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ABSTRACT 

 

Developing a systems biology framework to engineer anaerobic gut fungi 

 

by 

 

St. Elmo Wilken 

 

Lignocellulose is a complex, energy-rich heterogenous polymer composed of cellulose 

(40-50%), hemicellulose (20-40%) and lignin (20-35%). Using the more than 1.6 billion tons 

of agricultural lignocellulosic waste generated worldwide each year is a promising avenue to 

explore for sustainable bioprocessing. While lignocellulose is abundant, lignin acts as a 

protective barrier that prevents its decomposition into fermentable sugars and poses 

significant challenges for the utilization of this energy-rich resource in biotechnological 

applications. On the other hand, anaerobic gut fungi specialize in bio-converting unpretreated 

lignocellulose into fermentable sugar monomers and represent a promising opportunity to 

exploit lignocellulosic plant biomass for bioprocesses. 

Anaerobic gut fungi typically inhabit the digestive tracts of herbivores where they play an 

integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. 

The genomes of these fungi encode for the highest diversity, and largest number, of 

lignocellulolytic enzymes of any sequenced fungus to date. This, in combination with their 

filamentous morphology, causes them to excel at lignocellulose decomposition. Despite these 

advantages, anaerobic gut fungi are not utilized in bioprocesses due to challenges in 
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cultivating and engineering them. In this thesis a marriage between experimental and multi-

omic datasets is used to develop techniques that can be used to better understand and engineer 

anaerobic gut fungi for lignocellulose decomposition in upstream bioprocesses.  

A comprehensive metagenomic enrichment of goat fecal pellets was undertaken to better 

understand how rumen microbiome-based cultures respond to different environmental 

stressors. The outsize role anaerobic gut fungi play in these systems was highlighted by the 

markedly different way in which lignocellulosic carbon was metabolized to different 

fermentation products when anaerobic fungi were present. Overall, the analysis elucidated a 

natural compartmentalization that occurs between anaerobes during the degradation of 

lignocellulose, suggesting design rules that can be used to funnel carbon to different end-

products based on the composition of the microbial consortia. 

Despite the importance of anaerobic gut fungi in lignocellulolytic systems, no stable 

genetic engineering tools have been developed for this class of fungi to facilitate strain 

optimization. This is partially due to several unique genomic traits possessed by the gut fungi, 

namely an extreme bias towards AT bases in their genomes, as well as a disproportionate 

abundance of repetitive genomic regions. By making use of omics databases, the 

consequences of these features were investigated. It was found that the carbohydrate active 

enzymes encoded for by the gut fungi are likely heavily glycosylated, which has ramifications 

for heterologous expression strategies. A novel codon optimization table was also introduced 

to facilitate the quest to genetically engineer these fungi. 

Genome-scale models form a cornerstone of modern metabolic engineering strategies, due 

to their ability to accurately model the metabolism of an organism from first principles. These 

models are most often made for well characterized organisms, but there is great benefit in 



 

x 

 

constructing such a model of an anaerobic gut fungus due to its ability to act as a scaffold to 

build understanding upon. To this end, the first genome-scale model of an anaerobic gut 

fungus was constructed using a combination of experimental and omics data. This model 

captures the primary metabolism of Neocallimastix lanati, a novel anaerobic gut fungus 

isolate, and sheds light on the inner workings of the carbon metabolism unique to the gut 

fungi. 

Furthermore, genome-scale models can also be used to predict growth rate characteristics 

of organisms in silico. This aspect can be particularly useful when screening microbes for the 

development of stable consortia with the anaerobic gut fungi. A novel dynamic flux balance 

analysis algorithm, specifically geared towards the anaerobic gut fungi, was developed for 

this purpose. It was found that methanogens are likely the best partners due to their ability to 

metabolize by-products of the gut fungi and not compete with them for resources. 

Finally, due to challenges associated with cultivating the anaerobic gut fungi, indirect 

measurements are typically used to infer their growth rate. These usually take the form of 

pressure measurements, performed with a digital handheld pressure transducer. While high 

resolution experiments afford the most insight into the impact of environmental perturbations 

on the growth rate of the fungi, these are very labor and time intensive. An automatic pressure 

measurement and venting device was designed and built to automate this process. Beyond the 

time savings afforded by the device, an extremely high-resolution growth curve can now be 

automatically constructed, shedding light on the growth dynamics of the anaerobic gut fungi. 

In sum this thesis combines experimental and omics data to yield new insights in the 

behavior of anaerobic gut fungi and paves the way for their exploitation in biotechnology.  
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I. Introduction 

1.1 Motivation and overview of the thesis 

Lignocellulose is an abundant, renewable and largely underexploited natural resource 

(Sanderson, 2011). It is composed of the energy-rich polysaccharides cellulose and 

hemicellulose, which are protected from decomposition and utilization by microbes through 

the recalcitrant lignin that surrounds them. Bioconversion of the estimated 1.6 billion tons of 

agricultural lignocellulosic waste generated each year into value added chemicals is an 

important step towards a more sustainable chemical industry (Demirbas and Demirbas, 2010; 

Saini, Saini and Tewari, 2015). One of the primary obstacles in realizing this goal is the 

recalcitrance of the crude feedstock. Lignin, which acts as a barrier to enzymatic attack, has 

proven to be a significant obstacle in utilizing this resource to release fermentable sugars via 

enzymatic digestion. Moreover, the largest component of lignocellulose, by mass, is the 

energy rich glucose polymer cellulose, which by itself requires the simultaneous action of 

three distinct classes of enzymes to be converted into the metabolically accessible glucose 

monomer (Horn et al., 2012). Expensive pretreatment is typically required to process crude 

lignocellulose into fermentable sugars for utilization by microorganisms.  

On the other hand, nature already processes crude lignocellulose into biologically relevant 

compounds in the digestive tracts of ruminants (Weimer, Russell and Muck, 2009). In this 

thesis various omics1 and experimental datasets, derived from microbes found in the rumen 

of large herbivores, are coupled and modeled to investigate and engineer systems that could 

 
1 Genomic, transcriptomic etc. datasets are collectively referred to as “omics” data. 
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be used to improve the current methods of utilizing lignocellulose as a feedstock for 

bioprocessing. Specific attention is paid to anaerobic gut fungi, in the phylum 

Neocallimastigomycota, which are of central importance in the gut microbiota of herbivores. 

The following subsections of Chapter I continue with more detailed background information 

regarding the subsequent chapters of this thesis. The rest of the thesis is outlined below. 

The biotechnological promise of ruminant inspired systems for the bioconversion of 

lignocellulose is vast. Indeed, several recent studies have made use of modern sequencing 

techniques to elucidate this potential (Seshadri et al., 2018; Stewart et al., 2018). However, a 

major drawback of these studies is that they do not focus on the class of organisms primarily 

responsible for the lignocellulolytic action of ruminants: anaerobic gut fungi in the clade 

Neocallimastigomycota (Gruninger et al., 2014). Chapter II addresses these shortcomings in 

literature by introducing a metagenome study that highlights the outsized impact eukaryotes 

have on the degradation of lignocellulose in ruminant herbivores. In sum the study reveals 

consortia membership design rules that can be used to channel lignocellulose into 

biotechnologically relevant end-products. 

While a comprehensive database of cellulolytic sequences is a prerequisite first step in 

understanding ruminant based microorganisms, it is also necessary to be able to genetically 

engineer such systems. While robust genetic engineering techniques are under development, 

Chapter III introduces a systems level analysis aimed at using the currently available omics 

data to facilitate the development of genetic engineering techniques, both native and 

heterologous, for anaerobic gut fungi. It was found that their carbohydrate active enzymes 

possess a disproportionate abundance of repetitive elements and are likely heavily 

glycosylated, which has consequences for heterologous expression strategies. Additionally, 
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the first codon optimization table for an anaerobic gut fungus was also developed, guiding the 

way for future genetic engineering strategies.  

Anaerobic gut fungi are central to unlocking the lignocellulolytic capabilities inherent to 

the ruminant microbiome. While troves of omics data have been collected, a systematic 

framework to synthesize this data to better understand the gut fungal metabolism is sorely 

lacking. Genome-scale models2 can be constructed from such omics datasets and can be used 

to guide engineering efforts and elucidate metabolic features unique to an organism.  Chapter 

IV introduces the first genome-scale metabolic model of an anaerobic gut fungus. This model 

captures the primary metabolism of Neocallimastix lanati, a novel anaerobic gut fungal 

isolate. The model highlights the metabolic degeneracy of N. lanati, a feature most likely used 

to optimally regulate its metabolism under different environmental conditions. Furthermore, 

the model is also well suited to focusing experimental effort on the areas that are most 

important to understand, and subsequently engineer, for bioprocessing. 

Furthermore, the power of a mechanistically predictive model is that it can be used to 

accurately simulate cellular responses to perturbations, saving experimental time and effort. 

Chapter V introduces an algorithm that is specifically designed to interrogate genome-scale 

models of organisms in culture conditions typically used for rumen microbiome derived 

systems. This allows for the rapid screening of microbes that are more likely to result in stable 

pairings with the anaerobic gut fungi. These pairings can then be further investigated 

experimentally for bioprocessing applications.  

 
2 Genome-scale models are a mathematical representation of the metabolism of an 

organism. 
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Due to the unique culturing conditions required by rumen derived microorganisms, batch 

cultivation is a necessity. Moreover, only a few techniques exist to non-invasively measure 

growth, with intermittently measured gas production rate measurements being the standard. 

This type of manual measurement is typically time intensive and low resolution. Chapter VI 

describes the development and construction of a device that automatically measures the gas 

production rate as a proxy for fungal growth, requiring minimal manual oversight, and is 

capable of continuously monitoring the growth rate of a culture in high resolution.   

Finally, Chapter VII concludes the thesis and points to future opportunities to exploit the 

capabilities of rumen microbiome inspired biotechnology. Subsequent portions of this 

motivating chapter are based on my review papers “The importance of sourcing enzymes from 

non-conventional fungi for metabolic engineering & biomass breakdown” (Metabolic 

Engineering, 2017) and “Linking ‘omics’ to function unlocks the biotech potential of non-

model fungi” (Current Opinion in Systems Biology, 2019). 
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1.2 Fungi are a rich resource for sustainably utilizing lignocellulosic feedstocks for 

biotechnology 

Modern biotechnology uses enzymes and engineered microbes to produce a wide variety 

of fuels, materials and chemicals from renewable feedstocks (Otero and Nielsen, 2010). In 

contrast, current commodity- and fine-chemical production relies on non-renewable 

petroleum feedstocks. Given the dwindling resources and the heavy carbon footprint of oil, 

the demand for environmentally friendly alternatives is urgent and ever increasing.  

The so-called first generation biofuels were derived from crops that are rich in starch and 

sugars, such as corn and sugarcane (Saini, Saini and Tewari, 2015). As the world’s population 

is predicted to increase to ~10 billion by the year 2050, this approach is not sustainable 

because it competes with food resources and for agricultural land (Bothast and Schlicher, 

2005; Rogers et al., 2017). Current efforts seek to convert lignocellulosic energy crops and 

residues from agriculture and forestry into hexose and pentose sugars (Sanderson, 2011; U.S. 

Department of Energy, 2016, 2017). Given the impetus of the European Union’s goal to 

develop a bio-economy by 2050, as well as the estimated €2 trillion bio-market size in 2012, 

there are significant political and financial drivers to pursue these endeavors (Scarlat et al., 

2015). To fully realize the potential of sustainable bioproduction platforms, there is a great 

need to identify novel organisms, enzymes and molecules with activities that can be harnessed 

for a range of breakdown and conversion applications (Curran and Alper, 2012; Adrio and 

Demain, 2014; Monciardini et al., 2014; Rocha-Martin et al., 2014; Thies et al., 2016). In 

particular, it is necessary to be able to cost-effectively convert diverse, underutilized plant 

biomass into tailor-made value-added compounds. 
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Lignocellulosic biomass, available worldwide in plant cell walls, is arguably the most 

promising feedstock for the sustainable production of bio-based chemicals and value-added 

products (Himmel et al., 2007; Rogers et al., 2017; U.S. Department of Energy, 2017). 

Underutilized lignocellulosic feedstock is abundant – it is estimated that 1.6 billion tons of 

agricultural waste is generated on an annual basis worldwide (Sarkar et al., 2012; Saini, Saini 

and Tewari, 2015). It has been suggested that the US alone could sustainably produce equally 

as much biomass that could be funneled into bioprocessing applications on an annual basis 

(Himmel et al., 2007; Rogers et al., 2017). However, the inherent recalcitrance of plant cell 

walls presents a formidable challenge for biotechnological applications. Few organisms can 

fully degrade the highly heterogeneous and recalcitrant structures found in plant cell walls. 

Therefore, biomass-degrading organisms are highly sought after, as their enzymes can be 

directly harvested or used for consolidated bioprocessing (Hess et al., 2011; Piao et al., 2014; 

Zhang et al., 2016).   

Fungi play a major role in nutrient cycling and biogeochemical cycles in both aquatic and 

terrestrial environments (Dighton, 2007; Gadd, 2007; Gessner et al., 2007). Already, most 

industrial enzymes for lignocellulosic bioprocessing are sourced from fungi but the fungal 

kingdom is vast, largely hidden, and exhibits a wide range of interesting bioactivities that 

remain underexploited (Banerjee, Scott-Craig and Walton, 2010; Payne et al., 2015; 

Ramanjaneyulu and Rajasekhar Reddy, 2016; Falade et al., 2017).  

While biomass-degrading enzymes can be found in both bacteria and fungi, nearly all 

industrial enzymes are sourced from fungi. This is likely because the fungal enzymes are often 

stabilized by glycosylation and they have been shown to be active in the presence of proteases 

and surfactants, and at high temperature (Hong et al., 2001; Beckham et al., 2012; Ilmberger, 
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2013). Consequently, fungi excel at biomass degradation in nature and possess a wide variety 

of enzymes that depolymerize plant biomass with high efficiency (Dighton, 2007). As shown 

in Table 1.1, fungal biomass-degrading enzymes are heavily used for the processing of paper 

and pulp; for the production of food, feed, pharmaceuticals and cosmetics; as well as for 

bioremediation.  

Table 1.1: Various industrial applications of fungal enzymes, see (Susanna Seppälä et al., 2017) for a 

full set of references. 

Enzyme EC number Reaction Applications 

Hydrolases 

Cellulase 3.2.1.4 

Hydrolysing the β-1,4-

glycosidic bonds in 

cellulose 

Food industry, textile 

manufacturing, 

detergent industry, 

paper and pulp 

industry, 

bioremediation, biofuel 

production 

Xylanase 

(Hemicellulase) 
3.2.1.8 

Hydrolysing the β 1,4-

glycosidic bonds in 

xylan 

Food industry, biofuel 

production, paper and 

pulp industry, 

deinking, production 

of animal feed  

Alpha-amylase 3.2.1.1 

Hydrolysing the α-1,4-

glycosidic bonds in 

starch 

Food industry, starch 

conversion, biofuel 

production, detergent 

industry, paper and 

pulp industry 

Invertase 3.2.1.26 

Hydrolysing sucrose 

into glucose and 

fructose 

Food industry, 

cosmetics, 

pharmaceutical 

industry, paper 

industry 

Beta-galactosidase; 

Lactase 
3.2.1.23 

Hydrolysing lactose 

into glucose and 

galactose 

Food industry 

Lipases 3.1.1.3 

Total or partial 

hydrolysis of fats and 

oils 

Food industry, biofuel 

production, spills, 

detergent industry, 

paper and pulp 

industry, 
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pharmaceutical 

industry 

Phytase 3.1.3.8 

Catalyzing phosphate 

monoester hydrolysis 

of phytic acid 

Food industry, 

agriculture, production 

of animal feed 

Oxidases 

Laccase 1.10.3.2 

Catalyzing the one-

electron oxidation of 

four reducing-substrate 

molecules concomitant 

with the four-electron 

reduction of molecular 

O2 to H2O 

Nanotechnology, 

synthetic chemistry, 

bioremediation, 

cosmetics 

Peroxidases 

Lignin peroxidase 1.11.1.14 

Catalyzing the 

oxidation of various 

organic and inorganic 

substrates in the 

presence of H2O2 as 

electron acceptor via 

long-range electron 

transfer (LRET) 

Paper and pulp 

industry, textile 

industry, 

pharmaceutical 

industry, 

bioremediation, 

biomass conversion, 

cosmetics 

Manganese peroxidase 1.11.1.13 

Catalyzing the 

oxidation of Mn (II) to 

Mn (III), as well as a 

variety of low redox 

potential organic 

substrates, in the 

presence of H2O2 as 

electron acceptor 

Paper and pulp 

industry, textile 

industry, 

pharmaceutical 

industry, 

bioremediation, 

biomass conversion 

Versatile peroxidase 1.11.1.16 

Catalyzing the 

oxidation of various 

high and low redox 

potential organic 

substrates in the 

presence of H2O2 as 

electron acceptor in 

either a manganese-

mediated reaction or a 

manganese-

independent reaction 

via LRET 

Paper and pulp 

industry, textile 

industry, 

pharmaceutical 

industry, 

bioremediation, 

biomass conversion 
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1.3 Fungi excel at decomposing recalcitrant lignocellulose 

Plant cell walls are complex and dynamic structures made mainly of cellulose (40-50%), 

hemicellulose (20-40%) and lignin (20-35%) (Houston et al., 2016; Liao et al., 2016), which 

together form a formidable barrier against chemical and enzymatic degradation, see Figure 

1.1. Cellulose is an unbranched polymer of D-glucose moieties that are linked by (1→4) 

bonds; the cellulose chains may contain thousands of glucose units and aggregate into 

crystalline microfibrils. In contrast, hemicelluloses are a heterogeneous group of branched 

polysaccharides composed of various 5- and 6-carbon sugars e.g. xylose, mannose, arabinose 

and galactose (Rubin, 2008). In plant cell walls, cellulose microfibrils are surrounded by a 

network of hemicelluloses. Further, the energy-rich cellulose and hemicellulose are 

encapsulated by lignin, which is a complex aromatic polymer resulting from the oxidative 

combinatorial coupling of p-coumaryl-, coniferlyl-, and sinapyl alcohols (Haghighi Mood et 

al., 2013). In addition to providing structural support to the plant, the chemically recalcitrant 

lignin protects the cellulose and hemicellulose polymers from enzymatic hydrolysis and most 

microbial invaders.  

Despite its recalcitrance, fungi have a natural advantage against crude biomass – they 

break it down both physically and enzymatically. For example, fungi may burrow into the 

biomass, increasing its surface area and making it more accessible to biomass-degrading 

enzymes from fungi as well as from other neighboring microbes, as shown in Figure 1.2. As 

fungi cannot take up all polymeric compounds from their environment, they secrete 

extracellular enzymes that degrade the polymers to short oligomers and monomers that are 

imported through targeted transporters and metabolized in the cells (Seppälä et al., 2016).  
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Figure 1.1: Qualitative diagram of lignocellulose composition. Cellulose is polymer of D-glucose 

linked by β-1,4-glucosidic bonds with a degree of polymerization of up to 10,000 or higher. Cellulose 

chains typically aggregate into crystalline fibrils of up to 36 chains. Hemicellulose is much more 

heterogenous and is composed of a variety of monomers (typically D-xylose or D-mannose). The 

degree of polymerization is usually significantly less than that of cellulose, around 200 or lower. Lignin 

is a complex polymer composed of phenyl propane units; it is the most abundant non-polysaccharide 

in lignocellulosic plant biomass (Jorgensen, Kristensen and Felby, 2007). Figure reproduced from 

(Susanna Seppälä et al., 2017).  

In order to accomplish this complex task, fungi harbor a variety of biomass degrading 

enzymes, where each enzyme excels in the biocatalysis of one (or more) specific compounds 

within the lignocellulosic structure (Dashtban, Schraft and Qin, 2009). Cellulose is degraded 

by glycoside hydrolases (GHs) that are either endocellulases or exocellulases: endocellulases 

bind anywhere along the length of the cellulose molecule and hydrolyze the β-1,4 glycosidic 

linkage,  whereas exocellulases -cellodextrinases and cellobiohydrolases-  bind at the ends of 

the cellulose polymer and release glucose or unit-length oligosaccharide products (Li, Chen 

and Ljungdahl, 1997). β-glucosidases break down cellooligosaccharides and cellobiose into 

glucose monomers (Sørensen et al., 2013). Hemicellulose breakdown requires the added 

action of hemicellulases such as xylanases and mannanases (Bhattacharya, Bhattacharya and 
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Pletschke, 2015). Known mechanisms of fungal lignin degradation require laccases  that 

couple the oxidation of substrates to the reduction of oxygen (Singh Arora and Kumar Sharma, 

2010) and peroxidases that couple the oxidation of substrates to the reduction of hydrogen 

peroxide (Hofrichter et al., 2010). The fungal biomass-degrading machinery typically consists 

of a cocktail of powerful cellulases, β-glucosidases, hemicellulases, and lignin-modifying 

enzymes that act synergistically. 

 

Figure 1.2: Micrograph showing invasive anaerobic fungal growth on lignocellulosic plant biomass. 

