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BACKGROUND: As atmospheric greenhouse gas concentrations continue to rise, temperature and humidity will increase further, causing potentially
dire increases in human heat stress. On physiological and biophysical grounds, exposure to higher levels of humidity should worsen heat stress by
decreasing sweat evaporation. However, population-scale epidemiological studies of heat exposure and response often do not detect associations
between high levels of humidity and heat-related mortality or morbidity. These divergent, disciplinary views regarding the role of humidity in heat-
related health risks limit confidence in selecting which interventions are effective in reducing health impacts and in projecting future heat-related
health risks.

OBJECTIVES: Via our multidisciplinary perspective we seek to a) reconcile the competing realities concerning the role of humidity in heat-related
health impacts and b) help ensure robust projections of heat-related health risks with climate change. These objectives are critical pathways to identify
and communicate effective approaches to cope with present and future heat challenges.
DISCUSSION: We hypothesize six key reasons epidemiological studies have found little impact of humidity on heat–health outcomes: a) At high tem-
peratures, there may be limited influence of humidity on the health conditions that cause most heat-related deaths (i.e., cardiovascular collapse); b) ep-
idemiological data sets have limited spatial extent, a bias toward extratropical (i.e., cooler and less humid), high-income nations, and tend to exist in
places where temporal variations in temperature and humidity are positively correlated; c) analyses focus on older, vulnerable populations with sweat-
ing, and thus evaporative, impairments that may be further aggravated by dehydration; d) extremely high levels of temperature and humidity (seldom
seen in the historical record) are necessary for humidity to substantially impact heat strain of sedentary individuals; e) relationships between tempera-
ture and humidity are improperly considered when interpreting epidemiological model results; and f) sub-daily meteorological phenomena, such as
rain, occur at high temperatures and humidity, and may bias epidemiological studies based on daily data. Future research must robustly test these
hypotheses to advance methods for more accurate incorporation of humidity in estimating heat-related health outcomes under present and projected
future climates. https://doi.org/10.1289/EHP11807

Introduction
Heat extremes have dire consequences for human health, increas-
ing mortality, morbidity, and occupational health hazards. Heat–
health risks are heightened for people who are older,1,2 have
chronic diseases,3,4 live in hot climates,5 or are socioeconomi-
cally disadvantaged.6 Recent heat waves have demonstrated this
risk in, for example, Karachi, Pakistan, in 2015 (1,220 fatalities
from heatstroke in ∼ 30 d7), Japan in 2018 (34,147 heat-related
emergency transports in 11 d8), and British Columbia, Canada, in
2021 (619 heat-related deaths in 6 d9). About 37% of heat-related
mortality in 43 countries over the past few decades has been
attributed to climate change.10

These risks are expected to further increase with climate
change, given that heat waves are robustly projected to increase
in frequency, intensity, and duration.11 In addition, as the atmos-
phere warms, evaporation of water increases, leading to higher
humidity across much of the globe.12 Throughout this commen-
tary, we use the term humidity to broadly refer to mass-based
measures of the amount of moisture in the air (e.g., specific and

absolute humidity); unless otherwise indicated, we do not mean
relative humidity (RH), as discussed in the “Understanding
Humidity: Scales and Definitions” section. To the extent that
higher humidity reduces the human body’s ability to cool itself
through sweat evaporation, increasing humidity would aggra-
vate heat strain and the risk of adverse health outcomes.
Increasing temperatures and humidity with climate change thus
pose a potential compound risk for human health.

The recognition that humidity, as well as temperature extremes,
may determine health outcomes led to the concept of “moist heat
stress,” which is projected to increase with climate change. Buzan
and Huber13 provided a comprehensive review of this work using
combined temperature–humidity metrics and proposing physio-
logical limits to human adaptive capacity. One of these metrics,
wet-bulb temperature (Tw), is the temperature reached if a parcel of
air cools to moisture saturation via evaporation, with latent heat
supplied by the parcel; it can be measured by a thermometer cov-
ered in a wet cloth. Sherwood and Huber14 argued that a Tw >35�C
for ∼ 6 h is not survivable, projecting uninhabitable regions under
a global mean warming of 7°C, with these regions projected to
encompass the majority of the human population under 11–12°C
of warming (temperatures not projected for this century). Today,
35°C Tw exceedances are beginning to emerge in weather observa-
tions, especially near the PersianGulf and Indus River Valley.15

Such projections rely on understanding the role of temperature
and humidity in heat-related health outcomes. Human physiological
studies using climate chambers and energy balance modeling have
found that humidity strongly influences human heat strain.16–18

However, population-scale studies of environmental drivers for
mortality report strong associations with temperature but generally
little or no associationwith humidity.19 Resolving this disagreement
is necessary to accurately assess health risks today and in a warmer
future (Figure 1).
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The goal of this commentary is to highlight proposed methodo-
logical and mechanistic reasons for the apparent lack of influence
of humidity on heat-related health outcomes in the epidemiology
literature. We present the problems posed by divergent conclu-
sions of epidemiological and physiological studies regarding hu-
midity, and suggest potential directions forward. We focus on
temperature and humidity and, for the sake of brevity, do not dis-
cuss other environmental variables that influence human energy
balance, such as radiation and wind speed. We point the inter-
ested reader to the following cited articles for information
regarding these additional variables.23–26 As in Davis et al.,27 we
examine the impacts of temperature and humidity on noncommu-
nicable diseases, rather than infectious disease. Furthermore, we
focus on nonoccupational heat–health relationships (such as the
sedentary elderly dying prematurely in the heat); issues pertain-
ing to heat-related mortality in outdoor workers require consider-
ations of exertional heat stroke not directly addressed here.28–30

We first present background information about humidity and its
projected changes, before exploring the physiological vs. epide-
miological findings regarding humidity and possible reasons for
their divergence. We end by highlighting the importance of rec-
onciling this debate for climate adaptation and presenting a sum-
mary and conclusion.

