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Abstract

Raman spectroscopy is an emerging technique for the rapid detection of oil qualities. But the 

spectral analysis is time-consuming and low-throughput, which has limited the broad adoption. 

To address this issue, nine supervised machine learning (ML) algorithms were integrated into 

a Raman spectroscopy protocol for achieving the rapid analysis. Raman spectra were obtained 

for ten commercial edible oils from a variety of brands and the resulting spectral dataset was 

analyzed with supervised ML algorithms and compared against a principal component analysis 

(PCA) model. A ML-derived model obtained an accuracy of 96.7% in detecting oil type and 

an adulteration prediction of 0.984 (R2). Several ML algorithms also were superior than PCA 

in classifying edible oils based on fatty acid compositions by gas chromatography, with a faster 

readout and 100% accuracy. This study provided an exemplar for combining conventional Raman 

spectroscopy or gas chromatography with ML for the rapid food analysis.

Keywords

Raman spectroscopy; machine learning; edible oil quality; food adulteration

1. Introduction

Edible oils are an indispensable source of nutrition and, accordingly, are widely present 

in food. Oil adulteration has been a chronic issue for many years (Zhang et al., 2012) 

because of the large differences between oil prices. Simply, higher priced quality oils are 
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mixed with lower quality oils to enhance profits and deceive the consumer. Currently, 

the authentication of edible oils mainly depends on the analysis of fatty acid composition 

via gas chromatography (GC) that requires pretreatment to achieve methyl esterification. 

Methyl esterification is a time-consuming chemical reaction that produces toxic solvent 

waste and is impractical for high throughput measurements. A relatively fast, one-hour 

detection approach has been recently developed to authenticate extra virgin olive oils 

based on the direct analysis of triacylglycerols (TAGs) using ultra-high-performance liquid 

chromatography (UHPLC) coupled with charged aerosol detection (CAD) (Green et al., 

2020). This UHPLC-CAD method required minimal sample preparation, which took an 

important step forward to achieving a rapid high-throughput screen for the olive oil industry. 

However, for undertaking large amount of sample determination workload, chromatography 

is still a low throughput measurement (~0.5 to 1 hour per sample) that needs organic 

solvents as mobile phase. Therefore, alternative technologies that are organic solvent-free 

and high throughput are urgently needed to enable rapid oil quality determination, especially 

for on-site measurements.

Raman spectroscopy does not require any chemical reagents for sample pretreatment. 

Notably, Raman spectroscopy has been used to characterize the chemical composition of 

bulk lipids, to determine the free fatty acid content and the degree of unsaturation of 

oils, and to discriminate between and authenticate different edible oils and fats (Baeten 

et al., 2005; Jiménez-Sanchidrián & Ruiz, 2016; Yang, Irudayaraj, & Paradkar, 2005). 

However, the difference in Raman spectra between oils is subtle; therefore, it is necessary 

to apply statistical analysis to accurately and efficiently identify these unique spectral 

differences. Currently, the interpretation of Raman spectra requires manual or semi-manual 

data processing and technical expertise to compare an unknown spectrum with known 

spectra in database, and in many cases, elaborative comparison of specific Raman bands 

is needed. The Raman spectrum does not provide a simple direct readout that outputs 

chemical or compound names or concentrations. Instead, a statistical analysis is needed. 

One recent example was the application of an unsupervised principal component analysis 

(PCA)-assisted surface-enhanced Raman spectroscopy (SERS) for the discrimination of 

edible oils (Du et al., 2019). Although the PCA method could differentiate between the 

six types of edible oils, the approach still required manual intervention to match each data 

cluster with the oil types instead of providing a direct readout. Although SERS significantly 

increased the sensitivity of detection, the use of organic solvents and gold nanoparticles for 

sample pretreatment greatly increased the cost and analysis time. Accordingly, a rapid and 

reliable spectral data processing method may enhance the efficiency and wide-acceptance of 

Raman spectroscopy for the characterization of edible oils.

Machine learning algorithms have facilitated numerous breakthroughs in the processing of 

complicated data sets, such as medical images (Ardila et al., 2019). Recently, they have 

been coupled with Raman spectroscopy or surface-enhanced Raman spectroscopy for the 

rapid analysis of a diversity of samples that have included medicines and microbes (Lussier, 

Thibault, Charron, Wallace, & Masson, 2020). Unlike unsupervised PCA, a trained machine 

learning algorithm can rapidly classify a new analyte from a data set of raw Raman spectra 

and provide a direct readout. Nevertheless, machine learning algorithms has seen limited 

applications in solving food science related problems, coupled with advanced food analysis 
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equipment. To the best of our knowledge, the rapid validation of a variety of edible oil 

quality by coupling Raman spectroscopy with machine learning has not been previously 

demonstrated.