During the fungal growth cycle a root-like rhizoidal network is formed, which disrupts the biomass 

structure. The hyphae secrete the cellulolytic enzymes in close proximity to the substrate, greatly 

enhancing biomass degradation compared to the free diffusing enzyme system of aerobic fungi 

(Gilmore, Henske and O’Malley, 2015). Figure reproduced from (Susanna Seppälä et al., 2017).  

Given the ubiquitous interwoven enzymatic activities required for lignocellulose 

hydrolysis, the CAZy (carbohydrate-active enzymes) database (www.cazy.org) serves as an 

excellent resource that classifies (and updates) all known enzyme families involved in 

cellulolysis, hemicellulolysis, and, by a recent addition, the degradation of lignin (Levasseur 

et al., 2013). Apart from fungi, various bacterial genera have been observed to metabolize 



 

12 

 

lignin and shown to be competent to release 14C-labeled CO2 from labeled lignin (Kerr, Kerr 

and Benner, 1983; Kern and Kirk, 1987; Y. Chen et al., 2012; Brown and Chang, 2014). 

Although the bacterial catabolism of lignin is not as complete compared to fungal systems, it 

seems clear that bacteria can react with lignin and possibly produce smaller aromatics that can 

be imported into the cell for aromatic catabolism (Kanaly and Harayama, 2000; Chakraborty 

and Coates, 2004). 

1.4 Current industrial fungal workhorses for biomass degradation have limitations 

Industrial biomass conversion typically requires physical and chemical pretreatment to 

separate individual biopolymer constituents followed by enzymatic processing using, 

typically, fungal enzymes (Galbe and Zacchi, 2012). Physical pretreatment is resource 

intensive, and generally involves milling, or the utilization of hot steam to increase the surface 

area of the lignocellulosic biomass (Chandra et al., 2007). Chemical pretreatment involves 

incubating the biomass with an acid or alkali (Sanderson, 2011; Davis et al., 2013). After 

pretreatment, the biomass is hydrolyzed either by cellulolytic microbes or purified enzyme 

cocktails. As it has been estimated that the cost of enzymes make up a significant part of the 

cost of bioethanol production there is great interest to identify enzymes with increased 

degradation activity that can be produced at high titers (Dashtban, Schraft and Qin, 2009; 

Klein-Marcuschamer et al., 2012; Liu, Zhang and Bao, 2016).  

Currently, a handful of fungi are directly utilized on an industrial level for biomass 

hydrolysis. Foremost in this regard is the filamentous fungus Trichoderma reesei; other 

notable species include the filamentous Aspergillus niger and the thermophilic Humicola 

insolens (Sukumaran, Singhania and Pandey, 2005; Bischof, Ramoni and Seiboth, 2016; 
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Paloheimo et al., 2016). Typically, these organisms are employed because they are natural 

hypersecreters of cellulolytic enzymes, and the secretion system of T. reesei has been subject 

to extensive investigation for decades (for recent reviews, see e.g. (Bischof, Ramoni and 

Seiboth, 2016; Paloheimo et al., 2016)). A complication is that fungal enzyme production is 

typically subject to carbon catabolite repression and the molecular mechanisms behind these 

processes are complex and difficult to engineer (Amore, Giacobbe and Faraco, 2013).  

Current enzyme yields stand at around 100 g/L, and it has been suggested that further 

improvements are likely to be modest (Banerjee, Scott-Craig and Walton, 2010). An 

alternative to improving enzyme yields is to improve the performance of the saccharolytic 

enzymes directly though protein engineering. For example, through directed evolution, the 

cellulases of Hypocrea jecorina, a teleomorph of T. reesei, were evolved to function optimally 

at 70°C instead of 60°C (Wu and Arnold, 2013). Also, recently the AA9 (formerly GH61) 

family was shown to greatly increase the cellulolytic capabilities of the cellulases secreted by 

T. reesei (Langston et al., 2011).  

Although the enzymes of T. reesei - and moreover its ability to secrete astonishing 

quantities of enzymes - remain useful for industrial applications, there are limits to what we 

can expect from this organism. Notably, it has become apparent that the genome of T. reesei 

encodes for the smallest diversity of cellulases and hemicellulases of any sequenced fungus 

capable of plant cell wall degradation (Martinez et al., 2008). Further, these enzymes cannot 

act on lignin, which is generally separated from most industrial substrates and burned as an 

energy source (Kuhad, Gupta and Singh, 2011). Therefore, bioprospecting in other fungal 

clades for novel proteins that can be utilized for biomass breakdown is an appealing path 

forward. 
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1.5 Lesser known fungi could improve the efficiency of biomass deconstruction 

Most fungi degrade cellulose and some, such as the white-rot fungus Phanerochaete 

chrysosporium, are able to efficiently depolymerize lignin (for a review, see (Chandel et al., 

2015). In recent years the advent of new biotechnological tools related to next-generation 

sequencing and 'omics' techniques enabled the discovery of new biomass degradation 

enzymes in the more basal clades (Floudas et al., 2012; Youssef et al., 2013; Riley et al., 

2014; Haitjema et al., 2017a).  It has become apparent that anaerobic fungi, in the early 

diverging phylum Neocallimastigomycota, possess a largely untapped source of biomass 

degrading enzymes (Solomon et al., 2016; Haitjema et al., 2017a). A recent comprehensive 

look at transcriptomic data collected from three gut fungal strains suggested that the anaerobic 

fungi are prodigious producers of glycoside hydrolases (Solomon et al., 2016), and further 

may possess novel receptors and transporters for carbohydrates that hold biotechnological 

promise, as shown in Figure 1.3 (Seppälä et al., 2016) .  
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Figure 1.3: Plant biomass-degrading enzyme content & diversity in the fungal kingdom. Genomes of 

27 fungi presenting different divisions of fungal tree of life revealed that the genomes of gut fungi 

contain the largest number of biomass-degrading enzymes, mainly cellulases (orange), hemicellulases 

(yellow) and pectin degrading/lignin modifying enzymes (purple) (Goffeau et al., 1996; Galagan et 

al., 2003; Dean et al., 2005; Kämper et al., 2006; Martinez et al., 2008; Arnaud et al., 2010; Corradi 

et al., 2010; Rhind et al., 2011; Duplessis et al., 2011; Ohm et al., 2012, 2014; Crous et al., 2012; 

Gianoulis et al., 2012; James et al., 2013; Meerupati et al., 2013; Tisserant et al., 2013; Traeger et al., 

2013; Wang et al., 2013; Youssef et al., 2013; Grigoriev et al., 2014; Chang et al., 2015; Solomon et 

al., 2016; Gazis et al., 2016; Haitjema et al., 2017a; Uehling et al., 2017). The tree was modified from 

Mycocosm (Grigoriev et al., 2014). Figure reproduced from (Susanna Seppälä et al., 2017).  

1.6 Anaerobic gut fungi are an untapped resource that excel at biomass deconstruction 

An inviting alternative to current methods of biomass breakdown is to find superior 

biomass-degrading enzymes from natural sources where crude biomass degradation is 
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abundant. Anaerobic gut fungi inhabit the intestines of a range of large herbivores, from cows, 

horses and sheep to elephants, camels and even iguanas (Hibbett et al., 2007; Liggenstoffer et 

al., 2010). In spite of their key role in conversion and recycling of photosynthetically fixed 

plant biomass, research on anaerobic gut fungi did not gain steam until the late 1970s, when 

Colin Orpin established that the ‘protozoan flagellates’ that were found in rumen fluid are in 

fact fungi (Orpin, 1975, 1977). Even today, anaerobic gut fungi remain understudied, 

primarily owing to challenges in isolation and in maintaining the fungi in culture (Haitjema 

et al., 2014). However, powerful integrated ‘omics’ approaches are rapidly filling the 

knowledge gaps (Mondo et al., 2017; Youssef et al., 2013; Solomon et al., 2016; Haitjema et 

al., 2017a). 

Recent advances in next generation sequencing have revolutionized the study of non-

conventional fungi, and anaerobic gut fungi in particular. In the past four years, researchers 

have increased the inventory of known anaerobic fungal enzymes from a mere handful to 

thousands (Youssef et al., 2013; Solomon et al., 2016). These enzymes have been validated 

with proteomics, and biochemical characterization has revealed that anaerobic fungal 

enzymes exhibit little substrate preference, in contrast to their later-diverging fungal cousins 

that strongly favor cellulose-rich substrates (Solomon et al., 2016). This ability is a 

consequence of extensive horizontal gene transfer where the anaerobic fungi have 

complemented their cellulolytic capabilities with hemicellulases derived from bacteria 

(Haitjema et al., 2017a). Thus, anaerobic fungi possess the largest and most diverse inventory 

of biomass-degrading enzymes among fungi sequenced to date (see Figure 1.3), and their 

enzyme setup is seemingly regulated by growth substrate so that the optimal enzyme cocktail 

is produced at all times (Solomon et al., 2016). Similarly, sequencing-enabled discovery 
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recently revealed the elusive fungal cellulosomal complex that synergistically combines 

diverse biomass-degrading enzymes for efficient biomass degradation (Haitjema et al., 

2017a). With these rich and growing databases of characterized anaerobic fungal enzymes, 

we are now poised to enter a new phase of innovation where anaerobic fungal enzymes may 

be harnessed for bioengineering applications. 

1.7 Fungal cellulosomes greatly enhance the lignocellulolytic capabilities of anaerobic 

gut fungi 

Cellulosomes are multi-enzyme complexes, first described in the anaerobic bacterium 

Clostridium thermocellum (Lamed et al., 1985), that tether plant biomass-degrading enzymes 

together for improved hydrolysis. While aerobic fungi release their biomass degrading 

enzymes to the external milieu, it was recently discovered that anaerobic gut fungi secrete 

fungal cellulosomes that bear some architectural resemblance to the bacterial cellulosomes 

(Guerriero et al., 2015; Haitjema et al., 2017a). The power of the cellulosomal system lies in 

its modular ability to host a variety of enzymes that can break down unpretreated 

lignocellulosic plant biomass synergistically (Resch et al., 2013).  

Although both fungal and bacterial cellulosomes digest plant cell wall material, there are 

significant differences between the kingdom-specific complexes. In addition to both the 

structural differences between the so-called dockerin and cohesin units, as well as their 

relative position on the cellulosome (Haitjema et al., 2017a), the two cellulosome types differ 

in the diversity of glycoside hydrolase (GH) families present as catalytic components (Artzi, 

Bayer and Moraïs, 2017; Haitjema et al., 2017a). In contrast to the bacterial cellulosomes, the 

fungal scaffoldin system is broadly conserved across the anaerobic fungal clade, allowing 
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interspecies cross-linking binding activity. The most profound biochemical difference 

between the bacterial and fungal cellulosomes is the end products produced during the 

hydrolysis of crystalline cellulose. Degradation of cellulose by Clostridial cellulosomes 

results in the production of cellobiose, which is taken up by the cell, hydrolyzed to glucose 

and metabolized (Schwarz, 2001). However, fungal cellulosomes produce glucose during 

cellulose degradation (Gilmore, Henske and O’Malley, 2015). Taken together, these 

differences may make fungal cellulosomes a superior candidate for metabolic engineering.  

Recently, a comprehensive set of proteins that is critical to the assembly of fungal 

cellulosomes was described for the first time (Haitjema et al., 2017a). This advancement is 

bound to lead to improvements in the “designer cellulosome” field (Gilmore, Henske and 

O’Malley, 2015), especially since the “parts” of the fungal cellulosome (i.e. cohesin, dockerin, 

scaffoldin) are markedly different from their bacterial counterparts. For example, fungal 

cohesion/dockerin units, which tend to be promiscuous by nature, could be used to engineer 

an extracellular production platform. By making use of a consortium of engineered organisms, 

each producing different enzymes required for a specific function, it is possible to assemble a 

complex bona fide cell factory line for almost limitless applications. This is important for 

developing modular non-interacting metabolon systems within the same organism that could 

be directly exploited in metabolic engineering applications. 

1.8 Anaerobic gut fungi are challenging to work with, hampering the rate at which we 

can exploit them for biotechnology  

Two of the greatest challenges facing the further development of anaerobic, and other non-

conventional, fungi for metabolic engineering applications are their unique growth 
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requirements and their genetic intractability. Furthermore, owing to the difficulty in 

maintaining cultures of isolates (Haitjema et al., 2014) it is not surprising that so few basal 

clades (like the anaerobic fungi) have been characterized. Similar to “unculturable” 

prokaryotes (Cowan et al., 2005), the construction of viable culture collections is limited by 

the lack of information on the nutritional requirements of non-conventional fungi, e.g. 

dependence on another species to provide a key resource. Furthermore, the slow pace of 

discovery and biotech translation from these fungal clades is likely the result of the relatively 

small number of researchers dedicated to studying non-model fungi.  

Apart from difficulties in isolating and maintaining cultures of slow-growing non-

conventional fungi in a laboratory setting, the fungal isolates may be remarkably resistant to 

further genetic manipulations. Currently, only one report describes the transformation of 

anaerobic fungi with a plasmid that encodes a heterologous gene (Durand et al., 1997). In the 

1997 study, N. frontalis was bioholistically transformed with a plasmid containing the 

bacterial β-glucuronidase gene, downstream of a promoter sequence that was previously 

derived from the fungus (Fischer, Durand and Fèvre, 1995). While activity of the reporter 

protein was detected, gene expression was transient and lost after only a few generations, 

possibly due to the lack of a selection marker on the plasmid. The authors suggest that for 

improved stability, the reporter gene should be coupled to a selection marker such as a gene 

encoding resistance to an antibiotic, which would minimize the risk of plasmid loss over time 

(Durand et al., 1997).  

However, there are additional considerations, such as the mechanisms by which a plasmid 

is maintained in the host organism. A prerequisite for stability of the transformed strain is that 

the host is able to replicate and distribute the plasmid to progeny, and currently the gut fungal 
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mechanisms for plasmid replication and maintenance remain unknown. Further, given the 

complicated life cycle of gut fungi that involves both a single-celled motile zoospore-stage 

and a stage where a maturing sessile sporangium encapsulates hundreds of novel zoospores 

(Orpin, 1975), it is difficult to predict when, and how, the fungi should be transformed for 

optimal stability. These challenges may be overcome by more permanent genome 

engineering, which necessitates high-resolution genomic information and suggested regions 

of integration. However, the lagging development of a well-defined genetic toolkit for non-

conventional fungi, such as promoters, transcriptional terminators and ribosomal binding 

sites, limits direct manipulation efforts.  

In order to edit the gut fungal genome, it is necessary to get DNA across the gut fungal 

cell wall without compromising viability, and again the intricate and largely anaerobic life 

cycle of gut fungi serve as an example of the complications that should be taken into 

consideration. Moreover, compared to most model organisms, the gut fungal genomes are 

remarkably AT-rich (Nicholson, Theodorou and Brookman, 2005; Youssef et al., 2013; 

Haitjema et al., 2017a), and that may affect how the organism handles DNA that does not 

adhere to the apparent codon preference (Komar, 2016). Last, virtually nothing is known about 

the post-translational modifications or folding behavior of gut fungal proteins, and that should 

be taken into account when one wants to use a heterologous selection/reporter protein. 

1.9 Heterologous production of gut fungal genes in model systems can be used to exploit 

their lignocellulolytic enzymes 

While large-scale cultivation of anaerobic organisms remains challenging, and while most 

of them are still genetically intractable, it has been shown that gut fungal enzymes can be 
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successfully produced in engineered microbes. Early studies on the enzymatic activities of gut 

fungal culture fractions revealed that these organisms greatly contribute to biomass 

degradation in the animal host, and possess powerful enzymes that efficiently degrade α- and 

β-glucans, β-galatans, galactomannans, and arabinoxylans (Mountfort and Asher, 1985; 

Pearce and Bauchop, 1985; Wood et al., 1986; Lowe, Theodorou and Trinci, 1987a; Williams 

and Orpin, 1987). It was soon discovered that the majority of the gut fungal enzymatic 

activities are extracellular or confined to the membrane fraction (Pearce and Bauchop, 1985), 

and a number of enzymes have been purified and characterized from gut fungal cultures since 

(see e.g. (Hebraud and Fevre, 1990a, 1990b; Borneman et al., 1991; Li and Calza, 1991; 

Teunissen et al., 1992; Garcia-Campayo and Wood, 1993; Vardakou et al., 2008; Wang, Chen 

and Hseu, 2014)).  

The advent of molecular tools opened up new possibilities for enzyme discovery and 

production, and in the early 1990s, gut fungal cDNA libraries expressed in Escherichia coli 

were successfully used to screen for and identify novel cellulolytic enzymes (Reymond et al., 

1991, 1992; Xue et al., 1992). By the time of this work, around 100 gut fungal proteins have 

been successfully produced in a number of heterologous hosts, firmly establishing that these 

enzymes can be transferred to a wide variety of biotechnologically interesting organisms for 

downstream applications, including bacteria (E. coli, Butyrivibrio fibrisolvens, Bacillus 

subtilis, Lactobacillus reuteri, Clostridium beijerinckii) (Gilbert et al., 1992; Xue, Gobius and 

Orpin, 1992; Lee et al., 1993; Xue et al., 1997; Elliott et al., 1999; Smidt et al., 2001; Liu et 

al., 2005); yeasts (Saccharomyces cerevisiae, Pichia pastoris, Kluveromyces lactis, 

Hansenula polymorpha) (van der Giezen et al., 1998; Durand, Rascle and Fèvre, 1999; 

Harhangi et al., 2002; Li et al., 2004; O’Malley, Theodorou and Kaiser, 2012a); filamentous 
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fungi (Penicillium roqueforti, Trichoderma reesei, Hypocrea japonica) (Durand, Rascle and 

Fèvre, 1999; Li et al., 2007; Poidevin et al., 2009); and plants (Brassica napus, Nicotiana 

tabacum) (Liu et al., 1997; Obembe et al., 2007).  

1.10 Identification and characterization of fungal genes and pathways is critical to 

unleashing their potential 

Fungi have played an important role in human activities for millennia, and continue to 

lend themselves well to diverse applications. Great effort has been made to identify and 

characterize novel fungal species and enzymatic activities. However, although 1,200 new 

fungal species are described each year, it has been estimated that the 100,000 described 

species represent a mere 2-10% of the total number (Blackwell, 2011; Tedersoo et al., 2014), 

and so it seems that we have barely begun to unlock the hidden biotechnological potential of 

this extensive kingdom. 

Among the early discoveries were pectinases from saprophytic fungi such as Aspergillus 

sp., Penicillium sp., and Rhizopus sp. that clarify fruit juices (Zoltan and John, 1933; 

Mantovani, Geimba and Brandelli, 2005), rennet from Aspergillus sp. and Mucor sp. that clot 

milk for cheese production (Arima, Iwasaki and Tamura, 1967), manganese peroxidases from 

Phanerochaete sp. that decolor paper pulp effluents and degrade xenobiotics (Glenn and Gold, 

1983; Bajpai, Mehna and Bajpai, 1993; Field et al., 1993), and cellulases from Trichoderma 

sp. (Allen et al., 2009) and anaerobic fungi (Orpin, 1975; Youssef et al., 2013; Solomon et 

al., 2016) that degrade plant biomass. While screening, biochemical purification, and activity 

evaluation are central components of fungal enzyme discovery, they can be slow to identify 

specific fungal enzymes responsible for a chemical transformation and restrict discovery to 
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easily assayed enzymatic activities. On the other hand, molecular biology methods coupled 

with modern sequencing approaches have greatly expanded fungal enzyme discovery through 

a number of approaches.  

The plummeting cost of DNA-sequencing and -synthesis, and the development of 

sophisticated molecular tools have greatly facilitated the discovery of enzymes and the 

transfer of these enzymes into amenable microorganisms such as bacteria and yeasts. In a way, 

this abolishes the need to cultivate the original host organism at all: as long as we have the 

sequence, from e.g. a metagenomic library, we can transfer the gene to a workhorse microbe 

to detect expression and activity. In other words, researchers can select enzymes and 

biosynthetic pathways from various sources and put them together in a cell factory host of 

choice, as shown in Figure 1.4. 

1.11 Modern omics-based approaches speed up the rate of gene and pathway discovery 

The past decade has seen extraordinary advances in sequencing technology that have 

rapidly sequenced the genomes of many previously uncharacterized fungal systems, including 

elusive anaerobic fungi (Dean et al., 2005; Nierman et al., 2005; Kämper et al., 2006; 

Martinez et al., 2008; Youssef et al., 2013; Solomon et al., 2016; Haitjema et al., 2017a). 

These sequences are annotated and curated in fungal databases such as the Saccharomyces 

Genome Database (Cherry et al., 2012), the Aspergillus Genome Database (Arnaud et al., 

2010), and the JGI Mycocosm, which is a repository for the 1000 fungal genome project 

covering all branches of fungi (Grigoriev et al., 2014). The pace of sequencing has greatly 

overtaken discovery efforts, resulting in a growing catalog of unexplored fungal enzymes.  
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Figure 1.4: Vast amounts of sequencing data have been collected, predominately from non-model 

fungi. Systems and bioinformatic tools are used to identify enzymes and pathways of biotechnological 

relevance. In silico analyses and predictions must be coupled with experimental techniques to validate 

putative gene annotation. Figure reproduced from (Wilken et al., 2019). 

