector space created
by multiple channel uses and complex dimensions. The simultaneous transmissions are linearly
superimposed on each other. For a linear beamforming solution to be feasible, each receiver
must be able to resolve its desired symbols. Specifically, what is required is that the vectors
carrying the desired symbols at each receiver, be linearly independent of each other and of the
vectors carrying the undesired symbols (interference).

Given a linear beamforming solution for the GIC problem, we can use the same beam-
forming vectors for the CB problem as well. Since the transmitters are distributed in the CB
problem, the beamforming vectors are assigned to the transmitters where the corresponding
messages originate. Simultaneous transmission by all transmitters creates the same superposi-
tion of signal dimensions as in the GIC problem. While each transmission gets scaled by the
corresponding (non-zero) channel coefficient in the CB problem, note that because we assume
sufficient coherence, the channel coefficient remains constant throughout. Finally, since scaling
the beamforming vectors by non-zero constants does not affect the linear independence prop-
erties of the set of vectors, a feasible solution for the GIC problem is automatically a feasible
solution for the CB problem as well.

Theorem 10 Whenever linear beamforming is DoF optimal for the Gaussian index coding prob-
lem it is also optimal for the corresponding cellular blind interference alignment problem under
the assumption of sufficient coherence and spatially i.i.d. fading.

Proof: The result is a direct consequence of Theorem 8 and Theorem 9.

5.3 Understanding the relationship between CB and GIC

The relationship between CB (with sufficient coherence and spatially i.i.d. fading) and GIC,
formalized by theorems 8, 9, 10, is evidently quite strong. What these theorems imply is
that when linear solutions are optimal, the two DoF problems are equivalent. Note that the
insufficiency of linear solutions has been an open question even for index coding over finite fields,
until recently a gap between linear and non-linear solutions was established by Blasiak et al.
[18]. While one might expect this result to carry over to the Gaussian index coding problem as
well, to the best of our understanding, it is not yet established that linear beamforming solutions
are insufficient for achieving the DoF of the Gaussian index coding problem. In any case, even if
we set aside the question of sufficiency of linear beamforming schemes, the complexity of settling
this issue does say something about the power of linear beamforming schemes. In other words,
even if linear beamforming schemes are not always DoF optimal, it is amply evident that they
are quite often DoF optimal. The equivalence between CB and GIC can also be interpreted in
the same sense.
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There is also an important distinction between CB and GIC settings. As mentioned earlier,
the GIC setting can take advantage of index coding solutions over finite fields by simply per-
forming them at the bit level before the physical layer coding, i.e., alignment of message bits
rather than alignment of physical signals. Physical layer channel coding would then be used
simply to clean up the noisy channel, i.e., to create an effective noise-free data pipe over which
aligned message bits can be sent to all receivers. This does not, however, appear to be possible
for the CB setting, because of two reasons. First, the messages coming from the same trans-
mitter cannot be aligned. This is because in the CB setting, no receiver has prior knowledge
of a strict subset of the messages originating at any particular transmitter. Either the receiver
knows all the messages (equivalently, it is not connected to the transmitter), or it knows none of
them (equivalently, it is connected) a-priori. Second, message alignments from multiple trans-
mitters is not possible because, the transmitters are distributed, carry disjoint message sets, and
therefore cannot jointly pre-process the messages, and also because the superposition of signals
takes place through unknown scaling factors (channel coefficients) which would appear to rule
out the possibility of lattice alignment. Because of these differences, we conclude that unlike the
GIC problem which may be essentially the same as an index coding problem and can certainly
access index coding solutions over finite fields, the CB problem is truly a “wireless” index coding
problem, and the distinction, as explained above, is quite significant. We will also see further
evidence of this distinction in the section on interference diversity.

5.4 Solving the Wireless Index Coding Problem

Having recognized the cellular blind interference alignment problem as a wireless index coding
problem, the natural next question is how to use this new insight to find solutions to the
cellular blind interference alignment problem. Indeed, the index coding problem is itself an
open problem. In fact, it is known that in its generality the index coding problem is rich
enough to capture the entirety of the multiple unicast problem in network coding [19], which
points to the difficulty of obtaining systematic solutions for blind cellular interference alignment
with arbitrary connectivities and arbitrary message sets. However, approximations, heuristic
approaches and even optimal solutions for special cases, e.g., symmetric network settings [20, 21]
or small networks, are often readily available, tractable, even quite simple as they are mostly
just linear beamforming solutions. Consider for example, our aligned frequency-reuse solutions,
which can also be posed as index coding problems, and turn out to be quite simple.

