
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Subsymbolic Model of Complex Story Understanding

Permalink
https://escholarship.org/uc/item/9t28c3fp

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Fidelman, Peggy
Hoffman, Ralph
Miikulainen, Risto

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9t28c3fp
https://escholarship.org
http://www.cdlib.org/

A Subsymbolic Model of Complex Story Understanding

Peggy Fidelman Risto Miikkulainen
Department of Computer Sciences, The University of Texas at Austin

{peggy,risto}@cs.utexas.edu

Ralph Hoffman
Yale-New Haven Psychiatric Hospital

ralph.hoffman@yale.edu

Abstract

A computational model of story understanding is presented
that is able to process stories consisting of multiple scripts.
This model is built from subsymbolic neural networks, but
unlike previous such models, it can handle stories of variable
structure and length. The model can successfully parse and
paraphrase script-based stories that share long sequences of
common events, with no confusion between the stories. It
also exhibits several aspects of human behavior, including
robustness to small changes in the sequence of events and
emotion priming effects in response to ambiguous cues. It
can therefore serve as a foundation for testing theories of
normal and impaired story processing in humans.

Introduction
Computational models are a valuable tool for understanding
human behavior. They allow investigation of how various
theories about cognition may combine to produce observed
human function. They can also provide a way of studying im-
pairment in a controlled environment, where the behavioral
effects of various types of underlying damage can be inves-
tigated systematically by lesioning or otherwise disrupting
parts of the model.

In this paper, a computational model of human story un-
derstanding is presented that can learn to read and para-
phrase script-based stories of arbitrary length. The model is
built from subsymbolic neural networks, which mimic many
computational properties of the brain such as distributed rep-
resentations and correlation-based learning and performance.
This subsymbolic foundation makes it possible to simulate
phenomena that arise from these properties, which is difficult
to do with symbolic models of story understanding. Unlike
previous subsymbolic models, however, it is not restricted to
stories consisting of a rigid, fixed-length structure. This flex-
ibility allows the processing of more realistic stories, consist-
ing of multiple scripts, which in turn allows more meaningful
conclusions about human cognition to be drawn.

Using a small corpus of hand-designed representative sto-
ries, the model is shown to successfully parse and paraphrase
stories that share long sequences of common events, with
no confusion between the stories. The model also exhibits
several aspects of human behavior, including robustness to
small changes in the sequence of events and emotion priming
effects in response to ambiguous cues.

The paper is organized as follows. Section 2 describes
related work in script-based story processing, including the
DISCERN model on which the current model is based. Sec-
tion 3 details the architecture of the model, and Section 4
examines its behavior under various experimental conditions.
Section 5 discusses the results of the experiments and possi-
ble directions for future work.

Background and Related Work
Scripts are knowledge structures for stereotypical sequences
of events that allow efficient understanding of complex, real-

istic stories. In this section, psychological evidence for scripts
will be reviewed, and computational models based on script
theory will be outlined.

Script-Based Story Representations

According to script theory (Schank & Abelson, 1977), peo-
ple organize knowledge of common routines into stereotypical
event sequences. These scripts are made up of sequences of
events with open slots, as well as requirements about what
can fill those slots. Scripts make interaction efficient by pro-
viding everyone involved with a set of expectations about
what will take place. For example, most people who have
traveled by airplane know that first they must get a board-
ing pass, then wait in a security line, then pass through a
metal detector, then wait at the gate, and so on. Without
such a script, a person would have to put a lot more intel-
lectual effort into figuring out what was expected of him at
each point. If no one had such a script, airports could hardly
serve the function they do.

Scripts also serve to make natural language communication
efficient. There is no need to recount all the details of an
ordinary visit to the dentist, for example; the speaker can
just make reference to such a visit, and the listener can fill
in the details herself.

The hypothesis that humans use such scripts in cognition
and language is well supported by experimental evidence. For
example, the degree to which events in stories will be remem-
bered can be predicted by whether those events are part of
such a script (Graesser, Gordon & Sawyer, 1979; Graesser,
Woll, Kowalski & Smith, 1980). Similarly, the amount of
time it takes for a human to understand a sentence can be
predicted by whether it fits into a script (Den Uyl & van
Oostendorp, 1980). Because scripts are a particularly well-
established theory in psychology, they provide a good foun-
dation for a computational model of story processing.