However, bioinformatic tools and approaches readily analyze these growing datasets to 

provide new insight. Classical bioinformatics approaches include homology and Hidden 

Markov Model (HMM) searches that analyze new sequences for conserved signatures found 

in well-documented proteins (Karplus, Barrett and Hughey, 1998; McGinnis and Madden, 

2004). These approaches were recently applied to both genomic and transcriptomic sequences 

to discover hundreds of new cell wall degrading enzymes in gut fungi P. finnis and 

Orpinomyces sp. C1A (Youssef et al., 2013; Solomon et al., 2016). These genomics 

approaches are increasingly complemented with proteomics methods that map individual 
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proteins back to the genes that produce them to identify new enzymes from fungal secretions 

and lysates (Doyle, 2011; Solomon et al., 2016). 

A particularly interesting recent study highlights how ‘omics’ based approaches are a 

powerful tool in enzyme discovery is the transcriptomics-guided construction of an enzyme 

cocktail composed of various biomass-degrading enzymes from Orpinomyces sp. C1A 

(Morrison, Elshahed and Youssef, 2016). The enzymes were produced and purified from E. 

coli, mixed in different ratios, and the activity of the cocktail on various substrates was 

assayed, resulting in the identification of several promising enzyme candidates for 

lignocellulosic bioprocessing. 

Transcriptomic analysis has also been used to identify several novel lignocellulose active 

enzymes in anaerobic gut fungal transcriptomes (Henske, Gilmore, et al., 2018). Some of 

these transcripts were found to co-regulate with transcripts encoding for previously known 

carbohydrate active enzymes (CAZymes), suggesting that they may code for currently 

unidentified lignocellulose modifying proteins. Furthermore, the recent discovery of 

anaerobic microorganisms that consume lignin as their sole carbon source suggest that these 

transcripts may actually code for anaerobic lignin-active enzymes from early branching fungi 

(Woo et al., 2014; Billings et al., 2015).  

Apart from biomass degrading enzymes, fungi are likely to possess a wide repertoire of 

membrane proteins with importance to biotechnology, such as receptors and transporters for 

biohydrolysates (reviewed in (Boyarskiy and Tullman-Ercek, 2015; Jones, Hernández Lozada 

and Pfleger, 2015; Kell et al., 2015)). Biohydrolysate transporters may allow simultaneous 

saccharification and fermentation of biomass, alleviate the need for complete hydrolysis, and 

remedy inhibitory effects of glucose on fungal cellulases (Kim et al., 2014). Owing to their 
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hydrophobic amino acid compositions, it is relatively straightforward to identify proteins with 

secretion signal peptides and transmembrane segments from primary sequence data (Krogh et 

al., 2001; Petersen et al., 2011; Tsirigos et al., 2015). Recently, a transcriptomic analysis of 

anaerobic gut fungi revealed a large number of transporters that have great biotechnological 

potential, including receptors and transporters that had previously not been found in the fungal 

kingdom (Seppälä et al., 2016).  

Given the breadth and depth of high-quality omics data available to study the gut fungi, 

it is becoming increasingly important to collate this information in a systematic way to guide 

future studies. Systems biology, and specifically genome-scale models, is just the tool for this 

purpose (Mih and Palsson, 2019).  

1.12 Genome-scale models organize omics data to facilitate the interrogation and 

utilization of omics datasets 

A genome-scale model (GSM) is a detailed mathematical model of cellular metabolism 

and physiology. This representation of the metabolism of a microorganism has found 

widespread use in the metabolic engineering community because it makes it possible to 

accurately simulate the metabolic fluxes of a microorganism in silico (Orth, Thiele and 

Palsson, 2010). This enables systematically directed modifications of a strain for improved 

performance (King et al., 2015). Briefly, a GSM is constructed by creating a catalog of all the 

reactions a cell is capable of, based on its annotated genome. In this way, each metabolic 

reaction may be associated with an enzyme, which is linked to a specific gene.  

Consider Figure 1.5 as an example of a minimal cell importing metabolite A and exporting 

metabolite D. The cell’s metabolism is shown in Figure 1.5.A, here each gene, Gi (for i = 
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1,…,6), is associated with a corresponding metabolic reaction, ri. The full kinetic model of 

this cell is shown in Figure 1.5.B. By associating each reaction with a metabolite, it is possible 

to simulate the effect of genetic knockouts on metabolism. However, parameterizing even this 

simple first order kinetic model is technically challenging for all but reduced models of very 

well studied organisms, like E. coli (Khodayari et al., 2014).  

 

Figure 1.5: An example of a minimal cell with simplified metabolism. A) The metabolism of the cell. 

Metabolites are denoted by nodes and reactions (enzymes) are denoted by edges connecting 

metabolites. B) The associated full kinetic model of the cell assuming simple first order kinetics. 

To perform simulations, it is necessary to simplify the model. First, steady state is assumed 

which reduces the set of differential equations into a set of algebraic equations, as shown in 

Equation (1.1). 

𝑑

𝑑𝑡
[

𝐴
𝐵
𝐶
𝐷

] = [

𝑘1𝐴
′ − 𝑘2𝐴 − 𝑘3𝐴
𝑘2𝐴 − 𝑘4𝐵
𝑘3𝐴 − 𝑘5𝐶

𝑘4𝐵 + 𝑘5𝐶 − 𝑘6𝐷

] = 0 

 

(1.1) 
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Next, the model is rewritten to separate the reaction fluxes (v) from their stoichiometry, as 

shown in Equation (1.2). 

[

𝑘1𝐴
′ − 𝑘2𝐴 − 𝑘3𝐴
𝑘2𝐴 − 𝑘4𝐵
𝑘3𝐴 − 𝑘5𝐶

𝑘4𝐵 + 𝑘5𝐶 − 𝑘6𝐷

] = [

1 −1 0 0 −1 0
0 1 −1 0 0 0
0 0 0 0 1 −1
0 0 1 −1 0 1

]

[
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6]
 
 
 
 
 

=  𝑺𝒗 =  𝟎 

 

(1.2) 

Additionally, flux constraints (denoted, vmin and vmax) are imposed on the model to ensure 

that the solved for fluxes are biologically reasonable. While the model could theoretically be 

solved now, there would be significant degeneracy in the flux solutions, v, due to 

underdetermined nature of Equation (1.2). An additional assumption is required to further 

reduce the solution space of v to better align with the physiology of the cell. Typically, this is 

achieved by tying the cell growth rate to the flux through the metabolic model by an empirical 

function called the biomass objective function, often denoted μ(v) (Feist and Palsson, 2010). 

The biomass objective function is typically constructed by attempting to account for each 

biological building block a cell requires for growth. For a simple model this would include all 

the amino acids, nucleotides, lipids and carbohydrates that a cell synthesizes during growth. 

An added benefit of using the biomass objective function is that it allows the model to predict 

the growth rate of the organism under different conditions (nutrient, genetic knockouts etc.), 

which can be valuable for strain engineering purposes.  

Finally, by assuming that the cell wishes to maximize its growth rate we can cast the 

aforementioned assumptions into a linear program, as shown in Equation (1.3). This 
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formulation is called flux balance analysis and forms the cornerstone of computational 

techniques that are used to interrogate genome-scale models. 

max
𝒗

𝜇(𝒗) 

s. t.  𝑺𝒗 = 𝒃 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

(1.3) 

By solving Equation (1.3) a unique maximal growth rate is attained, as well as intracellular 

metabolic fluxes, which are typically found to match experimental data well (Schuetz, 

Kuepfer and Sauer, 2007). Furthermore, the mechanistic foundation of this approach makes 

analyzing the metabolic consequences of genetic modifications of a strain straightforward. 

This obviates the need to perform time consuming experiments when trying to engineering 

the metabolism of a cell to improve performance (Simeonidis and Price, 2015). Moreover, 

GSMs can also be used as a succinct way to collate various omics and experimental data to 

guide future characterization efforts (King et al., 2015).  

In addition to guiding metabolic engineering strategies, GSMs may also be used to 

improve gene annotation databases. For example, the model-enabled gene search (MEGS) 

algorithm uses discrepancies between model predictions and experimental culture data to 

identify missing or mis-annotated genes (Pan et al., 2017). While this technique has only been 

applied successfully to bacteria, it is a promising approach that can be used to identify genes 

in other microbes with missing annotations, like non-model fungi. 
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1.13 High quality genome-scale models of fungi are hard to construct, and don’t exist for 

Neocallimastigomycota fungi yet 

Rapid improvements in sequencing technology have greatly increased the number of fully 

sequenced fungal genomes available for study and further exploitation. Figure 1.6 shows the 

number of sequenced genomes in each clade of the fungal tree of life, taken from the Joint 

Genome Institute (JGI) Mycocosm database (Grigoriev et al., 2014).  

 

Figure 1.6: The number of sequenced genomes and genome-scale models (GSMs) available for each 

clade in the fungal tree of life. The generation of sequenced genomes (currently exceeding 1000), far 

out paces the generation of GSMs. Notably, most reconstructions have been done for 

biotechnologically important fungi, such as Aspergillus niger (Eurotiomycetes), and the yeasts 

Saccharomyces cerevisiae and Pichia pastoris (Saccharomycotina). Figure reproduced from (Wilken 

et al., 2019). 



 

31 

 

The increasing availability of fungal genomes, coupled with complementary “omics” 

datasets (transcriptomics, proteomics and metabolomics) holds great promise for future 

discoveries. However, very few genome-scale models have been reconstructed from fungal 

omics data per clade. The significant difference between the number of sequenced genomes 

and available GSMs highlights the long-standing knowledge gap in our systems level 

understanding of fungi. To effectively utilize the enzymes and pathways of the fungal world, 

a multifaceted approach that combines sequence informatics, systems modeling, and 

traditional metabolic engineering approaches is required.  

Gene annotation databases, e.g. KEGG, Pfam, etc., are important references to understand 

cellular metabolism and physiology (Akiva et al., 2014), and are used to assign function to 

genes, which is a prerequisite for cellular modeling. The quality of the metabolic 

reconstructions greatly influences the accuracy of the predictions, and as such it is imperative 

to ensure that the models are of high quality. Unfortunately, this task is invariably time-

intensive, as it requires significant manual oversight (Thiele and Palsson, 2010). Various 

automatic reconstruction tools have been developed, but historically they have focused on 

bacterial reconstructions (Henry et al., 2010; Machado et al., 2018). Due to their increased 

genome size and compartmentalization, eukaryotic models are more challenging to develop 

than prokaryotic models. The prevalence of mis- or un-annotated genes in non-model fungi 

exacerbates these difficulties. Recently, a few tools were developed that specifically aid in 

fungal reconstructions. The RAVEN toolbox was used to reconstruct a GSM of Penicillium 

chrysogenum (Wang et al., 2018) and KBase recently released a tool that focuses specifically 

on fungal reconstructions (Arkin et al., 2018). However, manually curation is an unavoidable 

element of GSM construction and is the primary reason for the slow rate of model creation 
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(Thiele and Palsson, 2010). Despite this obstacle, Table 1.2 shows a list of some recently 

completed fungal GSMs. 

Table 1.2: Recent GSM reconstructions of fungi span only three clades in the fungal tree of life, namely 

Eurotiomycetes, Saccharomycotina, Mucoromycotina.  

Modeled fungus Main results 

Aspergillus niger 

(Lu et al., 2017) 

Updated GSM includes 1764 reactions and 1210 open reading 

frames. Flux balance analysis (FBA) predictions were validated using 

13C labeling experiments. Investigated the effect of cofactor 

utilization on glucoamylase production. 

S. cerevisiae 

(Aung, Henry and 

Walker, 2013) 

The latest yeast consensus model focused on triglyceride 

production, but it is being continuously updated, see 

https://github.com/SysBioChalmers/yeast-GEM for the current state 

of the model. 

Pichia pastoris 

(Tomàs-Gamisans, 

Ferrer and Albiol, 

2016)  

A consensus GSM from three other models updated the central 

metabolic pathways and accounts for 1026 genes, 1689 metabolites 

and 2035 reactions. 

Mucor 

circinelloides 

(Vongsangnak et al., 

2016) 

The reconstruction accounts for 1213 genes, 1413 metabolites 

and 1326 reactions. FBA accurately predicts nutrient usage and 

requirements. Comparative analysis to other oleaginous fungi 

revealed expanded central metabolic genes could explain nutrient 

utilization differences. 

https://github.com/SysBioChalmers/yeast-GEM
https://github.com/SysBioChalmers/yeast-GEM
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1.14 Coupling experimental validation to omics data and modeling is necessary to unlock 

the biotechnological promise of anaerobic gut fungi  

The integration of computational techniques and experimental validation will pave the 

way for realizing the biotechnological potential of non-model fungi. Currently, direct 

experimental validation and exploitation lags behind the rate at which novel enzymes and 

biosynthetic compounds are identified in silico (Stewart et al., 2018). Synthesizing this 

knowledge in a framework that lends itself to systemization, like GSMs, could help direct 

focus to areas of non-model biotechnology that need the most attention. The wealth of 

bioinformatically identified enzymes, pathways, and proteins, that are being coupled with 

nascent systems biology approaches designed to mine these datasets, suggests that rapid 

advances in fungal-based bioprocesses are imminent (Wilkinson et al., 2018). 
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II. Sculpting gut microbial communities alters fermentation products and 

methane release 

This chapter is based upon work that is under revision for publication in Nature 

Microbiology by Xuefeng Peng, St. Elmo Wilken, Thomas S. Lankiewicz, Sean P. Gilmore, 

Jennifer L. Brown, John K. Henske, Candice L. Swift, Asaf Salamov, Kerrie Barry, Igor V. 

Grigoriev, Michael K. Theodorou, David L. Valentine, and Michelle A. O’Malley, entitled 

“Sculpting gut microbial communities alters fermentation products and methane release”. See 

the upcoming publication for more detailed information regarding the results and methods. 

2.1 Introduction 

Anaerobic consortia native to digestive tracts of herbivores have co-evolved with their 

hosts for millions of years to utilize lignocellulosic hydrolysates (Groussin et al., 2017). Gut 

microbes span all three domains of life (archaea, bacteria, fungi, protozoa), and the plethora 

of biomass-degrading genes and genomes discovered from gut microbiomes indicate that the 

gut microbiome should be an ideal source for down-selecting lignocellulolytic consortia 

(Seshadri et al., 2018).  

While earlier studies focused on the chemical performance of anaerobic consortia (Adney 

et al., 1991), advances in sequencing technology over the past decade have spurred a wave of 

studies investigating the community composition of anaerobic consortia (Stewart et al., 2018). 

These recent sequencing efforts have revealed microbial members common to successful 

anaerobic consortia, but they are limited by the lack of mechanistic insight into the functional 

diversity displayed by anaerobic consortia. Moreover, anaerobic consortia studied before were 

almost exclusively prokaryotic. Cross-domain partnerships in anaerobic consortia has not 
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received as much attention. Interestingly, anaerobic gut fungi, which are known to possess a 

wide range of biomass-degrading enzymes (Solomon et al. 2016), are central to the 

lignocellulolytic ability of herbivorous animals (Gruninger et al., 2014). This inspired us to 

investigate down-selected anaerobic consortia featuring anaerobic gut fungi as the primary 

lignocellulose degrader, using both broad marker gene survey and in-depth metagenomic 

analysis.  

To elucidate these relationships, we performed several parallel enrichment experiments to 

enrich biomass-degrading consortia from goat feces and identify microbes that drive the 

activity and stability of these cultures. Fecal samples were enriched subject to different media 

conditions, as shown in Figure 2.1. Ten billion metagenomic reads spread across 396 

enrichment cultures tracked biological diversity as the cultures converged to a minimal set of 

microorganisms that were stable after more than ten culture generations. Over 1.5 Tbp (1012 

base pairs) of metagenome sequencing enabled the recovery of 719 high-quality metagenome-

assembled genomes unique at the species level, 96% of which were previously uncultured 

novel microbes within the herbivore digestive tract. Nearly 165,257 carbohydrate active 

enzymes (CAZyme) domains were identified from the fecal samples alone, constituting over 

10% of the known CAZymes in existence. Surprisingly, consortia dominated by anaerobic 

fungi generated more than twice the amount of methane (CH4) compared to prokaryotic 

consortia, suggesting that fungi play a key role in CH4 release in ruminant herbivores.  
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Figure 2.1: Overview of the parallel enrichment strategy to select and analyze cross-domain anaerobic 

lignocellulolytic consortia. Freshly produced fecal pellets from a San Clemente Island Goat served as 

the source microbiome for 396 parallel microbial enrichment experiments. Enrichment cultures were 

initiated by challenging the fecal consortia with four types of substrates and two types of antibiotics to 

bias survival of different microbial communities, with triplicate cultures for each condition. Penicillin 

and streptomycin (PS) were used to inhibit bacterial growth. Chloramphenicol (CM) was used to 

inhibit both bacterial and archaeal growth. Membership within the parallel enrichments were tracked 

via metabarcoding and whole metagenome assemblies (for G0, G5, and G10), and metabolomic 

analyses of headspace and liquid cultures were monitored at each generation.  

The most active microbial consortia were comprised of cross-domain partnerships 

between anaerobic fungi from the genus Neocallimastix, methanogenic archaea from the 

genus Methanobrevibacter, and bacteria from the phylum Firmicutes, which produced high 

yields of CH4, and are capable of cryopreservation and revival. Metabolic product profile 

comparison of consortia treated with and without antibiotics revealed that the level of CH4 

production was the highest when fermentation products are restricted to H2, formate, and 

acetate (as in the consortia dominated by anaerobic fungi), as opposed to being diverted to the 

production of butyrate and propionate (as in the antibiotics-free consortia). Overall, this 

analysis points to natural compartmentalization between anaerobes as a means to degrade 
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crude biomass, which can be exploited to harness nature’s microbes for industrial 

bioprocessing.  

2.2 Results and discussion 

2.2.1 Metagenomic reconstruction of the goat fecal microbiome reveals novel cultured 

taxa  

Over 1.5 Tbp (1012 base pairs) of metagenome sequencing enabled the recovery of 2452 

high-quality prokaryotic metagenome-assembled genomes (MAGs) from goat feces, all of 

which are >80% complete with <10% contamination evaluated by CheckM (Parks et al., 

2015). Of these, 719 are unique at the species level based on the recently proposed criteria of 

species definitions (Varghese et al., 2015; Olm et al., 2017), as shown in Figure 2.2. This 

collection of MAGs is among the largest and the highest quality to date (Campanaro et al., 

2016; Güllert et al., 2016; Vanwonterghem et al., 2016; Mukherjee et al., 2017; Svartström 

et al., 2017; Gharechahi and Salekdeh, 2018; Seshadri et al., 2018; Solden et al., 2018; Stewart 

et al., 2018, 2019) for anaerobic microbiomes (with 91.8% mean completeness and 1.4% 

mean contamination). A comparative analysis was performed based on the genome-wide 

average nucleotide identity of open reading frames to quantify the increase in phylogenetic 

diversity contributed by MAGs assembled in this study. Compared to 9089 genomes from 

three of the largest rumen collections (Seshadri et al., 2018; Stewart et al., 2018, 2019), the 

Genomic Encyclopedia of Bacteria and Archaea (GEBA) collection (Mukherjee et al., 2017), 

a recent human gut bacteria collection (Zou et al., 2019), and 221 additional reference 

genomes from NCBI RefSeq (O’Leary et al., 2016), 686 of the 719 MAGs (95%) in this 

dataset were novel at the species level. The MAG collection contributed by this study 
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underscores the vast untapped metabolic potential in herbivores that perform foregut and 

hindgut fermentations.  

Figure 2.2. Microbial tree of prokaryotic (719 MAGs) and eukaryotic (20 eukMAGs) life reconstructed 

from goat fecal metagenomes with taxonomic annotations. The phylogeny was constructed from 400 

broadly conserved proteins using PhyloPhlAn (Segata et al., 2013). Prokaryotic MAGs are divided 

into 51 groups (colored in the outer ring) by phylogeny determined from a tree including 3237 

reference genomes. Colored bars plotted on a logarithmic scale represent the number of carbohydrate-
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active enzymes (CAZymes including cellulase, hemicellulase, and pectinase/esterase) found in each 

MAG/eukMAG. The cyan bars radiating from the tip of tree leaves indicate MAGs that were present 

in at least one of the enrichment cultures at the end of the experiment (G10). Cyan: Cyanobacteria; 

Actino: Actinobacteria; Verr: Verrucomicrobia; Spi: Spirochaetes; Prev: Prevotella; Baci: Bacilli; 

Erysipelo: Erysipelotrichaceae; Nega: Negativicutes; Clos_g: Clostridium; Clos_o: Clostridiales; 

Buty: Butyrivibrio. 

