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Abstract

Profiling analysis aims to evaluate health care providers by modeling each provider’s performance 

with respect to a patient outcome, such as unplanned hospital readmission. High-dimensional 

regression models are used in profiling to risk-adjust for patient case-mix covariates. Case-mix 

covariates typically ascertained from administrative databases are inherently error-prone. We 

examine the impact of case-mix measurement error (ME) on profiling models. The results show 

that even though the models’ coefficient estimates are biased, this does not affect the estimation of 

standardized readmission ratio (SRR). However, ME leads to increased variation in SRR estimates 

and degrades the ability to identify under-performing providers.

Keywords

fixed effects; random effects; measurement error; hierarchical logistic regression; profiling 
analysis

1 Introduction

Profiling or evaluation of health care providers, including hospitals, nursing homes, and 

dialysis facilities, with respect to a patient outcome such as 30-day unplanned hospital 

readmission is important to ensure adequate and safe health care delivery. Profiling dates 

back nearly a century (Codman 1916) and has evolved over time to serve several purposes. 

This includes 1) identifying providers with below standard performance by government 

agencies for regulatory or payment purposes, 2) conveying information to patients regarding 

the quality of care, and 3) providing feedback to providers for quality improvement. In the 
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United States, a more systematic reporting of patient outcomes among providers has only 

appeared directly to consumers in the last decade by the Centers for Medicare and Medicaid 

Services (CMS). This includes condition-specific 30-day mortality (e.g., acute myocardial 

infarction, heart failure, pneumonia) and 30-day (all-cause) unplanned readmission rates; see 

Keenan et al. (2008), Krumholz et al. (2011), Lindenauer et al. (2011), and Horwitz et al. 

(2011, 2014).

In profiling analysis, there are two main goals: (a) report accurate estimates of provider 

effects relative to a reference, such as a national rate, and (b) identify providers that are 

“worse,” “better” or “not different” relative to the reference. We refer to goals (a) and (b) as 

estimation and inference goals, respectively. With respect to goal (a), each provider’s effect 

is summarized as a ratio in the form of a risk-standardized readmission ratio (SRR) for the 

patient outcome of 30-day unplanned readmission, for instance. Patient outcomes vary 

across providers due to variation in providers’ quality of care (provider effects) and variation 

in patient case-mix (patient-level effects, including demographics, comorbidities, and types 

of index hospitalization). With patients nested within providers, profiling models are 

hierarchical logistic regressions of the form outcome = provider effects + patient case-mix 
effects.

Because profiling models involve large populations of patients, such as all dialysis patients 

treated at dialysis facilities in the U.S. or all patients admitted to hospitals, the patient case-

mix covariates are ascertained from administrative claims data. As such, measurement errors 

(MEs) in the case-mix covariates, such as inaccuracies in continuous variables and 

misclassified categorical variables (e.g., patient comorbidities) are expected and well-known. 

The impact of ME in the covariates is biased regression coefficient estimates, a problem that 

has been well-studied (Carroll et al. 2006). However, no methodological study has been 

conducted to understand the general effect of ME on the estimation of SRR and on the 

inferential objective of profiling. To date, one study has reported an empirical comparison of 

the random effects (RE)/CMS profiling model for 30-day readmission among patients with 

acute myocardial infarction, using variables based on claims data (imprecise) versus patient 

medical records (more precise). The study concluded that administrative claims data is 

suitable for profiling (Krumholz et al. 2011). Without knowledge of the statistical properties 

of profiling models under case-mix ME, the generalizability of conclusions from an 

empirical study is unclear. For instance, are the estimates of provider-specific SRRs biased 

and therefore invalid for public reporting when case-mix variables are measured with error? 

And, to what extent do case-mix MEs reduce profiling models’ ability to identify under-

performing providers? We aim to fill this knowledge gap and provide more general insights 

on the impact of case-mix ME in profiling.

To investigate the impact of ME, our work here focuses on the outcome of 30-day unplanned 

hospital readmission; however, the methodological issues are general and applicable to other 

outcomes, such as all-cause or cause-specific in-hospital mortality. Also, we will consider 

both random effects (RE) and fixed effects (FE) profiling models proposed in the literature. 

We note that RE models have been the dominant approach and are the adopted method by 

CMS (CMS 2014; Ash et al. 2012; Krumholz et al. 2011). Motivations for hierarchical RE 

have largely been conceptual and center around the need to account for the nested structure 
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of the data (e.g., patients nested within providers) and data sparsity (low frequency of the 

observed outcome); see Normand and Shahian (2007), Normand et al. (1997), and Jones and 

Spiegelhalter (2011) for conceptual motivations for the RE models. (Throughout this work, 

we refer to the terms “RE model” and “CMS model” interchangeably, and they refer to the 

CMS adopted model with random intercepts for providers as further described in Section 2.)