Nine supervised machine learning algorithms were integrated into a Raman spectroscopy 

protocol for achieving the rapid classification of oil type and the quick detection of 

adulterated edible oils. Raman spectra were obtained for ten commercial edible oils from a 

variety of brands and the resulting spectral data set was analyzed with supervised machine 

learning algorithms. The results were compared against a PCA model. The fatty acid 

composition of the edible oils were also analyzed using the same data processing protocol. 

The correlation between fatty acid composition and the Raman spectra of various edible oils 

was also examined. Our study provides an exemplar for the application of machine learning 

for the rapid analysis of Raman spectra in the field of food science.

2. Materials and methods

2.1. Chemicals and supplies

Heptane, an alkane standard solution (C8 to C20), glyceryl triheptadecanoate, and Supelco 

37 component fatty acid methyl esters (FAME) mixed in dichloromethane were purchased 

from Sigma-Aldrich (St. Louis, USA). Hexane was bought from Fisher Chemical (Fair 

Lawn, USA). The four inch gold (99.99%) coated silicon wafer was purchased from Sigma-

Aldrich (St. Louis, USA). The gold coated silicon wafer was sliced into 10 mm × 6 mm 

pieces by a diamond cutter and attached to the center of regular glass microscopy slides (25 

mm × 75 mm × 1 mm) by adhesive tapes for further use.

2.2. Edible oils

Forty-seven edible oils from forty-six different brands and comprising twelve different 

oil types from at least seventeen countries of origin were purchased from local markets 

in Lincoln, Nebraska, USA, between 2019 and 2020 (S. Table 1). The oil types include 

avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, sunflower, 

algae, hemp, and safflower oils. To minimize deteriorations and changes in fatty acid 

composition before analysis, 10 mL of each oil was transferred into a 30 mL GC headspace 

bottle with a tight silicon cap and stored in a dark refrigerator at 4 °C. All samples were 

analyzed within a week of collection.

2.3. Preparation of oil samples for adulteration study

Two adulteration models, avocado oils adulterated by canola oils and olive oils adulterated 

by soybean oils, were prepared for this study. Specifically, two randomly selected avocado 

oils (# 3 and # 43) from S. Table 1 were blended with two randomly selected canola oils 

(#8 and #5) for the training data set for the adulterated avocado oils. Two other avocado oils 

(#1 and #42) were blended with two other canola oils (#6 and #7) for the testing data set for 

the adulterated avocado oils. Similarly, two randomly selected olive oils (#26 and #27) were 

blended with two soybean oils (#34 and #35) for the training data set for the adulterated 

olive oils. Two other olive oils (#25 and #28) were blended with two other soybean oils 

(#33 and #36) for the testing data set for the adulterated olive oils. The inexpensive oil 
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(canola or soybean oil) was mixed with the target oil (avocado or olive oil) in glass vials. 

The adulterated mixtures were prepared with a range of inexpensive oil compositions (mass/

mass) consisting of: 0%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 

100% of inexpensive oil in a total of 5 g of oil. Overall, in each of the two adulterated 

models (avocado oil canola oil mixtures, olive oil and soybean oil mixtures), the adulterated 

mixtures consisted of 4 different oil blends, 12 different percent compositions per oil blend, 

and 4 replicates per mixture group for a total of 48 oil samples.

2.4. Determination of fatty acid composition by GC-FID

The fatty acid composition of the 47 edible oil samples was determined with a Hewlett 

Packard 6890 series GC equipped with a 30 m × 250 μm × 0.25 μm DB-WAX bonded-

phase fused-silica capillary column (J & W Scientific, Folsom, CA) and a flame ionization 

detector (FID). Methyl esterification of each oil sample followed a previously published 

protocol (Monfreda, Gobbi, & Grippa, 2012). Triplicates of each samples were injected into 

the GC with the following experimental parameters: injection volume of 1.0 μL, a split 

injection with 30:1 at 280°C, a constant helium flow rate of 30 mL min−1, and a detector 

temperature of 280°C. The oven temperature was initially set to 50°C for 1 minute and 

then ramped to 200°C with a gradient of 25°C min−1. The oven temperature was held for 

1 minute at 200°C and then ramped to 230°C with a gradient of 2°C min−1. The oven 

temperature was then held for 5 mins at 230°C for a total run time of 28 mins. The fatty acid 

composition of each oil was identified using alkane standards (C8 to C20) and 37 fatty acid 

methyl esters (FAMEs). The fatty acid composition for each of the four biological replicates 

from each of the 47 oil types listed in S. Table 1 was determined in triplicate for a total of 

564 GC spectra. The composition of each fatty acid was expressed as a percentage of the 

total fatty acid composition by the peak area ratio derived from the GC spectrum.

