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ABSTRACT

An explicit time-stepping finite-difference scheme is presented for solving Biot’s equations
of poroelasticity across the entire band of frequencies. In the general case for which viscous
boundary layers in the pores must be accounted for, the time-domain version of Darcy’s
law contains a convolution integral. It is shown how to efficiently and directly perform the
convolution so that the Darcy velocity can be properly updated at each time step. At low:
enough frequencies compared to the onset of viscous boundary layers, no memory terms are
required. At higher-frequencies, the number of memory terms required is the same as the
number of time pointsv it takes to accurately sample the wavelet being used. In practicé,
we never use more than 20 memory terms and often considerably less. Allowing for the
convolution makes the scheme even more stable (even larger time steps may be employed)
than when the convolution is entirely neglected. The éccuracy of the scheme is demonstrated

by comparing numerical examples to exact analytical results.



INTRODUCTION

In a recent work, Masson et al. (2006) present a simple time-stepping staggered-grid finite-
difference scheme for solving Biot’s (1956) equations of wave propagation in porous materials.
They restrict their analysis to low enough seismic frequencies that the generation of viscous
boundary layers in the pores of the rocks can be neglected. For consolidated earth materials
. such as sandstones, the transition frequency at which viscous-boundary layers first develop is
typically greater than 100 kHz so schemes that neglect this physics are valid for most seismic
applications. Accordingly, most papers that have presented finite-difference approaches for
solving Biot’s equations (é.g., Zhu and McMecha,n, 1991; Carcione and Quiroga-Goode,
1995; Ozdenvar and McMechan, 1997; Carcione and Helle, 1999; and Zhang, 1999) have

focused on the low-frequency form of the equations.

However, in unconsolidated sediments, the transition frequency at which viscous bound-
ary layers must be accounted for can be as small as 1 kHz (even less). Therefore, for many
Seismologica,l applications to unéonsolidated (or high-permeability) sediments, it is useful
to have a finite-difference scheme for solving Biot’s equations across the entire band of fre-
quencies. Furthermore, many laboratory experiments on porous materials are conducted at
ultrasonic frequencies in which case it is always necessary to account for the development
of viscous boundary layers. In poroelastic theory, such pore-scale dynamics is allowed for in
the time domain by using a “dynamic permeability” convolution operator in a generalized
Darcy law. In the frequency domain, the dynamic permeability corresponds to a complex

frequency-dependent permeability coefficient.

Carcione (1996) presents a finite-differencing approach that allows for the dynamic per-

meability by approximating it as a sum of Zener relaxation functions. It is of interest to



more directly treat the explicit time-domain form of the dynamic-permeability convolu-
tion operator using finite differences. To this end, Hanyga and Lu (2005) first convert the
convolution integral to an integral over an infinite time domain and then implement a some-
what complicated application of the Gauss-Jacobi and Laguerre quadrature formulae. The
present article presents a more direct evalua.tion‘ of the dynamic-permeability convolution
and requires no more memory terms to perform the convolution than it takes to cover the
wavefo;m with discretization points in time. Its advantage is thus being both efficient and

relatively simple to implement.

Using the classic work of Levander (1988) on the elastodynamic equations as our guide,
we present our poroelastic finite-differencing scheme in 2D iﬂstead of 3D for.reaspns of
compactness and clarity. Taking the algorithm to 3D involves adding an additional spatial
loop within the time loop and writing down the update equations for all of the tensorial
- components. If readers are interested in a 3D version or our code written in Fortran77, they

may contact Yder Masson by email.

POROELASTIC RESPONSE

Poroelasticity not only accounts for the displacements and stresses acting. on each voxel of a-
porous body, but allows for the fluid-pressure changes and ﬂuid‘ﬂow as well. Implicit in the
theory is that the wavelength of a mechanical disturbance moving through a porous material
is far greater than fhe size of the grains making up the material so that a porous-continuum

description is justified.

The fluid flow is well modeled using a generalized Darcy’s law that allows both for flow

due to induced pressure gradients and for flow created by the acceleration of the framework



of grains which is the frame of reference for the relative fluid motion. Assuming an e~®*

time dependence, the generalized Darcy law is written in the frequency domain as
- k(w )
q= (T) [—Vp +iwpsv]. (1)

Here, p is the fluid pressure, g the Darcy filtration velocity, v the velocity of the solid
framework of grains, 1 the fluid viscosity, p; the fluid density, and k(w) the complex (or

“dynamic”) permeability.

