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MIXED FINITE ELEMENT APPROXIMATIONS FOR NON-LINEAR PLATES

by

J. C. SIMO!

R.L. TAYLOR'
and

J. H. SLATER’

1.- INTRODUCTION

Rod plate and shell theories are characterized by the use of stress resultants over the
thickness of the body in the formulation of the governing field equations. In the process of
averaging stress distributions over the thickness, loss of information with respect to local
phenomena inevitably occurs. In particular this is significant in the range of inelastic response
where elastic-plastic interfaces across the thickness can not be obtained. Such theories, how-

ever, provide a realistic alternative to fully two or three dimensional non-linear analyses.

Although fully (geometrically) non-linear plate theories are available {1,2.3], in most
engineering applications the use of second order theories often suffices. The von-Karman plate
mode! is perhaps the best known example of such an approximate theory. The major
shortcoming of this widely used model lies in its inability to account for transverse shear defor-
mation of the plate (due to the Kirchhoff kinematic assumption which is characteristic of this
model). In the context of a second order theory, a plate model was presented in [4,5] which is
capable of including transverse shear effects. In addition, the warping effect which appears as a
result of shear deformation, and the effect of a non-vanishing transverse normal stress, are also

accounted for in the formulation proposed in [4,5]

In this paper, we examine mixed finite element formulations of a second order theory
capable of accounting for the effect of transverse shear. The plate model employed is summar-
ized in Section 2., and may be viewed as an extension to the non-linear range of the linear plate

theory due to Mindlin. Such a non-linear model results from that presented in [4,5] if the
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warping effect and the effect of the transverse normal stress are neglected.

Our mixed finite element formulation is obtain by constructing weak forms of the local
equilibrium and constitutive equations of the plate, and employs a consistent linearization pro-
cess leading naturally to an iterative solution procedure. For simplicity we confine our presen-
tation of the theory essentially to elastic behavior, aithough the formulation may be extended to
elasto-viscoplastic material response as indicated in Section 4. Indeed, our numerical imple-

mentation includes such capabilities.

Numerical examples are presenied in Section 4 which illustrate the formulation discussed

in this paper.

2.- SUMMARY OF THE NON-LINEAR PLATE MODEL

We consider a plate of thickness # whose mid-plane spans a domain £ C R?, a bounded
open set with smooth boundary 9. We choose the undeformed configuration
B = Qx(—h/2, h/2) as the reference configuration. The material frame, designated by (£}, is
taken as the standard basis in R°, £, = &', with {&,, £,} spanning the mid-plane Q and £, nor-
mal to the mid-plane. Points in B are designated by X with coordinates X;(X) = X'(X) with
respect to the standard basis. We shall designate by I'* the two faces of the plate which are
defined by I'" = Qx{#/2} and T~ = Qx{-h/2}, respectively.

The deformation map is denoted by ¢ :B — R>. We choose the fixed spatial frame as coin-
cident with the material frame {£}, and denote the coordinates of points x=¢(X) in the
deformed configuration by x(x) = x'(x). By slight abuse of notation points X€B and
x€¢(B) will be often identified with their position vectors X and x, respectively. In addition,

we employ the convention

X=X+ X8, X°eQ, Xs€(=h/2, h/2)

Following standard practice, Latin indices range from {1, 2, 3}, Greek indices from {1, 2}, and

the summation convention on repeated indices is assumed unless otherwise stated.

A systematic procedure of developing rod and plate theories from the three dimensional
theory, is to constrain the form of the deformation map by introducing a kinematic assumption

{1,2,3,4,5,6]. This approach will be employed here.



2.1.-Kinematic Assumption.

We assume the following particular form  for the deformation map
& B=Qx(~h/2,h/2) — R* of the plate:

x=¢X)=X") + 3 ¢(X?), X'€Q, Xs€(~h/2,h/j2) 2.1)
where ¢(X°) = ¢(X) lxzx(] and the vector field ¢ 10 — R* are given by:
(X)) = [X, + ul (X)) E, + w(X°) E,

B (X)X = |[pX)|]* =1 (2.2)

The vector fields u’(X?) = 2 (X°)E, and w(X°)£, physically represent the in-plane displace-
ment and vertical deflection of the mid-plane of the plate, respectively, whereas ¢ (X°) may be
thought of as a unit vector defining the orientation of lines initially normal to the mid-plane in
the undeformed configuration B = Qx{(—h/2,h/2) of the plate. The kinematic assumption
(2.1)-(2.2) has been employed in the development of fully non-linear rod and plate models
[2,3). In this paper, however, we shall focus our attention on a plate model restricted to