2.5. Raman spectra of edible oils

Raman spectra were acquired on an XploRA ONE™ Raman spectrometer system (HORIBA, 

Ltd., Kyoto, Japan) with a 785 nm near-infrared diode laser. The Raman spectra of the edible 

oil samples were collected as previously described (Du et al., 2019; Zhao, Shen, Wu, Zhang, 

& Xu, 2020) with the following modifications. Specifically, a tiny portion (~0.1 μL) of a 

single edible oil or oil mixture was placed on a pre-prepared gold film silicon (10 mm × 6 

mm) wafer. The 50X lens was used to focus and then observe the edible oil samples. Each 

Raman spectrum was collected within 5 minutes over a wavenumber range of 670 cm−1 to 

3435 cm−1 with a resolution of approximately 3.4 cm−1. A Raman spectrum was acquired 

for five different spots for each edible oil sample. The Raman spectra were collected in 

triplicate for a total of 15 spectra per edible oil sample. MATLAB® R2020a software 

(MathWorks®, Natick, USA) software was used for baseline correction, normalization, and 

Raman shift alignment. The -CH-(CH3) asymmetric stretch at an average wavenumber of 

1437.95±1.87 cm−1 was used to align and normalize the set of Raman spectra to correct for 

any displacement along the x-axis and intensity differences at y-axis. To refine the spectral 

alignment because of sampling location difference of each data points, Raman spectra with a 

1 cm−1 resolution between 670 cm−1 and 3435 cm−1 were generated by a linear interpolation 

to a standardized reference spectrum by using the MATLAB® software. Detail information 
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and schematic diagrams of Raman signal processing can be found in S. Figure 1–3 of 

Supplementary materials.

2.6. Data processing and machine learning algorithms

Hierarchical cluster analysis of fatty acid composition was applied by using the MATLAB® 

R2020a software (MathWorks®, Natick, USA). PCA models were produced using R 

version 3.5.2. The heatmap and hierarchical clustering of pairwise Pearson correlation 

coefficients (r) to correlate fatty acids with Raman bands were also generated with the R 

software. Machine learning algorithms were implemented in the Python 3.5.7 programming 

environment.

To create an equally distributed training and test data set for each edible oil type, four brands 

from each of the ten oil types listed in S. Table 1 (only #1 to #40) were used for the machine 

learning and deep learning study. For each edible oil type, there were four biological 

replicates. The first two oil brands were randomly assigned and selected as training data sets. 

The remaining two brands were used as a test data set. In this regard, the data was equally 

and independently partitioned between technical data and biological samples. Overall, there 

were 60 (3 replicates × 2 brands × 10 oil types) GC fatty acid compositions (FACs) in the 

training data set and 60 FACs in the testing data set, respectively. Similarly, there were 300 

(15 replicates × 2 brands × 10 oil types) Raman spectra in the training data set and 300 

Raman spectra (15 replicates × 2 brands × 10 oil types) in testing data set, respectively. For 

the oil adulteration study, the training and test datasets were derived from different set of 

edible oil samples as described above. For each of the avocado-canola and olive-soybean 

mixture systems, 144 Raman spectra (6 replicates × 2 independent oil mixtures × 12 oil at 

different percent compositions) were used in the training data set and 144 Raman spectra (6 

replicates × 2 independent oil mixture × 12 oil at different percent compositions) were used 

in the testing data set, respectively.

Supervised machine learning algorithms included PCA for dimension reduction with 

multinomial logistic regression (MLR), MLR with L1 penalty, MLR with L2 penalty, 

MLR with elastic net penalty, PCA with RF, RF, PCA with boosting, boosting, and one-

dimensional convolutional neural network (1D-CNN), which were used for classification of 

the GC fatty acids and edible oils spectral data sets. PCA with linear regression (LNR), LNR 

with L1 penalty, LNR with L2 penalty, LNR with elastic net penalty, partial least squares 

(PLS) regression, PCA with RF, RF, PCA with boosting, and boosting were applied for 

regression analysis of the adulterated oil data sets. Prediction accuracy and coefficient of 

determination (R2) were used to evaluate the performances of each machine learning model 

in regard to edible oil type classification and detection of adulterated oils. The predictive 

models were implemented in the Python 3.5.7 programming environment. The RF model 

provided variable importance in addition to oil classification. All the machine learning and 

1D-CNN models were computed on a Windows 10 ×64 system with an Intel® Core™ 

i5-6300HQ 2.30GHz*2 CPU and 16GB DDR3 ram.