Models of Script-Based Story Processing

Scripts have been used as a basis for several symbolic models
of story processing. The first of these was SAM (Script Ap-
plier Mechanism) (Cullingford, 1978), able to handle stories
with multiple simultaneously active and interacting scripts.
FRUMP (Fast Reading Understanding and Memory Pro-
gram) (DeJong, 1979), on the other hand, skimmed newspa-
per stories about stereotypical episodes and filled in slots cor-
responding to the most important parts of the script. Scripts
have been used since then in numerous symbolic systems that
aim at understanding natural language stories.

Although there has been a lot of work on subsymbolic pro-
cessing of sentences in the past two decades (McClelland &
Kawamoto, 1986; Jain, 1991; Rohde, 1999; Henderson, 1994;
Mayberry, 2004), the approach has been much less successful
at the level of stories. Early on, several models were de-

660

Figure 1: Architecture of the original DISCERN story processing
system (Miikkulainen, 1993). All processing modules (light gray)
and memory modules (dark gray) are implemented by artificial
neural networks. The system could parse, paraphrase, and answer
questions about stories that consist of single script instantiations.

veloped that addressed parts of this process, such as script
application, sequential inference, and anaphora (Dolan, 1989;
Harris & Elman, 1989; St. John, 1992).

In contrast, DISCERN (Miikkulainen, 1993) was an inte-
grated subsymbolic model of script-based story processing,
consisting of several neural network modules of the various
script-processing subtasks as well as a lexicon and episodic
memory (Figure 1). Processing modules in DISCERN were
feedforward and simple recurrent networks trained with back-
propagation, and the lexicon and episodic memory modules
were implemented as self-organizing maps.

In its original form, DISCERN processed stories consist-
ing of a single script. Although this version of DISCERN
was trained with three different scripts and three different
versions of each of those scripts (Miikkulainen, 1993), stories
were nevertheless restricted to one of these nine structures.
Except for variation in the role bindings within the script,
the system could not process stories that were not simple
script instantiations.

Human stories, by contrast, are rarely this simple. Since
scripts are a way of encoding routinely occurring sequences
of events, a story that is just a single script is by definition
not worth telling. Instead, humans use scripts as building
blocks in more complex stories.

The model presented in this paper is designed to extend
subsymbolic story processing to this next level. Each story is
a combination of several scripts in a sequence. Much of the
behavior of original DISCERN is retained, but the stories
that can be parsed and paraphrased are much more complex
and realistic.

Model Architecture

Figure 2 depicts the organization of the new model, presented
as an extended version of DISCERN. In this section, the ar-
chitecture of the model is described in detail, with particular
attention given to the parts that are new. More details on
the original DISCERN can be found in (Miikkulainen, 1993).

Overview of DISCERN

DISCERN is an integrated natural language processing
model built entirely from distributed artificial neural net-
works. Modularity is a key concept in DISCERN. The differ-
ent script-processing subtasks such as parsing, paraphrasing,
and question answering, as well as the lexical, semantic, and
episodic memory components, are implemented in separate

Input text Output text

Lexicon

Parser

Parser
Sentence Sentence

Generator

Generator
Story

Encoder
MemoryStory Episodic

Memory

Figure 2: Architecture of the extended DISCERN model (omit-
ting the question answering modules). The modified parts of the
model (dashed-line box) make it possible for the model to process
stories consisting of multiple sequential scripts.

modules. In the extended model, a memory encoder module
is also included to compress the sequence of script repre-
sentations. Because the experiments reported in this paper
focus on paraphrasing, the question answering modules are
omitted for simplicity.