Understanding Humidity: Scales and Definitions
Many different expressions exist for the moisture content of air,
developed in large part to aid understanding of meteorological and
climatological processes. In studying heat–health outcomes, selec-
tion of the appropriate humidity measure is essential, given that
some variables exhibit inverse correlations to temperature (e.g.,
RH) that can prevent a clear separation of the roles of humidity and
temperature. Davis et al.27 analyzed the humidity variable(s) used
in 260 health-related publications from 2013 to 2016 and found
that RH was used the majority (65%) of the time, and absolute or
specific humidity only 5.3% and 1.5% of the time, respectively.
The common and often inappropriate use of RH emphasizes the
need for greater understanding of humidity measures among health
researchers.

Table 1 defines humidity metrics for health studies and pro-
vides guidance for when each metric is appropriate. According to
Davis et al.,27,p114 the choice of humidity metric should be guided
by “how humidity is fundamentally related to the process or

condition of interest.” In heat and health work, the skin-to-air
water vapor gradient determines the drive for sweat evaporation45

(see the “Physiological Study of Humidity in Heat Stress and
Strain” section); thus, for health assessment, water vapor mass–
based variables—including specific humidity, absolute humidity,
mixing ratio, dew point temperature, and vapor pressure—are the
most relevant expressions from the perspective of human thermo-
regulation.27 Conversely, variables that have a thermal compo-
nent and report humidity in relation to saturation—including RH,
dew point depression, and saturation vapor pressure—exhibit
strong diurnal and seasonal variations reflective of temperature
and should thus be used sparingly and only when the etiology of
the health condition justifies its use.27 Although RH gives prox-
imity to moisture saturation in the atmosphere, it is inversely pro-
portional to temperature, is not physiologically relevant, and
should be converted to a mass-based variable for most health
studies.27

As shown in Table 1, there are a variety of metrics that com-
bine temperature and humidity with relevance to the human heat
experience. Given its close relation to human heat stress and clear
meteorological interpretation, Tw is used throughout this com-
mentary to illustrate a variety of points about physiological, epi-
demiological, and climate studies. Three important metrics from
the physiology literature are a) the maximum evaporation rate
achievable given a person’s clothing and environment, often
assuming the skin is saturated with moisture [evaporative
capacity of the environment (Emax)], b) the required evaporation
rate for the human body to be in energy balance given metabolic
heating [the evaporative requirement (Ereq)], and c) the actual
evaporation of sweat from the skin (E).21,46 Both Emax and E
decrease as humidity rises and the skin-to-air humidity gradient
decreases. In contrast, Ereq depends on metabolic rate and factors
other than humidity that influence human energy balance (e.g.,
temperature, radiation, windspeed).21

Moist Heat in a Changing Climate
Climate models robustly project that moist heat will intensify in
response to rising greenhouse gas concentrations.14,47–49 Here we
briefly summarize the reasons for these trends.

First, climate simulations show enhanced warming of land
surfaces compared with ocean surfaces, both in terms of mean
and extreme temperatures. Simple theoretical arguments explain
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Figure 1. Flowchart illustrating the central problems proposed in this commentary. (A) With increasing atmospheric greenhouse gasses, temperature (top, red
projection) and humidity (moisture in the atmosphere; bottom, blue projection) increase, with nonlinear, growing increases for humidity.20 (B) According to
epidemiologists (darker outline, turquoise arrow), heat-related health outcomes, such as excess all-cause mortality including cardiovascular collapse, should pri-
marily follow daily temperature exposures19; but according to physiologists (lighter outline, purple arrow), heat strain and stroke should follow shorter-duration
exposures to both temperature and humidity (among other variables).21,22 (C) We propose that the physiologists’ perspective with a strong role for humidity
would result in faster increases in adverse heat–health outcomes with warming (lighter, purple projection) compared with the epidemiologists’ perspective
(darker, turquoise projection). Note that this is an illustration and does not incorporate actual data—for example, the light colored shading schematically illus-
trates uncertainty in climate change projections. Hypothesized resolutions to this discrepancy are summarized in Tables 2 and 3.
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the faster warming of land surfaces in the tropics and subtropics,50,51
but this phenomenon is less well understood at higher latitudes. At
the same time, warmer air can hold more water vapor, following the
Clausius–Clapeyron relation, which states that at fixed RH, specific
humidity increases at a rate of ∼ 6–7%=�C.12,52 Since the earliest
climate model simulations, it has been known that RH stays roughly
constant over ocean surfaces when carbon dioxide (CO2) concentra-
tions are increased,53 leading to large increases in specific humidity.
This extra water vapor gets transported over land regions, which
can see increases in specific humidity, although these increases tend
to be smaller than over oceans because some of the moisture rains
out as it is transported.

Although specific humidity changes over land are generally
slower than the 6–7%/°C Clausius–Clapeyron scaling, they are
much larger than the fractional changes in temperature.49 The
result is that increases in specific humidity dominate changes in
moist heat in all but the coldest, driest climates,49 and projecting
changes in moist heat largely comes down to projecting changes
in specific humidity. The driving role for humidity in recent and
projected increases in moist heat is stronger in the tropics com-
pared with the relatively drier extratropics.49 Figure 2 illustrates
this by plotting global changes in the annual 98th percentile of
equivalent potential temperature (which scales with Tw) and cor-
responding changes in near-surface air temperature (Ta) and spe-
cific humidity, following a transient warming scenario; methods
follow Lutsko,49 which analyzed output from 14 Coupled Model
Intercomparison Project Phase 6 (CMIP6) models.