1

"moderate deflections and rotations.” Following Simo et a/ [5] and based upon sarly work of
Ciarlet {14], the notion of "moderate” rotations and deflections may be precisely stated as fol-
lows. Let L = dia(Q)) be the diameter of the set G CR? 7 let X, =L ¢, and define

£ = £,E, In addition, let X, = &3 F, and consider the map:

X = X0+ X3B,€ 0% (=h/2,h/2) — & = £° + £38,€Qx(—1/2,1/2) (2.3)

which scales the reference configurations Q1 x(—#/2,h/2) of the plate to a non—dimensional
configuration B = (1x(—1/2,1/2). The order of magnitude of the displacements and rotations
of interest may then be precisely stated by postulating the manner in which they transform
under the scaling map (2.3). If (non-dimensional) fields defined on B are designated by a
superposed "-", we restrict our attention to a situation for which the components of the vari-
ables entering in (2.1)-(2.2) transform according to

2
1o (X0) = «% BOEY) . w(XO) = h w(€%)

- 2
X = T GLE) (X = —217 3£ (2.4)

"‘i.e; the diameter of the smallest open ball in R? which contains (} C R?,



The requirement of conditions (2.4) amounts physically to restrict the deformation of the plate
to deflections w(X") of the order of the plate thickness 4, in-plane displacements u’ (X°) of
the order 4“ and "out of plane" rotations ¥, (X") of the order #/L. The coordinate expression

for the displacement field u(X) = ¢(X) — X then takes the form:
U (X)) = ul (X)) — X3 ¢4,(X) + O(h)

us(X,) = w(Xp) + O(h) (2.5)

where we have set = —y, E, + O(h?). If attention is focussed on the linear theory, (2.5)
corresponds to the kinematic assumption characterizing the plate model due to Mindlin [7]
which neglects the warping effect of transverse sections of the plate appearing as a result of
transverse shear deformation. Within the framework of projection methods, a more general
kinematic expression was proposed in [4,5] which accounts for warping effect and contains
(2.5) as a particular case. Remarkably, the linear theory resulting form this more general
kinematic assumption is equivalent to that first derived by Reissner employing a variational pro-
cedure [8,9]. It is emphasized that, as opposed to Mindlin’s Theory, the Reissner plate model
accounts for both the warping effect due to transverse shear deformation and the effect of

transverse normal stress (see [S]).

Next, we turn our attention to the development of the non-linear plate model considered
in this paper. Our presentation is restricted to an outline of the key results necessary for the
discussion of the mixed finite element implementation. A comprehensive account of the
theory in a more general context, which includes the warping effect of transverse sections of

the plate as well as the effect of transverse normal stresses, can be found in {4,5].

2.2.- Second Order Appreximation to the Equilibrium Equation.

(a) Local Form. The key idea to develop appropriate equilibrium equations is to make
use of the method of successive approximations [10] in terms of the -presumably small- param-
eter € = h/L. Let us denote by P(X) the first Piola-Kirchhoff (two-point) stress tensor, and
by g (X°) E; = iPlri E, the applied forces on the major surfaces I'* of the plate. Consistent
with (2.4) and (2.5) the components of P(X) and ¢.(X°) transform under the scaling map
(2.3) according to [4,5].

Pp(X) =€ P 4(8) , Pyp(X) = &’ Pyy(é) | g+ (X)) =¢e* g, (%) (2.6)

When use is made of the method of successive approximations and a convenient choice of spa-
tial frame is introduced [4], it can be shown [4,5] that integration over the thickness of the

plate of the three dimensional equilibrium equations and use of order of magnitude arguments



based upon (2.4) and (2.6); leads to the system of equilibrium equations.
DIVIN-¢$&®V]=20
DIVIV+ g Nl+qg=0 2.7

DIVM+ I+ Vu)V-NA(Vw—¢) =0

where N = [N,4(X°)] represents the in-plane forces and V = {V4(X”)} the transverse shear
forces which may be related to the components of the first Piola-Kirchhoff tensor through the

transformation [4,5]

hi2
Pop(X) dXy = Nop(X%) — yr (X°) V5(X?)
—-h/2
[
[ Pip(X) dXy = Vy(X®) 4, (X°) Nop(X°) (2.8)
~hf2

M = [M,s(X")] represent the bending moments acting on the plate, I = [5,4] is the unit

matrix and ¢ = ¢.(X?) — ¢q_(X°). The operators in (2.7) have the usual meaning, i.e;

=0 Lo - _
VO =l550 T, DO =elVOl- 3

9
5, - () (2.9)

X
It can be shown (see [5]) that due to the restrictions (2.4)-(2.6), we have the symmetry condi-
tions N=NTand M =M’.