FE models for profiling was proposed by Kalbfleisch and Wolfe (2013) and He et al. (2013), 

which model provider effects as fixed effects. We note that the FE model of He et al. (2013) 

is a high-dimensional parameter model with a unique fixed intercept for each provider. In 

practice, the number of providers is in the hundreds or thousands. The advantages of RE 

versus FE models have been discussed and compared previously (Kalbfleisch and Wolfe 

2013; Chen et al. 2017); thus, it is not the focus of this paper. However, we briefly note that 

although RE models can provide stable provider effect estimates (through shrinkage), they 

are biased toward the overall provider average and the bias is larger for smaller providers 

(Kalbfleisch and Wolfe 2013). RE models also have smaller overall average estimation error, 

but this gain is in the center of the distribution of the outcomes, reducing the power to 

identify underperforming providers. We consider the impact of ME on both RE and FE 

models. Finally, to avoid confusion, we note that there is another use of the term “fixed 

effects” models in the profiling literature, where a “naive” FE model refers to a logistic 

regression model with one overall intercept (e.g., see Austin, Alter and Tu 2003). This naive 

FE model is no longer in wide usage and is different from the FE model of He et al. (2013).

2 Methods

2.1 RE and FE models without measurement error

The RE model implemented by CMS for (30-day unplanned) all-cause or condition-specific 

hospital readmission is the following RE logistic regression model,

g μij∗ = γi∗ + β∗TZij, γi N γ0
∗, σ ∗ 2 , (1)

where μij∗ = pij∗ =  Pr Y ij = 1|β∗, γi∗, Zij  is the expected readmission for patient index 

discharge j = 1, 2, …,ni in provider i = 1, 2,…,F, and Yij = 1 if the jth index discharge at 

provider i results in a 30-day readmission, and equals 0 otherwise. Also, 

g pij∗ = log pij∗ / 1 − pij∗  is the logit function. Model (1) adjusts for patient case-mix 

variables, such as patient baseline and admission characteristics, denoted by the vector of r 
covariates Zij = V ij1, …, V ijr1, Xij1, …, Xijr2 ≡ Vij, Xij  and their effects denoted by 

β∗T = βv, 1
∗ , …, βv, r1

∗ , βx, 1
∗ , …, βx, r2

∗ T ≡ βv
∗, βx

∗ T
 (with r = r1 + r2).

In contrast, in the context of providers as dialysis facilities, Kalbfleisch and Wolfe (2013) 

and He et al. (2013) proposed modeling providers’ effects with fixed effects (γ1,…, γF):

g μij∗ = γi∗ + β∗TZij, i = 1, …, F . (2)
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For clarity, we emphasize that the FE model (2) is a single simultaneous model for all F 
providers with a high-dimensional parameter space and not a separate logistic regression 

model for each provider. We also note that for the FE model (2), in the context of 

performance assessment of dialysis facilities, further adjustment through inclusion of a 

hospital RE was considered in He et al. (2013), although it was found that the contribution 

of the hospital effect was small. In sorder to compare RE and FE models and for the results 

to be more applicable to different provider settings, we consider the FE model in (2) in this 

work.

2.2 Measurement error in patient case-mix variables

In practice, to date, it is assumed that the patient case-mix variables, Zij, are measured 

without error and no methodological study has been conducted to examine the effect of ME 

on estimation and inference in profiling.

To examine the impact of ME on RE/FE profiling models (1) and (2), define the vector of 

observed case-mix variables Zij = (Vij1,…, Vijr1, Wij1,…, Wijr2) ≡ (Vij, Wij) and their 

corresponding coefficients by βT = (βυ,1,…, βυ,r1, βw,1,…, βw,r2)T ≡ (βυ, βw)T. For 

generality, let r1 of the case-mix variables, namely Vijℓ, ℓ = 1,…, r1, to be measured without 

ME, while a subset of r2 case-mix variables (Wijℓ, ℓ = 1,…, r2) are assumed to be ascertained 

with ME (e.g., patient comorbidities from administrative claims data). Thus, the observable 

RE and FE profiling models in practice are, respectively:

g μij = γi + βTZij, γi N γ0, σ2 , (3)

and

g μij = γi + βTZij, i = 1, …, F , (4)

where μij, γi, γ0, and σ2 are analogously defined as above in Section 2.1.

Throughout we consider the classical ME model, Wijℓ = Xijℓ + Uijℓ, where Uijℓ’s are 

independent measurement errors in the ℓth case-mix variable that is continuous. The degree 

of ME can be quantified by the reliability ratio λ =  var(X)/var(W ) = σx2/ σx2 + σu2 . In the case 

of error-prone categorical case-mix variables, the ME is in the form of misclassification. For 

example, with the common binary patient cormorbidities, consider the probability mass 

function of (X,W): pab ≡ Pr(Wijℓ = a|Xijℓ = b) with a,b = 0,1. The amount of ME for 

misclassification is summarized by the sensitivity and specificity of the case-mix variable 

Wijℓ, respectively: snℓ = Pr(Wijℓ = 1|Xijℓ = 1) and spℓ = Pr(Wijℓ = 0|Xijℓ = 0).