The frequency dependence in k{w) results from the appearance of viscous boundary
layers in the pores at sufficiently high frequencies. At low frequencies, the flow in each pore
is controlled by viscous shearing and is entirely laminar. At high frequencies, inert'ial effects
begin to dominate the shear forces, resulting in an ideal “plug flow” in each pore except near
the fluid/solid interface where shear forces again must dominate since the relative motion
is zero on the grain surfaces. There are thus created viscous boundary layers near the grain

surfaces whose thickness decrease with increaéing frequency as 1/4/w.

Johnson et al. (1987) derive a complex permeability function that connects these two

frequency limits while obeying causality constraints. Their model for the frequency depen-

where the two relaxation frequencies wy and Q are defined

dence of k(w) is

_ n
njwy
= 4
Q ; (4)

with n; a dimensionless parameter given by

AZ
~ Fk,




Here, ko is the steady-flow (zero frequency) limit of the permeability, F' is the electrical
formation factor, and A is a weighted pore-volume to grain-surface ratio with the weight
emphasizing constricted portions of the porespace [see Johnson et al. (1987) for the precise
mathematical definition of A] that is also an important length parameter in modeling the
surface electrical conductivity in rocks (Pride, 1994). For clean sands, ny = 8 is consistent
with both numerical and laboratory experiments. For shaly sands, one can have ny < 8.

Physically, € is the circular frequency at which viscous boundary layers first develop.

We perform the finite-difference modeling in the time domain. Plyushchenkov and Tur-
chaninov (2000) analytically obtain the inverse Fourier transfom of the k(w) given by equa-
tion 2. Using this result, the time-domain version of the generalized Darcy law in equation

1 is exactly equivalent to

av

Bq n b e t-e) [801()

o /Tt — )

where s is the past time variable. This result is easily confirmed by taking the Fourier

fF + Qq(s)] ds (6)

transform of equation 6 and using the convolution theorem, to obtain equations 1 and 2
(going the other direction is more involved). Upon taking the leading order in —iw low-
frequency limit in equation 2 and then returning to the time domain, one obtains the low-

frequency variant of equation 6
ov 2 oq 1
- 1 F— 7
V-5 = (142 ) oyFGh 4 L )
Our earlier work on how to perform finite-difference modeling of the Biot equations (Masson
et al., 2006), was based on the low-frequency law of equation 7. The present work deals

with the entire frequency range and specifically addresses how to introduce the convolution

of equation 6 into the scheme.



The remaining equations of Biot’s theory include the total conservation of linear mo-
mentum
av oq
=V T — g 8
where p is the bulk density of the porous material and T = nﬁj is the total stress tensor,

as well as the stress-strain constitutive laws for an isotropic porous material

g_z = (WV-v+aMV-q)I+u[Vv+(Vv)T] ©)
2 e M@V viV-g (10)

with I = Jz-jij the identity tensor. The poroelastic constants used here are the undrained
Lamé modulus ), the shear modulus p (the same for both drained anci undrained con-
ditions), the so-called Biot-Willis (1957) constant o, and the fluid-storage coefficient M.
Modeling suggestions and further discussion of these poroelastic constants are given in many

places including Masson et al. (2006) and Pride (2005).

FINITE-DIFFERENCING SCHEME

The time-stepping finite-difference scheme of Masson et al. (2006) for vs'olving the low-
frequency Biot (1956) equations is quite similar to Levander’s (1988) two-dimensional (2D)
fourth-order velocity-stress staggered-grid method for the elastodynamic equations. Levan-
der’s (1988) scheme built on the velocity-stress staggered-grid modeling of Madariaga (1976)

and Virieux (1986).

The present work adopts the 2D velocity-stress staggered grid defined in Figure 1. The
stress components 7z, 7.z, and p are assigned to the grid points x = mA,, z = nA, where
m and n are integers; the horizontal velocities v; and g; to the points z = (m +1/2)A,, z =

nA,; the vertical velocities v, and g, to the points z = mA;,z = (n + 1/2)A,; and the

6



shear stress 7, to the points z = (m +1/2)A,, z = (n + 1/2)A,. Further, all the velocities
are temporally discretized at the time points t = [A;, while all the stresses are discretized

at the time points ¢ = (I + 1/2)A;.