The processing modules (including the memory encoder)
are either feedforward or simple recurrent networks, trained
with backpropagation. The lexicon module is implemented
as a set of two self-organizing maps, organized in an unsu-
pervised learning process. In the original model, the episodic
memory was also a self-organizing map. In order to keep
memory effects separate from paraphrasing performance, in
the current implementation it is replaced with a simple array
indexed by the memory encoder. (In future implementations,
a map-based memory may be used as well.) All modules are
trained separately and simultaneously. They learn to process
each other’s output, and when connected, filter out noise and
errors so that the system performance is stable.

The modules communicate using distributed representa-
tions for semantic concepts, stored in a central lexicon. The
representations are developed automatically by all process-
ing networks (including the memory encoder module) while
they are learning their processing tasks. With backward error
propagation extended to the input layer, the representations
are modified as if they were an extra layer of weights, while at
the same time making them publicly available in the lexicon.
This mechanism, called FGREP, creates a reactive training
environment where the required input → output mappings
change as the I/O representations change.

Single units in the resulting representations do not stand
for clearly identifiable semantic features or label distinct cat-
egories. All aspects of an input item are distributed over the
whole set of units in a holographic fashion, making the sys-
tem robust against noise and damage. Each representation
also carries expectations about its possible contexts. The
emerging representations improve the system’s performance
in the processing task and therefore efficiently code the un-
derlying relations relevant to the task. This coding results
in good generalization capabilities, superior to parallel dis-
tributed systems with semantic feature–encoded representa-
tions.

The lexicon can be extended by cloning new instances of
the items, that is, by generating a number of items with
the same semantics but with distinct identities. This goal is
accomplished by combining the semantic representation with
a unique ID representation. This ID+content technique is
motivated by sensory grounding of words, and forms a basis
for symbolic processing in subsymbolic systems. It is possible

661

to approximate a large number of items by dividing them
into equivalence classes, resulting in combinatorial processing
capabilities with linear cost.

Representing input and output as sequences overcomes the
combinatorial explosion in communicating structurally com-
plex data. Internal representation can be made more general
by using data-specific assemblies, that is, by letting part of
the representation determine how the rest of the assemblies
should be interpreted. These techniques are implemented in
recurrent FGREP networks, of which there are two kinds. A
sequential-input network reads a sequence of input items into
a stationary output representation, displaying expectations
about the full context of each item. A sequential-output net-
work produces a sequence of output items from stationary
input.

The FGREP modules, together with a central lexicon, are
used as the basic pattern transformation building blocks in
DISCERN. Processing is carried out by a hierarchical organi-
zation of four FGREP modules, trained to paraphrase stories
based on a sequence of scripts using natural language input
and output. The complexity of this task is reduced by ef-
fectively dividing it into subgoals. Each module is trained
separately and in parallel, each developing the same lexicon.

The properties reviewed above also apply to the extended
model. In addition, there are several differences, outlined
below.

Extension to Multi-Script Stories

As noted in Figure 2, the major changes to the original DIS-
CERN occur in two of the modules: the memory encoder
and the story generator. The episodic memory has also been
modified from its original version in order to make the be-
havior resulting from these changes clear. In addition, an
assembly representing the emotional valence of a story was
added to make it possible to characterize the behavior of the
model in more varied conditions.

Emotional Valence Emotion is represented by a single
assembly (12 units) in the output of the story parser. In the
experiments reported in this paper, the three valences “pos-
itive,” “neutral,” and “negative” are used, and their repre-
sentations are learned with FGREP the same way as repre-
sentations for story words. Each story is associated with a
single emotional valence, sustained throughout the parsing
and paraphrasing process. The valence does not express any
specific propositional aspect of a story; it simply represents
the emotional context for the story in the model’s memory.
Emotion can therefore be used to prime recall and processing
of the stories in the extended model.

The story parser learns to produce each story’s emotion
from the sequence of sentences it receives as input, just as
it learns to produce the rest of the slot-filler representation
for each script. It is worth noting that the script does not
uniquely determine the emotion in all cases. This point is
illustrated by the two example stories in Table 1.

To the story parser, the emotional valence is in many ways
just like the other slots in a story representation, since its
possible bindings all reside in the lexicon. In the memory
modules and the story generator, emotion plays an impor-
tant role, affecting the system’s choice between alternative
continuations of the story.