Zhao et al. Page 5

Food Chem. Author manuscript; available in PMC 2023 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results and discussion

3.1. Fatty acid composition and classification of edible oils by PCA

GC techniques are routinely employed to obtain fatty acid compositions (FACs) of oils to 

authenticate vegetable oils (Aparicio & Aparicio-Ruíz, 2000; Lim, Pan, Yu, & Xiao, 2020). 

Therefore, GC was used to obtain the FACs for the 47 edible oil samples in S. Table 1 to 

establish a standard reference data set in order to evaluate the performance of the machine 

learning or deep learning models. As can be seen from the heatmap and hierarchical cluster 

analysis in Figure 1, different types of edible oils have different FAC profiles while the same 

type of oils has a similar profile.

PCA is an unsupervised learning method that visualizes data by dimensional reduction and 

cluster analysis (Çam, Hişil, & Durmaz, 2009; Liu, Liu, Hu, Yang, & Zheng, 2016). PCA 

was used for the classification and comparison of the FAC profiles for the edible oils. A 

biplot of the resulting PCA model is shown in S. Figure 5. The PCA biplot distributed 

the edible oils into separate clusters in PC-space, which enabled a different approach to 

visualize relative similarities in the FAC profiles. Importantly, the key fatty acid classes that 

contribute to group separation are readily apparent from the biplot. For instance, the C8:0 

(caprylic acid/octanoic acid), C10:0, C12:0 and C14:0 vectors point to coconut oils, which 

indicates the coconut oils contain more medium-chain fatty acids (Kinsella, Maher, & Clegg, 

2017) relative to the other oils. This is further evident by the heatmap and hierarchical 

cluster analysis in Figure 1. In general, different brands of the same type of oil, especially 

staple commodities such as canola, soybean, and olive, clustered together in the PCA 

biplot (S. Figure 5). A PCA biplot has previously been shown to be an effective approach 

to differentiate between six types of edible oils by cluster analysis (Green et al., 2020). 

However, as revealed by our PCA model, the edible oils cannot be fully differentiated based 

on only the first two principal components because the PC1 and PC2 explained 36.9 % and 

17.2 % of variance respectively, which can be regarded as low explanation variance by the 

first two principal components (PC), and indicates more PCs, such as PC3 and PC4 should 

be added for differentiating oil types and to increase the explained variance. The FAC of the 

avocado oils was found to be similar to the olive oils and, as a result, clustered together in 

the PCA biplot. A similar outcome was obtained when comparing peanut oil to olive oil, 

or when comparing hemp oil, grapeseed oil, and corn oil. Incorporating additional principal 

components into the PCA model may increase the ability of the PCA biplot to differentiate 

between the edible oils; nevertheless, it is important to understand that principal component 

analysis (PCA) is generally applied to feasibly observe an original multidimension dataset 

on reduced dimensions (Townes, Hicks, Aryee, & Irizarry, 2019), thereby to increase data 

interpretability. For example, hemp oil overlapped with the corn and grapeseed oils in the 

PC1 vs. PC2 plot (S. Figure 5A), but were well separated in the PC2 vs. PC3 plot (S. Figure 

5B); however, using multiple PCs is time-consuming and not an effective way to classify the 

multidimension data of fatty acid composition of edible oils.
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3.2. Fatty acid composition and classification of edible oils with machine learning 
algorithms.

Nine supervised machine learning algorithms were employed to classify the edible oils 

based on FAC (Table 1A) and to compare to the PCA model. The predictive models based 

on MLR with L1 penalty, MLR with L2 penalty, or MLR with elastic net penalty obtained 

a 100% testing accuracy, which indicated that these algorithms were very effective in the 

classification of edible oils. The PCA-RF model is an attractive alternative since training 

was completed in 0.085 seconds while achieving a testing accuracy of 95.0%. MLRs with 

L1 Penalty, L2 Penalty and Elastic net Penalty all achieved 100% test accuracy; however, the 

training times were 5.458 s, 13.524 s and 4.848 s respectively, which were about 2 to 3 order 

of magnitudes longer than PCA-RF. The remaining algorithms failed to provide an accurate 

classification, which included the 1D-CNN deep learning method. The failure of 1D-CNN 

was not surprising considering the limited-size of the dataset. It is important to note, a deep 

learning neural network model was previously successful in classifying 19,583 oil samples 

collected over 5 years (Lim et al., 2020).

Overall, we demonstrated that at least three different machine learning algorithms were 

highly effective in accurately classifying edible oils based on fatty acid compositions. 

Importantly, the machine learning algorithms provided a significant improvement over PCA 

in the classification of edible oil types. Machine learning was faster, more accurate, and 

provided a direct readout of each oil’s classification.