To illustrate some of the intuition that guides the solutions to index coding problems, we re-
visit our locally connected 4-cell network problem. Under the spatially i.i.d. fading assumption,
the CB problem is represented by the X network shown in Fig. 14(a). To convert this into the
corresponding index coding problem shown in Fig. 14(b), we first take the complement of the
CB network graph, i.e., we invert the connectivity (any transmitter and receiver not connected
in the CB problem are connected in the IC problem and any transmitter and receiver that are
connected in the CB problem are not connected in the IC problem), and then add the two nodes
with the bottleneck link at the top, connecting every transmitter to the source of the bottleneck
and every destination to the destination of the bottleneck. The GIC problem is obtained by
the mapping described previously and shown in Fig. 14(c). Let us focus on this figure. To find
the solution we list the desired alignments at each receiver. Receiver ca sees interference from
messages a1, c1 because these are the messages neither desired by receiver ca, nor available to
the receiver ca. Alignment of a1, c1 would be desirable for receiver ca, because it would free more
interference free dimensions for this receiver. Similarly, receiver ab would like a2, b2 to align,
receiver bd would like b1, d1 to align, and receiver cd would like c2, d2 to align. Thus we have four
alignment groups (a1, c1), (a2, b2), (b1, d1), (c2, d2). Since each receiver desires two messages, and
the aligned interference must occupy at least as much space as one message, the total signal
space must be at least three times the size of the space assigned to each message. Therefore,
a natural solution is to operate over a 3 dimensional space, and assign one dimension to each
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Figure 14: (a) Locally connected 4 Cell network problem as a partially connected X network, (b)
Corresponding index coding problem, (c) Corresponding Gaussian index coding problem, (d) Inter-
ference alignment solution: 4 beamforming vectors are used in a 3 dimensional space, each carrying
two symbols, for a total of 8/3 DoF.

message. Further, to achieve interference alignment the dimensions assigned to (a1, c1) should be
the same, as should be the dimensions assigned to (a2, b2), (b1, d1), (c2, d2). Thus, the solution is
simply to choose 4 pairwise linearly independent vectors in a 3 dimensional space and assign one
to each of the 4 groups, as shown in Fig. 14(d). The solution shown in Fig. 8 assigns the vector
[1, 0, 0]T to (a1, c1), the vector [0, 1, 0]T to (a2, b2), the vector [0, 0, 1]T to (c2, d2), and the vector
[1, 1, 1] to (b1, d1). Note that any 4 pairwise linearly independent vectors would have sufficed,
but the columns of the identity matrix are preferable, because they do not require coherence
of channels. As mentioned previously, the solution presented in Fig. 8 requires coherence only
for the receiver bd where the alignment vector [1, 1, 1]T is used. By the same token, note that
the solution presented in Fig. 9 which requires no coherence, uses only the columns of the
identity matrix for alignment. The vector [1, 1]T , used for d1 does not align with any other

25



symbol. In general, faced with coherence interval constraints of τmax alignment can evidently
only be achieved over vectors whose support (i.e., the locations of non-zero elements) is limited
to τmax adjacent elements. Alignment solutions with these additional support constraints are a
promising direction for further study of robust cellular blind interference alignment principles.

To conclude this section, we point out that optimal index coding solutions are already known
for many settings, and are linear beamforming solutions with few exceptions. These solutions
directly carry over to the corresponding CB problem as DoF optimal solutions. For example, the
necessary and sufficient condition for each message in an index coding problem to simultaneously
achieve rate 0.5, or equivalently for every message in a CB problem to simultaneously achieve
0.5 DoF is identified in [21, 20], and turns out to be a simple test of consistency of required
alignments. For instance, in Fig. 13 a rate of 0.5 per message is not achievable because, receiver
1 would like W3,W4 to align and receiver 2 would like W4,W5 to align, which means all 3
messages W3,W4,W5 should align. However, receiver 3 wants message W3 and does not have
prior knowledge of message W5, so if W3,W5 were aligned, receiver 3 would not be able to
separate them, thus making the alignment requirements inconsistent and therefore 0.5 DoF per
message infeasible.