It is well studied in the classical ME literature that for generalized linear models ME leads to 

biased estimates of coefficients (estimates of {γi, β} do not target {γi∗, β*}). However, how 

the quantities of interest in profiling, namely SRR, are impacted by ME is unknown. Also, 

how inference (e.g., identifying under-performing providers) is impacted by ME is also not 

known. We summarize these estimation and inference procedures for RE and FE models 

below.
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2.3 Standardized readmission ratio

The main estimate of interest reported in profiling is the provider-specific standardized 

readmission ratio (SRR). The SRR for provider i is estimated as

SRRi =
∑j = 1

ni pij

∑j = 1
ni pM, ij

, (5)

where γi is the provider effect estimate, β  is the case-mix effect estimate, 

pij = g−1 γ i + βTZij  is the estimated probability of readmission for patient j in provider i 

and pM, ij = g−1 γM + βTZij . For the FE model, γM in the denominator is taken to be the 

median of the γ i i = 1
F  and for the RE model it is the estimated mean of the distribution of γi 

(namely γ0). The numerator of SRRi is the expected total number of readmissions for facility 

i and the denominator is the expected total number of readmissions for an “average” 

provider (taken over the population of all providers), adjusted for the particular case-mix of 

the same patients in facility i. A SRRi that is significantly larger or smaller than 1 indicates 

that provider i is under- or overperforming relative to the reference norm.

When there is no ME in the patient case-mix variables, the SRR is

SRRi
∗ =

∑j = 1
ni pij

∗

∑j = 1
ni pM, ij

∗ , (6)

Where pij
∗ = g−1 γ i

∗ + β∗T Zij  and pM, ij
∗ = g−1 γM

∗ + β∗TZij . In this case, SRRi
∗ estimates 

the true/theoretical quantity SRRi
∗ = ∑j = 1

ni pij∗ /∑j = 1
ni pM, ij∗ , where pij∗ = g−1 γi∗ + β*TZij  and 

pM, ij∗ = g−1 γM∗ + β∗TZij , particularly for the FE model. (RE models provide biased 

estimates of SRR even in the absence of case-mix ME.) We illustrate in Section 4 that even 

though all model parameters (γM, γi i = 1
F , and β) are estimated with bias, this bias does not 

affect the estimation of SRR in either model.

2.4 Estimation and inference procedures

The RE model is a standard generalized linear mixed effects model for which available 

software can be used, including SAS PROC GLIMMIX or R library lme4 function glmer. 

The CMS implementation uses SAS PROC GLIMMIX (Ross et al. 2010; Horwitz et al. 

2011). For the FE model estimation, He et al. (2013) proposed an iterative algorithm that 

alternates between estimation of {γi} given β and estimation of β given {γi} using one-step 

Newton-Raphson updates. Iteration terminates when max pij
(t + 1) − pij

(t) < 10−6 on 

successive steps t. See He et al. (2013) for details. R codes for fitting both RE and FE 

models are provided as supplemental materials at http://faculty.sites.uci.edu/nguyenlab/

supplement/. We note that in this work, references to ‘RE’ and ‘FE’ methods refer 
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specifically to the models described by (1 and 3) and (2 and 4) together with the 
corresponding inference procedures described below.

To understand the impact of ME on the ability to identify under-performing providers and 

providers not different from the national reference, we provide some details on the inference 

procedures for the RE and FE models. First, for the RE model, a bootstrap resampling of 

providers with replacement (500 samples) is used to obtain a 95% confidence interval (CI) 

for each SRRi . The REs sampled from the posterior distribution of γi are used to estimate 

SRRi in each bootstrap sample (Horwitz et al. 2011). Provider i is flagged as performing 

worse than expected, relative to the reference, if the lower confidence limit is above 1. 

Similarly, a provider is identified as performing better than the reference when the upper 

confidence limit is below 1. Providers with CI containing 1 are considered not different from 

the reference.

Steps of the RE inference procedure (Ash et al. 2012) are provided below. Note that the 

sampled provider random effect, γ i
(b) ∗  for facility i, is sampled from the posterior 

distribution in step 3 in each bootstrap iteration, which is based on case-mix variables with 

ME. As illustrated in Section 4, this results in wider confidence intervals on average.

RE Inference: Provider-Specific Bootstrap Confidence Interval

 0. Fit the RE model (3). The provider-specific estimates are denoted by γ i, i = 1, 2, …, F ,

  with overall mean γ0 . Also, denote the variance and patient case-mix estimates by σ2

  and β , respectively. Calculate SRRi as given by (5).

 1. Generate a bootstrap dataset by sampling F providers with replacement from the original

  dataset. Denote the unique set of providers sampled by F (b), where b indexes the

  bootstrap dataset.

 2. Fit the RE model (3) to the bootstrap dataset and treat each resampled provider as

  distinct. Calculate:

   (a) The patient case-mix effects, β(b) .

   (b) The mean and variance of the distribution of the provider effects, γ0
(b), and σ2(b) .

   (c) The provider-specific effects and variances, γ i
(b),  Var (b) γi , i = 1, 2,…,F. (If a

    provider is sampled more than once, then randomly select one set of the provider-

    specific estimates and variances.)

 3. Generate a provider RE from the provider-specific distribution from step 2(c) for each

  unique provider, i ∈ F (b) . The posterior distribution of each RE is approximated by a

  normal distribution, γ i
(b) ∗ N γ i

(b), Var(b) γi .

 4. Calculate SRRi for each unique provider i sampled in step 1:
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RE Inference: Provider-Specific Bootstrap Confidence Interval

SRRi
(b) = ∑j = 1

ni pij
(b)/∑j = 1

ni pM, ij
(b) = ∑j = 1

ni g−1 γ i
(b) * + β(b)TZij /∑j = 1

ni g−1 γ0
(b) + β(b)TZij , for i ∈ F (b) .