3.3. Classification of edible oils by combining Raman spectroscopy with PCA

The Raman spectra of 47 edible oils were collected and 10 major peaks with relative 

intensities from ~0.2 to ~1 were detected in the range of 500 to1800 cm−1 and 2700 to 

3010 cm−1 (Figure 2A). The major peaks in the Raman spectrum depicted in Figure 2B 

were annotated with chemical functional groups. As expected, different types of oils have 

unique Raman spectra. For example, the ratio of peak intensities (I1266/1300) comparing fatty 

acid unsaturation (1266 cm−1, =CH-H deformation (def)) to saturation (1300 cm−1, -CH3) 

ranged from 0 to 1.5 for the edible oils in this study. Specifically, saturated coconut oil had 

a I1266/1300 of 0.30 ± 0.01, unsaturated olive oil a value of 0.60 ± 0.02, unsaturated canola 

oil a value of 0.84 ± 0.02, and unsaturated soybean oil a value of 1.0 ± 0.1. The increase in 

I1266/1300 may reflect the high content of C18:3 n3 (linolenic acid), where it was 18.15% in 

the polyunsaturated hemp oil samples based on the GC analysis results. This is consistent 

with a previous report by Jiménez-Sanchidrián and Ruiz (Jiménez-Sanchidrián & Ruiz, 

2016), which identified a I1266/1300 value of 1.8 as being characteristic of a polyunsaturated 

linseed oil. However, it was difficult to differentiate all the oils based solely on the I1266/1300 

ratio since algae, avocado, grapeseed, olive, and soybean oil had nearly identical ratios. 

Compared to the fatty acid profiles showed in Figure 1, the observed differences in the 

Raman spectra of edible oils (Figure 2) were modest, at best, and difficult to visually 

identify. Accordingly, a PCA was conducted to better differentiation oil types based on their 

Raman spectrum.

The PCA scores plot generated from the Raman spectral data set is shown in S. Figure 6. 

The PC1 and PC2 of Raman spectra explained 17.0 % and 9.8 % of variance, respectively, 
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which were lower than the explanations of the top two PCs (PC1 = 36.9%, PC2 = 17.2%) 

on FACs data (S. Figure 5). The same types of oils were clustered together in the scores 

plot regardless of brand. This was true for coconut, liquid coconut, canola, olive, soybean, 

and hemp oils. In general, different oil types formed distinct clusters in the PCA scores 

plot. However, some oil types were not completely separated from each other and were not 

differentiated by the PCA model. Specifically, grapeseed, soybean, and corn oil clustered 

together, while avocado, olive, sunflower, and peanut oil formed a second large cluster. 

Overall, the PCA model generated from the Raman spectral data set was less effective in 

classifying edible oil types than the PCA model produced from the fatty acid composition 

data set. Thus, an advanced classification method was employed to improve the utility of 

Raman spectral analysis in differentiating various edible oils.

3.4. Classification of edible oils by combining Raman spectroscopy with machine 
learning

Similar to the fatty acid composition analysis, nine supervised machine learning algorithms 

were employed to classify edible oils based on Raman spectra (Table 1B). The testing 

accuracies from these machine learning models ranged from 57% (1D-CNN) to 84.7% 

(RF) and were generally lower than the accuracies obtained with the fatty acid composition 

models (Table 1A). However, the 84.7% classification accuracy by RF may qualify as a 

rapid and reliable test. The machine learning algorithms commonly misassigned avocado oil 

as either olive oil or peanut oil. Similarly, grapeseed oil was misassigned as either soybean 

oil or corn oil in the confusion matrix (data not shown). These incorrect assignments were a 

primary cause of the reduced testing accuracies. Simply, the oils exhibited comparable fatty 

acid compositions (Figure 1) and similar Raman spectra (Figure 2).

A higher testing accuracy was obtained by excluding avocado oil and grapeseed oil from the 

data set (Table 1C). In this regard, the testing accuracies of PCA with RF, RF, MLR with L1 

penalty, MLR with L2 penalty increased to 96.7%, 92.9%, 90.0%, and 89.2%, respectively, 

although some specific oils had relatively high classification errors. For instance, 46.67 % 

of olive oils were categorized as the sunflower oils in Figure 3B due to the similarity of 

fatty acid composition as can be seen from the clusters 10 olive oils and 12 sunflower 

oils in Figure 1; however, the machine learning models classified most of the individual 

oils at high test accuracy >90%. The major vegetable oils that are internationally traded 

include coconut, cotton, olive, palm, peanut, rapeseed (canola), soybean, and sunflower oils 

(Sharma, Gupta, & Mondal, 2012). Notably, most of these edible oils were included in our 

investigation. Also, the biological replicates for each oil type were randomly selected from 

local markets and used as both training and testing samples. Thus, the high overall testing 

accuracies strongly validated the effectiveness of combining machine learning with Raman 

spectroscopy to authenticate the major classes of internationally traded vegetable oils.