Physiological Study of Humidity in Heat Stress and
Strain
Physiological studies have concluded that increasing humidity along
with increasing temperature should pose significant risks for human
health.14,45 It is well established in the physiology and biophysics
literature that ambient humidity plays a critical role in whether
human core temperature can be maintained within safe limits. To
prevent accumulation of excess heat energy inside the body and the
elevated risk of hyperthermia and heat stroke, the bloodstream must
transport metabolically generated heat to the skin surface. To do so,
the skin’s vasculature dilates (cutaneous vasodilation) and then dis-
sipates this heat to the surrounding environment.30 Heat transfer
away from the body can occur via dry transfer processes (convec-
tion and radiation), but the magnitude of these losses diminishes as
Ta increases. Above ∼ 35�C Ta, the only remaining avenue for heat
dissipation is evaporation, almost exclusively from sweat secreted
by the 2–4million eccrine glands distributed across the human
skin.26 Each gram of sweat can liberate up to 2,427 J of latent heat
if completely evaporated from the skin.54As ambient humidity
rises, the proportion of secreted sweat that evaporates (i.e., sweat-
ing efficiency) decreases, with the remainder either sitting on the
skin or dripping off the body without contributing to latent cooling
(i.e., inefficient sweating).55 Because less heat is lost for a given
sweat rate at high humidity, core temperature continues to rise
until enough sweat is secreted to elicit the required rate of evapora-
tion to attain thermal equilibrium. Heat stroke risk becomes sub-
stantially elevated when evaporative heat balance requirements
necessitate a sweat rate that exceeds the physiological limit.30

The importance of mass-based measures of humidity (e.g.,
specific or absolute humidity) vs. humidity variables with a ther-
mal component (e.g., RH, saturation vapor pressure, saturation
deficit) for human thermoregulation can be understood as fol-
lows. In keeping with bulk formula for latent heat flux, evapora-
tion from a moist surface (such as the skin) is driven by the
difference in saturation specific humidity (qs) and the specific hu-
midity of the overlying air. qs is in turn dictated by the tempera-
ture of that surface. For the human body, the relevant surfaceT
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temperature is skin temperature (Tsk), and therefore the driving
gradient for evaporation and sweat efficiency is qsðTskÞ− qair,
bearing in mind that total evaporation from the human body is
also influenced by the physiologically modified skin wettedness
(proportion of skin covered in sweat).18,55 A variety of physio-
logical mechanisms, including blood flow and sweating, help
the human body keep Tsk somewhat constant at 35°C for fully
vasodilated skin, or at least varying much less than surrounding
Ta.56 Tsk is maintained to ensure an internal body temperature
gradient that allows the flow of metabolic heat outward from
the human body; when at rest, the body’s core temperature is
typically 37°C. Given that qsðTskÞ is relatively constant, varia-
tions in evaporative potential from the human body, and in turn
human heat strain and stress, are influenced primarily by the
qair. This is true in most climates, excluding very dry conditions
when the skin surface is not saturated.55,57 A further caveat is
that clothing, various human body attributes, and wind speed
can also influence the rate of cooling from evaporation. In con-
trast to mass-based metrics, metrics with a thermal component,
such as RH, reflect variations in the temperature and water con-
tent of the air and do not cleanly capture drivers of evaporation
from the skin surface.

The same Ta with different levels of ambient humidity (when
controlling for wind and radiation) can elicit different levels of
physiological heat strain. For example, young healthy men exer-
cising for 45 min at a fixed heat production of 450 W in 37°C Ta
demonstrated a 0.3–0.5°C rise in core (esophageal) temperature
accompanied by sweat losses of 400–500 mL with 12 g=kg q
(30% RH),58 but core temperature increases and sweat losses
were 0.9–1.1°C and 700–800 mL, respectively, when q was
24 g=kg (60% RH).58

The most widely used climate projections for estimating future
human survivability with global warming are based on these physi-
ological impacts of humidity. The premise of the 35°C Tw survival
threshold is that both the dry heat loss and the humidity gradient

between skin and air are eliminated, resulting in no cooling via
convection or sweat evaporation.14 Under these assumptions, the
human body becomes an adiabatic system whereby all internally
generated heat remains inside the body, leading to catastrophic
overheating. Importantly, a fixed Tw can be attainedwith a range of
different Tas.17 For example, 35°C Tw is equivalent to 35°C Ta with
36 g=kg q (100%RH), 40°C Ta with 34 g=kg q (71% RH), and 50°
C Ta with 31 g=kg q (36%RH).

Epidemiological Study of Humidity in Heat–Health
Outcomes
The key role of humidity on human heat stress in physiological
studies seems at odds with weak relationships between humidity
and heat-related health outcomes in epidemiological studies.
Although most epidemiological studies investigating the role of
heat on noncommunicable health outcomes (e.g., premature mor-
tality or emergency department visits) have relied on temperature
metrics (e.g., daily maximum temperature or diurnal temperature
range) as the primary exposure,59,60 some studies also considered
humidity.19,61–63 These studies often employed differing humidity
metrics (see Davis et al.27 and Table 1) or at times combined tem-
perature–humidity metrics [e.g., humidex, apparent temperature
(AT)]. Such studies also employed various analytical approaches
with distinct interpretations and implications. Typically, in epidemi-
ological studies, variations in daily health outcomes and weather
data are compared, contrasting with the shorter temporal scales
explored in physiological experiments. These contrasting timescales
imply consideration of different health outcomes. For example,
increasing dehydration and body temperature can lead to direct
impacts, such as heat exhaustion or heatstroke, over shorter time
periods (hours to days) and/or indirect impacts by exacerbating
underlying comorbidities, such as cardiovascular or renal diseases,
that often show multiday lagged responses.64

Conclusions are mixed among epidemiological studies that
consider humidity. One study found that high RH levels were