 5. Repeat the bootstrap procedure, step 1 - step 4, 500 times (b = 1,…,500) and form the

  95% CI estimate of SRRi for each provider i = 1, 2,…,F.

For the FE model, inference for SRRi can be equivalently based on the (fixed effect) 

provider specific parameters γi (for each i = 1,…, F). More specifically, FE inference is 

based on testing the hypothesis H0 : γi= γM (i.e., SRRi = 1), accounting for the high-

dimensional FE parameters. He et al. (2013) proposed a method based on resampling under 

the null hypothesis to evaluate the p-value, the “probability that a given provider would 

experience a number of readmissions as least as extreme as that observed if the null 

hypothesis is true, accounting for the provider’s patient case-mix.” Details are provided in 

the FE inference procedure below (He et al. 2013). In step 2, note that the Bernoulli draws 

Y ij
(b) under the null hypothesis are based on the median provider and patient case-mix effect 

estimates, γM and β , estimated from case-mix variables with ME. This results in higher 

variance in the resampled test statistic, Y i ⋅
(b), under the null. As illustrated in Section 4, this 

results in reduced sensitivity to detect under-performing providers.
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FE Inference: Provider-Specific Hypothesis Testing

1. Estimate FE model (4) and obtain estimates β  and γM .

2. For the ith provider, draw B = 500 samples, Y ij
(b): j = 1, 2, …, ni b = 1

B
 under the null

 hypothesis, where each observation is independently drawn from a Bernoulli distribution:

 Y ij
(b)  Ber pij , where pij = exp γM + βTZij / 1 + exp γM + βTZij .

3. Calculate the total number of readmissions in the resampled data: Y i ⋅
(b) = ∑j = 1

ni Y ij
(b) .

4. Calculate the p-value for testing H0 : γi = γM as follows. Compute 

SLi
+ ≡ B−1∑b = 1

B 0.5I Y i ⋅
(b) = Oi + I Y i ⋅

(b) > Oi ,

 where Oi is the observed number of readmissions for provider i in the original

  data and I( ⋅ ) denotes the indicator function; similarly, compute 

SLi
− ≡ B−1∑b = 1

B 0.5I Y i ⋅
(b) = Oi + I Y i ⋅

(b) < Oi .

 The p-value is P = 2 × min SLi
+, SLi

− .
5. Repeat steps 2 – 4 for each provider, i = 1, 2,…,F.

3. Simulation studies

We consider 4 simulation models to address two specific aims: Determine the impact of 

patient case-mix ME on (1) estimation of SRR and (2) inference procedures in both RE and 

FE models. The studies provide answers to the following questions: (1) Does the inclusion 

of error-prone case-mix variables bias the estimation of provider-specific SRRs and as a 

consequence invalidate their interpretation/use? (2) How does the inclusion of error-prone 

case-mix variables affect inference, specifically, the ability to identify under-performing 

providers? The 4 simulation models (SM1-SM4) described below includes a simple set-up 

with two continuous variables (SM1), a more general dependence structure with 15 variables 

(SM2), a simple misclassification variable (SM3), and a more general model with 30 case-

mix covariates based on the USRDS data that includes both ME on continuous variables and 

discrete variables.

3.1 Simulation model 1: Two continuous case-mix variables

We begin with the following simple, but instructive, basic profiling model without ME:

g μij∗ = γi∗ + γM∗ + βv, 1
∗ V ij1 + βx, 1

∗ Xij1, (SM1*)

with i = 1,…,F = 1, 000 providers and two continuous case-mix variables, Vij1 and Xij1, 

measured without error. For simplicity, we take both covariates to be normally distributed 

with means μV = 0, μX = 2, and variances σx2 = σv2 = 1, and with correlation ρ(Vij1, Xij1) = 

0.3. The variable Vij1 is assumed to be measured without error. The unobserved variable is 

Xij1 and the corresponding observed variable is W ij1 = Xij1 + Uij1,  where Uij1 N 0, σu2  as 

described in Section 2.2. Thus, the observable profiling model is
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g μij = γi + γM + βv, 1V ij1 + βw, 1W ij1 . (SM1)

We considered two levels of ME by setting σu2 = 0.752 (lower ME: 100 × (1 – λ)% = 36%) 

and σu2 = 22 (higher ME: 80%). We parametrized model (SM1*) to include γM∗  so that the 

baseline rates of readmission (BRR) can be varied. BRR of 14.3%, 27.3%, and 41.7% are 

referred to as low, medium and high, corresponding to γM∗ = log 1/6 , log 3/8 , and log(5/7), 

respectively.

Provider-specific effects, γi∗, were set as follows. Among the 1,000 providers, 2.5% were 

under-performers (worse: ℐW = 1, …, 25 ), 2.5% were over-performers (better: 

ℐB = 26, …, 50 ), and the remaining 95% of providers, with effects not different (ND: 

ℐND = 51, …, 1000 ) from the national reference, were generated from a N(0,σ2) 

distribution with σ2 = 0.22. Providers that were truly different from the national reference 

were generated as γi∗ ~ Uniform(0.4, 1.5) for i ∈ ℐW  and γi∗ ~ −Uniform(0.4,1.5) for i ∈ ℐB .
(We note here that when all provider effects were generated from N(0, σ2) and true outlying 

providers were defined as the 2.5% in the tails of the distribution, the results were similar.)