Any order of differencing approximation may be employed for the first-space derivative
- operators D, and D, and the first-time derivative D; in what follows. However the stability
analysis and numerical implementation of the present paper uses the second-order time

derivative and fourth-order space operator given by

Davy| = Aiw {1 [va(m +1/2,n) — va(m — 1/2,m)]

m,n

- ¢ [vm(mf3/2,n) — vg(m —3/2,n)]}, (11)

with ¢; = 9/8 and ¢y = 1/24 the fourth-order differencing weights.

Update equations for stresses and pressure

Knowing g;, v; at time t = [A; and 735, p at time ¢t = (I — 1/2)A, the discrete form of the

constitutive laws 9 and 10 are used to update 7;; and p at time t = (I -+ 1/2)A;

Dytye = ()\u + 2/11) Dyvg + AyDyv,

+aM (DwQ:c + DzQz) (12)
m,n,l
Dty = AyDgvg 4+ (A +2p) Dy,
+aM (DxCI:n + quz) (13)
m,n,l
Ditor = p(Dovz + Dyvg) (14)
mg,ntg,l
Dip = —aM (Dyvy +D,v,)
+M (Dz‘h + DzQz) (15)
m,n,l




where Dy, D,, and D, denote finite-difference derivatives and where the vertical line at
the right of each equation denotes the space and time position at which the terms in the

equations are all centered.

Update equations for the Darcy velocity

To treat the convolution in equation 6, the integration domain is broken into a finite number

N + 1 of past time intervals. The number N can be chosen so that e=*V4¢ < ¢ or

Ine

N=__S)_At_

(16)

where ¢ is a small number like 1072 that determines the accuracy.

To perform the integrations, we assume that within each of the past finite-difference
time intervals A, the Darcy velocity is continuously varying as a linear function. As Figure
2 indicates, the first time interval is half of A;, while the remaining 7 = 1, N intervals are

each of duration A;. We have

It) =

t e~ t—s) [3(](5) +Qq(s)] ’ an)

d
0 ? VrQ(t —s) | Os
1 e—Q(t——s)
| ds—e—
t—A¢/2 7wt — s)
dq dqll
X {gt_ +Q [q(t) + (s —t)a]}

N o A+ A2 e—S(t—s)
2

Q

ds ———r—e
j=1 t—jA—Agf2 ﬂ'Q(t - S)

Oq
{2 e

In the final line of equation 18, both g(s) and its time derivative 9q(s)/0s are being evaluated

0
t~jA $

+Q|q
t—jA;

at the time s = t — jA; in the center-‘ of each interval j and are therefore constants in

each interval that can be taken outside the integrals. For N sufficiently large, the only



approximation in passing from equation 17 to 18 is taking the Darcy velocity as linearly

varying in each time interval A;.

If the current finite-difference time index for the Darcy velocity is I, the current time in
the convolution integral of equation 18 is t = (I + 1/2)A;. Upon making the substitution of

variables u = Q(t - s) in the above integrals, the discrete form of equation 18 can be written

1 G, — H :
10+3) =) g1 6
. .
14+ 9QA)G; — H;
+Z{[( J Stz) J ]]th+Gj(q)} (19)
— l+l_ ;
j=1 277
where the coefficients G,, H,, G, and H; are defined
QA /2 é—u
G, = /0 S (20)
G (+1/2)00¢ ,—u ( : )
;o= du 21
’ /(j—l/z)smt VU

QA /2 ”
H, = / e_”\/jdu (22)
0 ™
(7+1/2)QA¢ )
/ e_“\/—: du (23)
(G—-1/2)Q4: 7r '

and where the 2nd order discrete time derivative D;q and the average (g) when centered at

5z
I

[+ 1/2 are defined

Dy = W (24)
@ = WD+ (25)

The coeflicients G,, H,, G, and Hj in equations 20~23 only depend on the material property
Q and the time interval A;. They can be computed ahead of time using any favorite integral
solver. For finite limits on the integrals, they cannot be computed analytically. However,
in the limit that QA; > 1, which would correspond to the low-frequency seismic limit for
wave propagation applications, we have the analytical results that G, = 1, H, = 1/2, and

Gj=Hj=0.