Figure 2. Changes in moist heat stress metrics following global warming are strongly correlated with changes in specific humidity. (A) Multi-model mean
change in the 98th percentile of daily equivalent potential temperature (which scales with wet-bulb temperature). (B) Multi-model mean change in air tempera-
ture, conditioned on the 98th percentile of daily equivalent potential temperature. (C) Multi-model mean change in specific humidity (converted to degrees
Celsius), conditioned on the 98th percentile of equivalent potential temperature. Output from transient warming simulations (CO2 concentrations are increased
at 1%/y) of 14 CMIP6 models is analyzed; each panel plots the annual mean comparing years 71–80 and years 1–10 of near-surface (2-m) atmospheric quanti-
ties. This figure uses data from Lutsko,49 and methods and particular model simulations used are described in detail in that paper. Note: CMIP6, Coupled
Model Intercomparison Project Phase 6; CO2, carbon dioxide.
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associated with higher cardiorespiratory hospital admissions in
New York,61 but the majority of studies diverge from expecta-
tions based on the physiology literature. For example, a recent
multicountry, multicity study by Armstrong et al.19 concluded
that overall mortality was slightly reduced compared with typical
mortality levels following days with higher RH, and these find-
ings were largely consistent with mass-based measures of humid-
ity (dew point temperature and specific humidity). Studies in
Australia62 and in the United States63 also concluded that RH had
little to no additional effect on temperature–health relationships.
Such counterintuitive conclusions may be explained by the com-
plex and heterogeneous relationship between humidity and tem-
perature in heat and health studies, as well as critical underlying
analytical and data considerations, as described below.

We distinguish three main approaches to incorporating hu-
midity variables in heat–health epidemiological studies that
may cause counterintuitive findings (i.e., little or no impact of
humidity on heat–health outcomes) when compared with physi-
ological knowledge of thermoregulation in the heat, including:
a) the use of a composite index, b) considering humidity as a
confounder between temperature metrics and health outcomes,
and c) the use of an interaction term to represent potential effect
modification or interaction between temperature and humidity.
We also describe relevant limitations of existing epidemiologi-
cal and weather data.

Composite Biometeorological Indices
Many epidemiological studies have relied on composite biome-
teorological indices, such as the AT, heat index, or humidex (see
Table 1). Such approaches offer the advantage of simultaneously
considering temperature and humidity in a single index that can
then be used as the main exposure of interest. With this approach,
the epidemiological interpretation can be ambiguous, given that
increases in the index can be driven by temperature, humidity, or
both [or other factors, as in the University Thermal Climate
Index (UTCI)]. In addition, certain indices (e.g., the humidex)
were developed based on human (dis)comfort,65 which is based
on an average person’s subjective feelings of comfort; thus, rela-
tionships may be skewed and not driven by physiological heat
strain,66 such as heat strain during outdoor work.67,68 The units
applied to the index may also be confusing [e.g., for UTCI, Web
Bulb Globe Temperature (WBGT), and humidex, “°C” is added
to the output value, yet the output is not a true temperature].
Although composite temperature–humidity indices can be useful
when designing heat warning systems, the interpretation ambigu-
ity may lead to biased or misleading estimates of associated risks
and thus impact the effectiveness of warning systems.69

For example, consider a hypothetical analysis of daily time
series of health and weather data, examining a geographical con-
text in which the correlation between temperature and humidity
has a strong seasonality with a high correlation in June but low
correlation during the rest of the summer. In this setting, the rela-
tive risk associated with a given value of Tw (or any other com-
posite index) compared with a baseline value (or “benign”
weather day) may be low overall because the average risk is
driven by the majority of days where humidity levels are low.
Such an average effect may be particularly high early in the
summer season and not be detected.

If using composite indices, we encourage exploration of effect
heterogeneity (while considering the presence of nonlinear rela-
tionships with health outcomes) according to the composition of
the index or the season. Given the documented physiological
impacts of high humidity (see the “Physiological Study of
Humidity in Heat Stress and Strain” section), it would be interest-
ing to explore the heterogeneous effects of composite indices on

more specific causes of mortality or morbidity (e.g., by exploring
cardiovascular subtypes, such as hypertensive disease or cerebro-
vascular diseases). Overall, we recommend using alternative
methods (see below) that separate out the effects of temperature
and humidity, even if some caveats are needed.

Humidity as a Confounder
Many studies consider, implicitly or explicitly, humidity as a con-
founder in the relationship between temperature metrics and
health outcomes.70–72 Humidity is typically adjusted for in such
analyses. Consider the following multivariable linear model
where Y represents a given health outcome rate (e.g., daily rates
of nonaccidental mortality per 100,000), t is daily mean tempera-
ture, h is daily absolute humidity, and c0 is a vector of confound-
ers (including calendar variables):

E½Yjt,h,c0�= h0 + h1t+ h2h+ h3c0:

Assuming no interaction on the additive scale and a linear
dose–response effect for simplicity, h0 represents the intercept,
and h1 the effect of t conditioning on both h and c0. The coeffi-
cients h2 and h3 (under some assumptions73) can be interpreted
as the controlled direct effect, although interpreting such coeffi-
cients can be misleading.74,75

A first challenge is that by conditioning (i.e., adjusting) on hu-
midity levels, we deliberately remove the influence of humidity on
both temperature and the health outcome. This corresponds to a hy-
pothetical, counterfactual world in which humidity and temperature
are independent regarding health impacts, which is not the case and
thus affects the interpretation of temperature’s impact on health.
Such results should be interpreted with caution.