Because the impact of ME on profiling will depend on the provider effect size (P-ES) and 

the patient case-mix effect size (CM-ES), we considered two P-ES and three CM-ES 

settings. The need for this is clear when one considers the extreme cases. For example, if 

providers have large effects on whether patients have unplanned 30-day readmission relative 

to the contribution from patient factors, then ME on the patient case-mix variables will have 

negligible effects on the outcome. On the other hand, if patient risk factors and 

comorbidities are the dominating effects on readmission (relative to a small P-ES), then ME 

can have a large effect on the outcome. Therefore, we considered (P-ES 1): γi∗ ~ 

Uniform(0.4,1.5) for i ∈ ℐW  and γi∗ ~ −Uniform(0.4,1.5) for i ∈ ℐB; (P-ES 2): γi∗ ~ 

Uniform(0.6,1.5), for i ∈ ℐW  and γi∗ ~ −Uniform(0.6,1.5) for i ∈ ℐB where provider signals 

have been increased. For patient case-mix effect size (CM-ES) we considered the following 

three increasing CM-ES settings: βv, 1
∗ = βx, 1

∗  = 0.5, 1, and 2 (CM-ES1, CM-ES2, and CM-

ES3, respectively).

We also considered the case where worse and better performing provider effects were 

generated as fixed constants across Monte Carlo datasets so that each provider’s average 

bias in estimation can be characterized (see Section 4.1). For this, under the P-ES1 setting, 

the under-performing provider effects were set to γi∗ ∈ {0.40, 0.46,…, 1.5}, for i ∈ ℐW . For 

over-performing providers, γi∗ ∈ {−1.50, −1.45,…, −0.40}, for i ∈ ℐB . Similarly, under the 

P-ES2 setting: γi∗ ∈ {0.60, 0.64,…, 1.50}, for i ∈ ℐW  and γi∗ ∈ {−1.50, −1.46,…, −0.60}, for 

i ∈ ℐB .

The generated data consisted of provider volume ranging from 42 to 210 patients on 

average. More specifically, the number of patients were generated from a truncated Poisson 
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distribution, where ni = ∑ℎ = 1
1000 miℎ1 miℎ ≤ 7 , were mih ~ Poisson(15). This process mimics 

the sparse data structure of patient discharges across U.S. dialysis facilities; see He et al. 

(2013) for details. From ni, we defined small, medium and large sized providers by tertile 

(small: 42–103; medium: 104–126: large: 127–210 patients on average). Two hundred 

datasets, each with 1,000 providers, were generated for each simulation study scenario.

3.2 Simulation model 2: More general dependence structure

We extended the simulation model (SM1*) to include 10 error-free case-mix variables and 5 

variables with ME, a generalization that allowed for investigation of a more general 

dependence structure among all case-mix variables as is typical in real data applications. 

More specifically,

g μij∗ = γi∗ + γM∗ + βv, 1
∗ V ij1 + ⋯ + βv, 10

∗ V ij10 + βx, 1
∗ Xij1 + ⋯ + βx, 5

∗ Xij5, (SM2*)

with i = 1,…, F = 1,000 providers. As with model (SM1*), the observed variables with error 

are W ijl = Xijl + Uijl, where Uijl N 0, σu2 , for l = 1,…,5, leading to the observable model

g μij = γi + γM + βv, 1V ij1 + ⋯ + βv, 10V ij10 + βw, 1W ij1 + ⋯ + βw, 5W ij5 . (SM2)

The case-mix vector, Zij = Zij1, …, Zij15 = Vij, Xij  in (SM2*), was generated from a 

multivariate normal distribution with means 0, variances 1, and correlation 

ρll′ ≡ ρ Zijl, Zijl′ , 1 ≤ l, l′ ≤ 15. Using the magnitude of correlations observed in USRDS 

data as a guide, we considered a more general dependence among variables that was 

generated in 3 blocks with different correlation structures: 0.01 ≤ ρll′ ≤ 0.05 in block 1 for 

variables Z1 to Z5; 0.05 ≤ ρll′ ≤ 0.1 in block 2 for variables Z6 to Z10; and 0.1 ≤ ρll′ ≤ 0.25
in block 3 for variables Z11 to Z15 . Variables across blocks were also correlated in the range 

of 0.01 ≤ ρll′ ≤ 0.25. Provider effects were the same as in model (SM1*). Low, medium and 

high CM-ES were set as: (CM-ES1) βx,l = 0.5, (CM-ES2) βx,l = 1, and (CM-ES3) βx,l = 2, 

for ℓ = 1,…, 5. Effects of the 10 error-free covariates were βv, 1
∗ = ⋯ = βv, 5

∗ = 0.25 and 

βv, 6
∗ = ⋯ = βv, 10

∗ = 0.5.

3.3 Simulation model 3: Simple case-mix misclassification

Simulation model 3 considers a simple error-prone categorical case-mix variable, where the 

ME is in the form of misclassification. Model 3 is as defined above for (SM1*):

g μij∗ = γi∗ + γM∗ + βv, 1
∗ V ij1 + βx, 1

∗ Xij1, (SM3*)

and

g μij = γi + γM + βv, 1V ij1 + βw, 1W ij1, (SM3)

where (Xij1,Wij1) are binary covariates with joint distribution given by pab = Pr(Wijℓ = a|Xiji 

= b) with a, b = 0,1. For low ME, we set p00 = 0.42, p01 = 0.18, p10 = 0.12, and p11 = 0.28; 
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thus, the case-mix classification sensitivity (sn) and specificity (sp) are sn = 0.7 and sp = 0.6. 