Using these results for the convolution, and inserting the discrete form of equation 8 into

the discrete form of equation 6 gives the update equations for determining ¢;(I + 1)

1 (Go— Ho) n _
_ki Sy — Dgp — Bi(DmTww + DzTa:z) (26)
0 p m+%,n,l+%
—7]— (Go - Hg) _77_ _
- 7;"7" S, — sz - B'Ji (Dszz + DzT:cz) (27)
0 P myn+g,i+3
Here, the parameter 1 is defined
2
p R
while S, and S, are defined
N .
1+ 500G, — H;
s, = Y (BB p g, 1 6,00 (29)
j=1 metginl+3—j
N . .
14+ 7A:0)G; — H; v
S, = Z{[( J tQ) J J]Dth+Gj<q,z>} (30)
j=1 m+%,n,l+%—j

and are the contributions to the convolution that come from the N time steps that precede
the first half time step. The dominant contribution to the convolution comes from the first
half time step and is allowed for on the left hand side of equations 26 and 27 by the terms

involving G, and H,,.

In the limit of low seismic frequencies, or, more specifically, when QA;/2 > 1, we have
S;=8,=0,G,=1,and H, =1/2 and it is easily verfied that equations 26 and 27 exactly
reduce to the low-frequency form of equation 7. In this limit, the kernel of the convolution is
concentrated in the first half time interval of past time and effectively acts as a Dirac delta

function so that no memory terms need be kept (i.e., N = 0).

As seismic frequencies increase, 2A; decreases and more memory terms must be stored in

order to accurately compute the convolution as the simple rule N = —In¢/(QA;) suggests.

10



However, once QA,; < 1, it is not necessary to keep increasing the number of memory terms
indefinitely. In such a high-frequency limit, the lower panel of Figure 2 illustrates how the
seismic wavelet becomes more concentrated in time relative to the extent of the kernel. The
convolution is important in this limit only when the wavelet is close to the present time
so one need only keep enough memory terms to cover the temporal extent of the wavelet.
Accordingly, for central wave frequencies w that satisfy w > € (the “high frequency” domain),
one need only keep N = —Ine/(wA;) past time points to obtain accurate results for the

convolution. In practice, we never need to keep more than roughly 20 terms in memory.

Update equations for the particle velocity

Finally, knowing 7;;, p, and D;g; at time t = (I + 1/2)A; and v; at time ¢t = A, v; is

updated at time ¢ = (I + 1)A; by inserting equation 6 into equation 8 to obtain

pDiwvy = DyTopy + DyTar — Pth(Iw |m+%,n,l+% (31)

th'Uz = D;c'T;cz + Dszz - Pthq,z Im,n+%,l+% . (32)

Equations 12-32 provide our finite-difference modeling algorithm.

STABILITY

In order to investigate the stability of the numerical scheme, we first perform a von Neumann
stability analysis in the case where the convolution product in equations 26-27 is entirely
neglected; i.e., an analysis assuming 1/ko = 0. Then the effects of the remaining parameters
on the stability (n/ko # 0 and N # 0) are tested numerically. It is demonstrated fhat
stability is always achieved using the criterion in which 1/ko is neglected. In passing, we

note that in our earlier paper (Masson et al., 2006), we performed a more complicated

11



version of the analysis assuming that n/k, # 0.

To keep the analytical treatment tractable, we consider a plane longitudinal disturbance
advancing in the x direction through a homogeneous material (i.e., q,, v,, 722, and T, are
all set to zero along with all spatial derivatives with respect to z). To invéstigate stability
in higher dimensions, we perform purely numerical tests to establish a criterion (see the
discussion at the end of this discussion). Displacements u, and w, are introduced through

the defining relations

Ve = Dtum (33)

gz = Dywy. (34)
In this case, the set of difference equations 12-32 can be combined into the matrix system
Qu=0 -(35)

where the 2 x 2 matrix operator @ is given by

(Au + 2,“)D:c:c —pDy | aM Dyy — pf-Dtt

Q=
aM Dy, — prtt ’ MDg, — PfFDtt

and
u = [ug, wy]”. (37)
Here, D,, and Dy are the finite second-derivative operators in space (fourth order) and

time (second order) respectively.

The von Neumann stability analysis assumes that the independent solutions of equation

35 are of the form

U (m’ l) — eikmAx—iwAt Yo (38)

wgz(m, 1) W

12



where k is a real spatial wave number. In this context, testing the stability of the numerical

scheme is equivalént to testing the hypothesis
Im{w} <0Vk.