Memory Encoder Module In the original DISCERN,
the entire story could be represented by one slot-filler repre-
sentation. These fixed-length representations could be easily
handled by both the episodic memory module and the story

STORY 1 STORY 2

Emotional valence: negative Emotional valence: positive
$airline Bob express jet $airline John express jet
Chicago long coach Chicago long coach

Bob goes to express check-in . John goes to express check-in .
Bob gets boarding-pass to coach seat . John gets boarding-pass to coach seat .
Bob goes through airport security . John goes through airport security .
Bob gets on jet plane to Chicago . John gets on jet plane to Chicago .
Flight is long . Flight is long .
Plane arrives at Chicago airport . Plane arrives at Chicago airport .
Bob gets off plane . John gets off plane .
$outlaw Bob terrorist-cell $relationship JohnMary trusts
plants-bomb airport van girlfriend good

Bob belongs to terrorist-cell . John meets Mary .
Bob is bad . Mary is girlfriend of John .
Bob drives a van . Mary cares about John .
Bob plants-bomb at airport . Mary is good to John .

John trusts Mary .

Table 1: Two example stories with the same starting scene but
different emotional valence. Each sentence of a story is parsed
from a sequence of words, such as “Bob goes to express check-
in,” into a case-role representation such as “Bob goes express

check-in,” which is a concatenation of FGREP representations
for words that fill the case roles agent, act, indirect object, at-
tribute, direct object, origin, and destination, with “ ” indicating
that the role is not filled (i.e., a blank representation). Similarly,
the sequence of sentence case-role representations is parsed into a
slot-filler representation of the script, such as “$airline Bob ex-
press jet Chicago long coach,” which is a concatenation of FGREP
representations for words that fill the slots script, agent, patient,
primary attribute, secondary attribute, place, duration, and ter-
tiary attribute. The same script can be associated with different
emotional valences in different stories.

Figure 3: The memory encoder module. During training, the
network learns to replicate the input activations as well as possible
in the output layer. As a result, the hidden layer activations
become a compressed version of the information contained at the
input layer.

generator. However, in the extension there is no limit on the
number of scripts – and thus the number of slot-filler rep-
resentations – involved in a story. It is therefore necessary
to design a way of compressing stories of arbitrary length
into a fixed-size representation, while still retaining enough
information for the story generator.

Recursive Auto-Associative Memory, or RAAM (Pollack,
1990), is an architecture that forms compact distributed rep-
resentations of recursive data structures such as lists. Be-
cause the stories handled by the model are essentially lists
of scripts, RAAM provides a way of compressing them. Fig-
ure 3 shows the structure of the memory encoder module.
The top and bottom rows represent the input and output
layers, and the middle row represents the hidden layer, which
is smaller than the input and output layers. During training,
the network learns to replicate the input activations as well
as possible in the output layer. As a result, the hidden layer
activations become a compressed version of the information
contained at the input layer. A list is compressed by starting
at the end of the list and building up a compression for it one
item at a time. The representation for that item (in this case,
a slot-filler representation for one script) makes up the first
part of the input to the network, and the second part of the
input consists of the compression of all the items that follow,
which was created by the network on the previous time step.

662

Figure 4: The organization of episodic memory. Items in the
memory are created by the memory encoder module. Cues to the
memory will be compared against the part of the entries shown
here in color.

Figure 5: The story generator module in the extended model.
This module produces a sequence of case-role sentence representa-
tions that constitute the full paraphrase of the story. In addition,
it produces a cue to the episodic memory that will determine the
story generator’s own next input.

Episodic Memory Module The task of the episodic
memory is to store the slot-filler representations of all scripts
that together make up each story. The episodic memory was
implemented as a simple array of items created by the mem-
ory encoder module, as depicted in Figure 4. Cues to the
memory consist of an emotion plus a compression of the re-
maining story, and the retrieved script will be the one whose
emotion and compression most closely match the cue (in
terms of Euclidean distance). In this way, the successive
scripts’ slot-filler representations can be retrieved from the
memory one after another, and given to the story generator
as input.