A second challenge is that when temperature and humidity
are highly correlated (or when such correlation is time dependent
or nonlinear), including both variables in a single multivariable
regression model can lead to multicollinearity issues. Such multi-
collinearity can lead to ambiguously estimated coefficients that
may arbitrarily vary because of differential proportions of the var-
iance explained or if one of the two variables has more missing
data. If such correlation between temperature and humidity varies
greatly with time, this multicollinearity may be exacerbated by
the inclusion of calendar variables to adjust for long-term or sea-
sonal trends. Multicollinearity also reduces the precision of the
estimated coefficients and may lead to erroneous conclusions that
humidity (or temperature) does not have an effect. This is particu-
larly problematic when null hypothesis significance testing is
used (e.g., using a p-value threshold)—a misleading practice for
which there are practical alternatives.76,77 In summary, including
humidity as a confounder can omit important mechanisms linking
temperature and humidity in producing negative health outcomes,
especially when these variables are highly correlated.

Humidity as an Effect (Measure) Modifier
Finally, some studies consider modification of humidity on temper-
ature’s health effect, for instance by including an interaction term
between temperature and humidity. In etiological studies (i.e.,
when the goal is to infer causal effects as opposed to descriptive
and predictive studies), there is a key distinction between interac-
tion and effect modification.78 Although analytical approaches to
estimate interaction or effect modification (i.e., interaction terms,
stratification) are similar, the policy implications may differ if the
aim is to address exposure to temperature, humidity, or both at the
same time.

Interaction and effect modification are scale dependent, which
means that they can occur on absolute and multiplicative scales.79
Therefore, when using a multiplicative model, such as Poisson or
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conditional logistic models, product terms represent deviations
from multiplicative joint effects and not deviations from additiv-
ity. The choice of such a scale is important for the interpretation
of interaction or effect modification and policy implications.80,81
The absolute scale may be more suitable for inferring recommen-
dations for targeted policies (i.e., to optimize the benefits of early
warning systems). Multiple tools to quantify interaction or effect
modification on the additive scale have been proposed.82

In a recent example, Armstrong et al.19 explored the interac-
tion between daily temperature and RH assuming no cross-lag
interactions and no nonlinear interaction. In their study, they
decided not to include such an interaction term in their final
model (from which they inferred the main effect of heat on mor-
tality) based on Akaike’s information criterion (AIC). AIC is
intrinsically a metric for predictive purposes that may not be rele-
vant for etiological research questions, such as effect modifica-
tion questions or to decide whether to include a variable.83,84
When including an interaction term or stratifying between humid-
ity and temperature, it is crucial to consider the main question of
interest (etiological, descriptive, or predictive), the scale of inter-
est, whether interaction or effect modification is of interest, and
the potential policy implications.

Limitations of Epidemiological and Weather Data
Data limitations may also hinder accurate epidemiological assess-
ment of humidity’s role in heat–health outcomes. Epidemiological
data and station-based weather data are not available at every loca-
tion where people live. Governments and researchers in higher-
income countries more often have the capacity to collect and main-
tain such data sources.85,86 When data records exist in low- and
middle-income countries (LMICs), they often have relatively short
duration, are reported weekly or monthly, or are not publicly digi-
tized, limiting their usability.86 This issue has been gravely high-
lighted for sub-Saharan Africa, where weather data shows striking
historical heat waves for which there are no impact estimates.87

These data limitations pose challenges for disentangling the role
of humidity. Figure 3 demonstrates that the most comprehensive
analyses of temperature and humidity associations with mortality
lack data frommany LMICs and tropical locations.10 This omission
maymisrepresent humidity’s role in heat stress. The tropics and sub-
tropics experience some of the highest levels of humidity and com-
binations of temperature and humidity.15 As a result of higherTws in
the tropics, locations where humidity has the greatest impact on heat
stress might not be included in epidemiological studies. Figure 3A
represents this by using daily resolution Tws from the station-based
HadISD data set88 and by plotting the average of annual maxima of
that data for each station, overlaid with locations of epidemiological
data from a large, global data set.10 The predominately extratropical
regions where mortality data are available also tend to have positive
correlations between temperature and humidity, making it difficult
to discriminate between the roles of temperature and humidity using
epidemiological time-series analyses. Figure 3B illustrates this by
plotting the correlations (Pearson r) between near-surface Ta and
specific humidity anomalies from HadISD,88 overlaid with loca-
tions of the same epidemiological data as Figure 3A10; anomalies
are calculated by subtracting the corresponding daily resolution sea-
sonal cycles from temperature and specific humidity at each station.
Finally, there is a vast literature showing that lower-income popula-
tions are more vulnerable to heat.86 Thus, the relative lack of LMIC
data may lead to an underestimation of aversive effects of heat and
possibly humidity.

Another challenge pertains to the temporal resolution of data.
Mortality and morbidity data usually have daily resolution and
are often compared in epidemiological studies to daily mean,
maximum, or minimum temperature, and daily average humidity.

These daily variables negate the extent to which temperature and
humidity are correlated in real-time when human heat stress
occurs.27 For example, heatstroke occurring over mere hours at
midday would not be well-captured by daily averages. Moreover,
relatively fast meteorological processes, in particular atmospheric
convection, effectively cap the combined value of temperature
and humidity that can be reached, especially in hot and humid
regions such as the tropics.48,89 These temporal influences may
reduce the likelihood of high values of temperature and humidity
being correlated on diurnal timescales and may also reduce the
discernible role of humidity in the epidemiological study of heat–
health outcomes.

Limited spatial resolution of weather data may also misrepre-
sent the true personal heat exposure.90–92 Station-based weather
data are often from airports on the outskirts of cities, which may
not capture intra-urban heat effects and other heterogeneities
associated with land surfaces. In addition, some individuals, par-
ticularly in higher-income settings, spend much of their time
inside, where air conditioning, shading, and/or fans create differ-
ent thermal environments from that recorded by distant weather
stations used in epidemiological models. This disconnect between
the recorded weather and personal heat exposure may also bias
the modeled effect of humidity. Overall, a general lack of data
and poor spatiotemporal resolution may result in limited knowl-
edge of heat–health relationships in the places most affected. We
emphasize that although physiological studies are conducted at
the individual level, epidemiological studies are based on ecolog-
ical inference (e.g., the daily change in mortality counts in rela-
tion to daily changes in weather metrics). Such discrepancy in the
etiological scale of interest may fundamentally contribute to the
discrepancies we describe.