If equation 39 is true, then the scheme is stable.

(39)

An expression for the stability criterion is obtained by requiring the determinant of the

linear system to vanish; i.e.,

detlQeikmAz—iwAtI =0.

The two roots of equation 40 are

Dygeitmia—ivae — T2 v 72T 5 — 4m3m DyyethmBa—iwe
T3

where the 7; coefficients are defined as

m = psp(F — ps/p)
g = psF (A +2p) + pM — 2aMpy

w3 = M)\, +2p—a2M).

It is easily established that the second-order finite-difference time derivatives yield

DyeltmBa=iwte _ _ A 2 (WALY ikma.—iwa,
A2 2

while the fourth-order finite-difference space derivatives give

D eikmAz ~twAy _ __ 4 e'ik:mAz —iwA¢
2 A2
x

with the periodic function ¢ given by

o = {c% + 2c1c2 [1 ~ 4cos? (%)] } sin? (k—?z—>
3kA
2 a2 T
+c; sin <—————-—-2 > .
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Again, ¢; = 9/8 and ¢ = 1/24 are the fourth-order differencing weights.

The stability criterion is established by inserting equations 4546 into equation 41, and
requiring that w be real (i.e., Im{w} = 0). Taking the more restrictive solution that is
associated with the minus sign in equation 41, and using the maximum of the function ¢y,
with respect to k [i.e., max{@r} = (c1 + c2)?] so that the restriction on A; given A, is as

strong as possible, defines the domain where the numerical scheme is stable when n/ko =0

—_ 2 _
AtsAw\/ﬂ'z%\/ﬂ'z 47r37r1. (48)

a1 + ¢2)?ms

For all values of F < py/p, the algorithm is unconditionally unstable. Another way to see
(and say) the same thing is to note that the coefficient ¢ = F' — p¢/p present in equations

26 and 27 must be positive in order for the response to be stable.

Finally, an asymptotic analysis of the right-hand side of équation 48 as the parameter F'
becomes large results in the linear relation between A, and A; asymptoting to the classic

Courant condition that, in one dimension, is given by

Ag

Ay < ", 49
L=l c2)Vp (49)
Here, V}, is the velocity associated with the undrained fast P-wave
Ay +2 '
Vo= (50)

For typical values of F' in rocks, the stability requirement of equation 49 always applies.

We now test the effect of having a non-zero value for 7/ky and account for any number N
of memory terms in equations 26-27. This true stability criterion is obtained by numerically
implementing the full scheme for different values of At and verifying stability for each A;.

In Figure 3, we show the effect of adding more memory terms to equations 26-27 for a given

14



value of n/kg. When no memory terms are used, the stability citerion is the one in equation
48. Adding more memory terms tends to improve the stability until it reaches a plateau
value. somewhere between the analytical criterion in equation 48 and the classic Courant
condition in equation 49. Note that the plateau is reached when N is given by equation 16

and the convolution is being properly computed.

To see why allowing for the convolution makes the scheme even more stable (i.e., allows
a larger time step to be used) compared to the most restrictive condition of equation 48, one
need -only consider the coefficient multiplying the time derivative of the Darcy velocity in
equations 26-27 that we may call the “effective fluid inertia" and given by ¥+ (Go—H,)n/ko.
The convolution coefficients G, and H, (note that G, > H,) are adding to 9 to make the
eﬁ'ective‘ inertia even larger than when the convolution and n/k, were neglected. Indeed, the

more general condition for the scheme to be stable is that

n (Go — Ho)

ko ) (51)

P> -

which is more strongly satisfied than the condition 1 > 0 associated with equation 48. Earth

materials always have ¢ > 0 so this condition is always met.

In Figure 4, we present the behavior of the stability criterion as a function of 1/ko. The
most important resulf is that the stability criterion is strictly increasing with n/ko (for the
same reason that the effective fluid inertia is increasing with increasing n/k,), which means
that the criterion of equation 48 holds true for any value of n/ko. The true stability limit

for A; is seen to lie somewhere between the criteria given by equations 48 and 49.

. Last, we have performed numerical tests of stability in both 2D and 3D versions of the
scheme and have emperically determined that dividing the right-hand side of equation 48

by Vd where d is the Eucledian dimension of the modeling domain, gives an appropriate

15



criterion. This is also the result for staggered-grid implementation of the elastodynamic

equations (Virieux and Madariaga, 1982).