For the higher ME, we set p00 = 0.15, p01 = 0.25, p10 = 0.5, and p11 = 0.1, resulting in lower 

sn = 0.167 and sp = 0.375. The covariate, Vij1, measured without error is correlated with Xij1 

and generated through (Vij1|Xij1 = 0) ~ N(0,1) and (Vij1|Xij1 = 1) ~ N(1,1.52).

3.4 Simulation model 4: USRDS data characteristics

We also considered a fourth simulation study (SM4*/SM4) more tailored to the assessment 

of dialysis facilities. Paralleling works for profiling all-cause readmission for hospitals 

(CMS 2014; Horwitz et al. 2011), assessment of dialysis facilities included the following 30 

patient case-mix covariates: Variables 1–4: age, body mass index (BMI), length of index 

hospitalization (days), time on dialysis (years); variable 5: sex; variables 6–7: high risk index 

hospitalization, diabetes as the cause of ESRD; and variables 8–30: 23 past-year 

comorbidities, which includes amputation status; chronic obstructive pulmonary disease; 

cardiorespiratory failure/shock; coagulation defects and other specified hematological 

disorders; drug and alcohol disorders; end-stage liver disease; fibrosis of lung or other 

chronic lung disorders; hemiplegia, paraplegia, paralysis; hip fracture/dislocation; major 

organ transplants; metastatic cancer; other hematological disorders; other infectious disease 

and pneumonias; other major cancers; pancreatic disease; psychiatric comorbidity; respirator 

dependence; rheumatoid arthritis and inflammatory connective tissue disease; seizure 

disorders; septicemia/shock; severe cancer; severe infection; and ulcers (CMS 2014). Our 

focus on ME is on the 23 past-year comorbidities, although for simplicity of exposition we 

also include variables 6–7 as potentially error-prone; thus, Xij = Xij1,…,Xij25.

To generate the binary covariates, Xij, we consider underlying latent continuous variables Lij 

= (Liji,…, Lij25) ~ N25 (μL, ∑L), with ∑L = (σℓ, ℓ’) and μL= (μ1,…, μ25) chosen to be the 

observed covariance matrix and the means/prevalences for binary covariates based on 

USRDS data, respectively. The binary covariates Xijℓ, ℓ = 1,…, 25, were then generated 

through the process: Xijℓ = 1{Lijℓ < Zℓσℓ,ℓ + μℓ}, where 1{A} is the indicator function for event 

A, zℓ = Φ−1(μℓ) and Φ−1() is the standard normal inverse CDF. This process generates binary 

covariates (e.g., patient comorbidities) with prevalences equal to the corresponding observed 

prevalences in the USRDS data (namely μL). Next, the observed binary covariates with ME, 

Wij1,…, Wij25, were then generated based on the joint distributions of (Xijℓ, Wijℓ) for a range 

of misclassification sensitivities and specificities (suℓ, spℓ), as described in Section 2.2. The 

range of snℓ, spℓ used was from 0.5 to 0.8.

The remaining 4 continuous variables and sex (Vij1,…, Vij5) were generated from a N4(μV, 

∑V) and a Ber(0.48) distribution, where μz and ∑z were the observed mean and covariance 

based on the USRDS data. The distribution of facility effect sizes, γi∗ , was modeled as γi∗ ~ 

N(0, 0.22) for facilities i ∈ ℐND and outlying facilities were generated as γi∗ ~ Uuiform(0.6, 

2) for i ∈ ℐW  and γi∗ ~ Uniform(−2, −0.6) for i ∈ ℐB under the P-ES2 setting. For the P-ES1 

setting, the distributions were ±Uniform(0.4, 2). The patient case-mix effects, 

βT∗ = β1
∗, …, β30

∗ , were set to be proportional to the estimates based on the USRDS data.
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4. Results

4.1 Estimation of SRR

We present results based on the simple simulation case with two continuous case-mix 

variables (SM1* and SM1) in more details since the results were similar across simulation 

studies. First, the model coefficients from both RE and FE models are biased. This includes 

the biased estimated coefficients for case-mix variables measured with or without ME 

(βx, βz) and provider effect estimates (γM, γ i, i = 1, …, 50; Figure 1). Results given are for the 

case with βx = βz = 2. As expected, the magnitude of the bias in the provider-specific 

estimates, γ i, increases with larger case-mix effect size (CM-ES1 to CM-ES3) and with 

higher level of ME (low [36%] vs. high [80%] ME) for a given CM-ES); see Figure 2 for the 

FE model. More generally, the magnitude of estimation bias depends on the provider effect 

size, case-mix effect size and the level of ME. For instance, when the CM-ES is small 

relative to the provider-specific effect size, the impact of ME is not detectable (e.g., see row 

1 of Figure 2). (Results are similar for the RE model; see supplemental Figure S1.) We note 

that although high-dimensional FE models with covariates measured with error has not been 

examined in the ME literature to date, biased coefficients are expected similar to ME in 

generalized linear models.