Recommendations for Epidemiological Studies
In summary, we make the following recommendations for epide-
miological studies examining health risks from heat:

1. When choosing a humidity variable, mass-based measures
(e.g., specific or absolute humidity) are recommended and
RH is not.Mass-basedmeasures directly affect sweat evapo-
ration, whereas RH exhibits temperature-driven diurnal
cycles that do not reflect variations in heat strain (see the
“UnderstandingHumidity: Scales andDefinitions” section).

2. Avoid the use of humidity only as a confounder (e.g., via
adjustment in multivariable models) and instead consider
effect modification (and explore both additive and multipli-
cative scales).

3. Statistical methods need to be appropriate for the goals of
the study (i.e., descriptive, predictive, or etiological); in
particular, AIC is not suitable for addressing etiological
research questions.83,84

4. When using composite indices, we recommend exploring the
potential effect heterogeneity of a given composite index on a
health outcome according to the composition of the index
(i.e., driven by temperature or humidity) or the seasonality.

5. Additional data should be sought out from LMICs, the
very hot and humid tropics, and locations where tempera-
ture and humidity are less correlated.

6. Given the present mismatch in scales between epidemio-
logical and physiological studies, epidemiological stud-
ies should seek to collect additional individual-level
health information to be analyzed alongside meteorolog-
ical metrics.

7. Following the physiological considerations discussed in the
next section, epidemiological studies should explore whether
the effects of humidity vary depending on the cause of death
or hospitalization.
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Possible Physiological Reasons for Epidemiological
Results
Potential physiological reasons for the disconnect on humidity’s
role in heat stress between physiological and epidemiological
studies include the following:

1. Sweating impairments in heat-vulnerable people.
Progressive impairments in the human sweating response
occur naturally with aging owing to reduced peripheral

sensitivity to acetylcholine, the neurotransmitter predomi-
nantly responsible for eccrine sweating, and atrophy of the
sweat glands.93 Above the age of 60 y, thermoregulatory
sweating can decline by up to 25%, although these impair-
ments can be delayed by regular aerobic training.94

Anticholinergic medications, such as many antidepres-
sants and psychotropic medicines, also theoretically
attenuate sweating,95 as do other medications that alter

A

B

Figure 3. Historical temperature and humidity conditions compared to locations of available mortality data. (A) Time mean of annual maximum wet-bulb tem-
perature from stations in HadISD (version 3.1.2.202104p),88 overlaid with locations of mortality data (blue circles) used in a recent study attributing heat-
related mortality from climate change,10 (B) Same data sources as (A)10,88 but instead plotting correlation between daily anomalies of 2-m air temperature and
specific humidity. Anomalies are calculated as deviations from the daily resolution seasonal cycle for each station. In both (A and B), gray dashed lines demar-
cate latitude bounds of the tropics. Note: max, maximum; q, specific humidity; Ta, air temperature; Td , dew point; Tw, wet-bulb temperature.
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peripheral vasodilation, such as anti-adrenergics and beta-
blockers.96 Advanced age, poor health, and taking prescrip-
tion medications are leading risk factors for heat-related mor-
bidity and mortality.2 Those who get sick or die during heat
waves likely have reduced sweating capacity; thus, it is possi-
ble that these individuals are consequently less sensitive to
impairments of heat dissipation from elevated humidity (i.e.,
the effects of high humidity are less).

2. Environmental thresholds at which differences in hu-
midity impact thermoregulatory strain are rarely
attained. Humidity’s impact on heat strain is most evident
when the Ereq to maintain balance between net heat dissi-
pation to the environment and internal metabolic heat pro-
duction exceeds ∼ 50% of the Emax. Above this threshold,
sweat begins to drip off the body or remain unevaporated
on the skin.25 Heat loss from the skin for a fixed sweat rate
is subsequently reduced, and a person must sweat more to
achieve requisite heat loss, which is physiologically gener-
ated by higher body temperature. Below this threshold, dif-
ferences in the Ereq=Emax ratio only have a modest effect
on the proportion of sweat that evaporates and, therefore,
on physiological heat strain.25

For a given person, Ereq predominantly increases with
metabolic rate (i.e., activity level) and ambient temperature,
whereas Emax is an inverse function of humidity. With the
exception of exertional heat illness/stroke, extreme heat vic-
tims are usually minimally active,2 so ambient temperature
and/or humidity must be very high for Ereq to approach the
50% Emax threshold at which a higher humidity is more
likely to impair sweat evaporation. Figure 4 illustrates the
threshold temperature–humidity combinations for a seden-
tary man and woman at which further increases in humidity
would theoretically increase thermoregulatory strain, com-
pared with historical peak heat wave conditions. Also
shown in Figure 4, major heat waves tend to fall close to
these thresholds, suggesting that environmental conditions
in which humidity can impact the thermoregulatory strain
of sedentary people could be relatively rare. The threshold
temperature–humidity levels of Figure 4 are based on
biophysical modeling,25,97 with different parameter values

from empirical studies for men vs. women.98 The weather
data were prepared for a prior publication, Morris et al.99; it
includes the hottest 1-h Ta and accompanying humidity
from 2007 to 2019 for 108 airport weather stations from
global cities. Cities were selected based on their large popu-
lations and varying geographical locations across all six
habitable continents to represent a wide range of hot
weather conditions. Data underlying this figure can be
found in Excel Tables S1 and S2.