While a number of recent studies have used metagenomics to assess the metabolic 

potential and interactions within the herbivore rumen (Hess et al., 2011; Solden et al., 2018; 

Stewart et al., 2018), less attention has been paid to the hindgut of herbivores where microbes, 

many of which originate and were active in the rumen, encounter recalcitrant plant material 

that is not completely processed in the foregut. Additionally, gut microbes cultured directly 

from the rumen (via fistulated animals) have proven extremely difficult to stabilize in culture 

(Seshadri et al., 2018), possibly due to strict nutritional or mechanical requirements that are 

difficult to mimic outside of the rumen. Therefore, it was hypothesized that gut microbial 

enrichment cultures from feces would be more robust and resilient than from the rumen, 

because the part of the fecal microbiome capable of surviving on recalcitrant lignocellulosic 

residues in the hindgut undergo a broad range of biological, chemical, and physical conditions. 

Three quarters (531) of the assembled MAGs were Firmicutes and more than half of them 

belong to the family Ruminococcaceae, most of which were novel and not enriched in culture 

except for the genus Ruminococcus, as shown in Figure 2.2. The second most abundant 

phylum (12%) among the MAGs was Bacteroidetes (85), of which the most abundant group 

belongs to the family Rikenellaceae. Twenty-five archaeal MAGs were also recovered, of 

which Methanobrevibacter was the most abundant. Additionally, three Methanosphaera 
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stadtmanae MAGs and seven Thermoplasmata MAGs with the potential to generate CH4 

using methanol and acetate were recovered. The rest of the prokaryotic MAGs (14%) were 

from the phyla Proteobacteria (23), Lentisphaerae (21), Actinobacteria (10), Verrumicrobia 

(8), Cyanobacteria (7), Spirochaetes (6), Planctomycetes (2), and Elusimicrobia (1).  

Twenty MAGs larger than 40 Mbp in size were reconstructed from the enrichment 

consortia, which were termed “eukMAGs” because over 80% of the genes in the eukMAGs 

were classified as “Eukaryota” by BLAST+ (Camacho et al., 2009). It is particularly 

challenging to recover eukaryotic MAGs, especially fungal MAGs, as their genomes are >10 

Mbp and they are often characterized by long and frequent repeat regions of low GC content.  

All eukMAGs were classified to the fungal subphylum Neocallimastigomycota, commonly 

known as the anaerobic gut fungi. The eukMAGs in the enrichment consortia belong to the 

genus Neocallimastix and are closely related to the strain Neocallimastix californiae, which 

was previously isolated from the feces of a goat (Solomon et al., 2016; Haitjema et al., 2017b).  

Benchmarking the BUSCO-estimated completeness of our eukMAGs to the draft genome of 

Neocallimastix californiae showed that they are 81.1% complete on average; the most 

complete eukMAG was estimated to be 96.9% complete. To date, no previous MAG datasets 

have identified anaerobic fungi, as they are typically low-abundance members of the digestive 

tract microbiome (Stewart et al., 2019), yet they have been recently found to contain a wealth 

of biomass-degrading enzymes (Solomon et al., 2016) and multi-enzyme cellulosomes 

(Haitjema et al., 2017b). This collection of prokaryotic MAGs and eukMAGs from the goat 

fecal microbiome serves as a rich resource for metagenomic studies of gut microbiomes, 

covering microbial taxa some of which are not included in published collections from the 

rumen microbiome (Seshadri et al., 2018; Stewart et al., 2018). 
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2.2.2 Gut microbes are rich in biomass-degrading enzymes  

The annotated prokaryotic MAGs and eukMAGs were analyzed for their content and 

diversity of carbohydrate-active enzymes (CAZymes) that fall into the functional categories 

of cellulase, hemicellulase, and pectinase/esterase according to the CAZy database (Lombard 

et al., 2014). It is important to note that glycoside hydrolase (GH) families 5, 8, 44, and 51 

are versatile in function and can hydrolyze both cellulose and hemicellulose depending on the 

specific subfamily (Lombard et al., 2014). Anaerobic fungi from the genus Neocallimastix 

represented by eukMAGs contained up to several hundred of each type of CAZymes per 

genome (see Figure 2.2) and were only enriched in antibiotics-treated (penicillin & 

streptomycin, “PS”, or chloramphenicol, “CM”) cultured consortia. Among prokaryotic 

MAGs, the taxa containing the largest number of CAZymes included the anaerobic bacteria 

Ruminococcus, Butyrivibrio, Prevotella, Paenibacillaceae, Bacteroidaceae, and 

Ruminococcaceae (all typically found in the rumen). These taxa were enriched in antibiotics-

free consortia grown on lignocellulose, and generally include more than 5 cellulases and more 

than 10 hemicellulases and pectinases/esterases per strain.  

In the 719 high-quality prokaryotic MAGs, there were predicted 1365 cellulases, 3686 

hemicellulases, and 3433 pectinases/esterases, and in the 20 eukMAGs there were comparable 

number of CAZymes (1887 cellulases, 2597 hemicellulases, and 2662 pectinesteraes), 

indicating the vast hydrolytic potential of Neocallimastigomycota. Major bacterial cellulases 

include GH5 and GH9; one GH44 was unique to bacterial MAGs. Major cellulases sourced 

from fungi include GH5, GH6, GH9, GH45, and GH48, of which GH6 and GH45 were only 

found in eukMAGs. CAZymes, GH48 and GH6 are well-known abundant proteins in fungal 

cellulosomes (Haitjema et al., 2017b). Major hemicellulases common to both MAGs and 
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eukMAGs include GH5, GH10, GH26, and GH43; GH62 and GH98 were less commonly 

found CAZymes, which were restricted to bacterial MAGs. CAZyme GH62 act on xylose 

moieties in xylan and arabinose moieties in arabinan (Wilkens et al., 2017), and GH98 are 

endo-β-galactosidases (Rigden, 2005). Therefore, there is evidence to support some functional 

complementarity of the CAZymes contributed by anaerobic fungi and bacteria. Notably, 

Neocallimastix eukMAGs and MAGs from the anaerobic bacteria Ruminococcus and 

Clostridium also contained dockerin-associated CAZymes, indicating the potential to produce 

cellulosomes. Cellulosomes in anaerobic environments are multi-enzyme complexes 

deployed by all known anaerobic fungi and a small group of anaerobic bacteria, which are 

suspected to assist in synergistic breakdown of lignocellulose through enzyme tethering and 

rearrangement on a flexible protein scaffold (Resch et al., 2013; Artzi, Bayer and Moraïs, 

2017). 

2.2.3 Metabolic potential for biomass deconstruction resolved at the species level  

The reconstruction and annotation of 719 MAGs and 20 eukMAGs enabled estimation of 

metabolic potential of the microbial community members at the species level. This helped 

decipher the functional compartmentalization and redundancy among consortia members 

during biomass breakdown and fermentation. Quantification of major metabolic products 

provided validation of reconstructed metabolism and benchmarked the performance of each 

enriched consortium. MAGs-based analysis indicated that consortia membership is heavily 

shaped by the substrate used during enrichment. For example, in the antibiotics-free 

consortium grown on the most lignin-rich substrate, bagasse, the most abundant MAGs 

(Lachnospiraceae sp. G11 and Pseudobutyrivibrio sp. AR14) were not enriched in antibiotics-
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free consortium grown on alfalfa or reed canary grass. Conversely, a different MAG from the 

Lachnospiraceae family (Lac1) was abundant in antibiotics-free consortia grown on alfalfa 

and reed canary grass but absent in the antibiotics-free consortium grown on bagasse. 

Methanol-utilizing archaea Thermoplasmata and Methanosphaera stadtmanae were only 

enriched in antibiotics-free consortia grown on alfalfa which has the highest pectin content 

among all four substrates and one of the degradation products of pectin is methanol. In 

summary, substrate type selects for a suite of species equipped with metabolism to break down 

the corresponding carbon substrate and utilize the breakdown products for fermentation and 

methanogenesis.  

2.2.4 Methane production is elevated in fungus-dominated consortia 

Metabolic characterization based on assembled MAGs demonstrates different potential 

biomass degradation strategies and putative carbon flow between bacteria-dominated and 

fungus-dominated consortia, as shown in Figure 2.3. Some of the rare MAGs (<1% in relative 

abundance) harbor metabolic potentials that are not redundant compared to the more abundant 

members in the consortium. In antibiotics-free consortia, there was a high degree of functional 

redundancy among cellulolytic and fermentative bacteria from different phyla, whereas in 

antibiotics-treated consortia, anaerobic fungi dominated consortia membership. 

Methanogenic archaea were enriched to one of the most abundant prokaryotic members in PS 

consortia wherein carbon was not diverted by bacteria to produce propionate and butyrate and 

as a result, PS consortia produced the highest amount of CH4, as shown in Figure 2.4. 
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Figure 2.3. Carbon cross-feeding between microorganisms in enriched anaerobic consortia. Each shape 

contains a three-to-five-letter acronym representing a metagenome-assembled genome (MAG) 

contributing to > 1% to total community in each indicated consortium at the end of the tenth generation 
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(G10). Each shape corresponds to a type of carbon substrate. Triangles: Alfalfa stem, Squares: 

Bagasse, Circles: Reed Canary Grass, Diamonds: Xylan. The thickness of the lines is scaled with the 

relative microbial abundance of the connected MAG in the corresponding consortium. A line is 

connected between a MAG and a metabolite if the pathway responsible for the utilization/production 

of the metabolite is at least 75% complete in the reconstructed MAG. The taxonomic acronyms for 

each MAG used in the figure are: Anae: Anaerovibrio sp., Bac2: Bacteroidales, But1: Butyrivibrio sp., 

Clo1: Clostridium cochlearium, Cori: Coriobacteriaceae sp., Ecol1, Ecol2: Escherichia coli, Ente: 

Enterococcus faecium, Ery1, Ery2, Ery3: Erysipelotrichaceae, Lac1, Lac2, Lac4, Lac5, Lac8: 

Lachnospiraceae, Lac3: Lachnospiraceae sp. G11, Lac6: Lachnoclostridium clostridioforme, Lac7: 

Lachnospiraceae sp. JC7, Met1: Methanobrevibacter thaueri, Met2: Methanobrevibacter millerae, 

Pre1, Pre2: Prevotella ruminicola, Pse1: Pseudobutyrivibrio sp. AR14, Pse2: Pseudobutyrivibrio 

ruminis, Rum1: Ruminococcus albus, Rum2: Ruminococcus flaveflaciens, Rum4: Ruminococcaceae, 

Sele: Selenomonas ruminantium, Str1: Streptococcus equinus, Str2: Streptococcus gallolyticus, Ther: 

Thermoplasmata, Trep: Treponema sp., Neo: Neocallimastix sp., Pir: Piromyces sp., Cae: Caecomyces 

sp. 

Figure 2.4. Net change in primary metabolic products from day 0 to day 3 in anaerobic consortia during 

the course of parallel enrichments. Measurements are grouped by antibiotic treatment and the type of 

carbon substrate used to drive enrichment. The three bars for each subgroup represent measurements 

made at generation zero G0 (0), generation 5 G5 (5), and generation 10 G10 (10). Substrates include 
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alfalfa stems (A), bagasse (B), reed canary grass (R), and xylan (X).  Each bar represents the average 

of three biological replicates. Negative values indicate a net decrease of the metabolic product from 

day 0 to day 3.  

When grown on alfalfa, PS consortia produced nearly twice as much methane as the 

antibiotics-free consortia, as shown in Figure 2.5. Very little H2 accumulation was observed 

in the PS consortia, whereas a small amount of H2 build-up occurred in antibiotics-free 

consortia, suggesting a more efficient metabolic product exchange in PS consortia than in 

antibiotics-free consortia. As expected, Chloramphenicol-treated (CM) consortia did not 

produce CH4 but produced H2 due to the presence of anaerobic fungi and the absence of 

methanogens. 

Figure 2.5. Cumulative production (ml) of hydrogen (H2) and methane (CH4) by enrichment cultures 

grown on alfalfa stems at generations 1 (G1), 3 (G3), and 10 (G10). Error bars represent standard 

deviations of three replicates. Photographs of the cultures from generation 1 (G1) are shown on the 
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right. Results for antibiotics-free cultures are shown in the top row; the turbid liquid media are 

characteristic of bacterial growth. Results for penicillin and streptomycin-treated cultures are shown 

in the middle row, and results for chloramphenicol-treated cultures are shown in the bottom row. The 

clear liquid media in antibiotics-treated cultures indicate low prokaryotic abundance. The clumped 

alfalfa stems floating in the liquid media are characteristic of anaerobic fungal growth, as fungi 

associate directly with the substrate.  

2.2.5 A high degree of functional redundancy is seen in antibiotics-free consortia 

In antibiotics-free consortia, most enriched bacteria likely occupy a mixed trophic level 

with the dual capability of degrading plant cell walls and fermenting simple sugars, resulting 

a high degree of functional redundancy with up to 44 bacteria capable of hydrolysis and 78 

bacteria capable of fermentation. Abundant cellulolytic and hemicellulolytic bacteria 

belonging to the genera Ruminococcus, Prevotella, Butyrivibrio, Pseudobutyrivibrio, and a 

few other Lachnospiraceae bacteria were enriched. Typical of gut microbial communities, 

most of these bacteria can produce formate, acetate, and lactate (Wolin, 1981). Although less 

than half of the microbial community can produce butyrate and less than 20% of the 

community can produce propionate, the potential for butyrate and propionate production is 

redundantly spread across four bacterial phyla including Proteobacteria, Actinobacteria, 

Firmicutes, and Bacteroidetes.  

The antibiotics-free consortium grown on xylan was dominated (72%) by Selenomonas 

ruminantium, with the presence of another enriched bacteria, Enterococcus faecium. There 

were large amounts of reducing sugars available in xylan culture media relative to complex 

fibers, which likely contributed to the very low microbial diversity observed. The moderate 

level of CH4 production and the high production of propionate and butyrate clearly indicate 
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that carbon flow in antibiotics-free consortia was diverted towards short-chain fatty acids 

(SCFAs) instead of CH4 compared to PS consortia.  

2.2.6 Narrowed fermentation products in PS consortia leads to higher CH4 production 

In the antibiotics-treated consortia, anaerobic fungi use a large suite of biomass-degrading 

enzymes to depolymerize lignocellulose and ferment mono- and oligo-saccharides into H2, 

formate, acetate, lactate, and ethanol (Lowe, Theodorou and Trinci, 1987b; Solomon et al., 

2016). The overall fermentation product profiles in CM consortia grown on lignocellulose 

were similar to those of fungal monocultures of Neocallimastix (Lowe, Theodorou and Trinci, 

1987b), with significant accumulation of formate and H2 and small amounts of lactate and no 

accumulation of reducing sugars, as shown in Figure 2.4. In PS consortia, archaea from the 

genus Methanobrevibacer were enriched to be one of the most abundant prokaryotes as most 

bacterial growth was repressed by penicillin and streptomycin. Methanogens use H2 and 

produce CH4, accounting for the different metabolic product profile in PS consortia than in 

CM consortia. Seven Firmicutes MAGs were recovered in PS consortia, and 

Erysipelotrichaceae was the most abundant among all of them. These PS-resistant bacteria 

can utilize hexose sugars and produce formate, acetate, and lactate. Hence they might 

contribute to preventing catabolite repression of anaerobic fungi by maintaining consistent but 

low levels of simple sugars (Solomon et al., 2016).  

2.2.7 Fungus-methanogen partnership demonstrates accelerated cellulose degradation 

potential  

A key motivation in characterizing the herbivore microbiota is to understand how to 

control lignocellulosic degradation, as well as to regulate the release of methane. Given the 
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high levels of CH4 production observed in PS-treated consortia compared to antibiotics-free 

consortia (see Figure 2.4), the cellulolytic performance of these enriched consortia was 

compared. When grown on cellulose paper (Whatman), the PS consortium degraded nearly 

twice as much substrate as the antibiotics-free consortium after seven days of growth, as 

shown in Figure 2.6A. Excess reducing sugars were released from the PS consortium but not 

from the antibiotics-free consortium when grown on cellulose paper, as shown in Figure 2.6B. 

By contrast, the PS consortium and the antibiotics-free consortium degraded comparable 

amounts of reed canary grass after seven days of growth (see Figure 2.6A). This suggests that 

despite the advantage of PS over antibiotics-free consortia in degrading cellulose paper, 

complex substrates like plant cell walls limit the performance of anaerobic fungi in 

depolymerization. 

Figure 2.6. Fungal CAZymes and cellulosomes drive lignocellulosic efficiency of consortia dominated 

by anaerobic fungi and methanogenic archaea. The fraction of substrate consumed (A) and the release 

of reducing sugars (B) by enrichment cultures grown on cellulose paper and reed canary grass. Each 

bar in panels A and B represents the average of three replicates and the error bars represent the standard 

deviation. Panel C shows number of carbohydrate-active enzymes (CAZymes) classified as cellulase, 

hemicellulase, pectinase, or esterase in enrichment cultures, distinguished by the presence or absence 



 

50 

 

of bacterial or fungal dockerin domains fused to CAZymes. Note that the y-axis was broken into three 

different scales. Red boxes represent bacterial CAZymes associated with dockerin(s), green boxes with 

black slanted stripes represent fungal CAZymes associated with dockerin(s), and black dotted patterns 

represent CAZymes unassociated with dockerin(s). 

The enzymatic strategies for hydrolyzing lignocellulose deployed by PS and antibiotics-

free consortia were compared by enumerating the number of cellulase, hemicellulase, 

pectinase, and esterases with and without dockerin associated domains in each consortium. 

We found that the number of cellulosomal CAZymes in PS consortia grown on lignocellulosic 

substrates was more than two orders of magnitude higher than that found in antibiotics-free 

consortia, as shown in Figure 2.6C. By comparison, the total number of cellulase, 

hemicellulase, pectinase, and esterase in antibiotics-free consortia grown on lignocellulosic 

substrates (983-1417 in G5 and G10) was higher than that in PS consortia (518-909 in G5 and 

G10). The larger number of CAZymes observed in antibiotics-free consortia compared to PS 

consortia is attributed to the large numbers of GH5, GH8, GH9, GH16, GH26, GH30, GH43, 

GH28, CE4, and CE8. Nevertheless, GH6 and GH45 (cellulases) were only enriched in PS 

consortia, and there were a larger number of GH48, GH11, and PL3 in PS consortia than 

antibiotics-free consortia. 

Additional experiments were performed to determine the long-term stability of the best-

performing consortium (PS consortium grown on alfalfa) in CH4 production. This consortium 

was maintained in lab for over three years while consistently producing methane. The 

eukaryotic member of the consortium was an anaerobic fungus from the genus Neocallimastix, 

and the dominant bacterial members were bacteria from the family Erysipelotrichaceae. 

Methanobrevibacter were the archaeal member of the consortium responsible for methane 



 

51 

 

generation. Ruminococcus were present as a rare bacterial member of the community. 

Furthermore, both the prokaryotic and eukaryotic parts of this consortium were stable after 

cryo-preservation at -80 °C for over a year. Importantly, this consortium produced methane 

after reviving from cryo-preservation.  

2.3 Conclusions 

Here we have presented an in-depth analysis of the goat fecal microbiome and a large-

scale enrichment experiment that suggests design rules of microbial consortia pairings for 

biomass conversion into value-added products. The vast majority (96%) of the 719 high-

quality MAGs we recovered are novel at the species level compared to previously published 

MAGs from similar microbiomes (rumen, feces, and anaerobic digesters), and about 20% of 

them were enriched in our experiments, along with anaerobic fungi from the phylum 

Neocallimastigomycota. The metabolic product profile comparison of consortia treated with 

and without antibiotics revealed that the level of CH4 production was the highest when 

fermentation products are restricted to H2, formate, and acetate, as opposed to being diverted 

to the production of butyrate and propionate. Comparing the resultant communities by 

challenging the source microbiome with four different types of carbon sources indicate that 

substrate composition plays a critical role in determining the community composition. 

Specifically, simple reducing sugars enriched for a consortium featuring a small number of 

specialists that dominated the community, whereas complex plant material substrates enriched 

for many functionally redundant lignocellulolytic members. A consortium featuring cross-

domain partnership between anaerobic fungi, methanogenic archaea, and bacteria 

demonstrated the highest cellulose degradation potential, and this high performance is 
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attributed to the combination of physical breakdown of plant substrate by fungal rhizomycelia 

and the cellulosomal CAZymes. The lessons learned from this large-scale enrichment 

experiment will be valuable for the design of lignocellulolytic consortia for the bioconversion 

of lignocellulose into value added chemicals. 

2.4 Methods 

Freshly voided fecal pellets were collected from a San Clemente Island Goat at the Santa 

Barbara Zoo, which served as source material for 396 parallel anaerobic enrichment 

experiments (see Figure 2.1). This was initiated with the inoculation of 36 cultures with the 

source material, which were supported on four different types of carbon substrates in complex 

anaerobic culture medium (MC-) with a carbon dioxide headspace (Peng et al., 2018): alfalfa 

stems (A), bagasse (B), reed canary grass (R), and xylan (X). A, B and R were crude plant 

material ground to 4 mm in size, and X was manufactured from corn core in powder form. 