The classification confusion matrices for the best-performing machine learning models are 

shown in Figure 3. As an illustration, the top ten Raman bands from the RF model that 

were used for the classification of edible oils are shown in Figure 3E. The Raman bands 

at 1262 cm−1 (=CH H def) and 1654 cm−1 (-C=C cis-stretching, cis-str) were the top 

important variables in the RF model. Accordingly, the RF classification identified these 
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spectral features as a potential chemical fingerprint of edible oil types. It should be noted 

that our study did not use the SERS technique, which may provide a higher sensitivity 

and further improve the predictive model. Liquid interfacial SERS with gold nanoparticles 

has been previously reported to discriminate between edible oil types, oxidation state, and 

adulteration using a PCA model (Du et al., 2019). Another SERS study was able to quickly 

differentiae six types of edible oils (Vander Ende et al., 2019). However, the preparation 

and maintenance of surface-enhanced nanoparticles significantly reduced the throughput and 

increased the cost of the Raman analysis. Although the PCA model showed a difference in 

how oil types clustered in the resulting scores plots, no biological replicates were used for 

validating the accuracy of the developed models.

Overall, our findings demonstrated the general utility of combining Raman spectroscopy 

with machine learning for the classification of edible oils. The machine learning models 

performed better than PCA in the classification of edible oil types by being faster, more 

accurate, and by providing a direct readout of group membership. Our Raman-machine 

learning method exhibited a comparable accuracy with the previously reported SERS-PCA 

model and with the machine learning model of fatty acid compositions described herein. 

Importantly, the Raman-machine learning method is faster and cheaper, and could be used to 

develop a rapid on-line or off-line analysis platform.

3.5. Predicting adulterated edible oils by combining Raman spectroscopy with machine 
learning

The high classification accuracies which were achieved by combining Raman spectroscopy 

with machine learning suggested the same approach would be amenable to detecting 

adulterated oils. Two adulteration models were selected to evaluate the utility of the 

Raman-machine learning approach to detect adulterated oils. Specifically, avocado oil was 

adulterated with canola oil; and olive oil was adulterated with soybean oil. The results of 

the machine learning models are summarized in Table 2A, which indicates that the LNR 

with L2 penalty was the best performing model for predicting avocado oil adulterated with 

canola oil with an R2 of 0.910. LNR with L2 penalty was the best model for predicting olive 

oil adulterated with soybean oil with an R2 of 0.984 (Table 2B). Interestingly, the testing 

accuracies were higher for all models when predicting olive oil adulterated by soybean oil 

compared to the models predicting avocado oil adulterated with canola oil. Overall, the 

LNR with L2 penalty was identified as the best-performing machine learning algorithm 

for predicting the adulteration of edible oils based on Raman spectra. The regression for 

true values versus predicted values for the LNR with L2 penalty model is shown in S. 

Figure 7. Simply, a better convergence or smaller variance in the data was apparent when 

predicting olive oil adulterated by soybean oil. Furthermore, the mean squared prediction 

errors (MSPE) as shown in Tables 2A and B suggests the LNR with L2 penalty model 

converged better for the olive oil adulterated by soybean oil (i.e., 14.851) compared to 

the avocado oil adulterated by canola oil (i.e., 83.029). The incremental improvement in 

performance was likely attributed to a larger difference in the Raman spectra of the edible 

oils. For example, the difference (e.g., ΔI1260 ≈ 0.28) between the olive oil (I1260 ≈ 0.40) 

and soybean oil (I1260 ≈ 0.68) spectra was almost twice the difference (e.g., ΔI1260 ≈ 0.15) 

observed between the avocado oil (I1260 ≈ 0.40) and canola oil (I1260 ≈ 0.55) spectra.
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Recently, the identification of rainbow trout meat adulterated with Atlantic salmon meat was 

accomplished by combining Raman spectroscopy with machine learning techniques (Chen, 

Wu, Xiang, Xu, & Tian, 2019). The mean squared prediction errors (MSPE) of the test 

dataset was 107.95 and the prediction accuracy (R2) was 0.87. These metrics are comparable 

to the outcomes from our predictive models, but we observed a higher prediction accuracy 

(R2 = 0.984) and lower MSPE (14.851). Also, the identification of oil adulterations has 

been achieved by a deep-learning coupling with GC-FID technique based on a 2-, 3- and 

4-way oil mixture model(Lim et al., 2020). For 3-way adulterated mixtures of groundnut 

oil, the authors observed a median absolute error between 1.2 and 0.95% for predicting both 

the major groundnut oil and the minor adulterant oil. The GC-FIDs were collected with 

an approximate 50 minutes protocol, but in our approach both the Raman spectra and the 

predictions from the machine learning models are obtained within seconds (Table 2A and 

B). Thus, our Raman-machine learning approach may greatly reduce the time and cost of an 

analysis of adulterated oils.