However, biased model coefficients due to ME do not affect the estimation of SRR. Figure 3 

shows the average SRR estimates for truly outlying providers (under- and over-performing 

providers under P-ES1) with true SRR ranging from 0.6 to 1.4. For the FE model (Figure 3), 

the SRR estimates under ME (dashed line) coincides with SRR estimates when using the 

true case-mix variables without ME (dotted line). Because FE models provide 

(asymptotically) unbiased estimates, these coincide with the true SRR (solid gray line). For 

the RE model (Figure S2), the results show that SRR estimates under RE models with 

(dashed) and without (dotted) ME also coincide. However, we note that these RE estimates 

do not target the true SRR, particularly in the tails of the distribution of SRR, because RE 

are generally biased shrinkage estimates (Kalbfleisch and Wolfe, 2013), regardless of 

whether case-mix variables are measured with or without error. The results hold with low 

(36%) or high (80%) amount of ME. (The pattern of results are similar for larger provider 

effect size, P-ES2; not shown.)

Thus, biased estimates of case-mix effects and provider-specific estimates do not translate to 

biased SRR estimates. However, we note that the variance in the estimates of SRR are higher 

under case-mix ME (results not shown). Increased variation as a consequence of covariate 

ME in regression models is also known in the classical ME setting (Carroll et al. 2006).

4.2 Inference: Identifying outlying providers

4.2.1 Overall impact of measurement error on profiling—To describe the impact 

of case-mix ME on profiling, we focus on the primary profiling goal of correctly identifying 

providers that under-perform (sensitivity “worse”: SEN-W) relative to the reference 

standard, and specificity (SPEC). SPEC refers to the correct identification of providers that 

are not different (ND) compared to the reference. Because provider assessment policies 
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focus on identifying under-performing providers, we focus on the results for SEN-W and 

SPEC-ND. (Sensitivity “better” was similar to SEN-W in our studies due to symmetry.)

Overall, the studies consistently found that although the estimation of SRR is not affected by 

ME, both FE and RE models have substantially reduced power to detect truly 

underperforming providers. Because the overall patterns of results are similar across studies, 

we present in more detail the results for model SM1 with 2 continuous case-mix covariates. 

Figure 4 illustrates the general patterns of the impact of ME on the both FE and RE models. 

Row 1 of Figure 4 shows the average SEN-W for identifying under-performing providers as 

a function of case-mix effect size (β = 0.5,1, 2) for the case of low ME. The results support 

the following with respect to both FE and RE models: (1) The presence of case-mix ME 

does negatively impact profiling. (2) The reduction in the ability to identifying under-

performing providers due to ME depends on the CM-ES. (3) These results are consistent 

across the two P-ES settings (low: black, high: gray curves) and also for the high level of 

ME (not shown). For example, average SEN-W was 74.3% and 62.0% for FE and RE 

models without ME, respectively. These SEN-W averages dropped to 69.2% and 52.3%, 

respectively, for FE and RE models with ME. Furthermore, note that when the case-mix 

effect is smallest (i.e., β = 0.5), average sensitivities were not different between the models 

using case-mix variables with and without ME. However, this should not be assumed to be 

the case in practice because case-mix variables, such as comorbidities, can have large effects 

on a patient’s likelihood of readmission.

The specificity (SPEC-ND), i.e., rate of correctly identifying the providers that do not differ 

from the reference standard, as a function of CM-ES is summarized in Figure S3 for the case 

of low ME. As expected, the reduction in sensitivity for identifying outlying providers in the 

presence of ME led to a slight increase in SPEC-ND for FE model (e.g., 93.2% vs. 93.9%: 

w/o vs. w/ME at P-ES1) and RE model (97.2% vs. 98.2%: w/o vs. w/ME at P-ES1).

We note that the overall average flagging performance/sensitivity patterns (with and without 

ME) as a function of case-mix effect size are similar when examined separately for 

providers with small, medium, and large volume. This is illustrated in Figure S4 for both FE 

and RE models under low provider effects size (P-ES1).

Finally, we also examined the confidence interval length and the test level (coverage 

probability [CP]) for the RE and FE inference procedures, respectively. For the FE model, 

Figure 5 (row 1) shows the CPs for the hypothesis testing procedure (H0 : γi = γM) under no 

ME and under ME with increasing CM-ES in both high and low levels of ME. CPs do not 

target the 0.95 level and are further below 0.95 for higher ME and larger CM-ES, as 

expected. For the RE model, the inference procedure based on 95% CI yielded wider CI 

length on average under case-mix ME (Figure 5, row 2).

4.2.2 More general dependence/correlation and case-mix misclassification—
To examine whether the adverse impact of ME holds under a more general profiling model, 

we consider a model containing 15 continuous case-mix variables with dependence/

correlation within and across blocks of variables. The correlation structure consists of 

unequal correlations among patient case-mix variables (0.01 ≤ ρrr’ ≤ 0.25) selected to be 
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similar to USRDS data described in Section 3.1. As illustrated in Figure S5 - column 1, the 

patterns of results for both RE and FE models were similar to the 2 variables case described 

above; however, in this more realistic model, the difference in average SEN-W between the 

models with and without ME is much greater. For example, at CM-ES β = 2 under low ME, 

the SEN-W for FE models with vs. without ME were 36.0% vs. 55.3% (and similarly, for 

RE model with vs. without ME: 6.7% vs. 27.9%). The results were similar for high level of 

ME (FE model with vs. without ME: 27.3% vs. 56.3%; RE model with vs. without ME: 

2.1% vs. 25.4%).