Chloramphenicol (CM) was applied to one group of cultures to bias selection for anaerobic 

fungi; penicillin and streptomycin (PS) were applied to a second group of cultures to bias 

selection of anaerobic fungi and methanogenic archaea; and an antibiotics-free group received 

no antibiotic selection (see Figure 2.1). In this manuscript, the initial generation of enrichment 

cultures are referred to as “G0”, and the subsequent generations were referred to by their 

consecutive batch culture numbers (“G1”, “G2”, etc. to “G10”). The initial enrichment 

cultures were sub-cultured (10% v/v) without pooling into fresh media and appropriate carbon 

substrate every three days with the exceptions of G0 and G1, which were allowed to grow for 

five and four days, respectively, before sub-culturing to enable maximum development of the 

community (Theodorou, Gascoyne and Beever, 1984). Culture growth was monitored daily 
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by sampling the headspace of the anaerobically sealed bottles to measure the production of 

total pressure, hydrogen (H2) and methane (CH4) concentrations. Concurrently, 1 ml of the 

liquid media was also sampled daily to measure the production of metabolites (short-chain 

fatty acids and reducing sugars). After sub-culturing into fresh media at the end of three days 

of growth, the remainder of the cultures were harvested for nucleic acids extraction. High-

resolution marker gene (16S, 18S, and ITS) analysis was performed on an Illumina MiSeq 

sequencer (300 bp x 2) for six of the 11 generations (G0, G1, G3, G5, G8, and G10) to track 

enrichment of the community under different selective pressures. Deep metagenome 

sequencing was performed on an Illumina HiSeq sequencer (150 bp x 2) for the initial (G0), 

middle (G5), and final (G10) enrichments for all substrates. The total number of reads summed 

to over 1.5 Tbp (1012 base pairs). Raw reads were quality filtered using Trimmomatic (Bolger, 

Lohse and Usadel, 2014), assembled using SPAdes (Nurk et al., 2017), and the contigs were 

binned using Metabat 2 (Kang et al., 2019) and were annotated using IMG/M (Chen et al., 

2017). A custom bioinformatics pipeline that combines marker gene and metagenome 

sequencing was developed to analyze the metabolic potential of each metagenome assembly, 

including the prevalence of Carbohydrate Active Enzymes (CAZymes) and other metabolic 

capabilities related to carbohydrate uptake. Metabolic pathways consisting of multiple genes 

are considered present if it is at least 75% complete in each MAG and eukMAG. Additional 

experiments were performed to compare the hydrolytic potential of microbial consortia 

untreated and treated with antibiotics. 
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2.5 Data Availability 

The metagenome sequencing reads can be accessed at the Joint Genome Institute. Contigs 

for each MAG are available at NCBI’s Whole Genome Shotgun database under accession 

numbers SAMN11294286 - SAMN11295004 and project number PRJNA530070.  
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III. Genomic and proteomic biases inform metabolic engineering strategies 

for anaerobic fungi 

This chapter is based upon an article that was published in Metabolic Engineering 

Communications, Volume 10, 2019, by St. Elmo Wilken, Susanna Seppälä, Thomas S. 

Lankiewicz, Mohan Saxena, John K. Henske, Asaf A. Salamov, Igor V. Grigoriev, and 

Michelle A. O’Malley, entitled “Genomic and proteomic biases inform metabolic engineering 

strategies for anaerobic fungi”, Copyright Elsevier. For more information regarding the 

methods and results, please see the published paper. 

3.1 Introduction 

Metabolic engineering strives to streamline and sculpt microorganisms for the optimal 

production of valuable fuels and chemicals. To date, most metabolic engineering efforts have 

targeted well-characterized microorganisms such as E. coli and S. cerevisiae, but it is well 

recognized that non-model microorganisms hold tremendous biotechnological potential 

(Bonugli-Santos et al., 2015; Coker, 2016; Susanna Seppälä et al., 2017; Podolsky et al., 

2019). In this regard, the anaerobic fungi in the phylum Neocallimastigomycota possess an 

unparalleled collection of carbohydrate active enzymes (CAZymes) that can be leveraged to 

convert plant biomass into value-added commodity and fine chemicals (Youssef et al., 2013; 

Morrison, Elshahed and Youssef, 2016; Solomon et al., 2016; Haitjema et al., 2017a). The 

Neocallimastigomycota fungi are primarily found in the digestive tracts of herbivorous 

animals where they break down ingested lignocellulosic plant biomass (Orpin, 1975; 

Theodorou et al., 1996; Liggenstoffer et al., 2010) and although their importance for animal 
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welfare is well established, anaerobic gut fungi have not yet been adapted for metabolic 

engineering or bioprocessing applications.  

To fully exploit the biotechnological potential of anaerobic fungi, it is first necessary to 

understand the functional properties of their proteins, especially their diverse set of 

biotechnologically important CAZymes (S Seppälä et al., 2017; Podolsky et al., 2019). To 

achieve this goal, there is a critical need to (1) develop strategies to transfer gut fungal genes 

to heterologous hosts, and (2) develop molecular tools to modify the genomic content of the 

gut fungi. The recently acquired high-resolution transcriptomes and genomes of several gut 

fungal strains aid in this regard as they not only reveal the enzymatic and proteomic potential 

of these fungi, but also the genomic guanine-cytosine (GC)/adenine-thymine (AT) nucleotide 

content, apparent codon-usage patterns, and the amino acid composition of encoded proteins 

(Youssef et al., 2013; Solomon et al., 2016; Haitjema et al., 2017a; Henske, Wilken, et al., 

2018). In particular, the GC content of any genome often dictates genetic engineering 

strategies, whether the aim is to transfer genes to a more easily manipulated organism or to 

engineer the genome of the non-model organism directly.  

While a handful of gut fungal proteins have already been produced in model 

microorganisms (reviewed in (S Seppälä et al., 2017))(O’Malley, Theodorou and Kaiser, 

2012b; Dollhofer et al., 2019), the vast majority remains uncharacterized, and recent reports 

suggest that at least some gut fungal genes must be codon optimized for the successful 

expression in heterologous hosts like yeast (Solomon et al., 2016; Seppälä et al., 2019). 

Likewise, production of non-native proteins (e.g. reporter proteins) and exogenous metabolic 

pathways in the anaerobic fungi is likely aided if the codon composition of the exogeneous 

gene is matched to the apparent codon preference of the host, as has been demonstrated in 
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other fungi (Wang et al., 2019). Moreover, the genomic nucleotide composition may affect 

how efficiently a genome can be engineered using endonucleases that recognize specific, often 

G-rich, nucleic acid motifs, such as the increasingly popular Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR)-CRISPR Associated protein (Cas) system. 

Here, we have analyzed the genomes and proteomes of anaerobic fungi to establish a 

framework for metabolic engineering in these non-model organisms. The nucleotide 

composition of all published anaerobic fungal genomes was used to determine gut fungal 

codon preferences, amino acid distributions, and identify low-complexity regions in the 

predicted proteomes with emphasis on their rich repertoire of biotechnologically interesting 

CAZymes. Currently, five species of anaerobic fungi have published nuclear genomes: 

Orpinomyces sp. C1A (later re-classified as Pecoramyces ruminantium) (Youssef et al., 2013; 

Hanafy et al., 2017), Piromyces sp. E2, and the high-quality genomes of Neocallimastix 

californiae, Anaeromyces robustus and Piromyces finnis (Haitjema et al., 2017a). Using the 

Joint Genome Institute’s (JGI) Mycocosm fungal genomes repository, we compared these 

anaerobic fungal genomes to 438 other sequenced fungi, spanning the fungal tree of life 

(Grigoriev et al., 2014). Overall, we find that the coding genomes of anaerobic fungi are 

exceptionally GC depleted, which significantly impacts codon and amino acid usage in 

anaerobic gut fungi and limits the application of certain CRISPR variants. Based on these 

native biases, we introduce a codon optimization table for use in expressing non-native genes 

in the gut fungi. Analysis of the genomes also reveals genetic machinery implicated in sexual 

reproduction, and shows that gut fungal CAZymes are highly enriched in repetitive sequences 

that are linked to glycosylation motifs. Overall, this comparative analysis will aid in the 
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development of metabolic engineering strategies by identifying common pitfalls and 

suggesting possible solutions to genetically manipulate Neocallimastigomycota fungi.  

3.2 Results and discussion 

3.2.1 Anaerobic gut fungi have the most GC depleted genomes in the fungal kingdom  

Biased genomic GC content has significant implications for modern genome sequencing 

and engineering techniques. For example, it has been shown that regions with extreme 

nucleotide content hamper next-generation sequencing techniques owing to poor read 

coverage and difficulties in assembly (Oyola et al., 2012). Moreover, the apparent preferred 

codon usage of an organism may affect how efficiently genes can be transferred between 

organisms, in particular those that exhibit extreme codon biases (Seppälä et al., 2019). An 

analysis of 443 published fungal genomes, sourced from the JGI Mycocosm database and 

covering 278 genera from across the fungal kingdom, reveals a large variation in the GC 

content of fungal protein coding genomes, ranging from 25% GC to 69% GC as shown in 

Figure 3.1. Among these, the obligate anaerobic Neocallimastigomycota consistently have the 

most GC depleted coding genomes of all sequenced fungi, ranging from 25% GC in A. 

robustus to 29% GC in Piromyces sp. E2 (Youssef et al., 2013; Haitjema et al., 2017a). The 

GC content of the intergenic, non-coding regions in the anaerobic gut fungi is even lower 

(~16% on average): causing the whole-genome GC content of Neocallimastigomycota to 

range from 16% to 22%. This peculiar nucleotide composition of anaerobic fungi was 

suggested by thermal denaturation studies more than two decades ago, and is a contributing 

factor to why the first high-resolution genomes were only recently acquired via long-read 
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sequencing technologies (Brownlee, 1989; Nicholson, Theodorou and Brookman, 2005; 

Oyola et al., 2012).  

Figure 3.1 also illustrates that the GC content of the fungal protein coding genomes is not 

readily explained by phylogenetic relationships, as has also been noted for other kingdoms 

(Knight, Freeland and Landweber, 2001; Wu et al., 2012; Reichenberger et al., 2015). For 

example, while Neocallimastigomycota appears to be the most GC depleted fungal phylum, 

the phylogenetically related Chytridiomycetes is rather GC rich at 56% based on 4 genomes 

from 4 genera. Possibly confounding this analysis is the number of sequenced genomes 

analyzed in each clade, as some clades are extremely under-sampled to date. 

  

Figure 3.1: Neocallimastigomycota are characterized by extremely GC-depleted genomes and 

proteomes. GC content within the predicted proteome of 443 fungal genomes is plotted as a function 

of fungal clade and varies significantly across the fungal kingdom. The number of species analyzed 

per clade is indicated in brackets on the x-axis. The box-and-whisker plots show outliers as points, 

minima and maxima as whiskers, and the inter-quartile ranges inside the boxes. Figure taken from 

(Wilken et al., 2020). 
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3.2.2 The extreme AT-richness of anaerobic fungal genomes limits CRISPR and other 

genetic engineering strategies 

The GC content of a genome can be affected by mutation rates, recombination as well as 

by selection (Birdsell, 2002; Duret and Galtier, 2009; Hershberg and Petrov, 2010; 

Hildebrand, Meyer and Eyre-Walker, 2010). While it remains unclear how the anaerobic gut 

fungal genomes became GC depleted, their AT-richness has several implications for genetic 

engineering approaches. For example, plasmid-based expression systems are hampered by 

difficulties associated with identifying promotors and regulatory elements in these genomes, 

and AT-rich sequences are associated with non-specific binding affecting both primer design 

and homologous recombination approaches. 

Moreover, most genome editing approaches use specific DNA sequence motifs to guide 

nucleases to the genome. For example, technologies using transcription-factor-like-

endonucleases (TALENs) (Arazoe et al., 2015) and zinc finger nucleases (ZFN) (Boch et al., 

2009) depend on DNA-binding protein domains, and the CRISPR-Cas9 system depends on a 

guide-RNA that brings the nuclease to the desired site (Gasiunas et al., 2012). Genomes that 

contain regions with extreme nucleotide content may cause poor or nonspecific targeting. For 

example, the canonical CRISPR-Cas9 system makes use of a G-rich (NGG) protospacer-

adjacent motif (PAMs) to target genes for editing (Jiang et al., 2013), however recent 

engineering efforts have broadened the diversity of PAM sites that can be targeted to include: 

TTN (Zetsche et al., 2015); NGG, NGA, NGAG, and NGCG (Benjamin P. Kleinstiver et al., 

2015); as well as NNNRRT (Benjamin P Kleinstiver et al., 2015) among others. Table 3.1 

shows that the frequency of observing GC-rich PAMs increases accordingly with genomic 

GC content. Conversely, PAMs that are richer in AT bases are much more abundant in 
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genomes with lower GC content. The relative paucity of GC-rich PAM sites in anaerobic 

fungal genomes is likely to limit the ability of certain endonucleases to target specific 

positions of interest, and suggests that AT-rich PAM targeting Cas enzymes may be the most 

appropriate choice for CRISPR engineering efforts. 

Table 3.1: Increasing GC content of fungal genomes increases the number of PAM sequences with 

higher GC content. The number of PAMs (PAM sequences ordered in decreasing GC content from 

left to right) found per mega base pair in the genomes (coding and non-coding regions) of fungi in 

Neocallimastigomycota, as well as Saccharomyces cerevisiae, Trichoderma reesei and Rhodotorula 

graminis, ordered in increasing GC content (%). The color scale shows the abundance of PAM 

sequences found in the genome of each fungus, with darker cells corresponding to more PAM 

sequences identified.  

Fungus PAM/GC NGG NGCG NGAG NGA NNNRRT TTN 

A. robustus 16.3 9924 433 2700 32869 73134 111343 

P. ruminantium 17 11265 578 3067 34046 74168 110050 

N. californiae 18.2 11957 754 3667 35703 72761 108990 

P. finnis 21.2 14530 863 4189 40390 72228 104066 

P. sp. E2 21.8 142327 99825 101766 157469 109692 61015 

S. cerevisiae 38.2 33865 6749 11565 59981 60548 72583 

T. reesei 52.8 52350 15407 18713 63539 44932 44227 

R. graminis 68.9 68959 40830 34522 76667 29472 19288 

 

On the other hand, one of the most GC-depleted non-fungal eukaryotic microbes are the 

Apicomplexan Plasmodium spp., which include avian and human malaria parasites P. 

gallinaceum (21% GC) and P. falciparum (24% GC) (Videvall, 2018). Recently, it was 
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suggested that the genome of P. falciparum undergoes an extremely high rate of mutations, 

associated with sequences that have an extreme GC or AT bias, and that this phenomenon 

may contribute to adaptive evolution (Hamilton et al., 2017). Although the mutation rate of 

Neocallimastigomycota is unknown, it is tempting to speculate that similar mechanisms are 

in place for anaerobic fungi, possibly facilitating horizontal gene transfer of enzymes from 

ruminal bacteria to the anaerobic fungi (Haitjema et al., 2017a; Duarte and Huynen, 2019; 

Murphy et al., 2019) that could be harnessed for genome engineering. Nevertheless, the 

possibility of high mutation rates could negatively impact the efficacy of the highly specific 

edits made by CRISPR-Cas like systems.  

3.2.3 Anaerobic fungal genomes contain genes used in sexual reproduction 

Sexual reproduction is often leveraged for engineering industrial fungal strains, thus  

identification of a putative mating pathway in anaerobic gut fungi could inform future 

approaches to generate genetic variants (Steensels, Meersman, et al., 2014; Steensels, Snoek, 

et al., 2014; Mertens et al., 2015; Solieri et al., 2015). Inducing breeding events in yeast 

strains, and other biotechnologically relevant fungi, rapidly increases the diversity of mutant 

libraries through naturally occurring homologous recombination. This mode of diversity 

generation has advantages over direct genetic engineering; it is straightforward, rapid, and 

generates genetic variants that are not considered as genetically modified organisms by 

regulatory frameworks (Steensels, Snoek, et al., 2014).  

Sexual reproduction is associated with several genomic signatures, including the presence 

of genes required for mating events and GC content enrichment in genomes and genomic 

regions that are prone to homologous recombination (Hull, Raisner and Johnson, 2000; 
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Galtier, 2001; Magee, 2002; Meunier and Duret, 2004; Glémin, 2015; Ropars et al., 2016; 

Kiktev et al., 2018; Liu et al., 2018). These genomic signatures have successfully been 

leveraged to interrogate the existence of sexual reproduction in other fungi (Hull, Raisner and 

Johnson, 2000). Further, the positive relationship between GC content and the different rates 

of outcrossing among fungi could help rationalize why GC content within the fungal kingdom 

is not readily explained by phylogeny, see Figure 3.1 (Hartfield, 2016; Nieuwenhuis and 

James, 2016). While many variables likely influence GC content in fungal genomes, the gut 

fungi standout as being particularly GC depleted, possibly suggesting very infrequent 

outcrossing.  

However, some organisms with GC content near that of Neocallimastigomycota were until 

recently erroneously thought to be asexual, bolstering the idea that the anerobic gut fungi 

might be able to outcross. For example, sexual reproduction was demonstrated in the 

opportunistic human pathogen Candida albicans (35% GC) (Hull, Raisner and Johnson, 2000; 

Magee, 2002).  Likewise, fungi in the phylum Glomeromycota (~32% GC) were also thought 

to be asexual, yet recent sequencing of several genomes revealed genes encoding the 

molecular machinery required for sexual reproduction (Ropars et al., 2016). These findings 

seem to support the hypothesis that sexual reproduction is an ability shared by all fungi, even 

those that infrequently outcross. 

While experimental evidence has thus far failed to confirm a sexual cycle in anaerobic gut 

fungi, we find genes with high homology to sex-implicated proteins in every high quality 

anaerobic fungal genome sequenced to date. Using well characterized proteins from 

Saccharomyces cerevisiae, we are able to identify homologs to kinases and accessory proteins 

heavily implicated in sexual reproduction (STE20, STE6, GPA1), as well as several meiosis 
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specific genes such as the meiotic recombinase DMC1 (see Table S2 in the supplementary 

materials of the paper upon which this chapter is based). Notably absent in the 

Neocallimastigomycota genomes are genes homologous to those coding for peptide mating 

factors deployed by S. cerevisiae, but regions of homology to the N. crasssa mating type “a” 

pheromone are detected in each genome.  

The presence of genes implicated in sexual reproduction indicate that 

Neocallimastigomycota can, or at one point in evolutionary time were able to, sexually 

reproduce. However, low GC content in anaerobic fungal genomes could imply that these 

organisms outcross with extreme discretion. Further experimentation is needed to determine 

whether sexual reproduction will be a useful tool to generate anaerobic fungal variants. 

Specifically, elucidation of viable signaling pathways that lead to induction of mating type 

cells should be tested to determine how such a mating event could be induced and used for 

metabolic engineering applications (Magee, 2002). 

3.2.4 Codon usage preferences of Neocallimastigomycota are a recipe for genetic 

engineering and expression optimization 

Although the fungi in Neocallimastigomycota are not yet genetically tractable, efforts are 

being made to develop genetic transformation methodologies (Durand et al., 1997; Calkins et 

al., 2018). The introduction of novel genes encoding reporter proteins and selection markers 

into anaerobic gut fungi will likely require codon optimization such that the gut fungal 

machinery properly maintains and decodes the material. Codon optimization will likely be an 

important tool to aid in this regard, as has been shown for other fungal clades (Camiolo et al., 

2019; Wang et al., 2019). Analysis of the preferred codon usage in highly expressed genes in 
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Neocallimastigomycota suggests that the anaerobic fungi have a strong preference for AT-

rich codons, see Table 3.2, consistent with their GC-depleted genomes. Table S3 in the 

supplementary material of the paper upon which this chapter is based, shows the individual 

codon usage for highly expressed transcripts, as well as the predicted tRNA counts, for both 

the fungi with transcriptomic expression level data available (Henske, Wilken, et al., 2018).  

While codon optimization may be necessary to express exogenous genes in the gut fungi, 

their very strong codon bias has implications for heterologous expression of gut fungal genes 

in model microorganisms. For example, codon optimization to increase the GC content of 

genes was shown to be a prerequisite for the expression of gut fungal genes in some hosts (Li 

et al., 2007; Seppälä et al., 2019). However, this does not seem to be a universal constraint as 

other genes from gut fungi have been expressed without codon optimization (Kuyper et al., 

2003; Wang et al., 2011). Nevertheless, codon optimization may prove to be an important 

consideration for genetic exploitation of gut fungi because their genomes, and consequently 

their genes, are so extremely GC depleted. Interestingly, it is also observed that the most 

abundant codon does not always correspond to the most abundant associated tRNA. For 

example, across both anaerobic fungi analyzed, AAT is the most common asparagine codon, 

however only AAC (a synonymous asparagine codon) matching tRNAs (TTG anticodons) 

were identified on the genome. It is likely that tRNA wobbling in the third base position 

explains this phenomena, as had been noted in other filamentous fungi (W. Chen et al., 2012). 