(b) Boundary Conditions. Let the boundary 90 of Q& C R? with unit normal R(X°) , be
divided into parts (1, and £}, such that Q,N O, = @. The stress vector field on §Q is given by
T = P(X)|s0 N(X°). On Q, we assume that only the resultant force and resuliant moment
of the stress distribution are prescribed; i.e.,

h/2 ' h/2

T(N) dx; = ¥ , -

L e ™ 4 x, TN dx, = i, on 0, (210)
—h/2 h —h/2

whereas on {1, the displacement of the mid-plane and the out-of- plane rotations are prescribed

as!

bo(X) =y, u,X)=1i,, wEX)=w, on O, (2.11)

Next, we proceed to construct a weak form of the equilibrium equations (2.7) with boundary

conditions (2.10) - (2.11).



{¢) Weak Form. We iniroduce linear spaces of kinematically admissible variations for-

mally defined as:
S ={6u=20du’+6wk, Q0 — R’ |5u|nu*0}

Sy={8¢ =8,k :Q— R’ [d¢|o, =0) (2.12)

In addition, if f(x,y) is a vector valued function of its arguments, the (Frechet) deriva-

tive in the direction (h,k) will be denoted by D7 (x,y).(h,k) and may be computed as:

DFGY). (1) = |+ ehy + k)] g (2.13)
With this convention, a formal computation employing Green’s formula leads to the weak form
of the equilibrium equations (2.7) expressed as:

G = f [N:Dx(u,\b).(éiu,ﬁt[:) + M:D6() 8¢ + V:Dy(u,tlt).(Su,&lz)] dQ
)

~ [ qowda ~ [ [ou+mopl dT for any (5udw)eS = S)x5,  (2.14)
) Q,

where A (u,§), () and y(u,¥) are defined by
Aug) = KBV + Tu’l + LYWV w — (Vw — $IQ(Vw — )
TWy) =Vw— 1A+ Vu)y (2.15)

o) = KLIViy + V]

and represent the deformation measures conjugate to the resultant forces N, V and M, respec-
tively.
We now turn our attention to the formulation of constitutive equations for elasticity.

Only the pure mechanical theory is considered.

2.3.- Constitutive Equations. Elasticity.
Since the kinetic variables {N,V ,M]} are conjugaied to the kinematic variables {x,y.8} we

postulate the simplest constitutive model connecting these variables, which is clearly inspired in

the linear theory [5], and is given by:

14w v —
A= h N Ehtr(N)I._.CNN
14w o —
@ = D M D r(M)1 = CyM (2.16)



1

Y= G A% (k=5/6)

The assumption of a constitutive model such as (2.16) avoids the explicit formulation of a
three dimensional model, and is motivated by reasons examined in [5]. Note that in the con-
text of a direct approach which regards the plate as a Cosserat surface with one director [12],

assumption (2.16) is perfectly legitimate.

If we assume that constitutive equations (2.16) hold point-wise in ) C R?, their substitu-
tion into the weak form (2.15) leads to a functional G[(u,#);(5u,8¢)] which satisfies, for any
(5u,8¢) and (du,5¢) in S = §;x5,, the symmetry condition

D, Gl(u,);(5u,69)].(50,5¢%) = Dy Gl(u,g);(55,89)].(5u,5¢) (2.17)

Hence, assuming appropriate smoothness [13], there exists a potential (u,$) — J(u,y), which
physically represents the total potential energy of the plate, and with explicit expression given
by Vainberg’s formula ([13] pp.112) in terms of the weak form (2.14). Making use of this

result, from (2.14) and (2.16) we arrive at the expression

Ja) = 1/2f [A:(CFE]A) + 8:(Cyi'0) + Ghi 'y.y] dQ
0

~[gwdq ~ [ iu+mylar (2.18)
0

0,

The total potential energy functional (2.18) can be used as the starting point for the develop-
ment of displacement finite element formulations (see [6] for an application to beam problems).
Since our interest focuses on mixed finite element models, instead of considering (2.18) we
construct a weak form of constitutive equations (2.16) in the usual manner. The result may be

written as:

H = f SN:A + 6M:0 + 8V.y — 8N:(CyN) — 8M:(Cy M) — 6—1/1—:6V'V dQ = 002.19)
Q

for any (8N,8V.,8M)€ W, where W may be taken as W = [L(Q)H*x[L ()< [L (Q)]*
and such that DIV (8N) € [L2(Q)]?, DIV (6V)€ L*(2) and DIV (M) € [L*(Q)]%. The pair of
variational equations (2.14) (2.19) comprises the formulation suited for a mixed finite element

approximation to the non-linear plate theory governed by equilibrium equations (2.7). and con-

stitutive equations (2.16).



3.- SOLUTION PROCEDURE. FINITE ELEMENT FORMULATION.

Due to the non-linear nature of the strain measures A (a,¥), y(u,¢) and @ (), appearing
in the energy functional (2.18) or in the variational equations (2.14) and (2.19): an iterative
solution procedure is necessary. The linearization of (2.14) and (2.19) about an intermediate
configuration then plays a key note in the solution scheme. A complete account of linearization
techniques in the general context of infinite dimensional manifolds can be found in [13]. For

the problem at hand, our approach essentially follows that employed in [4,6].

3.1.- The Linearized Variational Problem.

For simplicity in the presentation, we introduce the following matrix notation
r(X) = @ w ) = [uf u$ w iy 7
f(X°) = (NVM) = [Ny Ny N, ViV, My, My Myl (3.1

AX) = y,0) =y Ay Ay oy y2 17

In addition, we define a linear operator r —IB(x) by
B = (Ve Vw, V) = [uf; uwd i, ---17 (3.2)

Consider an intermediate configuration of the plate characterized by T(X) and acted on by
forces f(X°). Let Ar(X°) :Q — R°bea superposed infinitesimal deformation; that is, a vector
field covering F(X°) :2 — R°, which gives rise to an incremental configuration characterized
by r(X?) + Ar(X?), and acted upon by forces (f + Af)(X). It follows from definition (2.15)
that the (Frechet) derivative of the of the strain measures A(r) at T(X°) in the direction

Ar(X°) is given, in matrix notation, by

DA .Ar = E7(P B(AY) (3.3)

where E(¥) is a (10 x 10) matrix. By a procedure similar to that employed in [4,6], the lineari-
zation of the weak form of equilibrium equations about the configuration T(X°) may be com-
puted from its expression (2.14) and (3.3). Setting the result equal to zero, we arrive at a

linearized variational problem which may be written as;

LIGY = [ B 6r).[a; HB(AD + 2@ af] a0 + 6 FLér) = 0 (3.42)
[8]

for any 8r(X°)€S. G(F,f.6r) gives the "out-of-balance force" at the configuration ¥(X°) and

has the explicit expression



~GETn = [ loui+ spmldl — [ B G B0 Td0 (3.4b)

0, 0

A similar computation for the weak form (2.19) of the constitutive equation leads to the linear-

ized variational problem

LiHY = | 8fT[Er(r)IB(Ar) - CAf]dQ + [ BT A® dQ =0, for any df€ W (3.5)
0 0

Equations (3.4) and (3.5) define at each intermediate configuration ¥(X°) () — R’ a
coupled system of variational equations from which a subsequent configuration T(X°) + Ar(X%)
may be obiained, provided (3.4) and (3.5) are well posed at T(X?). That is, provided nothing

catastrophic such as bifurcation phenomena occur.

3.2.- Mixed Finite Element Approximation.