3. Most heat-related deaths and hospitalizations may be
due to causes unaffected by humidity. High humidity is
argued to pose health risks in extreme heat by reducing
sweat evaporation, thus elevating internal body heat storage
and core temperatures. However, most heat-related deaths
and hospitalizations are not due to conditions directly asso-
ciated with critically high core temperatures, such as heat-
stroke. Rather, the leading causes of death are conditions
such as cardiovascular disease.100 There is little evidence
that these diseases directly impair thermoregulation; but
there is a strong rationale for heat exposure, somewhat inde-
pendent of humidity, aggravating these disease states such
that catastrophic failure of a major physiological system is
more likely.101 Using cardiovascular disease as an example,
exposure to high ambient temperatures initially elicits cuta-
neous vasodilation triggered by rising skin temperature.102

As more blood flows toward the skin, cardiac output is ele-
vated to maintain central blood pressure, primarily by
increasing heart rate.103,104 This greater cardiovascular work
requires more oxygen to be delivered to cardiac myocytes by
the blood flowing through the coronary arteries.105 Indeed,
sedentary exposure to simulated heat waves increased the
heart rate and rate–pressure product (an index of the heart’s
oxygen requirements) by up to ∼ 50%.106 Underlying infirm-
ities, such as atherosclerosis of the heart’s major blood vessels,
then create clear mechanistic pathways for heat exposure to
cause potentially deadly cardiovascular events. Sweat evapora-
tion moderates skin temperature, and therefore high humidity
could exacerbate the trigger for this cascade of physiological
events, but Ta remains the primary environmental driver of
skin temperature changes in the heat.107

Figure 4. Environmental constraints on sweating efficiency compared to historical extreme heat data. Threshold combinations of temperature and humidity for
a sedentary man (blue) and woman (orange) at which further increases in humidity will theoretically increase thermoregulatory strain because of reductions in
sweating efficiency (i.e., the proportion of sweat that evaporates26). For context, the hottest single 1-h temperature and accompanying ambient water vapor pres-
sure from the airport weather stations of 108 global cities across a 13-y period (1 January 2007 to 31 December 2019) are plotted (solid black circles). Five
cities with the largest populations were selected in specific countries across all six habitable continents (North America, Europe, Asia, South America, Oceania,
and Africa) to represent a wide range of hot weather conditions. Data underlying this figure can be found in Excel Tables S1 and S2. Note: F, female; M, male.
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4. Dehydration-related reductions in sweating. Dehydration
is another major cause of heat-related death.100 Hydration
status changes owing to a mismatch between fluid losses
and intake. In the heat, fluids are mainly lost from sweat-
ing, yet fluid intake is poorly regulated by thirst alone,
leading to a tendency toward voluntary dehydration.108

Blood volume reductions from dehydration worsen cardio-
vascular strain in the heat. In addition, body fluid deficits
exceeding ∼ 2% of total body mass attenuate sweat pro-
duction109—every 1% mass reduction was shown to
increase core temperature by 0.15°C.110 Although hydra-
tion status of the most vulnerable during heat extremes
remains largely unknown, it is plausible that the preva-
lence and magnitude of dehydration limits sweating, thus
reducing the potential for high humidity to affect evapora-
tion and worsen heat strain.

Importance of Reconciling This Debate
1. Projections of health risks with climate change. Robustly

projecting health risks of climate change serves many
purposes. At a macro scale, such projections help quan-
tify the overall costs of climate change and inform
expectations of carbon mitigation benefits.111 At a local
scale, health projections help inform interventions to
anticipate, adapt to, and reduce adverse impacts of cli-
mate change.112 Rigorously understanding the role of hu-
midity in heat–health outcomes is necessary to be confident
in these projections. Temperature and humidity (by which
we mean mass-based measures, not RH) both increase with
global warming, but details of how they change are different
and consequential for combined temperature–humidity
extremes. Recent work demonstrates that humidity plays a

key role in driving Tw extremes in the present climate and
results in faster increases in Tw with global warming than
changing temperature alone.113,114 Thus, if humidity does
not matter in heat–health outcomes, physiology-based projec-
tions (e.g., based on 35°C Tw thresholds14) likely overesti-
mate future risks, but if humidity does matter, epidemiology-
based projections115 likely underestimate future risks (Figure
1). In addition, for any interval of warming, regional pat-
terns of change in combined temperature–humidity met-
rics (e.g., Tw) will be dominated by humidity changes;
Figure 2 shows that across state-of-the-art climate models,
changes in moist heat extremes are higher in the tropics, a
pattern highly correlated with change in specific humidity
(r2 = 0:94) and much less correlated with change in ambi-
ent temperature (r2 = 0:30).49 This suggests that projected
heat–health outcomes across the world will substantially
differ depending on the role of humidity, with potential
equity implications given the large vulnerable popula-
tions in the tropics where moist heat changes are most
exaggerated.116

2. Heat–health adaptation strategies now and in the future.
Humidity’s ambiguous role in heat-related health out-
comes makes it difficult to optimize adaptation strategies,
now and under future warming. At the individual level, the
efficacy of personal cooling strategies may be affected by
humidity.117 For example, electric fans, which require a
fraction of the energy and cost of air conditioning, are
effective cooling devices in high humidity conditions, but
at the same Ta (if Ta is greater than skin temperature) can
prove detrimental under low humidity.106 Reasons why hu-
midity matters (or not) could also influence adaptation
effectiveness. For example, if humidity does not play a
large role in heat–health impacts because of sweating

Table 2. Hypothesized causes of bias in epidemiological studies that may lead to underestimation of the role of humidity in heat–health outcomes.

Possible causes of bias in epidemiological studies Location in text (section)

Analytical
Equivalent values of composite biometeorological metrics (e.g., Tw) can lead to heteroge-
neous health effects depending on underlying temperature and humidity values.

Composite Biometeorological Indices

Considering humidity as a confounder effectively ignores the combined role of temperature
and humidity on heat–health outcomes.