3.2.5 Amino acids coded by AT rich codons are favored by Neocallimastigomycota 

Amino acid composition is important for protein production, stability and post-

translational modifications, which has implications for heterologous production. As shown in 
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Figure 3.2, there is a clear correlation between GC content and predicted amino acid 

distribution in the fungi. The GC depleted fungi, including the Neocallimastigomycota, appear 

to be enriched in amino acids that are encoded for by AT rich codons (lysine, isoleucine and 

asparagine) and depleted in amino acids that are encoded for by GC rich codons (alanine, 

glycine, arginine). Conversely, fungi with GC rich coding genomes have a higher proportion 

of amino acids that are encoded for by GC rich codons. This is consistent with previous cross-

kingdom analyses suggesting that the relative abundances of amino acids in a proteome is 

largely determined by the GC content of the genome (Knight, Freeland and Landweber, 2001).  

Table 3.2: Codon optimization table for Neocallimastigomycota. Fraction of the proteome encoded for 

by each codon in highly expressed transcripts of N. californiae and A. robustus averaged, with standard 

deviation noted. The most AT rich codon for each amino acid is shown in red font, while the most 

abundant codon within the transcriptome is shown in blue font. AT-rich codons are invariably 

preferred in anaerobic fungi, in line with the predicted low GC content of the clade. 
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 l

et
te

r 

U 

F [TTT]: 0.60 ± 0.03 S [TCT]: 0.28 ± 0.00 Y [TAT]: 0.65 ± 0.03 C [TGT]: 0.62 ± 0.04 U 

T
h

ird
 letter 

F [TTC]: 0.40 ± 0.03 S [TCC]: 0.15 ± 0.02 Y [TAC]: 0.35 ± 0.03 C [TGC]: 0.38 ± 0.04 C 

L [TTA]: 0.34 ± 0.01 S [TCA]: 0.22 ± 0.01 STOP [TAA]: 0.56 ± 0.01 

STOP [TGA]: 0.31 ± 

0.04 
A 

L [TTG]: 0.31 ± 0.0 S [TCG]: 0.08 ± 0.01 STOP [TAG]: 0.14 ± 0.02 W [TGG]: 1.0 ± 0.0 G 

C 

L [CTT]: 0.19 ± 0.02 P [CCT]: 0.17 ± 0.03 H [CAT]: 0.58 ± 0.03 R [CGT]: 0.20 ± 0.02 U 

L [CTC]: 0.08 ± 0.01 P [CCC]: 0.09 ± 0.02 H [CAC]: 0.27 ± 0.17 R [CGC]: 0.04 ± 0.01 C 

L [CTA]: 0.12 ± 0.01 P [CCA]: 0.45 ± 0.01 Q [CAA]: 0.78 ± 0.0 R [CGA]: 0.07 ± 0.02 A 

L [CTG]: 0.11 ± 0.01 P [CCG]: 0.08 ± 0.01 Q [CAG]: 0.22 ± 0.0 R [CGG]: 0.04 ± 0.02 G 

A 

I [ATT]: 0.49 ± 0.01 T [ACT]: 0.65 ± 0.06 N [AAT]: 0.69 ± 0.0 S [AGT]: 0.19 ± 0.03 U 

I [ATC]: 0.18 ± 0.01 T [ACC]: 0.15 ± 0.01 N [AAC]: 0.17 ± 0.0 S [AGC]: 0.10 ± 0.01 C 

I [ATA]: 0.36 ± 0.03 T [ACA]: 0.27 ± 0.02 K [AAA]: 0.67 ± 0.02 R [AGA]: 0.45 ± 0.06 A 

M [ATG]: 1.0 ± 0.0 T [ACG]: 0.10 ± 0.01 K [AAG]: 0.33 ± 0.02 R [AGG]: 0.19 ± 0.0 G 

G 

V [GTT]: 0.42 ± 0.0 A [GCT]: 0.67 ± 0.05 D [GAT]: 0.79 ± 0.03 G [GGT]: 0.62 ± 0.04 U 

V[GTC]: 0.15 ± 0.03 A [GCC]: 0.17 ± 0.03 D [GAC]: 0.21 ± 0.03 G [GGC]: 0.07 ± 0.02 C 

V[GTA]: 0.25 ± 0.02 A [GCA]: 0.28 ± 0.22 E [GAA]: 0.89 ± 0.01 G [GGA]: 0.23 ± 0.01 A 

V[GTG]: 0.19 ± 0.01 A [GCG]: 0.03 ± 0.01 E [GAG]: 0.11 ± 0.01 G [GGG]: 0.08 ± 0.01 G 
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Unique glycosylation patterns, influenced by the amino acid composition of a protein, are 

often difficult to mimic in heterologous hosts and may affect function (Gerngross, 2004). The 

high abundance of serine, threonine and asparagine in the gut fungal proteomes suggest that 

glycosylation could be an important component in protein production, and perhaps activity 

and stability. Additionally, amino acid composition of enzymes has been shown to correlate 

with, amongst other properties, thermal stability. The gut fungi grow optimally at 39°C, 

suggesting that their enzymes, and specifically their biotechnologically relevant CAZymes, 

are tailored for this temperature (Haitjema et al., 2014). In contrast, T. reesei grows optimally 

at 28°C, but significant protein engineering efforts have improved the thermal stability of its 

cellulases to function in the range of 50 – 70°C (Chokhawala et al., 2015). It is tempting to 

speculate that gut fungal enzymes may also be amenable to such engineering efforts and, 

combined with their natively very diverse cellulolytic enzyme repertoire, might increase the 

efficiency of high temperature biomass conversion processes even further. Finally, the 

nitrogen content of media has been shown to influence the growth rates of gut fungi, possibly 

due to amino acid biosynthesis (in particular lysine) bottlenecks (Atasoglu and Wallace, 

2002). Since lysine is one of the most abundantly used amino acids in the gut fungal proteome, 
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it suggests that media supplementation strategies could be beneficial for protein production in 

the gut fungi. 

Figure 3.2: GC-depleted fungal proteomes are enriched in lysine, isoleucine and asparagine. Average 

predicted amino acid abundance per clade, ordered in decreasing GC content, is shown across the 

fungal kingdom. GC-rich fungal phyla are enriched in alanine, glycine, arginine, proline and valine. 

Asparagine is particularly enriched in Neocallimastigomycota, similar to P. falciparum, another 

extremely GC depleted organism. Figure taken from (Wilken et al., 2020).  

3.2.6 Anaerobic fungal CAZymes are enriched in homopolymeric amino acid runs 

Homopolymeric runs of five or more consecutive identical amino acids are common in 

eukaryotic proteins (Albà, Tompa and Veitia, 2007). While their evolutionary origin is 

debated, it has been suggested that these low-complexity regions provide eukaryotes with a 

major source of phenotypic variation (Fondon III and Garner, 2004) and are associated with 

functionally important intrinsically disordered regions (Wright and Dyson, 2015). All fungal 

clades we investigated here have proteins with runs, where the average fraction of the 

proteome with runs ranges from 3% in Microsporidia (based on 8 genomes, 5 genera), to 30% 

in Neocallimastigomycota (based on 5 genomes, 4 genera), and finally to 37% in 
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Ustilaginomycotina (based on 16 genomes, 14 genera) for each clade. However, these runs 

are not evenly distributed across all the amino acids. Figure 3.3 shows that runs with leucine, 

valine, isoleucine, arginine, phenylalanine, tyrosine, methionine, cysteine and tryptophan are 

largely absent. The absence of proteins with bulky aromatic or hydrophobic amino acids 

implies that there is likely a cost associated with having long stretches of these residues. In 

the case of hydrophobic amino acids (valine, leucine, methionine and isoleucine) protein 

aggregation likely plays a role in preventing such runs from occurring. Smaller amino acids, 

like glycine, serine and alanine are more frequently found in runs, along with most of the polar 

amino acids. Cysteine is an exception to this, likely due to its reactive sulphur side chain.  

Despite the likely complex evolutionary origin of these runs in proteins, analysis of all the 

CAZymes found in Neocallimastigomycota revealed that more than a quarter of all CAZymes 

contained a run motif. Interestingly, a large variation in the fraction of CAZymes with runs 

were found throughout the fungal kingdom, as shown in Figure 3.4. Neocallimastigomycota 

(28% with 5 genomes), Orbiliomycetes (27% with 2 genomes), and Monoblepharidomycetes 

(25% for a single genome) had the highest fractions of CAZymes with runs; all the other phyla 

had less than 20% on average. Given that only the simplest repetitive structure was searched 

for, this is likely an underestimate of the CAZymes that contain such low-complexity regions.  
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Figure 3.3: Proteins with asparagine runs constitute an unusually large fraction of the 

Neocallimastigomycota proteome. Average amino acid run (five or more of the same amino acid 

consecutively in a protein) fraction per clade, ordered in decreasing GC content, in the fungal kingdom. 

Hydrophobic (valine, leucine, methionine and isoleucine) and bulky (phenylalanine, tyrosine and 

tryptophan) amino acids are noticeably absent in runs, while smaller (alanine) uncharged, polar (serine, 

threonine, proline, glutamine) amino acids are frequently found in runs. Figure taken from (Wilken et 

al., 2020).  

Furthermore, using transcriptomic data for N. californiae and A. robustus (Solomon et al., 

2016; Henske, Wilken, et al., 2018) it was found that there are no significant differences in 

expression levels between CAZymes with and without run motifs (using the two sample 

Kolmogorov-Smirnov test). However, there is a significant difference (using the two-sample 

unequal variance t-test, P<0.01) in the ratio of CAZymes with runs versus total number of 

CAZymes between the fungi in Neocallimastigomycota and the genera Trichoderma and 

Aspergillus, which contain biotechnologically relevant organisms, (mean ratio of 0.28, 0.11, 

and 0.14 CAZymes with runs versus the total number CAZymes for each group respectively). 

Given the wide spread usage of Trichoderma reesei and Aspergillus niger in cellulase 
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production (Sukumaran et al., 2009), it raises the question of the function of these runs, and 

if they impart some benefit to enzyme effectiveness.    

 

Figure 3.4: Neocallimastigomycota have significantly more CAZymes with amino acid repeat “runs” 

than other fungal clades. Distribution of the fraction of CAZymes with runs relative to all the 

CAZymes in each fungus, grouped by clade (the bracketed number is the number of fungi included in 

each clade). Statistically significant differences in the distributions between Neocallimastigomycota 

and all the other clades are indicated by * using the two sample Kolmogorov-Smirnoff test (P<0.05). 

The distribution of the fraction of CAZymes with runs in each clade is shown in the blue violin plots 

overlaid by orange box-and-whisker plots where outliers are shown as points, minima and maxima as 

whiskers, and the inter-quartile ranges inside the boxes. Figure taken from (Wilken et al., 2020).   

3.2.7 Homopolymeric amino acid runs in CAZymes are enriched in threonine and serine, 

suggesting these enzymes are heavily glycosylated 

While the organisms belonging to Neocallimastigomycota are still genetically intractable, 

heterologous expression of its CAZymes is likely the most expedient route to unlocking its 

biotechnological promise. However, expressing CAZymes heterologously is not 
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straightforward, in part due to glycosylation patterns that are difficult to mimic outside of the 

native host (Greene et al., 2015). Moreover, recent work highlighting the role of processive 

enzymes attached to the cellulosome produced by members of Neocallimastigomycota 

showed that its CAZymes are heavily glycosylated (Haitjema et al., 2017a). Indeed, genomic 

data indicate (see Table S5 in the supplementary material of the paper upon which this chapter 

is based) that the machinery for both N- and O-linked glycosylation is present in each 

sequenced genome of Neocallimastigomycota. Furthermore, by scanning the linker regions of 

all the CAZymes found in Neocallimastigomycota, T. reesei, and A. niger, as shown in Figure 

3.5.A, for the canonical N-X-(S or T) (where X is any amino acid except proline) N-

glycosylation motif, it becomes apparent that the motif is more abundant in the anaerobic gut 

fungi than in the latter two organisms. Only ~22% of the CAZymes found in the high-quality 

genomes of N. californiae, A. robustus, and P. finnis lack N-glycosylation motifs, compared 

to ~49% and ~35% for T. reesei and A. niger, respectively. 

While N-linked glyosylation sites are straightforward to predict, no such recognition site 

has yet been identified for O-linked glycosylation. However, threonine and serine rich regions 

in the linker region of cellulase proteins are likely candidates for O-glycosylation (Beckham 

et al., 2010; Sammond et al., 2012). Figure 3.5.B shows the amino acid abundance in 

CAZymes split into domains and the inter-domain (linker) regions, which are further 

separated into linker regions of proteins with and without runs. It is clear that asparagine, 

serine, and especially threonine, are significantly enriched in the linker regions of 

Neocallimastigomycota. The threonine enrichment is even more pronounced in the linker 

regions of proteins that have runs, reflecting the disproportionate abundance of threonine runs 

in CAZymes. 
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Figure 3.5: (A) CAZymes in Neocallimastigomycota have more N-glycosylation motifs relative to 

other industrially important cellulolytic fungi. The fraction of CAZymes with a specified number of 

N-glycosylation motifs (N-X-S/T where X is not proline) on the x-axis in N. californiae, A. robustus 

and P. finnis (grouped as Neocallimastigomycota here, the other members are not shown due to their 

lower quality genomes), T. reesei, and A. niger. Linker regions are defined as the inter-domain regions 

of proteins. Neocallimastigomycota has a higher proportion of CAZymes with 2 or more N-

glycosyaltion motifs than either T. reesei or A. niger. (B) Threonine is disproportionately abundant in 

the linker region of CAZymes in Neocallimastigomycota, suggesting O-glycosylation sites may be 

abundant. Amino acid fraction in all proteins with at least one CAZyme (carbohydrate active enzyme) 
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domain divided into three groups: domains, linker regions of proteins with runs (five or more of the 

same amino acid consecutively in a protein), and linker regions of proteins without runs. Linker regions 

are defined as the inter-domain regions. Serines, and especially threonines, are highly enriched in the 

inter-domain regions of CAZymes with runs and without runs. Figure taken from (Wilken et al., 2020). 

Given that glycosylation is a mechanism used by cells to protect CAZymes from 

proteolytic cleavage, and that the rumen of herbivores is heavily populated with proteases 

(Bach, Calsamiglia and Stern, 2005), is reasonable to hypothesize that these regions are indeed 

glycosylated in vivo. Prior work has shown that CAZymes within the cellulosomes of 

Neocallimastigomycota are indeed heavily glycosylated (Haitjema et al., 2017a). 

Additionally, marked increases in CAZyme activity have been observed when the expression 

host is changed to an organism capable of glycosylating its enzymes (Ximenes et al., 2005; 

Cheng et al., 2014, 2015). Finally, the importance of linker regions in cellulase function 

(Sonan et al., 2007) reinforces the idea that metabolic engineering strategies should take these 

features into account to optimally leverage the CAZyme machinery of 

Neocallimastigomycota. 

3.3 Conclusions  

While the underlying reasons for GC depletion in Neocallimastigomycota remain unclear, 

the consequences of this AT-richness for metabolic engineering are numerous. The possibility 

that the anaerobic gut fungi have high mutational rates due to their GC depletion has 

interesting implications for strain evolution, engineering, and stability. Understanding how, 

and at what rate, their genomes evolve will provide an improved roadmap to engineer these 

organisms (Sekowska et al., 2016; Nørholm, 2019). While functional genetic tools to modify 

the anaerobic fungi are in development, the codon optimization strategy presented here may 
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attenuate the current difficulties associated with expressing non-native genes in these hosts. 

The GC depleted genomes likely also limit the use of G-rich PAM targeting Cas enzymes in 

the CRISPR system, suggesting that Cas enzymes engineered to target T-rich PAM sites 

should be prioritized for engineering anaerobic fungi. Comparative genomic analyses have 

shown that homopolymeric runs of amino acids are unusually common in anaerobic fungi, 

especially in their CAZyme machinery. These motifs likely serve important functions, e.g. 

glycosylation sites that prevent proteolytic cleavage, suggesting the importance of 

understanding their role if gut fungal CAZymes are heterologously produced in a model 

organism.  
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3.5 Materials and methods 

3.5.1 Collection and processing of genomic data  

The Mycocosm database, curated by the Joint Genome Institute (JGI), was used to 

download 443 sequenced fungal genomes (listed in Table S1 in the supplementary material of 

the paper upon which this chapter is based, (Grigoriev et al., 2014)), as well as their predicted 

protein coding genes, predicted proteomes and associated PFAM annotations. The whole 

genomes (protein coding and non-coding regions) were also downloaded for all the sequenced 

fungi in Neocallimastigomycota, as well as Saccharomyces cerevisiae, Trichoderma reesei 

and Rhodotorula graminis (accessed November 2018) (Grigoriev et al., 2014). The de novo 

assembled transcriptomes of A. robustus and N. californiae (Solomon et al., 2016) and the 

associated differential transcriptomic datasets for each these fungi grown in isolation on reed 

canary grass (Henske, Wilken, et al., 2018) were also used as described below. Scripts using 

the Julia programming language, and the associated BioSequences and HypothesisTests 

packages, were used to process and analyze the data (Bezanson et al., 2017). Code is available 

on Mendeley Data, DOI: 10.17632/26vywtfkrz.1  

3.5.2 Nucleotide content, genome analysis and construction of codon tables  

Using genomic data, the nucleotide content of the protein coding genes for all 443 fungi, 

as well as the unmasked whole fungal genomes for the fungi in Neocallimastigomycota, were 

calculated by counting each nucleotide base (G, C, T, A) and ignoring gaps and indeterminate 

bases (N). The GC fraction was then calculated by dividing the total number of G and C bases 

by the total number of G, C, T, and A bases ((G+C)/(G+C+A+T)). Similarly, the amino acid 

abundances were calculated by counting the number of each amino acid found in the predicted 
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proteome, which is the translated protein coding gene, relative to the total number of amino 

acids in the same predicted proteome for each organism. Phylogenetic classifications were 

based on the taxonomic assignments as defined by the JGI. The number of protospacer 

adjacent motif (PAM) sites per genome was counted by parsing through each scaffold on the 

whole genomes of all the sequenced fungi in Neocallimastigomycota, as well as 

Saccharomyces cerevisiae, Trichoderma reesei and Rhodotorula graminis, and counting the 

number of matches to a particular motif, e.g. TTN would match to TTA, TTG, TTT and TTC, 

using the Julia BioSequences package. The number of hits was then divided by the total 

number of bases in each fungal genome.  

Codon optimization tables for anaerobic fungi were calculated by first identifying the top 

1000 most expressed genes in the fungal isolates N. californiae and A. robustus using the  

differential transcriptomic data for these fungi grown on reed canary grass from Henske, et al. 

(2018) (Henske, Wilken, et al., 2018). BLASTn was then used to align these transcripts to 

their predicted genes (Camacho et al., 2009). Only genes with coverage greater than 90% and 

e-values less than 10-60 were decomposed into codons. The frequency of each codon was then 

calculated by counting the number of times it appears relative to all the other synonymous 

codons. The tRNA gene counts in the genomes of A. robustus and N. californiae were found 

by tRNAscan-SE using the eukaryotic specific parameters (Chan and Lowe, 2019). 

3.5.3 Identification of homopolymeric amino acid runs and glycosylation motifs in fungi 

Using the Julia BioSequences package, the predicted proteomes from downloaded 

Mycocosm fungal genomes were searched for homopolymeric runs of 5 or more consecutive 

amino acids of the same type (Karlin et al., 2002) through the regular expression “X{5,}” 
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where X is the amino acid query. This bioinformatic search returns the longest uninterrupted 

hit of 5 of more amino acids (X) in succession within the proteome. For example, the 

hypothetical protein, “MGKTTTTTLTTTTTTTF”, has two threonine runs of length five 

and six. The canonical N-glycosylation motif, N-X-(S or T) (where N is asparagine, X is any 

amino acid except proline, S is serine and T is threonine) (Deshpande et al., 2008), was found 

by searching each protein using the regular expression “N[^P](S|T)”.  

3.5.4 CAZyme identification and transcriptomic expression analysis 

CAZymes were identified by matching the predicted protein family annotations from the 

PFAM annotation files in the 443 sequenced fungal genomic datasets to a list of CAZyme 

family domains. See Table S6 in the supplementary material upon which this chapter is based 

for the PFAM to CAZyme family domain association table (Carlson et al., 2019). A protein 

was designated as a CAZyme if at least one annotated PFAM domain was found in the 

CAZyme family domain list. For each fungus, this filtered list of CAZymes was used to search 

for amino acid runs as described above, to determine the amino acid composition of the 

CAZymes and to find predicted N-glycosylation motifs. Furthermore, only predicted 

CAZymes that had a coverage greater than 90% and an e-value less than 10-40 (using BLASTn 

(Camacho et al., 2009) to match the associated gene against the transcriptomes in (Solomon 

et al., 2016)) were included in the CAZyme expression analysis using the reed canary grass 

condition data of (Henske, Wilken, et al., 2018).   