3.6. Correlation between fatty acid composition and the Raman spectra of edible oils

A correlation between fatty acid composition and the Raman spectra of various edible 

oils was also examined. The intensity of Raman spectral bands corresponding to specific 

fatty acid functional groups should be consistent with the fatty acid composition observed 

for each edible oil. Simply, as the fatty acid composition changes between the different 

oil types, a proportional change in the intensity of the corresponding Raman band should 

occur. The fatty acid composition of each oil type was accurately determined using GC-FID, 

thus, it should be feasible to correlate the known variation in fatty acid composition with 

the corresponding Raman spectrum. Pearson correlation coefficients (r) were calculated 

between each detected fatty acid and observed Raman band and then plotted as a heatmap 

with hierarchical clustering (Figure 4). In this regard, highly variable fatty acids would be 

expected to correlate with highly variable Raman band intensities.

As shown in Figure 4, Raman bands associated with carbon double bonds (C=C) at 920, 

965, 1260, 1653, and 3010 cm−1 were found to be positively correlated with unsaturated 

fatty acids such as C18:1 (r ≈ 0.3), C18:2 (r ≈ 0.8), and C18:3 (r ≈ 0.5). Conversely, the 

C=C bond vibrations at 920, 965, 1260, 1653, and 3010 cm−1 were negatively correlated (r 

≈ −0.5) with saturated fatty acids (C6:0 to C18:0). Presumably, an increase in the proportion 

of saturated fatty acids led to a corresponding decrease in unsaturated fatty acids (C18:2 

and C18:3), which, in turn, resulted in a reduction in the total amount of C=C bonds 

in the oils and a decrease in the intensity of the corresponding Raman bands. Similarly, 

ester bands, including -C-O- at 1080 cm−1 (r ≈ 0.8) and C=O at 1745 cm−1 (r ≈ 0.8), 

were mainly correlated with short to medium chain fatty acids in coconut oils, such as 

C8:0, C10:0, and C11:0. Presumably, the ester bands were more pronounced in the short 

to medium chain fatty acids because of the lower molecular mass, which simply led to a 

relative increment in the ester vibrations. The observed and expected correlation between 

Raman bands and functional groups within fatty acid molecules provided further evidence 

that a Raman spectrum can explain differences in fatty acid composition between edible 

oils. To the best of our knowledge, this is the first reported correlation between fatty acid 

composition and Raman spectra for a variety of edible oils.
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4. Conclusion

We described a protocol that combined machine learning algorithms with Raman 

spectroscopy or fatty acid composition to characterize edible oils. Our method yielded a 

high accuracy in classifying edible oil types and, accordingly, is an effective means of 

detecting adulterated oils. Our approach is faster, more accurate, and provides a clear oil 

classification compared to standard PCA methods. The PCA with RF model was found to be 

the best performing machine learning algorithm for the classification of edible oils based on 

Raman spectra. Alternatively, the LNR with L2 penalty model was determined to be the best 

performing machine learning algorithm for predicting adulterated edible oils. Our approach 

may be used to establish rapid on-line or off-line platforms for the analysis of edible oils 

or other food contaminants. Overall, our study demonstrated the potential and value of 

machine learning assisted Raman spectra analysis for the rapid authentication and detection 

of contaminants in food products, or identification of origin of agricultural products based 

on their chemical compositions.
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Figure 1. 
Hierarchical cluster analysis of fatty acid composition of 47 edible oils with different 

types and brands.  LiquidCoconut,  Coconut,  Hemp,  GrapeSeed, 

Soybean,  Corn, , Canola,  Peanut,  Avocado,  Olive,  Safflower, 

 Sunflower,  Algae. The dendrogram (hierarchical cluster) on the top of columns 

indicates the similarity of fatty acid composition of oils, whereas the dendrogram on left side 

of rows indicates the similarity of the distribution of specific fatty acids (biomarkers) among 

oils.
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Figure 2. 
Raman spectra (heat map) of 47 edible oils with different types and brands (A) and 

representative Raman spectra of #33. soybean oil with marked functional groups (B), purple 

dots represent 15 replicates of spectra and center black line represent the average.