Similarly, optimal index coding solutions to symmetric settings are found in [21] and turn
out to be linear, thereby establishing the optimal DoF for the corresponding CB problem with
i.i.d. spatial fading and sufficient coherence. To be concrete, let us present the DoF optimal
solution for a class of CB problems that follows directly from the corresponding solution in [21].
Let us define the problem, parameterized by variables D,U,K as follows.

T = {t1, t2, · · · , tK} (26)

R = {r1, r2, · · · , rK} (27)

W = {W1,W2, · · · ,WK} (28)

Wtk = {Wk} (29)

Wrk = {Wk} (30)

C = {(r, t) such that t /∈ {r ± 1, r ± 2, · · · , r ± U, r + U + 1, · · · , r +D}} (31)

where indices are interpreted in a ‘mod K’ fashion so that, e.g., (r, t) = (0, 0) is the same
as (r, t) = (K,K). In other words, we have K transmitters, K receivers, K messages, the kth

message originates at the kth transmitter and is intended for the kth receiver, each receiver is not
connected to the U transmitters before it, and the D transmitters after it, and is connected to all
others. For this setting, the information theoretic DoF value, as well as the linear achievability
proof, follows directly from the result of [21] as U+1

K−D+U per message. This is achieved by sending
U + 1 symbols for each message over K −D + U dimensions.

Fig. 15(a) illustrates the problem setting for U = 1, D = 1,K = 5. Fig. 15(b) shows
the interference alignment solution, where two symbols xk,0, xk,1 are sent for each message Wk,
over a 5 dimensional space. This is accomplished by choosing 5 linearly independent alignment
vectors over the 5 dimensional space. Since we can choose the five columns of the identity
matrix as the 5 linearly independent vectors, each vector can simply be interpreted as a distinct
time slot. With this interpretation, in time k, source k sends the symbol xk,0 and source k − 1
sends the symbol xk−1,1, so that because of the connectivity, each receiver only hears its desired
symbols and no interference. Interestingly, in this case no coherence is required. Note that in
general the linear achievability scheme of [21] requires alignments along K linearly independent
vectors in a K −D + U dimensional space, so when D > U , sufficient coherence is required.
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Figure 15: Symmetric index coding problem setting of [21] with U = 1, D = 1,K = 5, applied to
the CB problem. (a) The problem, (b) The Solution. In this case no coherence is required.

6 Interference Diversity

Finally, we illustrate one more important element of cellular blind interference alignment: inter-
ference diversity. Interference diversity refers to the observation that each receiver experiences
a different set of interferers, and therefore depending on the actions of its own set of interferers,
the interference-free signal space at each receiver fluctuates differently from other receivers. The
knowledge of these pre-determined fluctuations, without requiring CSIT, creates opportunities
for blind interference alignment schemes in the manner of [13, 14, 15], but without the caveats
of these previous works.

Figure 16: Interference to macrocell users from in-band femtocell deployments

We illustrate this concept through an example of a heterogeneous cellular downlink, shown
in Fig. 16. Such a situation would be typical for customer-deployed cells such as femtocells.
For example, consider customers in areas around b1 and c1, who are located inside macrocell
dead spots and set up their own femtocell base stations B,C for wireless access, but then these
femtocell base stations also interfere with neighboring macrocell users a1, a2, respectively.