 

80 

 

3.5.5 Annotation of sexual reproduction and glycosylation genomic machinery in fungal 

genomes 

To evaluate the potential for sexual reproduction by phylum Neocallimastigomycota, we 

searched member genomes for a subset of proteins required by other fungi for sexual 

reproduction (Hull, Raisner and Johnson, 2000). Using S. cerevisiae peptide sequences 

obtained from “The Saccharomyces Genome Database (SGD)” (www.yeastgenome.org) as 

queries we searched for mating factors, proteins involved in sexual reproduction, and proteins 

involved in meiosis. Specific Saccharomyces genes queried included sex-implicated kinases 

(STE20) (Leberer et al., 1996), sex-signal transduction proteins (STE6, GPA1) (Sadhu et al., 

1992; Raymond et al., 1998), meiosis specific recombinases (DMC1) (Diener and Fink, 

1996), and mating factors (MATa/MATα) (Hull, Raisner and Johnson, 2000). Additionally, 

peptide mating factors of N. crassa (MATA/MATa), and pheromone receptor domain 

containing proteins from cryptically sexual fungi were queried against anaerobic fungal 

genomes (Glass, Grotelueschen and Metzenberg, 1990; Staben and Yanofsky, 1990; Ropars 

et al., 2016). The tBLASTn algorithm with a BLOSUM62 substitution matrix was used to 

score peptide alignments against genomes using an expected e-value of 10-25 (Camacho et al., 

2009).  

The glycosylation machinery in fungi is highly conserved, as such S. cerevisiae’s 

canonical genes were used as benchmarks for the identification of putative glycosylation 

pathways (Deshpande et al., 2008). The predicted proteins of the gut fungi were compared to 

benchmark proteins found in S. cerevisiae (downloaded from Uniprot (‘UniProt: a worldwide 

hub of protein knowledge’, 2019)) using BLASTp (Camacho et al., 2009). A gene was 

deemed present if the coverage was greater than 50% and the e-value less than 10-20. O-
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glycosylation was deemed possible if all PMT1-4 genes were found (Gentzsch and Tanner, 

1996) and N-glycosylation was deemed possible if at least three of DPM1, ALG3, ALG9, 

ALG12, OST1, OST3 and STT3 were found (Knauer and Lehle, 1999; Deshpande et al., 

2008), see Table S5 in the supplementary material of the paper upon which this chapter is 

based for a collation of the blast results. 
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IV. Experimentally validated reconstruction and analysis of a genome-scale 

metabolic model of an anaerobic Neocallimastigomycota fungus 

This chapter is based upon work that is in preparation for publication in mSystems 

Journal by St. Elmo Wilken, Jonathan M. Monk, Patrick A. Leggieri, Christopher Lawson, 

Thomas S. Lankiewicz, Susanna Seppälä, Stephen J. Mondo, Kerrie W. Barry, Igor V. 

Grigoriev, John K. Henske, Michael K. Theodorou, Bernhard O. Palsson, Linda R. Petzold, 

and Michelle A. O’Malley, entitled “Experimentally validated reconstruction and analysis 

of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus”. See 

the upcoming publication for more detailed information regarding the datasets used to 

construct the model, the supplement, as well as the model itself. 

4.1 Introduction  

Anaerobic gut fungi, in the early-branching phylum Neocallimastigomycota, are found in 

the digestive tracts of herbivores where they play an integral role in the lignocellulolytic 

microbiome of their host (Gruninger et al., 2014). Recent transcriptomic and genomic 

analyses have revealed that these fungi harbor an incredible diversity of carbohydrate active 

enzymes (CAZymes) that are tailored to excel at decomposing lignocellulosic plant biomass 

(Resch et al., 2013; Youssef et al., 2013; Solomon et al., 2016; Haitjema et al., 2017b; S 

Seppälä et al., 2017). Given their ability to metabolize raw lignocellulose, anaerobic gut fungi 

are an appealing biotechnological platform to drive the conversion of lignocellulose into 

hydrolyzed sugars, and ultimately into renewable chemicals via biofermentation (Himmel et 

al., 2007; Sarkar et al., 2012; Liao et al., 2016). 
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While the lignocellulolytic abilities of anaerobic gut fungi motivate their biotechnological 

interest, they are temperature sensitive, obligately anaerobic, relatively slow growing, 

typically require specialized media, and their genomes are extremely AT and repeat rich 

(Youssef et al., 2013; Haitjema et al., 2014; Wilken et al., 2020). Furthermore, no robust 

genetic engineering tools have been developed for this class of fungi, hampering classic 

molecular biology techniques that can be used to investigate, understand and engineer their 

metabolism. Despite these challenges, experimental and ‘omic’ datasets have emerged to 

elucidate some aspects of their metabolism (Marvin-Sikkema et al., 1994a; Akhmanova et al., 

1999; Boxma et al., 2004; Youssef et al., 2013; Henske, Gilmore, et al., 2018). Still lacking, 

however, is a framework to synthesize this data, to clarify lingering uncertainties regarding 

their unique physiology, and to provide a systematic way to engineer anaerobic fungi for 

biotechnology. In particular, their hydrogenosomal metabolism is unresolved, with no clear 

consensus on the pathways used in this mitochondrion like organelle. Current hypotheses 

either suggest an energetically unfavorable pathway involving pyruvate formate lyase is used 

to produce H2, or a pathway involving pyruvate ferredoxin oxidoreductase that is not 

supported by extra-cellular metabolite measurements (Marvin-Sikkema et al., 1994a; Boxma 

et al., 2004).  

Genome-scale models (GSMs) can be used to address these shortcomings, as they are well 

suited to act as knowledge base platforms for integrating multi-omic datasets and have been 

successfully used to drive the engineering of both pro- and eukaryotes  (Blazeck and Alper, 

2010; Aung, Henry and Walker, 2013; Simeonidis and Price, 2015). Moreover, by 

experimentally testing the predictions of a GSM we can systematically refine our 
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understanding of the metabolism of an organism. This is particularly appealing in the context 

of non-model microbes, like the anaerobic gut fungi, that are relatively understudied.  

Here, we introduce a high-quality, PacBio sequenced genome (200 Mbps, 62x sequencing 

depth) of the anaerobic gut fungus Neocallimastix lanati.  Comparative genomic analyses 

revealed that N. lanati is metabolically similar to the other sequenced isolates, suggesting that 

insights gained from understanding its genome may be generalizable to the other species in 

the clade. Moreover, the genome of N. lanati encodes for many CAZymes (~1788 CAZymes 

with 585 associated with the fungal cellulosome), as found in other sequenced 

Neocallimastigomycota fungi, reinforcing its biotechnological promise. Based on the genome, 

we constructed the first genome-scale metabolic model of an anaerobic gut fungus. This 

fungus is well suited to act as a platform to investigate the metabolism of anaerobic gut fungi 

because it can grow in completely defined (M2) media, is relatively fast growing among gut 

fungal strains (μ = 0.045 ± 0.003 1/h in M2 media), and can be cryopreserved. The 3-

compartment (extracellular, cytosolic and hydrogenosomal compartments) model introduced 

here, named iSW587, is composed of 587 genes, 1014 reactions, 815 metabolites and models 

the primary metabolism of N. lanati. The model is stoichiometrically consistent, as well as 

mass and charge balanced. Experimental, genomic, transcriptomic and metabolic flux analysis 

data were used to build and validate the model. The model recapitulates extracellular 

metabolite production rates and accurately models the observed growth rate. Furthermore, the 

model refines and expands on previous hypotheses regarding the metabolism of the gut fungal 

hydrogenosome. In particular, both the model and experimental data suggest that pyruvate 

formate lyase (PFL) is significantly more active than pyruvate ferredoxin oxidoreductase 

(PFO) in the hydrogenosome, but that hydrogen formation can only occur via the latter 
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pathway. Going forward, this fungus and its associated model can be used to guide efforts to 

elucidate aspects of gut fungal metabolism that remain unclear and direct future metabolic 

engineering strategies. Indeed, model based analysis could be invaluable in designing stable 

consortia between anaerobic gut fungi and other industrially utilized organisms – something 

that has not yet been fully realized (Ranganathan et al., 2017; Henske, Wilken, et al., 2018; 

Gilmore et al., 2019).  

4.2 Results and discussion 

4.2.1 The genome of N. lanati is rich in carbohydrate active enzymes (CAZymes) and 

metabolically similar to other anaerobic gut fungi 

Given the large genomic size and repeat-richness inherent to anaerobic fungi (Wilken et 

al., 2020), PacBio sequencing was used to obtain a high-quality genome of the isolate N. lanati 

(see Figure S1 in the supplement for its phylogeny; the Index Fungorum identification number 

is IF557810), which was sourced from a fecal pellet of a sheep. While the genome of this 

fungus is large, as shown in Table 4.1, it is the second least fragmented of all 5 of the published 

gut fungal genomes, as shown in Table S1 in the supplement. The N. lanati genome encodes 

for a rich array of carbohydrate active enzymes (CAZymes) in similar numbers to those 

reported from other gut fungal genomes (Youssef et al., 2013; Solomon et al., 2016; Haitjema 

et al., 2017b). In total, 1788 CAZymes were identified in the genome, of which 1253 were 

expressed in the transcriptome (see the transcriptome supplied in the supplemental dataset). 

Like other anaerobic gut fungi, N. lanati deploys both complexed (cellulosomes) and 

uncomplexed CAZymes through its rhizoidal network (see Table 4.1 and Figure 4.1), which 

mechanically disrupts lignocellulose, to aid in its decomposition. Figure S2 in the supplement 
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shows the breakdown of CAZyme domains identified in the genome of N. lanati. This, in 

combination with its relatively high growth rate on defined M2 media, suggests that N. lanati 

is a good model anaerobic gut fungus. The genome is available online at 

https://mycocosm.jgi.doe.gov/Neolan1/Neolan1.info.html.  

Table 4.1: A summary of the features of the genome of N. lanati. CAZyme = carbohydrate active 

enzyme, GH = glycoside hydrolase. Metabolic genes are defined as genes that have an enzyme 

commission (EC) number assigned to them. GH genes that have a dockerin domain are likely present 

in cellulosomal complexes (Haitjema et al., 2017b). 

 

Feature Value 

Genome size (Mbp) 200.97 

Number of scaffolds 970 

Sequencing read coverage depth 62.05x 

Number of predicted genes 27677 

Number of CAZymes 1788 

    Number of GH genes 678 

    Number of GH genes containing a             

dockerin domain 

271 

Number of metabolic genes 2761 

Number of transporters 1754 
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Figure 4.1: The morphology of Neocallimastix lanati aids in the decomposition of unpretreated 

lignocellulose by disrupting the lignocellulosic plant biomass to increase the surface area available for 

enzymatic attack. A micrograph of a mature N. lanati sporangium growing on corn stover in M2 media 

after 3 days of growth at 39°C. The filamentous rhizoidal network is used to increase the surface area 

for its lignocellulolytic enzymes that decompose the lignocellulosic corn stover into its fermentable 

sugar constituents.  

Despite advances in sequencing and annotation, a large number of putative gut fungal 

genes remain unannotated (~48% of the 27,677 predicted genes of N. lanati) (as shown in 
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Table S1 in the supplement), which is consistent with previous genomic annotations in this 

clade. These unannotated genes contribute to gaps found in the reconstructed metabolism of 

N. lanati.  A comparative genomic analysis within the primary metabolism across all high 

quality publicly available gut fungal genomes (Anaeromyces robustus, Neocallimastix 

californiae, Pecaromyces ruminantium, Piromyces finnis) revealed that the gut fungi are 

metabolically similar. Of the 1023 unique EC numbers identified across these 5 genomes, less 

than ~3% are unique to each isolate (as shown in Figure 4.2). This suggests that gut fungi 

share a similar primary metabolism. Thus, metabolic gaps can potentially be filled by 

searching for genes in N. lanati that are homologous to those encoded for in the genomes of 

the other gut fungal isolates. In this way, key enzymes in the biosynthesis pathways of 

arginine, asparagine, biotin, riboflavin, lipids and fatty acids were identified and included in 

the metabolic reconstruction of N. lanati. In total, 53 gaps in the primary metabolic pathways 

were identified and annotated in this manner, as noted in the confidence score and homologous 

gene annotation fields in the model. 
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Figure 4.2: Anaerobic gut fungi have very similar metabolic potential, suggesting that metabolic gaps 

can be filled by looking for homologous genes found in the other sequenced isolates. Each Venn 

diagram was generated by inspecting the intersection of the annotated EC numbers contained in the 

genome of each fungus for each metabolic module. Overlapping regions imply that those isolates share 

the EC assignments contained in each of the metabolic modules. The EC numbers contained in each 

module are based the KEGG database (Kanehisa et al., 2016) (see the supplement for the list of 

modules encompassing each Venn diagram), while the EC assignments for each fungus are based on 

the JGI and bidirectional annotation data as described in the methods section. 

4.2.2 The curated metabolic model of N. lanati captures the carbon, amino acid, vitamin, 

fatty acid, nucleotide and lipid metabolism 

Based on the metabolic reconstruction of N. lanati, a manually curated genome-scale 

model of N. lanati was built (iSW587) by following an established protocol for generating 

high-quality reconstructions (Thiele and Palsson, 2010). The model contains 1014 reactions, 

815 metabolites, and 587 genes distributed across 3 compartments (hydrogenosome, 
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cytoplasm, and extracellular space). Where possible, experimental data was used to curate the 

model. The methods section details specifics on the curation process, as well as experiments 

used to construct the biomass objective function of the model. Briefly, Table 4.2 shows the 

experimentally measured macromolecular components of N. lanati that were used to construct 

the biomass objective function for the genome-scale model. Further simplifying assumptions 

were made to construct the specific biomass objective function used in iSW587. The 

carbohydrate component of the biomass was assumed to be solely chitin and the amino acid 

composition of the protein component of the biomass was assumed to follow the amino acid 

distribution of the predicted genes (i.e. the predicted proteome). Similarly, the nucleotide 

composition was assumed to follow the composition of the genome (for the DNA nucleotides) 

and the transcriptome (for the RNA nucleotides). The lipid component was assumed to be 

composed of myristic, palmitic and stearic acid, which were found to be the major fatty acid 

components of the lipid fraction of N. lanati, as shown in Figure S3 in the supplement. The 

growth associated and non-growth associated maintenance (GAM and NGAM, respectively) 

functions were estimated using experimental data, see Figure S4 in the supplement and 

Table 4.2. 

Table 4.2: The experimentally measured macromolecular constituents of N. lanati that were used to 

construct the biomass objective function for the genome-scale model. Experimental data were used to 

estimate the biomass objective function. See the methods section for more details. 

Biomass component Mass fraction [g/gdw %] 

Carbohydrate 32.4 ± 1.6 

Protein 43.7 ± 1.2 

Lipids 4.9 ± 0.2 

DNA 0.2 ± 0.1 
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RNA 0.6 ± 0.1 

Sum 81.8 ± 3.2 

GAM 76 mmol ATP/gDW/h 

NGAM 2.3 mmol ATP/gDW 

 

Table 4.3 provides a brief summary of the main features of the model, while the full model 

is included in the supplement. Table S2 in the supplement explains the confidence rating 

assigned to each reaction in the model. In the energy generating pathways, particular attention 

was paid to modeling the hydrogenosome (a mitochondrion like organelle that functions 

completely anaerobically), which is discussed in greater detail in the following sections. More 

generally, the Embden–Meyerhof–Parnas variant of glycolysis is present in N. lanati, as well 

as pathways for mixed acid fermentation (succinate, acetate, lactate, formate and ethanol), 

which are typically found in anaerobic gut bacteria (Flint et al., 2008). Interestingly, it was 

found that N. lanati possesses both the NAD+ and NADP+ variants of glyceraldehyde-3-

phosphate dehydrogenase in glycolysis, with the latter used to conserve energy as NADPH 

instead of ATP. The pentose phosphate pathway of N. lanati is incomplete, with glucose-6-

phosphate dehydrogenase and 6-phosphogluconate missing. These reactions regenerate 

NADPH and possibly explain the presence of the NADP+ variant of glyceraldehyde-3-

phosphate dehydrogenase as a compensating mechanism (Martínez et al., 2008). The xylose 

isomerase pathway is also present in N. lanati, as has been found in other sequenced gut fungi 

(Henske, Wilken, et al., 2018). 

Table 4.3: Summary of iSW587 features. The model is also consistent, as well as completely mass and 

charge balanced.  

Features Number 
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Total reactions 1014 

Total metabolites 815 

Total genes 587 

Number of compartments 3 (Extracellular, cytosolic, hydrogenosomal) 

Carbohydrate reactions 138 

Nucleotide reactions 133 

Transporters 162 

Amino acid reactions 145 

Vitamin reactions 133 

Lipid reactions 162 

 

The major components (amino acids, nucleotides, vitamins, fatty acids and lipids) of the 

anabolic metabolism of N. lanati were found to be present, in agreement with its ability to 

grow in sparse M2 media. Specifically, the complete biosynthesis pathways for all the 

proteogenic amino acids and the modeled fatty acids were found. Most of the canonical 

vitamin and co-factor (vitamin B5, vitamin B6, riboflavin and thiamin) biosynthesis pathways 

were also found to be complete, with the exception of folate where no synthesis mechanism 

of 4-aminobenzoate was found. However, the heme and biotin biosynthesis pathways were 

found to be incomplete. Since N. lanati can grow in completely defined M2 media, gaps in 

the model due to nutritional requirements were relatively easy to fill. Finally, the model 

recapitulates the experimentally observed growth rate in defined media using only the 

measured flux of glucose (1.5 mmol/gDW/h) as an input constraint (flux balance analysis 

predicted μ = 0.047 1/h vs. an experimentally measured μ = 0.045 ± 0.003 1/h). 
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4.2.3 iSW587 includes an expanded model of the hydrogenosomal metabolism 

Anaerobic gut fungi possess a variant of the hydrogenosome, with the core set of enzymes 

that catalyze the conversion of malate and pyruvate to acetate, H2 and formate already 

identified, as shown in Figure 4.3 (Yarlett et al., 1986; Marvin-Sikkema et al., 1994a; Boxma 

et al., 2004; Hackstein et al., 2019). However, the metabolic pathway leading to H2 production 

is not resolved with literature suggesting either pyruvate ferredoxin oxidoreductase (PFO) or 

pyruvate formate lyae (PFL) are possible routes. Both enzymes were identified in the genome 

and transcriptome and are thus included in the model of the hydrogenosome.  

Figure 4.3: An expanded model of the hydrogenosome is included in the model based on genomic 

annotation, literature and predicted localization data (Marvin-Sikkema et al., 1994a; Akhmanova et 

al., 1999; Boxma et al., 2004). Core hydrogenosome enzymes are colored in blue, while speculative 

enzymes are shown in black. PFL = pyruvate formate lyase, PFO = pyruvate ferredoxin 

oxidoreductase, Ac = Acetate, SucCoA = Succinyl Coenzyme A, CoA = Coenzyme A, AcCoA = 

Acetyl Coenzyme A, Frdx. = ferredoxin. 

By combining literature sources, gene annotation, transcriptomic expression and 

subcellular localization data, we have included additional pathways in the model of the 
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hydrogenosome for N. lanati, as shown in Table 4.4 and Figure 4.3. Of note is the inclusion 

of an ATP synthase, which has previously been speculated to be present in other anaerobic 

gut fungal isolates (Marvin-Sikkema et al., 1994b; Youssef et al., 2013). Additionally, we 

also found evidence that complex 2 of the mitochondrial electron transport chain is present: 

homologs to all four subunits were found to be expressed and localized to the hydrogenosome, 

see Table 4.4 (complex 2: sub. A, B, C, D). We could not find any homologs of the membrane 

bound subunits of complex 1 or the ATP synthase in the N. lanati genome, as has also been 

reported previously for other anaerobic gut fungi (Seppälä et al., 2016). It is perplexing that 

no homologs of the membrane bound subunits of complex 1 were found, since these are used 

to shuttle electrons between the two complexes in the inner membrane of the mitochondria, 

and complex 2 cannot function without them. However, homologs of the soluble subunits of 

complex 1, nuoF and nuoE, are highly expressed relative to the other core enzymes of the 

hydrogenosome, see Table 4.4. The presence of the soluble subunits, coupled with the absence 

of the membrane associated subunits of complex 1, has also been observed in the 

hydrogenosomes of, amongst others, Trichomonas vaginalis (Hrdy et al., 2004; Schneider et 

al., 2011) and N. ovalis (Boxma et al., 2007). This raises two possibilities. First, that N. lanati 

possesses a proton pumping mechanism. While the membrane bound subunits of complex 1 

would be critical for this function to work, we do find preliminary evidence of a pH gradient 

inside the hydrogenosome, as shown in Figure S4 in the supplement. Second, it is possible 

that its hydrogenase associates with the identified nuoF-like subunit of complex 1 to form a 

bifurcating hydrogenase, as has been speculated to occur in T. vaginalis (Hrdy et al., 2004; 

Muller et al., 2012). Indeed, we find high homology sequences in the N. lanati genome to all 
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three of the bifurcating hydrogenase subunits characterized in Thermotoga maritima (Gerrit J 

Schut and Adams, 2009), as shown in Table S3 in the supplement. 

Table 4.4: Enzymes included in the model of the hydrogenosome metabolism. Mitochondrial 

localization is probably hydrogenosomal due to their evolutionary relationship (Youssef et al., 2013). 

Transcriptomic expression count data is derived from the M2 cellobiose expression dataset and 

represent the mean of a triplicate for each enzyme. Localization was predicted using DeepLoc 

(Almagro Armenteros et al., 2017). PFL = pyruvate formate lyase, PFO = pyruvate ferredoxin 

oxidoreductase, Ac = Acetate, SucCoA = Succinyl Coenzyme A, syn = synthase, trans = transferase, 

sub = subunit. 