Note: numbers of sample codes refer to S.Table 1.
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Figure 3. 
Classification confusion matrix of Raman spectra of 8 types of edible oils by machine 

learning models: (A) MLR with L1 penalty, (B) MLR with L2 penalty, (C) PCA+ random 

forest (RF), (D) RF, and (E) representative top 10 variable (Raman shift cm−1) importance 

from RF
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Figure 4. 
Heatmap of pairwise Pearson correlation coefficients (r) between the proportion of fatty acid 

compositions and Raman spectra of edible oils.
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Table 1 A.

Classification of 10 types of edible oils with different brands by machine learning algorithms based on the 

fatty acid composition

Methods PCA+ 
MLR

MLR with 
L1 Penalty

MLR with 
L2 Penalty

MLR with 
Elastic net 
Penalty

PCA+ 
RF RF PCA+ 

Boosting Boosting 1D-CNN

Machine learning Deep 
learning

Training time 
(s) 0.004 5.458 13.524 4.848 0.085 0.085 0.591 0.652 15.912

Training 
accuracy 0.450 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.600

Testing 
accuracy 0.450 1.000 1.000 1.000 0.950 0.817 0.650 0.700 0.600

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional 
neural network). 10 types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. 
Accuracy, 1=100%.
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Table 1 B.

Classification of 10 types of edible oils with different brands by machine learning algorithms based on the 

Raman spectra

Methods PCA+ 
MLR

MLR with 
L1 Penalty

MLR with 
L2 Penalty

MLR with 
Elastic net 
Penalty

PCA+ 
RF RF PCA+ 

Boosting Boosting 1D-CNN

Machine learning Deep 
learning

Training 
time (s) 0.022 1350.886 122.772 1171.726 2.357 3.176 2.070 64.326 849.498

Training 
accuracy 0.847 0.997 1.000 1.000 1.000 1.000 1.000 1.000 0.600

Testing 
accuracy 0.713 0.747 0.803 0.780 0.817 0.847 0.680 0.663 0.570

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional 
neural networks). 10 types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. 
Accuracy, 1=100%.
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Table 1 C.

Classification of 8 types of edible oils with different brands by machine learning algorithms based on the 

Raman spectra

Methods PCA+ 
MLR

MLR with 
L1 Penalty

MLR with 
L2 Penalty

MLR with 
Elastic net 
Penalty

PCA+ 
RF RF PCA+ 

Boosting Boosting 1D-CNN

Machine learning Deep 
learning

Training time 
(s) 0.016 972.72 73.24 917.64 0.68 2.340 0.660 40.87 548.60

Training 
accuracy 0.904 0.996 1.000 0.954 1.000 1.000 1.000 1.000 0.625

Testing 
accuracy 0.829 0.900 0.892 0.863 0.967 0.929 0.858 0.758 0.621

Note: 8 types of oils included canola, coconut, liquid coconut, corn, olive, peanut, soybean, and sunflower oils, but excluded avocado and grapeseed 
oils. Accuracy, 1=100%.
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Table 2A.

Machine learning for regression of avocado oil adulterated by canola oil.

Methods PCA+ 
LNR

LNR with 
L1 Penalty

LNR with 
L2 Penalty

LNR with 
Elastic net 
Penalty

PLS 
Regression PCA+ RF RF PCA+ 

Boosting Boosting

Training 
time (s) 0.005 4.775 0.022 4.145 4.854 0.831 0.252 0.097 4.762

R2 0.993 0.997 0.997 0.990 1.000 0.988 0.986 1.000 1.000

MSE 6.961 3.113 3.105 9.428 0.001 11.353 13.083 0.059 0.001

Predicted R2 0.862 0.873 0.910 0.903 0.827 0.858 0.814 0.879 0.827

MSPE 127.55 117.677 83.029 89.480 159.654 131.649 171.917 111.707 159.570

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), MSPE (mean squared prediction error), 

R2 (coefficient of determination).
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Table 2B.

Machine learning for regression of olive oil adulterated by soybean oil.

Methods PCA+ 
LNR

LNR with 
L1 Penalty

LNR with 
L2 Penalty

LNR with 
Elastic net 
Penalty

PLS 
Regression

PCA+ 
RF RF PCA+ 

Boosting Boosting

Training time 
(s) 0.002 3.394 0.022 1.972 2.943 0.476 1.298 0.060 2.987

R2 0.997 0.997 0.999 0.995 1.000 0.997 0.996 1.000 1.000

MSE 2.357 2.448 0.883 4.474 0.001 3.147 3.393 0.056 0.001

Predicted R2 0.984 0.975 0.984 0.974 0.954 0.963 0.959 0.966 0.954

MSPE 15.089 22.722 14.851 24.237 42.986 34.535 38.021 31.535 42.666

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), R2 (coefficient of determination).
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