The resulting CBIA problem is equivalently shown in Fig. 17 with asymmetric antenna
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configurations. Note that while all transmitters (base stations) are equipped with two antennas,
the receivers in cells B,C are equipped with only single receive antennas. We assume spatially
i.i.d. fading and sufficient coherence for this example. Since the goal of this example is to high-
light interference diversity, we will focus on cell A, and the two receivers a1, a2, who experience
different interferers in transmitters B,C, respectively. Suppose cells B, C achieve 1 DoF each.
The question is to find out how many DoF cell A can achieve simultaneously. A naive argument
might be as follows. Since cells B,C achieve 1 DoF each and have only single antenna receivers,
the interference from base stations B,C must be consume one DoF at each of receivers a1, a2,
respectively. Essentially, this would mean that receivers a1, a2 would sacrifice one antenna to
cancel the interference. That leaves cell A with a two-antenna transmitter, two single-antenna
receivers, no CSIT, and spatially i.i.d. fading, which would suggest a collapse of DoF for cell A,
i.e., cell A should not be able to achieve any more than 1 DoF.

Figure 17: Cellular Blind Interference Alignment setting exploiting Interference Diversity. Cell A can
achieve 4/3 DoF while Cells B and C achieve 1 DoF each, with no CSIT, spatially i.i.d. fading, identical
physical coherence patterns for all users, no reconfigurable antennas, and with sufficient coherence (τmax ≥ 3)

The naive reasoning is incorrect because it ignores the diversity of interference seen by the
two receivers a1, a2. It turns out that cell A can achieve 4/3 DoF with no CSIT, spatially i.i.d.
fading, no reconfigurable antennas, identical physical coherence models for all channels, and
sufficient coherence (τmax ≥ 3). The achievable scheme is simply the blind alignment scheme
of [13], albeit without the restriction that nature must produce suitable distinct coherence
patterns, and without the restriction to reconfigurable antennas as in [14]. Instead, the key here
is interference diversity. We operate over three time slots. Transmitters B,C send a new symbol
in each time slot. However, transmitter B uses his first transmit antenna for the first 2 time
slots and then his second transmit antenna for the third time slot, whereas transmitter C uses
his first transmit antenna for the first time slot and his second transmit antenna for the last 2
time slots. In cell A, receivers a1, a2 simply discard the dimension along which interference is
received. The net effect is that receiver a1 becomes a single antenna receiver, with a channel that
remains the same for the first 2 time slots and then changes during the third time slot, whereas
receiver a2 becomes a single antenna receiver with a channel that changes after the first time
slot and then stays constant across the last two time slots. In other words, we have created the
staggered coherence blocks required for blind interference alignment [13], and thus, 4/3 DoF are
easily achieved by cell A, but without requiring reconfigurable antennas, or relying on nature to
create suitable statistical distinctions between the users. However, somewhat curiously, a tight
DoF outer bound for this example has so far been elusive and the optimality of 4/3 DoF for cell
A remains open. Perhaps even more curiously, it can be shown that cell A can achieve 2 DoF
while cells B, C achieve 1 DoF each, if the channel uncertainty is restricted to choices from finite
cardinality sets of generic values for each channel coefficient, i.e., in the finite state compound
setting.

The interference diversity example suggests that the cellular blind interference alignment
problem, in spite of its similarity to the index coding problem in homogeneous settings, can
present a distinct set of challenges in heterogeneous settings with arbitrary antenna configu-
rations on top of arbitrary connectivity and arbitrary message sets. We further highlight this
distinction in the next section.
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6.1 Index Coding versus Wireless Index Coding

In Section 5 we established the cellular blind interference alignment problem as a wireless index
coding problem, in that it is similar to the index coding problem, but not quite the same due
to its wireless character. Here we further emphasize the latter distinction between index coding
and wireless index coding (cellular blind interference alignment), through the example of Fig.
17.