NUMERICAL EXAMPLES

In this section, we first present some numerical snapshots of the fields to demonstrate that the
scheme produces qualitatively reasonable (expected) results. We then go on to demonstrate
the accuracy of the scheme by comparing numerical results for the velocity dispersion and

attenuation to exact analytical results.

Snapshots

We now consider a modeling example that requires the complete convolution form of the

dynamic-permeability operator.

Consider the situation depicted in Figure 5 involving a compressional point source that
sends out both fast and slow comf)ressional waves. The center frequency of the compres-
sional pulse ié 50 kHz. The dimensions of the numerical modeling domain (roughly 1 m
to each side) and the frequency of the source are typical of some laboratory experiments
on ocean sediments performed by Hefner and Williaﬁs (2006) and of the underwater field
expgrimen’cs on ocean sediments performed by Williams et al. (2002). To obtain non-trivial
results involving the reflection and transmission of both fast and slow waves, we introduce
a permeability interface below the source point (denoted with a horizontal dashed line in
the figure) while keeping all other material properties uniform throughout the modeled re-
gion. Above the interface, the permeability is kp = 20 Darcy while below it is 0.2 Darcy.

This results in the Biot relaxation frequency being 1.1 kHz above the interface and 110

16



kHz below. Thus, for waves above the interface, the 50 kHz pulse is in the high-frequency
domain where the slow wave is propagatory, while below the interface, the pulse is in the
low-frequency domain where the slow wave is purely diffusive. Columns (a) and (b) in the
figure are plotted using the full scale of the pressure pulses, while columns (c) and (d) are
plotted using a saturated scale that allows the smaller amplitude details of the slow waves

to be observed.

When the direct fast P wave arrives at the permeability interface, most of its energy
is transmitted downward; however, there is observed as well a very wéak reﬂected P wave
and a somewhat stronger reflected slow wave. When the direct slow wave-arrives at the
interface, there are generated weakly transmitted and reflected fast P waves as well as a
strongly reflected slow wave. The slow wave that is transmitted is a pure diffusion. There
are no shear waves generated at the source.‘ The shear waves generated by compressional
pulses at a contrast in permeability are much smaller in energetic amplitude than the var-
ious compressional pulses and are not observed in the present plots because a shear wave

propagates with no change in either fluid or bulk pressure.

Since the interface separates wave propagation in the low- and high-frequency regimes,
proper modeling of the slow wave amplitudes in this example requires the inclusion of the
convolution integral involving the Darcy flow. If only the low-frequency form of the gener-
alized Darcy law (equation 7) is used as opposed to the complete convolution of the present
example, the amplitudes of the slow waves are far too large as is seen in the traces of Fig-
ure 6. In this figure, the column to the left corresponds to a receiver located just above
the interface (denoted with a star in Figure 5), while the column to the right corresponds

"to a receiver just below the interface. The reason the low-frequency equations predict a

slow wave recorded at the lower receiver with such a large amplitude is because as the slow

17



wave passed from the source to the interface, the attenuation was being greatly underesti-
mated. This example demonstrates the importance of using the complete theory involving

the dynamic-permeability convoltion.

Dispersion and attenuation in a homogeneous material

In order to quantify the accuracy of the present finite-difference modeling, the velocity dis-
persion and attenuation of both fast and slow waves is determined as a function of frequency

and compared to the exact analytical results in both Figures 7 and 8.

The.numerical experiments are performed by sending a plane wave across a uniform
region (properties given .in the table). Each data point given in Figures 7 and 8 corresponds
to a different experiment involving a pulse with a different center frequency. A Morlet
wavelet is used having a narrow-band of support around a center frequency. By recording
the solid particle velocity at two different points in the direction of propagation, and time
integrating the recording to obtain the maximum displacement amplitude and associated
travel time for each recording, both the velocity and attenuation are determined at each
frequency. Upon compari'ng the crosses (finite-difference results) to the solid line (analytical
results) in Figures 7 and 8, the scheme is seen to produce accurate results. If only the
~ low-frequency form of the generalized Darcy law (equation 7) is used, the attenuation falls
-1/2

off far too rapidly as w™! instead of as w as seen in the figure.