Story Generator Module The input to the story genera-
tor consists of the sequence of script slot-filler representations
retrieved from the episodic memory module. As in the origi-
nal DISCERN, this module produces a sequence of case-role
sentence representations as its output that constitute the full
paraphrase of the story. However, in the extension to DIS-
CERN, the story generator has an additional task: at each
step, in addition to outputting the sentence, it has to produce
a cue to the episodic memory that will determine the story
generator’s own next input. Figure 5 shows the modified
architecture of the story generator module.

Processing Multi-Script Stories

After the modules have been trained, they are connected to-
gether in a chain, as depicted in Figure 2. Stories in the
corpus are presented to the model one word at a time. The
sentence parser builds a case-role representation of each sen-
tence as it comes in, and at the end of each sentence that
representation is passed as input to the story parser. With
this sequence of sentence case-role representations as input,
the story parser builds a slot-filler representation of the cur-
rent script. At the same time, it builds a representation of
the emotional valence of the current story. At the end of each
script, the slot-filler representation is put aside for later use
by the memory encoder.

Once the entire story has been read and the slot-filler rep-
resentations for all its scripts (as well as a representation
of overall emotional valence) have been formed by the story
parser, they are presented one at a time to the memory en-
coder network, starting with the last script and working back-
wards as described at the end of the explanation of the mem-
ory encoder module above. After a script has been presented
to the memory encoder, the activation in this network’s hid-
den layer is combined with the slot-filler representation of
that script and the emotion of the whole story to form an
entry in the episodic memory. Then the second part of the
memory encoder network’s input is set to match its hidden
layer activations, the first part is set to the slot-filler repre-
sentation of the previous script in the story and the emotion
of the entire story, and the process is repeated to form an
episodic memory entry for this previous script. In this way
the episodic memory is populated with the scripts of one
story. This entire process is repeated for all remaining sto-
ries in the corpus.

Once the model has read all stories, the paraphrasing phase
begins. The first entry in the episodic memory, which corre-
sponds to the beginning of a story, is retrieved, and the story
generator inputs are set to this representation. It consists of
the slot-filler representation of the first script, the emotional
valence of the story, and the RAAM compression of the en-
tire story. The story generator then produces a case-role
sentence representation corresponding to the first sentence
of the first script; at the same time, it produces a cue to the
episodic memory. The memory retrieved based on this cue
becomes the next input to the story generator; at this point,
it is the same representation as in the previous step. After
all sentences of the script have been output, the cue changes,
the representation of the next script is retrieved, and the
story generator continues by generating the sentences of the
second script. In this manner, the story generator is able
to step through several successive scripts, while at the same
time maintaining a memory (in its hidden layer) of the entire
story.

The sentence generator uses the case-role representation
to output a sequence of words which tell the first sentence of
the first script of the story. This process continues until the
end of this story is reached, and then it is repeated for all
remaining stories in the episodic memory.

Experiments

The model was trained and tested with a corpus of 9 stories, 8
of which consisted of two scripts and one of which consisted of
three. Each of the 9 scripts from which the stories were com-
posed consisted of 4–7 sentences. Many of these sentences
were common to several of the scripts. In some cases the
same sequences of sentences occurred in several scripts; for
example, the sequence “<PERSON> is bad. <PERSON>
drives a <CARTYPE>.” occurred in 3 of the 9 scripts. The
ID+content technique, described briefly in Section 3a, was
used to create 3 distinct characters from the semantic rep-
resentation “PERSON.” In the discussion that follows, the
term “instances” refers to these 3 words.