In going from the CB problem to the GIC problem, two key steps were involved. Providing
the messages as genie side information from each transmitter to disconnected receivers, and
allowing transmitters to cooperate. Suppose we perform both these operations for the heteroge-
neous MIMO network of Fig. 17, producing the Gaussian index coding problem shown in Fig.
18. Note that we have not made the system fully connected or used the same marginals prop-
erty or provided any CSIT, because these operations are non-essential to the present discussion.
What we want to point out is that transmitter cooperation and receiver cognition (messages
provided as side information to receivers) open the door to message alignments in the (Gaus-
sian) index coding setting that are not available in the original CB problem. To see this, let us
consider the DoF for the MIMO BC with cognitive receivers and no CSIT, shown in Fig. 18.
It turns out that each of the 4 messages can achieve 1 DoF simultaneously in this problem due
to message alignment (essentially, network coding). Specifically, at the transmitter, let us XOR
the bits for messages a1, c1 to create a new message Wac = a1 + c1, and similarly let us XOR
the bits for messages a2, b1 to create a new message Wab = a2 + b1. We only transmit messages
Wab,Wac. This can be done, e.g., by sending Wab from the first antenna of transmitters A,B,C
and Wac from the second antenna of transmitters A,B,C. It is easy to verify that all receivers
are able to decode their desired messages. Receiver c1 already know one of the messages (Wab),
so with a single antenna it is able to decode message Wac, and also knowing a1, it is able to
recover the desired message c1 from Wac. By symmetry receiver b1 is able to recover message b1
as well. Receivers a1, a2 have two antennas each, so each of them can resolve and decode both
messages Wab,Wac, and having prior knowledge of c1, b1, can recover their desired messages
a1, a2 from Wac,Wab, respectively.

Figure 18: Gaussian Index Coding problem. Each of the 4 messages achieves 1 DoF simultaneously due to
message alignment.

The message alignments make it possible to achieve a total of 4 DoF in the Gaussian index
coding problem of Fig. 18. The message alignment solution in turn is possible mainly because
of transmitter cooperation and receiver cognition, both of which are essential to (Gaussian)
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index coding. However, neither transmitter cooperation nor receiver cognition is available in
the original cellular blind interference alignment problem of Fig. 17, making message alignment
solutions infeasible. On the other hand, if we consider only linear beamforming solutions,
which can translate between GIC and CB problems, it seems difficult to exploit either message
cognition or transmitter cooperation to improve upon the solution of the CB problem, i.e., to
achieve more than 4/3 DoF for cell A, while achieving 1 DoF for each of cells B,C simultaneously.
Thus, the wireless index coding problem is like the Gaussian index coding problem, restricted to
linear beamforming solutions. If in addition, sufficient coherence cannot be assumed, then there
are also further restrictions on the beamforming solutions, such as the range of the support of
the beamforming vectors. Thus, both the similarities and differences between index coding and
cellular blind interference alignment are quite intriguing as well as significant.

To complete the discussion of the example of Fig. 17, we point out that with perfect CSIT,
this network has 4 DoF. This can be seen as follows. Messages a1, b1 cannot have a total of
more than 2 DoF, because of the MIMO interference channel DoF outer bound of [22]. By
symmetry, messages a2, c1 cannot have more than 2 DoF either, which limits the total DoF to
4. Achievability of 4 DoF is also easy because after removing the interference, receivers a1, c1
are left with one antenna each, so that the resulting MISO BC in cell A can achieve 2 DoF by
zero forcing.

The reciprocal network of Fig. 17, obtained by switching the roles of the transmitters and
receivers for each message, is easily verified to have 4 DoF without CSIT.

Finally, if both CSIT and transmitter cooperation are allowed, or if simply receiver cooper-
ation is allowed, then the network has 6 DoF, which is simply the rank of the overall channel
matrix.

7 Conclusion

We explore the cellular blind interference alignment problem, i.e., the degrees of freedom of
wireless networks with no CSIT. Somewhat surprisingly this highly relevant problem seems to
have received little attention, perhaps because of the conventional wisdom that such pessimistic
assumptions — no CSIT, statistically i.i.d. fading, single antenna users, homogeneous coher-
ence intervals, no reconfigurable antennas — can only lead to degenerate solutions, such as
the traditionally well-studied orthogonal solutions. In this work, our goal is to highlight the
challenging nature of the problem, surprising solutions that arise in this setting even when
orthogonal (aligned frequency reuse), its intimate relationship to the index coding problem, a
problem already known to be hard, and how the restrictions of wireless settings add further chal-
lenges and lead to a truly wireless index coding problem, and finally how interference diversity,
always available in a wireless network but so far ignored in DoF studies, can create opportunities
for robust blind interference alignment solutions. We believe this work has only scratched the
surface of this most interesting research direction, and that further research will continue to
reveal additional surprising and fundamental aspects of the cellular blind interference alignment
problem.
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