CONCLUSION

A time-domain finite-difference scheme was presented for solving Biot’s equations across all

frequencies while allowing for the possible development of viscous boundary layers in the
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pores at sufficiently high frequencies. In this case, the generalized Darcy law controlling
the movement of fluid relative to solid contains a time convolution between a kernel that
exponentially decays into the pasf and the past time values of the Darcy flow. It was shown
how to model this convolution in an efficient and accurate manner that typically does not
require more than 20 past time values to be stored (and often considerably less). Snapshots
generated by the scheme show how slow waves above the viscous-boundary-layer transition
frequency have a propagatory nature to them while slow waves below the transition frequency
are pure diffusions. Getting the amplitudes of these slow waves correct requires the use of
the complete theory involving the dynamic-permeability convolution. The accuracy of the
scheme was determined by comparing the attenuation and velocity of numerically modeled
plane waves at different frequencies to the analytical results. The accuracy was excellent

over a broad range of frequencies that included the transition frequency.
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Table 1: Material properties of a lightly-consolidated sand.

Solid grain material

Bulk modulus (K;) 36.0 GPa

Density (p) 2650 kg/m3
| Skeletal framework of grains
Bulk modulus (Kg) 621 MPa
Shear modulus (1) 455 MPa
Porosity (¢) 0.3
Permeability (k) 10712 m?

Fluid

Bulk modulus (Kj) 2.25 GPa
Density (pf) 1000 kg/m3

Viscosity (n) 1073 Nsm~2
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Figure Captions:

Figure 1: Convention used for the spatial position of the stresses, pressure, and fluid and

solid velocities on the staggered grid.

Figure 2: Schematic of the kernel of the convolution »integral (dashed-line curves, normalized
to be unitless) and Darcy flow (solid curves, normalized to be unitless) as a function of the
convolution time variable s. Tﬁe upper panel corresponds to seismic frequencies that are
smaller than the viscous-boundary-layer transition (A; > 1). The lower panel corresponds
to a seismic frequencies that are larger than the viscous-boundary-layer transition (QA; < 1).

Present time corresponds to s = t where the kernel has an integrable singularity.

Figure 3: Evolution of the numerical stability of the scheme as a function of the number
N of memory variables used in equations 26-27. Top panel: percentage of the integral in
equation 19 contained in the first V terms of the sum. Bottom panel: stability criterion
plotted as a function of the number of memory variables N with n/ko =const. When N
equals zero, the stability criterion is equal to the analytical criterion in equation 48. When
adding more memory variables, the stability criterion converges toward a plateau somwhere
between the analytical criterion and the classic Courant value. Note that using an odd

number of memory variable tends to stabilize the numerical scheme.

Figure 4: Numerical determination of the stability criterion ploted as a function of n/kg
with the number of memory points N = 20. The estimate is made by varying At for a given
value of 77/ko and keeping the others parameters fixed. Below the black dots, the scheme
is stable, while above the black dots, it is unstable. The key result is that the stability

criterion is bounded between the classic Courant condition of equation 49 as n/ky — 0
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and the analytical criterion of equation 48 as n/ky — o0o. The specific shape of the black
dotted curve can vary somewhat depending on the values of the other parameters; however,

it always stays between the upper and lower limits just mentioned.

Figure 5: Snapshots of the fluid pressure [columns (a) and (c)] and bulk pressure [columns (b)
and (d)] for a point source at the center generating a 50 kHz central frequency compressional
pulse. Columns (a) and (b) are plotted at full scale, while (c) and (d) are plotted with a
saturated scale that allows the fine details of the slow waves to be observed. In this example,
all material properties except permeability are uniform throughout. Above the dashed line,
ko = 2x 10~ m? (20 Darcy), the relaxation frequency is 1.1 kHz, and the wave propagation
is thus in the high-frequency regime where the slow wave is propagatory. Below the dashed
line, ky = 2 x 1073 m? (0.2 Darcy), the relaxation frequency is 110 kHz, and the wave
propagation is in the low-frequency regime where the slow wave is purely diffusive. The
various waves are the primary or reflected/transmitted fast and slow waves. The stars

indicate the positions where waveforms are recorded (see Figure 6).