Finite element formulations of the variational problem defined by equations (3.4) and
(3.5) involve the approximation of the spaces S and W by finite dimensional subspaces S, C S

and W, C W. The domain } is partitioned into a collection of disjoint finite elements {Q,}2,

I3
such that and { j €2, = {}. Global interpolating functions are constructed as usual by patching

=1
together local shape functions defined over each finite element. Over a typical element {3 ,, the

incremental displacement vector is interpolated as
Né, Nf
AI(X")IQ{, =% s/(X?) AR/ => IBlﬂe(Ar) =3 B/(X") AR/ (3.6)
i=1

=1

- , a v, . , , .
where the shape functions {s/},_4 satisfy the usnal relations s/(X%;) = 6, at nodal points
N . .
{X”,}i%i. Similarly Af is interpolated over any ), by

Mt’
A(X) ], = 3 hj(X") AFj, 3.7

]

. . X . M, AN, .
At this stage the selection of shape functions {b}},,5, and {s{}, as well as the location and
meaning of the corresponding nodal quantities, is independent. For each element 0., we

define the matrices

Ké=IKg, 1, K, ”J BTA(DB d0

€

T = [T,]., T, = f 2 B hy,d0 (3.8)
Y,
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CP = [C(’mn] y C(,mn = J‘ h;;['/"C h,(,)dﬂ
26’
re={r<,}, T, = j he A dQ
2{’

The restriction of the variational equations (3.4) and (3.5) to a typical element 1, may be writ-

ten as:
sR¢" [Kg AR + T¢  AF = (¢ = T° F9)| = 0 (3.9)
sF¢ [T“ AR — CCAF  +T°| =0 (3.10)

where o€ gives the contribution of the force boundary conditions on ), to Q¢ and evalua-
tion of the matrices entering in (3.9) and (3.10) at the configuration T(X?) :Q) — R’ is under-
stood. K¢ is often referred to as the geometric stiffness, C® as the "weighted" compliance
matrix and I'? gives the "constitutive residual" at configuration r(X?). Global forms associated

with (3.9) and (3.10) can be constructed upon noting that

(i) The entries in the vector r(X°) must lie at least in H'(Q). Hence, C? interelement con-
tinuity is required when patching together the local shape functions (3.6}, to construct
global interpolation functions.

(ii) The components of the force vector f can be taken in (), therefore, no no interele-

ment continuity is required for the assembly of shape functions (3.7).

As a consequence of (ii), equation (3.10) may be solved at the element level for the nodal forces

8F¢ and the result substituted in (3.9) leading to the generalized displacement model
oR [KeE + 17 € T AR — (@ — T B -1 ') = 0 G.11)

Note that (3.10) may be numericaily solved "exactly" by local iteration to within a prescribed
norm of the constitutive residual I'¢. As recently shown in [6], such a procedure leads to a
particularly convenient algorithm for finite deformation inelasticity.

The success of the mixed formulation depends critically on the selection of the basis span-
ning the subspace W,, i.e; on the choice of shape functions {h,‘,’,},/,‘,fi] which interpolate the force
vector f = (N,V,M) within an element ,. This choice affects critically the stability of the
method which in turn is closely related to a discrete form of the Babuska-Brezzi condition
[15,16].

The rest of this paper is devoted to the analysis of this critical step. Our presentation is

based upon previous work in [18] and emphasizes the physical aspects involved in the selection



11

of the local basis {h,‘,’I}M" . Related mathematical aspects have been considered in [15,16] and

m==]

references therein.

3.3.- Choice of Shape Functions

In this paper we use standard 4-node, isoparameiric shape functions for all components of
displacements, and displacement increments. The shape functions for the components of the
force vector are chosen as polynomials of sufficient order according to (ii). In each element it is
possible to select polynomial expressions either in terms of global or local cartesian coordinates,

or in terms of the natural coordinates used to construct the displacement shape functions.

Although the problem considered here is nonlinear, the incremental problem obtained by
linearization about a stable configuration is linear. Accordingly, the solution of a linear probiem
by mixed methods provides the necessary insight to solve the nonlinear problem. Error esti-
mates for the strain increments computed from the approximating displacement field may be
used as a convenient guide to limit the number of terms used for each force approximating
function. For example, use of the bilinear shape functions for displacement quantities implies
that only a complete set of constant strain increment polynomials are recovered in each ele-
ment., While additional terms exist in the strain increments, they are not a complete order of
linear polynomials. Thus, in a mixed method it is not possible to obtain force approximations
which are of higher order accuracy than a complete constant field. The use of constants for
each force component, however, will lead to an element tangent matrix for the generalized dis-
placement model which is rank deficient (i.e., has zero eigenvalues for displacement increments
which are not rigid body modes). Consequently, in addition to the terms corresponding to the
complete order of polynomials in the strain increments additional terms are required to avoid

rank deficiency of the generalized tangent matrix.