The modules were trained separately and simultaneously
for 30,000 epochs, by which point the error had plateaued.
The modules were then connected together in a chain, as
shown in Figure 2, and the performance of the entire sys-
tem was analyzed. First, performance under normal con-
ditions was evaluated, when the stories simply need to be
paraphrased. Then the behavior of the system was tested
under various special conditions such as errors and ambigu-

663

Module All words Instances Ei < 0.15 Eavg

Sent. pars. 100.0 100.0 98.9 0.011
Story pars. 99.4 100.0 97.6 0.014
Story gen. 99.7 100.0 97.5 0.045
Sent. gen. 99.6 98.2 98.2 0.027

Table 2: Paraphrasing performance of the model under normal
conditions. The first column indicates the percentage of words
correctly output by each module. The second column shows
performance on words created with the ID+content technique.
The third column represents the percentage of output units
whose error was less than 0.15, and the fourth column shows the
average error over all output units for each module.

ity, leading to predictions about human behavior.

Behavior under Normal Conditions

The overall accuracy of the model with all modules connected
in a chain is shown in Table 2. Note that all modules produce
nearly 100% of words correctly, meaning that the system is
performing its task nearly perfectly at all steps.

For a qualitative characterization of this performance, con-
sider the stories in Table 3. These two stories have the same
emotional valence and include the $lawchase script with all
of the same role bindings, but the model is able to generate
both correctly. This indicates that the story compressions
produced in the memory encoder module are rich enough
that the story generator can use these compressions alone to
distinguish between stories.

STORY 1 STORY 2

Emotional valence: negative Emotional valence: negative
$outlaw Bob terrorist-cell $lawchase Bob police
plants-bomb airport van plants-bomb airport van

Bob belongs to terrorist-cell . Police go to airport .
Bob is bad . Witness talks to police .
Bob drives a van . Police find evidence of Bob
Bob plants-bomb at airport . in plants-bomb .
$lawchaseBob police Bob is bad .
plants-bomb airport van Bob drives a van .

Police go to airport . Police try to catch Bob .
Witness talks to police . $airline Bob express jet
Police find evidence of Bob Chicago long coach

in plants-bomb . Bob goes to express check-in .
Bob is bad . Bob gets boarding-pass to coach seat .
Bob drives a van . Bob goes through airport security .
Police try to catch Bob . Bob gets on jet plane to Chicago .
$lawcatch Bob police Flight is long .
plants-bomb is is is praised Plane arrives at Chicago airport .

Bob is bad . Bob gets off plane .
Bob is caught by police .
Bob is charged with plants-bomb .
Bob is jailed .
Police are praised .

Table 3: Distinguishing between similar stories. Even though
these two stories share the same emotional valence and include
the $lawchase script with all the same role bindings, the model
can distinguish between them and is able to generate both of
them correctly.

Behavior under Special Conditions

A model’s response to errors and ambiguity can give valuable
insight into its validity as an explanation of human behavior.
Such experiments with the model can also lead to predictions
about human behavior.

Inherited Behaviors of Original DISCERN The orig-
inal version of DISCERN displays several desirable error-
correcting behaviors. Many of these behaviors are automat-
ically inherited by the extended model.

For example, when isolated words appear in inappropriate
contexts in the input, they are automatically corrected in the
memory trace and paraphrase. This property follows from
the distributed nature of all the representations used in both
the original DISCERN and the extended model.

Module All words Instances Ei < 0.15 Eavg

Story gen. 98.5 96.4 95.8 0.060
Sent. gen. 97.2 93.7 95.8 0.039

Table 4: Performance of the paraphrasing modules with the sys-
tem’s emotion frozen at “positive.” The system generates all sto-
ries correctly, including those with an emotional valence other
than “positive.”

Second, if the input story contains a sentence that is out
of order, the story parser is often still able to generate the
correct slot-filler representation, which results in the events
appearing in normal order in the paraphrase. This behavior
is more dependable the closer the sentence is to its correct
position, and the closer it is to the end of the story. These
effects are also seen in humans (Abelson, 1981).

Effect of parsing errors In the original DISCERN, if a
plausible but incorrect role binding arises during the parsing
phase for a given story and is not corrected prior to memory
formation, that story will consistently be generated with the
incorrect role binding in the future. This behavior is not au-
tomatically inherited by the extended model, since the mem-
ory encoding and retrieving processes have been substantially
modified. However, the extended model also exhibits this be-
havior. Even though the information flow is more complex,
it is still likely to be consistent.