Humidity as a Confounder

High correlation of temperature and humidity may make it difficult to distinguish their
effects in time-series analysis with traditional analytical tools.

Humidity as a Confounder

The use of metrics such as the Akaike information criterion (AIC) to guide the inclusion
(or exclusion) of humidity in a model used for etiological purposes may be inappropriate.

Humidity as an Effect (Measure) Modifier

Data-related
There are limited epidemiological and weather data from LMICs and the tropics, where
people are likely most vulnerable and moist heat tends to be high.

Limitations of Epidemiological and Weather Data

Temperature and humidity data are at daily resolutions that negate complexities of the diur-
nal cycle, such as atmospheric convective processes making high temperature and humid-
ity unlikely to occur simultaneously or for long duration.

Limitations of Epidemiological and Weather Data

Weather station data misrepresents individuals’ true experiences with heat due to indoor
vs. outdoor temperatures, and land surface heterogeneities, such as urban thermal island
effects.

Limitations of Epidemiological and Weather Data

Table 3. Hypothesized physiological reasons that could explain the limited role of humidity in heat–health outcomes.

Physiological reasoning for limited effect of humidity Location in text (section)

Highly vulnerable people (elderly, medicated) have reduced sweating responses, so
their mortality risk during heat waves may be less sensitive to humidity.

Sweating Impairments in Heat-Vulnerable People

Humidity only strongly affects human heat strain when the evaporative efficiency
of sweat begins to decline substantially, which may rarely happen when people
are sedentary, even at unusually high levels of temperature and humidity.

The Environmental Thresholds at Which Differences in Humidity
Impact Thermoregulatory Strain Are Rarely Attained

Many common deaths or hospitalizations due to heat are from causes such as cardi-
ovascular disease that are affected by temperature but presently have ambiguous
mechanistic connections to high humidity.

Most Heat-Related Deaths and Hospitalizations May Be Due to
Causes Unaffected by Humidity

During heat waves, dehydration risk increases, which at its extremes can reduce
sweating capacity and plausibly limit individual sensitivity to humidity.

Dehydration-Related Reductions in Sweating
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impairments in vulnerable populations (i.e., the elderly),
then self-dousing (applying water to the skin) to increase
heat transfer from the skin surface during heat waves could
improve health outcomes. Self-dousing could also over-
come the lessened efficacy of fans at low humidity observed
in older populations in climate chamber experiments.118

An improved understanding of humidity’s role would
also influence city-level adaptation measures. At present,
some heat wave early warning systems only consider tem-
perature, whereas others consider both temperature and hu-
midity, or composite metrics (e.g., AT).119 If humidity
matters for heat–health outcomes, and is increasing with
global warming, warning systems should perhaps be revised
tomore consistently include humidity or use composite tem-
perature–humidity metrics. The intensity of the urban heat
island (UHI), and thus effective methods to mitigate UHIs,
also depend on humidity.120 For example, green roofs and
street vegetation may enhance humidity, whereas white
roofs and reflective pavement would likely have a neutral
effect on humidity.121 At a range of scales, from personal to
regional, we assert that better understanding humidity’s role
in heat–health outcomes would clarify effective heat adapta-
tion strategies.

Summary and Conclusions
We sought to understand the disconnect between physiologists
and epidemiologists regarding humidity’s role in health outcomes
of elevated heat, and hypothesize possible reasons for the differ-
ing conclusions. In climate chamber experiments and human
energy balance modeling, physiologists find a key role for humid-
ity in driving human heat strain; at high levels of humidity, effi-
ciency of sweating—the main mechanism by which the human
body cools itself—decreases.18,22,122 In contrast, epidemiologists
conducting time-series analyses comparing health outcomes (i.e.,
morbidity and mortality) with environmental drivers typically
find a negligible role for humidity.19 We argue that reconciling
these diverging views of humidity is critical in a changing cli-
mate. As concentrations of atmospheric greenhouse gasses con-
tinue to rise, ambient temperature will increase, as will specific
humidity over most land regions.20,123 As a result, both the rate
and pattern of the increase in moist heat with global warming are
distinctly different from that of temperature alone: Although tem-
perature generally exhibits polar-amplified warming, moist heat
exhibits tropical-amplified increases.49,116 Humidity’s role in
heat–health outcomes thus could substantially alter projections of
health burdens from climate change. Disentangling humidity’s
impacts on heat-related health outcomes is also necessary to
select appropriate adaptations to present and future extreme heat.

As an interdisciplinary team covering epidemiology, physiol-
ogy, biometeorology, public health, and climate science, we
hypothesize reasons for the physiology-epidemiology disconnect
around humidity (summarized in Tables 2 and 3). Our explana-
tions span issues with epidemiological analyses, health and weather
data limitations, and physiological reasons that may limit the influ-
ence of humidity in actual heat waves as opposed to idealized ther-
mal chambers. These hypotheses are intended to galvanize research
to bridge these knowledge gaps. Addressing this disconnect will
require multidisciplinary research. Climate scientists can develop a
nuanced understanding of how temperature and humidity extremes
covary on diurnal and longer timescales, of the meteorology of
moist heat waves in the present, and of how such events could
change with global warming. Epidemiologists can carefully con-
sider how humidity is incorporated into their models, determine
whether humidity’s discernible role depends on the cause of mortal-
ity or hospitalization, explore robustness of conclusions to higher

temporal resolutions of data, and seek to incorporate more records
from the tropics, LMICs, and places where temperature and humid-
ity are less correlated. Physiologists (in concert with medical doc-
tors) can work to better characterize the mechanisms and timescales
of death during heat waves, and humidity’s relevance to these
mechanisms. Heat is the most direct way climate change impacts
human health— resolving these cross-disciplinary debates around
humidity is necessary to ensure that future heat–health projections
and adaptation measures are robust and effective.
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