If force approximations are employed with all the terms which result from a pure displace-
ment formulation, the mixed model will give identical results with a displacement formulation.
Thig is often called the "limitation principle" [19]. Indeed, if more terms are added then the
mixed principle merely discards them (i.e., produces zero coefficients to these terms). Thus,
the proper number of terms for each force component to be used in a mixed model is limited
on one side by accuracy assessments and on the other by the limitation principle. As additional
terms are added to the force terms of a mixed formulation convergence to the solution of the
displacement formulation results. One may inquire then about the merits of pursuing mixed
formulations. In general, no increase in accuracy of error estimates for a mixed formulation
over those of a displacement formulation results. However, for problems with constraints or
other complicating factors resulting from the constitutive model employed, the asymptotic rate

of convergence may be achieved much earlier if a judicious choice of approximating functions
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for the force components is made.

In the work reported here we have sought the minimum number of force parameters to
give proper rank of the generalized tangent matrix. In addition, we require our element to pro-
duce results which are independent of the user (e.g., the numbering sequence of the nodes or
orientation of the mesh with respect to the coordinate axes). In a previous study the use of
cartesian coordinate approximations has been shown to lead to better accuracy when elements
are distorted than use of polynomials in the natural coordinates of the displacement shape func-
tions. Consequently, the present study considers only polynomials of cartesian coordinates with

respect to a uniquely defined local set of axes in each element, as shown in Figure 1.

For a 4-node plate element with 5-displacement parameters per node, the rank of the gen-
eralized tangent matrix should be 14. Consequently, at least 14 independent terms must be
used to approximate the element force vector. The terms selected for the 4-node element con-

sidered here use M, equal to 2 with h{ taken as the identity matrix and hy defined as:

AL O O
hi=|0 A, O (3.11)
O O A
where
Y O Y
00

The choice of these approximating force functions is largely motivated by intuition. However,
the above choice satisfies our initial objectives relative to accuracy, rank of the tangent matrix,
and invariance with respect to user inputs. The choice of the specific functions for the in-plane
forces is motivated by a desire to decouple the "bending" response from the "shearing"
response. (at least with respect to the local coordinate frame). Numerical experiments for a
linear elastic problem indicate that a mixed element using the above approximation is
significantly more accurate than a displacement model when the primary mode of response is
in-plane, pure bending. Moreover, the mixed element results were less sensitive to in-plane
mesh distortions. The moments M are approximated with the same functions as the in-plane
forces N. The approximations for in-plane and bending forces consist of 10-terms, conse-
quently, to produce correct rank for the element generalized tangent matrix, the approximations
for the transverse shearing forces V must contain 4-terms. While this approximation leads to
correct rank of the element generalized tangent matrix, and correct asymptotic rate of conver-

gence, issues related to locking for thin plate applications should be considered also. Indeed,
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when thin plate problems were solved using meshes of distorted elements, it was found neces-
sary to introduce a modification for the transverse shear strain-displacement relations to avoid
locking. A method analogous to that employed in [20] was adopted to avoid locking for the

thin plate limit while retaining proper rank for thick plate applications.

4.- NUMERICAL EXAMPLES

Two example problems are selected to illustrate the performance of the plate theory and
mixed model element. The first example is the cylindrical bending of a plate with simply sup-
ported ends and uniform vertical loading. Constitutive equations for this example are taken as
elastic-perfectly plastic in terms of force resultants. The solution is achieved using a penalty
formulation for an elastic-viscoplastic model. The second example is the solution of a simply
supported, square plate subjected to uniform vertical loading. Solutions are obtained for elastic

and elastic-plastic response.

4.1.- Cylindrical Bending of a Uniformly Loaded Plate
The first example considers the cylindrical bending of a plate subjected to uniform vertical
loading. The plate considered has a 20 inch span and a 1 inch thickness. The material is

assumed to be elastic-perfectly plastic with the following values for constants:

E = 30000 ksi.
v = 0.3
o, = 36 ksi

where v is Poisson’s ratio and o, is the uniaxial yield stress. In all problems considered in this
paper the constitutive equations are given in terms of force resultants (e.g., see (2.16)). The
elastic-plastic relations are developed as a penalty form of an elastic-viscoplastic model in terms

of appropriate objective rates [6]. The viscoplastic flow potential is taken as
1
= 0Oy + Oy + —= +Qp — 1
S =0y + Oy 7 (O] + O

where
Oy = nfy — nynyp + nkh + 3nh,
Oy = miy — myy my + mbh + 3mb
Owm = nyymyy — Yol myy + nyymyy) + naymy + 3nyymi;