Also, Figure S5 - column 2, illustrates the impact of ME in categorical variables, i.e., 

misclassification of categorical case-mix variables. The impact of misclassification on 

profiling in this case is similar to the results described earlier for two continuous covariates 

(Figure 4).

4.2.3 Simulation model based on USRDS data—Profiling results for simulated data 

modeled after USRDS data are summarized in Figure 6 for baseline readmission rate (BRR) 

of 27.3% (medium). The results are similar for lower (14.3%) and higher (41.7%) BRR. The 

general patterns of the impact of ME on the ability to identify truly under-performing 

providers (SEN-W) is similar to the those described earlier, although the loss in power is 

more severe. For example, the overall average SEN-W was 85.9% for the FE model without 

ME and was reduced to an average of 64.1% for case-mix measured with error. For the RE 

model, the effect of ME was more severe with an average SEN-W of 79.1% vs. 37.8% for 

models with and without ME, respectively. Not surprisingly, the direction of SPEC-ND is 

reversed (with ME > without ME) because the majority (190, 000 = 200 × 1000 × 0.95) of 

providers are truly ND relative to the reference standard.

5 Discussion

In this work we presented the first systematic study of the impact of measurement error on 

patient case-mix variables in profiling models. We found that estimates of SRR are valid 

under ME; therefore, their use is acceptable even under case-mix variables measured with 

error. However, ME increases variation in the SRR estimates and degrades the power of 

profiling methods to detect under-performing providers. Although beyond the scope of this 

work, careful studies to examine/document the degree of ME for all case-mix covariates 

(e.g., all comorbidities) is warranted to assess their impact. Furthermore, investigation of 

novel methods to improve the profiling performance under ME is needed. Finally, we note 

that our work focused on simulation models to understand the basic impact of measurement 

error on estimation and inference in profiling models. Further studies providing a more 

thorough statistical/theoretical treatment will contribute more general insights that may lead 

to additional guidance on the use of profiling models in the context of case-mix 

measurement error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Bias case-mix coefficients estimates (βz, βx; row 1), overall “mean” provider effect 

estimates (γM; row 2), and provider-specific estimates (γ i; row 3) due to measurement error 

for FE and RE models. (FE: fixed effects; RE: random effects; ME: measurement error)
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Figure 2: 
Bias of provider-specific estimates (γ i) of fixed effects (FE) models as a function of case-

mix effect size (CM-ES 1 to CM-ES 3 corresponding to βz= βx = 0.5, 1, and 2) and the level 

of measurement error (ME: low or high ME).
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Figure 3: 
Provider-effect estimates, SRRi, for fixed effects (FE) models with and without 

measurement error (column 1 - low ME, column - high ME) and across case-mix effect sizes 

(CM-ES).
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Figure 4: 
Row 1: Overall average flagging performance/sensitivity for identifying underperforming 

providers as a function of case-mix effect size (CM-ES: β= 0.5,1, 2), averaged over 200 

simulated datasets. Given are results for FE and RE models when patient case-mix variables 

are ascertained without measure error (w/o ME; dotted), with ME (w/ME; dashed), and for 

provider effect sizes (P-ES1, P-ES2: low, high). Row 2: Distribution of sensitivity for 

identifying truly under-performing providers for the case of β = 2.
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Figure 5: 
Coverage probabilities for hypothesis testing procedure use in fixed effects models (row 1) 

based on 1,000 Monte Carlo datasets. Average length of 95% confidence interval (CI) for 

SRR based on random effects inference procedure (row 2). (CM-ES: case-mix effect sizes 

1–3 are β= 0.5,1, 2; ME: measurement error; SRR: standardized readmission ratio)
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Figure 6: 
Performance of profiling models under USRDS data simulation studies: Fixed effects (FE) 

model (row 1) and random effects (RE) model (row 2).
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FE Inference: Provider-Specific Hypothesis Testing

1. Estimate FE model (4) and obtain estimates β  and γM .

2. For the ith provider, draw B = 500 samples, Y ij
(b): j = 1, 2, …, ni b = 1

B
 under the null

 hypothesis, where each observation is independently drawn from a Bernoulli distribution:

 Y ij
(b)  Ber pij , where pij = exp γM + βTZij / 1 + exp γM + βTZij .

3. Calculate the total number of readmissions in the resampled data: Y i ⋅
(b) = ∑j = 1

ni Y ij
(b) .

4. Calculate the p-value for testing H0 : γi = γM as follows. Compute SLi
+ ≡ B−1∑b = 1

B 0.5I Y i ⋅
(b) = Oi + I Y i ⋅

(b) > Oi ,

 where Oi is the observed number of readmissions for provider i in the original

  data and I( ⋅ ) denotes the indicator function; similarly, compute SLi
− ≡ B−1∑b = 1

B 0.5I Y i ⋅
(b) = Oi + I Y i ⋅

(b) < Oi .

 The p-value is P = 2 × min SLi
+, SLi

− .
5. Repeat steps 2 – 4 for each provider, i = 1, 2,…,F.
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