To our knowledge, there is not yet data about what can
cause humans to make consistent errors when paraphrasing a
story. The model predicts that one cause of such errors may
be parsing errors that are not corrected before the memory
is formed.

Effect of Emotion Priming Setting the emotional va-
lence in the input of the story generator to a particular
emotion during story generation creates an effect of emotion
priming.

When the story generator is presented with an unambigu-
ous input pattern, the model will always generate the correct
story, even in cases where the emotion of the story does not
match the emotion of the model. For example, the model is
able to generate the first story in Table 1 correctly even when
the story generator input emotion is set to “positive,” as long
as the rest of the input pattern is an accurate representation
of that story. The overall performance of the paraphrasing
portion of the model when its emotion was frozen at “posi-
tive” for all stories is given in Table 4. Note that performance
is disrupted very little: the vast majority of words are still
output correctly.

If the input to the story generator is ambiguous, the system
will still output one of the stories consistent with the cue,
but among the alternatives it favors the story that matches
its current emotional state. For example, when the story
generator emotion is set to “positive” and the rest of the cue
is equally consistent with each of the stories in Table 1, the
model will generate the second story.

This behavior is consistent with human data. Human re-
call is biased toward memories that are associated with a
person’s present emotional state, either because the memory
was formed during a similar mood or because its content is
affectively valenced in a similar way (Blaney, 1986).

Effect of Imperfect Memory Retrieval To investigate
the effects of imperfect memory retrieval, random noise was
added to the story generator input at every memory retrieval
step. The noise consisted of uniformly distributed random
numbers in the range [−k

2
, k

2
], where k is a parameter in the

664

range [0, 1].
The model proves to be quite robust to this noise. When

k ≤ 0.2, almost no effect is observed. As the amount of
noise increases, the model exhibits graceful degradation, with
errors appearing first in the instance words (i.e., people).
Only much later, when k is in the range of 0.3 − 0.4, do
significant errors begin to appear in the other words.

Interestingly, the errors are not evenly distributed in the
story generator output: some sentences consistently exhibit
more error than others. This behavior can be seen as a possi-
ble explanation for human data, which indicate that certain
events in a script are more central than others and will be
recalled more reliably (Abelson, 1981; Graesser et al., 1979;
Graesser et al., 1980). The model suggests that the other
sentences may be recalled at will, but because their represen-
tation is full of errors, they will be rejected by the cognitive
system monitoring the output, and therefore they will not be
included in the paraphrase.

Discussion and Future Work

The results presented in this paper show how subsymbolic
story processing can be extended to multi-script stories. The
behavior of the model matches normal human behavior in
several ways. It is robust to script events being slightly out
of order, and less robust if an event is far from its correct
place. It corrects words that appear in inappropriate con-
texts. Given an unambiguous cue, the model can tell the
correct story regardless of its emotional state, and in the
case of an ambiguous cue, it will choose to tell the alterna-
tive most consistent with its emotional state. When memory
retrieval is noisy, the model has more trouble with some sen-
tences of a given script than others. It also makes predictions
about human behavior. When humans make consistent er-
rors in the retelling of a given story, it may be because the
story was originally parsed in a wrong but plausible way and
was encoded in memory with these mistakes.

Although the model is based on DISCERN, it represents
a significant step beyond DISCERN’s original capabilities.
Being able to process stories of multiple scenes is important
if the model is to be used to understand human behavior.
One particularly promising direction for future work is to
use the model to test hypotheses about the possible causes
of schizophrenia. The underlying pathology of this disease is
unknown; it is typically diagnosed on the basis of its most rec-
ognizable symptoms, which are language-related. As might
be expected, current theories about the causes of schizophre-
nia focus on anomalies at the level of systems of neurons.
A symbolic model of language processing would be of little
use in investigating such causes. On the other hand, what
differentiates schizophrenic language from normal language
are often chaotic transitions from one script to the next, or
an intermingling of emotionally charged personal and imper-
sonal scripts that result in delusions. Previous subsymbolic
models, which could process only stories consisting of a sin-
gle script, consequently would be inadequate as well. The
model presented in this paper, however, is both built on sub-
symbolic principles and able to process multi-script stories
with retrieval biases driven by emotion priming. As such, it
forms a promising foundation for investigating the high-level
effects of the low-level pathologies hypothesized to underlie
schizophrenia.