Oy = vi + vJ
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and the resultant variables appearing are normalized according to

_ Na _4AMy, V3V,
Agp = 7, P Map v, PRI =

This potential was suggested by Shapiro [21]. Comparisons between resultant form of the con-
stitutive equations and forms in terms of the stress tensor directly have been performed for
beams [6]. In general, excellent agreements result. The cost of analysis is reduced consider-
ably by using the resultant forms since no numerical integration through the plate thickness is

required.

The inclusion of the transverse shearing forces in the yield function plays a key role in the
prediction of plastic collapse of the plate. Essentially, the plate initially yields at the center and
gradually through increased rotation transfers the loading to the membrane forces. Near the
supports, however, an interaction of the shearing and in-plane loadings occurs which eventuaily
leads to a fully developed plastic zone and a resultant collapse mechanism. The plate model
developed here predicts an ultimate load as shown in Figure 2. It should be noted that the
predicted collapse load is significantly higher than that predicted from the small displacement
theory. In the small displacement theory the ultimate load occurs when the plastic moment at
the center of the plate is exceeded. In an attempt to evaluate the predicted collapse load, the
cylindrical bending of the plate was modeled as a large deformation, plane strain problem using
the computer program NIKE2D [22]. The constitutive equation is assumed to be elastic-
perfectly plastic with a Mises potential function defining the yield condition. The results for the
transverse center displacement from the NIKE2D analysis is also plotted in Figure 2. The
correlation between the two analyses is quite good for displacements up to twice the plate thick-
ness (i.e., 2 inches). Above this value however the two solutions differ, essentially due to the
collapse mechanisms occurring. These resuits are consistent with the apriori estimates for the
range of validity of the second order theory given by (2.4). A plot of the deformed plate at
collapse, as predicted by NIKE2D, is shown in Figure 3. It can be observed that the plate
necks in the vicinity of the support, clearly a phenomenon which the plate kinematics given in

(2.1), (2.2) do not include.

4.2.- Simply Supported Square Plate, Uniformly Loaded

The second example considered is a simply supported, square plate subjected to uniform
vertical loading. The material model and properties are the same as given for the first example.
The plate has side lengths of 20 inches and the thickness is again 1 inch. Bounds for the smalil
deflection collapse load for a perfectly plastic plate have been given in [23]. If the non-linear

terms in the strain-displacement equations are suppressed the plate model described here



15

produces answers within the bounds for a 16 element (4x4) mesh of elements [24]. If the yield
stress is set artificially large (e.g., equal to the elastic modulus), the plate model gives answers
corresponding to the Levy solution [25]. If the transverse shear terms in the potential defining
yielding are suppressed, then after initial yielding the loading is transformed to the in-plane
force resultants and the plate behaves like a membrane with tension equal to the limiting in-
plane yield loads. Finally, when all terms are included in the kinematics and the yield function
the plate initially yields due to bending, gradually transfers the ioads into the in-plane force
resultants, and, finally, collapses under a combined in-plane and transverse shear mechanism.
For all the cases described above, the results for the displacement at the center of the plate are

shown in Figure 4.

The two examples described above illustrate some of the aspects of the behavior for the
plate theory and a mixed-model finite element implementation described in this paper. In par-
ticular, the inclusion of transverse shear deformation permits inclusion of vield effects related
to transverse shear force resultants. This effect, combined with the kinematic approximations
for the plate, permits consideration of collapse mechanisms due to combined in-plane, bending,
and shear effects. For metals, a comparison with results obtained using the finite deformation
plasticity model in NIKE2D indicates that the predicted collapse load from the plate model is
unconservative. This is primarily due to the fact that NIKE2D predicts a "necking” phenomena

near the edge which is not included in the kinematic approximations of the piate theory.

The kinematic approximations employed in the plate theory developed here are more
appropriate for applications where the plate is thick or where the transverse shear effects are
large compared to in-plane and bending effects -- for example, in sandwich plates. An example
of the discrepancy of results produced using commonly employved kinematic approximations
(i.e., von Karman plate theory) and those described here is shown for a beam in [4,6]. Similar

results will occur for applications to typical plate problems with these properties.
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