Figure 6: Waveforms recorded at the starred positions in Figure 5. The solid lines are the
result of the present paper’s modeling that includes the dynamic-permeability convolution
while the dashed lines are the result of the low-frequency modeling in which the pAermeability
coefficient is taken as a simple multiplicative constant. The main difference is that the low-

frequency equations grossly underestimate the attenuation and dispersion of the slow waves.

Figure 7: Demonstration of the accuracy of the scheme for Biot fast waves. The fast wave
velocity and attenuation is determined by performing a transmission experiment at the
various center frequencies as denoted with crosses. The number of memory points used in

the convolution is given in the top panel. The solid lines in the two lower panels are the
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analytically exact results.

Figure 8: Demonstration of the accuracy of the scheme for Biot slow waves. The slow
wave velocity and attenuation is determined by performing a transmission experiment at
the various center frequencies as denoted with crosses. The number of memory points used
in the convolution is given in the top panel. The solid lines in the two lower panels are the

analytically exact results.
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Figure 1: Convention used for the spatial position of the stresses, pressure, and fluid and

solid velocities on the staggered grid.
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Figure 2: Schématic of the kernel of the convolution integral (dashed-line curves, normalized
to be unitless) and Darcy flow (solid curves, normalized to be unitless) as a functién of the
convolution time variable s. The upper panel corresponds to seismic frequencies that are
smaller than fhe viscous—boundary-layer transition (2A; > 1). The lower panel corresponds
to a seismic frequencies that are larger than the viscous-boundary-layer transition (QA; < 1).

Present time corresponds to s = ¢ where the kernel has an integrable singularity.
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Figure 3: Evolution of the numerical stability of the scheme as a function of the number
N of memory variables used in equations 26-27. Top panel: percentage of the integral in
equation 19 contained in the first NV terms of the sum. Bottom panel: stability criterion
plotted as a function of the number of memory variables N with n/kg = const. When N
equals zero, the stability criterion is equal_to the analytical criterion in lequa,tion 48. When
adding more memory variables, the stability criterion converges toward a plateau somwhere
between the analytical criterion and the claséic Courant value. Note that using an odd

number of memory variable tends to stabilize the numerical scheme.
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Figure 4: Numerical determination of the stability criterion ploted as a function of 7/ko.
The- estimate is made by varying At for a given value of 1/ky and keeping the others
parameters fixed. Below the black dots, the scheme is stable, while above the black dots,
it is unstable. The key result is that the stability criterion is bounded between the classic
Courant condition of equation 49 as 7/ky — 0 and the analytical criterion of equation (48)
as 1/ko — oo. The specific shape of the black dotted curve can vary somewhdt depending
on the values of the other parameters; however, it always stays between the upper and lower

limits just mentioned.
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Figure 5: Snapshots of the fluid pressure [columns (a) and (c)] and bulk pfessure [columns (b)
and (d)] for a poin.t source at the center generating a 50 kHz central frequency compressional
pulse. Columns (a) and (b) are plotted at full scale, while (c) and (d) are plotted with a
saturated scale that allows the fine details of the slow waves to be observed. In this example,
all material properties except permeability are uniform thr‘oughout. Above the dashed line,
ko = 2 x 10711 m?, the relaxation frequency is 1.1 kHz, and the wave propagation is in
the high-frequency regime where the slow wave is propagatory. Below the dashed line,
ko = 2 x 10713 m?, the relaxation frequency is 110 kHz, and the wave propagation is in
the low-frequency regime where the slow wave is purely diffusive. The various waves are
the primary or reflected/transmitted fast and slow waves. The stars indicate the pbsitions

where waveforms are recorded (see Figure 6).
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Figure 6: Waveforms recorded at the starred positions in Figure 5. The solid lines are the
result of the present paper’s modeling that includes the dynamic-permeability convolution
while the dashed lines are the result of the low-frequency modeling in which the permeability
coefficient is taken as a simple multiplicative constant. The main difference is that the low-

frequency equations grossly underestimate the attenuation and dispersion of the slow waves.
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Figure 7: Demonstration of the accuracy of the scheme for Biot fast waves. The fast wave
velocity and attenuz;tion is determined by performing a transmission experiment at the
various center frequencies as denoted with crosses. The number of memory points used in
the convolution is given in the top panel. The solid lines in the two lower panels are the

analytically exact results.
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wave velocity and attenuation is determined by performing a transmission experiment at
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in the convolution is given in the top panel. The solid lines in the two lower panels are the

analytically exact results.
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