Conclusion

A cognitive model of story understanding was presented that
is able to process stories consisting of multiple scripts. The

model was also shown to replicate several aspects of human
behavior. Because it is built on neural networks, which mimic
many of the low-level computational aspects of the brain, it
constitutes a promising basis for future studies on normal
and impaired human story processing.

Acknowledgments

This work was supported by NIMH grant R01MH066228.

References
Abelson, R. P. (1981). Psychological status of the script concept.
The American Psychologist, 36:715–729.

Blaney, P. H. (1986). Affect and memory. Psychological Bulletin,
99:229–246.

Cullingford, R. E. (1978). Script Application: Computer Under-
standing of Newspaper Stories. PhD thesis, Department of Com-
puter Science, Yale University. Technical Report 116.

DeJong, G. F. (1979). Skimming Stories in Real Time: An Ex-
periment in Integrated Understanding. PhD thesis, Department
of Computer Science, Yale University. Technical Report 158.

Den Uyl, M., and van Oostendorp, H. (1980). The use of scripts
in text comprehension. Poetics, 9:275–294.

Dolan, C. P. (1989). Tensor Manipulation Networks: Connec-
tionist and Symbolic Approaches to Comprehension, Learning and
Planning. PhD thesis, Department of Computer Science, Univer-
sity of California Los Angeles. Technical Report UCLA-AI-89-06.

Graesser, A. C., Gordon, S. E., and Sawyer, J. D. (1979). Recogni-
tion memory for typical and atypical actions in scripted activities.
Journal of Verbal Learning and Verbal Behavior, 18:319–332.

Graesser, A. C., Woll, S. B., Kowalski, D. J., and Smith, D. A.
(1980). Memory for typical and atypical actions in scripted activ-
ities. Journal of Experimental Psychology: Human Learning and
Memory, 6:503–515.

Harris, C. L., and Elman, J. L. (1989). Representing variable
information with simple recurrent networks. In Proceedings of the
11th Annual Conference of the Cognitive Science Society, 635–
642. Hillsdale, NJ: Erlbaum.

Henderson, J. (1994). Connectionist syntactic parsing using tem-
poral variable binding. Journal of Psycholinguistic Research,
23:353–379.

Jain, A. N. (1991). PARSEC: A Connectionist Learning Archi-
tecture for Parsing Spoken Language. PhD thesis, Computer Sci-
ence Department, Carnegie Mellon University. Technical Report
CMU-CS-91-208.

Mayberry, III, M. R. (2004). Incremental Nonmonotonic Parsing
Through Semantic Self-Organization. PhD thesis, Department of
Computer Sciences, The University of Texas at Austin. Technical
Report AI-TR-04-310.

McClelland, J. L., and Kawamoto, A. H. (1986). Mechanisms of
sentence processing: Assigning roles to constituents. In Parallel
Distributed Processing, Volume 2, 272–325. Cambridge, MA: MIT
Press.

Miikkulainen, R. (1993). Subsymbolic Natural Language Process-
ing: An Integrated Model of Scripts, Lexicon, and Memory. Cam-
bridge, MA: MIT Press.

Pollack, J. B. (1990). Recursive distributed representations. Ar-
tificial Intelligence, 46:77–105.

Rohde, D. L. (1999). A connectionist model of sentence compre-
hension and production. Dissertation Proposal, School of Com-
puter Science, Carnegie Mellon University.

St. John, M. F. (1992). The story gestalt: A model of knowledge-
intensive processes in text comprehension. Cognitive Science,
16:271–306.

Schank, R., and Abelson, R. (1977). Scripts, Plans, Goals, and
Understanding: An Inquiry into Human Knowledge Structures.
Hillsdale, NJ: Erlbaum.

665