Enzyme 
Gene 

(Protein ID) 

Mean 

expression 

[TPM] 

Localization 

Number of 

other gut fungi 

where this gene 

was found 

PFL 1 981064 1967 Cytoplasm 5 

PFL 2 1027775 182 Cytoplasm 5 

PFO 623223 17 Mitochondrion 4* 

Ac:SucCoA trans. 1731457 217 Cytoplasm 5 

Ac:SucCoA trans. 1316948 217 Cytoplasm 5 

SucCoA syn. sub. A 1636158 1048 Mitochondrion 5 

SucCoA syn. sub. B 1276456 1544 Mitochondrion 5 

Hydrogenase 1 1341048 219 Mitochondrion 5 

Hydrogenase 2 1718044 17 Cytoplasm 5 

Complex 1: nuoF 1047445 339 Mitochondrion 5 

Complex 1: nuoE 993995 519 Mitochondrion 5 

Complex 2: sub. A 1702000 4 Mitochondrion 5 

Complex 2: sub. B 1688149 13 Mitochondrion 5 

Complex 2: sub. C 1286787 12 Mitochondrion 3 

Complex 2: sub. D 1677752 8 Mitochondrion 2 

Fumarase 985684 4 Cytoplasm 5 

ATP syn.: sub. Alpha 1037070 1 Mitochondrion 5 

ATP syn.: sub. Beta 1706307 8 Mitochondrion 5 

ATP syn.: sub. Delta 1045818 26 Mitochondrion 5 
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ATP syn.: sub. Gamma 1061751 3 Mitochondrion 5 

 

*Not identified in the genome of N. californiae, however a transcript with close homology to PFO 

was identified.   

Taken together, our expanded model of the hydrogenosome includes the core enzymes 

previously reported in other fungal species as well as a speculative bifurcating hydrogenase, 

an ATP synthase and a proton pumping module composed of complex 1 and complex 2 

enzymes identified in the N. lanati genome (similar to what has found in other H2 producing 

mitochondria (Muller et al., 2012)). Given the speculative nature of the proton pumping 

mechanism and the bifurcating hydrogenase, these reactions are constrained to carry zero flux 

in the working model. Additionally, it has previously been suggested that a hydrogen 

dehydrogenase (NAD(P)+ + H2 ↔ H+ + NAD(P)H) operates in the reverse direction in the 

hydrogenosome (Akhmanova et al., 1999; Boxma et al., 2004; Youssef et al., 2013). 

Consequently, this hydrogen dehydrogenase simultaneously produces H2 and prevents the 

accumulation of NAD(P)H produced by the malic enzyme in the hydrogenosome. However, 

in this direction the reaction is energetically very unfavorable (∆G ≈ 34 ± 5.9 kJ/mol assuming 

physiologically realistic conditions). Therefore, the flux bounds of this reaction in the 

hydrogenosome were set to reflect the assumption that the hydrogen dehydrogenase only 

carries flux in the forward, energetically feasible, direction. 

4.2.4 iSW587 accurately predicts substrate utilization and in vivo fluxes 

The curated model was validated using a combination of growth curves, extracellular 

metabolite and metabolic flux analysis (MFA) data. Substrate utilization tests were done on 

36 different carbon sources, focusing on metabolites that are present in the natural 
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environment of the anaerobic fungi, see Table 4.5. The qualitative prediction accuracy of the 

model for the substrate utilization and vitamin essentiality validation tests is 89%. 

Interestingly, despite the presence of a full xylose isomerase pathway, N. lanati did not grow 

using xylose as its sole carbon source, as has been found in other gut fungi (Henske, Wilken, 

et al., 2018). In this case, the model’s predictions were incorrect. Cellular regulation or co-

factor imbalances might explain this discrepancy (Henske, Wilken, et al., 2018). Vitamin 

essentiality tests were also conducted, as shown in Table 4.5. It was found that both heme and 

4-aminobenzoate were essential for growth, in agreement with the model’s predictions. In 

other gut fungi, heme has also been found to be essential (Orpin and Greenwood, 1986), 

suggesting that its de novo biosynthesis pathway may be absent across the clade. It was found 

that only cysteine could be used as a sulfur source. However, it is not clear if this is a 

nutritional requirement since every other reducing agent tested (Na2S, 2-mercaptoethanol and 

dithiothreitol) appeared to be toxic to the fungus. Since cysteine was used to ensure 

anaerobicity of the media, we could not test nitrogen source utilization. 

Table 4.5: Substrate utilization table suggests that the model accurately captures phenotypic behavior 

of N. lanati. The model accurately predicts phenotypic responses in 89% of the tested cases. See the 

methods section for details about the experiments that yielded these results. + indicates that the model 

predicted growth/there was experimentally observed growth, while – denotes the opposite. 

 
Substrate 

Model 

prediction 

Experimental 

observation 

C
ar

b
o
n
 u

ti
li

za
ti

o
n
 Glucose + + 

Cellobiose + + 

Sorbitol + - 

Fructose + + 

Galactose + - 

Maltose + + 
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Mannose + - 

Sucrose + + 

Xylose + - 

Arabinose - - 

Rhamnose - - 

Pyruvate - - 

Succinate - - 

Citrate - - 

Glycerol - - 

Pectin - - 

Cellulose + + 

Lignocellulose + + 

Acetate - - 

Fumarate - - 

N-acetyl-glucosamine - - 

Lactate - - 

Maltodextrin + + 

Methanol - - 

Oxaloacetate - - 

Xylan + + 

Ethanol - - 

Malate - - 

Formate - - 

Raffinose + + 

Phenylalanine - - 

Arginine - - 

Leucine - - 
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Proline - - 

Serine - - 

Threonine - - 

V
it

am
in

 e
ss

en
ti

al
it

y
 

Pyridoxine + + 

p-aminobenzoic acid - - 

Biotin - + 

Cyanocobalamin + + 

Riboflavin + + 

Folic acid + + 

Pantothenate + + 

Nicotinic acid + + 

Thiamin + + 

Heme - - 

 

Metabolic flux analysis was also used to experimentally verify the predicted intracellular 

fluxes of the GSM. A [1,2]-13C labeled glucose tracer was used in conjunction with a carbon 

atom transition model built from the N. lanati metabolic reconstruction (see the supplement). 

For the MFA model, metabolic degeneracy caused by the ability of the hydrogenosome to 

metabolize both malate and pyruvate resulted in large bounds on the fluxes involving these 

metabolites. To circumvent this, the MFA model was constrained to only import pyruvate into 

the hydrogenosome, based on previous observations (Boxma et al., 2004). Extracellular 

metabolic product measurements (ethanol, formate, H2, acetate, succinate, lactate) were also 

used to constrain the MFA model. This resulted in accurate internal metabolic flux 

measurements based on a statistically significant fit between measured and simulated 

proteinogenic amino acid labelling patterns, as shown in Figure 4.4. These measured fluxes 
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were then compared to the fluxes predicted using the GSM under the same constraints. 

Parsimonious-FBA (pFBA) was then used to find unique flux predictions. Using these 

constraints, the coefficient of determination between the pFBA and MFA simulation was 

found to be 0.98, as shown in Figure S5 in the supplement. This suggests that the metabolic 

model accurately predicts the steady-state measured intracellular fluxes of N. lanati. 
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Figure 4.4: The genome-scale model accurately predicts the in vivo carbon metabolism of N. lanati. 

Experimentally determined MFA fluxes and predicted pFBA fluxes (top and bottom respectively) for 

glycolysis, the TCA cycle and the hydrogenosome of N. lanati. Error estimates denote one standard 

deviation from the reported mean for the MFA measurements. Three serially passaged [1,2]-13C 

glucose tracer experiments, grown in M2 media at 39°C and harvested during exponential phase, were 

used to measure the in vivo fluxes (see the methods section for more details). The MFA model is 

included in the supplement. 

 

4.2.5 The core hydrogenosome metabolism uses PFO to produce hydrogen but PFL 

carries the most flux 

There remains uncertainty regarding the presence of pyruvate ferredoxin oxidoreductase 

(PFO), and its relative importance in the hydrogenosomal metabolism of anaerobic fungi. 

Earlier enzymatic characterization of hydrogenosomal proteins in Neocallimastigomycota 

suggested that PFO is the primary route for H2 production through an associated ferredoxin 

hydrogenase, as found in the hydrogenosomes of other organisms (Yarlett et al., 1986; 

Marvin-Sikkema et al., 1993, 1994b; Muller et al., 2012). However, more recent studies 

suggest that PFO is either absent, or of only marginal importance in the gut fungal 

hydrogenosomal metabolism (Akhmanova et al., 1999; Boxma et al., 2004). These later 

studies suggest that pyruvate formate lyase (PFL), which was likely acquired through 

horizontal gene transfer from bacteria (Stairs, Roger and Hampl, 2011), is significantly more 

active than PFO. It has been suggested that hydrogen evolution occurs through a hydrogen 

dehydrogenase working in an energetically infeasible reverse direction (Boxma et al., 2004; 

Youssef et al., 2013). Both PFO and PFL were identified in all published gut fungal genomes, 

as well as in N. lanati, as shown in Table 4.4. Therefore, we used the model to reconcile the 
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role and relative importance of these two enzymes to hydrogenosome function under steady-

state growth conditions.  

Due to the reaction stoichiometry of PFL, the molar ratio of formate to acetate and ethanol3 

produced is expected to approach unity if PFL is metabolically dominant (Akhmanova et al., 

1999). Since PFO only produces acetate, and not formate, the ratio of formate to acetate and 

ethanol will not be unity if PFO carries significant metabolic flux. Figure S6.A in the 

supplement shows that the experimentally measured molar ratio of formate to acetate and 

ethanol is not significantly different (using the unequal variance test, p<0.05) from unity for 

N. lanati, similar to earlier metabolite measurements for P. sp. E2, suggesting that PFL is 

dominant (Boxma et al., 2004). Figure S6.B shows that the unconstrained model predicts a 

wide range of possible ratios, reflecting the metabolic degeneracy of the carbon metabolism 

of N. lanati. Since there is no energetic cost associated with using PFO versus PFL, the model 

predicts that both could be used. However, external metabolite flux measurements show only 

modest H2 production (see Table 4.6), suggesting that cellular regulation may play a role in 

diverting flux to PFL instead of PFO. This can also be seen in the relative expression 

difference between PFL and PFO (an order of magnitude difference between them) in 

Table 4.4. By constraining the model’s H2 flux to the observed values, the range of possible 

ratios is reduced to those observed experimentally, as shown in Figure S6.B. Since PFO is the 

only (known) energetically feasible way to produce H2, this result is not surprising. Using this 

constraint, the model suggests that PFL carries the most flux in the hydrogenosome, but that 

PFO is used to produce H2. 

 
3 Ethanol is produced from PFL (via acetyl co-enzyme A) in the cytosol. 
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Table 4.6: Experimentally measured external fluxes of various metabolites produced by N. lanati 

growing on cellobiose in M2 media during exponential phase. See the methods section for details. 

Metabolite Mean flux 

[mmol/gDW/h] 

Standard 

deviation 

[mmol/gDW/h] 

Lower 

bound 

[mmol/gDW/h] 

Upper 

bound 

[mmol/gDW/h] 

Succinate 0.03 0.01 0.02143 0.045297 

Lactate 0.87 0.14 0.716237 1.089 

Ethanol 0.66 0.20 0.47280 1.0135 

Formate 1.40 0.30 1.0875 1.7930 

Acetate 0.56 0.12 0.42398 0.7118 

H2 0.10 0.06 0.0474 0.189 

 

4.2.6 Electron bifurcation and proton pumping likely form part of the hydrogenosomal 

metabolism 

Electron bifurcation is an energy conservation mechanism that can be used to drive 

thermodynamically unfavorable reactions by coupling endergonic and exergonic reactions 

through an enzyme complex (Müller, Chowdhury and Basen, 2018a). In the simplest case, 

this phenomenon is used by anaerobes to increase the yield of ATP through their carbon 

metabolism by using H2 as an electron sink for the recycling of NADH to NAD+ (Müller, 

Chowdhury and Basen, 2018b). In the case of the anaerobic gut fungi, the hydrogenosome 

can be used to generate 2 extra moles of ATP for every mole of glucose that enters glycolysis. 

However, not all the glycolytic flux can be diverted to the hydrogenosome because NAD+ 

needs to be regenerated from the NADH that is produced by glycolysis to maintain cellular 

redox balance. As mentioned before, NAD+ is unlikely to be produced by the hydrogen 

dehydrogenase since the redox potential of NADH/NAD+ is too electropositive to reduce H+ 
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directly (Muller et al., 2012). On the other hand, the ferredoxin-based hydrogenase included 

in the model only recycles the oxidized ferredoxin, produced by PFO, to reduced ferredoxin 

and does not impact the NADH/NAD+ pools in the cell. However, sequence homology 

suggests that the N. lanati hydrogenosome could potentially house a bifurcating hydrogenase, 

see Table S3 in the supplement, which would couple the reduction of H+ to the oxidation of 

NADH through the ferredoxin produced by PFO. This enzyme complex would allow more 

flux to be channeled into the hydrogenosome for energy production, since the hydrogenase 

would now generate NAD+ as well as H2 (see Figure 4.3).  

Overall, these findings suggest that there is a significant energetic advantage associated 

with possessing a bifurcating hydrogenase. The model captures this benefit by predicting a 

13% increase in growth rate associated with the use of the bifurcating hydrogenase, as opposed 

to the ferredoxin hydrogenase (μ=0.053 1/h vs. μ=0.047 1/h, respectively). Additionally, the 

model also dictates that the production of NAD+ shifts from the cytosol to the hydrogenosome 

when the bifurcating hydrogenase is used, as shown in Tables 4.7 and 4.8. However, this 

metabolic necessitates flux being diverted from PFL to PFO in the hydrogenosome. 

Consequently, significantly more H2 is predicted to be produced, which is not observed 

experimentally, as shown in Table 4.9. This discrepancy could be due to metabolic regulation 

that is unaccounted for in the GSM. Further experimental work needs to be done to investigate 

the potential presence of the bifurcating hydrogenase in the anaerobic gut fungal 

hydrogenosome. 

Table 4.7: Relative predicted flux of NAD+ producing reactions without the bifurcating hydrogenase 

using parsimonious flux balance analysis (μ=0.046 1/h). Acetaldehyde dehydrogenase = ACALD, 

ALCD2x = alcohol dehydrogenase, MDH = malate dehydrogenase. 

NAD+ producing reactions % of total flux Localization 
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ACALD 42 Cytosol 

ALCD2x 42 Cytosol 

MDH 16 Cytosol 

 

Table 4.8: Relative flux of NAD+ producing reactions when the model includes a bifurcating 

hydrogenase using parsimonious flux balance analysis (μ=0.053 1/h). Acetaldehyde dehydrogenase = 

ACALD, ALCD2x = alcohol dehydrogenase, HYDhbi = bifurcating hydrogenase, MDH = malate 

dehydrogenase. NAD+ is transported out of the hydrogenosome by a putative aspartate-malate shuttle. 

NAD+ producing reactions % of total flux Localization 

ACALD 15 Cytosol 

ALCD2x 15 Cytosol 

MDH 20 Cytosol 

HYDhbi 50 Hydrogenosome 

 

Table 4.9: H2 flux predicted by the unconstrained model using the ferredoxin and bifurcating 

hydrogenases, as well as the experimentally measured values. Predicted flux bounds are based on 2000 

samples of the relevant model, the biomass objective function was constrained to carry at least 90% 

of the flux of the optimal solution. 

Hydrogenase type in model Mean H2 flux 

[mmol/gDW/h] 

St. D. H2 flux 

[mmol/gDW/h] 

Unconstrained ferredoxin 0.73 0.42 

Unconstrained bifurcating 4.28 0.41 

Experimentally measured H2 

flux 

0.10 0.06 

 

Given that the hydrogenosome in anaerobic fungi is relatively understudied, yet related to 

the mitochondrion (Boxma et al., 2005; Muller et al., 2012), we assumed that their metabolite 

trafficking machinery is similar. Specifically, we assumed that the hydrogenosome has an 

inner membrane that is impermeable to H+
, like mitochondria (Zorova et al., 2018). This 
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implies that H+ can only enter and leave the hydrogenosome through the action of transporters 

or the speculative complex 1 and complex 2 proton pump introduced earlier. The H+ balance 

in the hydrogenosome has a direct effect on the ability of the putative ATP synthase to produce 

ATP. However, with or without the proton pumping mechanism of complex 1 and 2, the 

impact of the ATP synthase on ATP production was found to be small, with it only supporting 

small fluxes (~2% of the glucose flux into the model) as shown in Figure S7 in the supplement. 

This suggests that the putative hydrogenosomal proton gradient, as shown in Figure S4 in the 

supplement, may not be very important for the generation of ATP, as is also suggested by the 

low expression of the ATP synthase complex subunits (see Table 4.4). It could also be that 

the ATP synthase is actually a V-type ATPase and not present in the hydrogenosome (Seppälä 

et al., 2016). Furthermore, the mechanism by which the putative complex 2 operates remains 

to be answered without the membrane bound subunits of complex 1.  

4.2.7 Metabolic degeneracy is related to the regeneration of NAD+ 

The modeled gut fungal metabolism displays significant degeneracy, as shown by the high 

degree of flux variability in the unconstrained model, as shown in Table 4.10. The degeneracy 

is primarily due to the ability of N. lanati to regulate how NAD+ is regenerated through its 

mixed acid fermentation pathways, i.e. through a combination of lactate dehydrogenase, 

acetaldehyde dehydrogenase and alcohol dehydrogenase. Interestingly, the relative mean error 

between the predicted flux distributions and experimental measurements of the fermentation 

products is much more sensitive to constraints placed on acetate production than any other 

single measured external metabolite flux, as shown in Figure 4.5. Likewise, constraints placed 

on lactic acid flux also narrow the deviation of the predicted flux distributions. This effect is 
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due to the different yields of NAD+ that can be achieved per mole of pyruvate depending on 

which mixed acid fermentation pathway, or combination thereof, is constrained. Without the 

bifurcating hydrogenase, H2 production does not significantly impact the overall redox 

balance of the cell. This possibly explains why its constraint has the smallest effect on the flux 

variability predicted by the model and may allow the cell to fine tune its metabolism to suit 

the environmental needs, e.g. sugar availability, by up- or down-regulating the flux channeled 

to the hydrogenosome (Hackstein et al., 2019). 

Table 4.10: Flux variability analysis indicates that there is significant variability in the production rates 

of metabolic products that all lead to near optimal growth rates (the optimal growth rate, μ = 0.0465 

1/h, was lower bounded to 90% of its optimum). 

Metabolite flux 

(produced) 

Lower bound 

[mmol/gDW/h] 

Lower bound 

[mmol/gDW/h] 

Formate 0.89 2.94 

Acetate 1.00 1.76 

Ethanol 0.72 1.77 

Lactate 0 1.05 

H2 0 1.76 
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Figure 4.5: The absolute relative error between the model predictions and the experimentally measured 

values suggest that constraining the flux of acetate production has the biggest impact on the model’s 

accuracy. The flux of acetate (Ac), ethanol (EtOH), formate (For), H2 and lactate (Lac) was constrained 

individually to their observed ranges (variables on the x-axis). The resultant predicted fluxes of these 

metabolites (generated by sampling 2000 possible solutions where the biomass objective function was 

within 90% of its optimal value and subject to the respective additional constraints as shown in the 

figure) were then compared to the experimental observations as shown in the legend.   

4.2.8 Model predicted fluxes suggest strategies to engineer N. lanati for bioprocessing 

While anaerobic gut fungi specialize in lignocellulose decomposition, they are not well-

developed bio-production platforms compared to model microbes Escherichia coli and 

Saccharomyces cerevisiae (Chubukov et al., 2018). It has been suggested that pairing the gut 

fungi with one or more microbial cell factory organisms may offer an alternative approach 

that avoids the bottleneck associated with engineering and optimizing gut fungal metabolism 

for commodity chemical production (Ranganathan et al., 2017; Henske, Wilken, et al., 2018). 

Indeed, similar approaches have been used to pair Trichoderma reesei, a cellulose degrading 

specialist, with E. coli to produce isobutanol from pretreated corn stover (Minty et al., 2013). 
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Furthermore, it has been suggested that such approaches are more likely to be successful if 

the microbes are engineered to co-operate, instead of compete, with each other for resources 

(Mee et al., 2014).  

To make use of the lignocellulolytic capacity of N. lanati in a bioprocessing context, it is 

important to understand its metabolic limitations, for example, the maximum metabolic fluxes 

that can be diverted through metabolic engineering without excessively compromising cellular 

viability. Figure 4.6 shows the theoretical maximum flux of an assortment of metabolites that 

can be siphoned away from the primary metabolism of N. lanati with the constraint that its 

growth rate does not fall below 90% of its maximum growth rate predicted by the model. 

These metabolites can be used to either pair another organism with N. lanati through 

nutritional auxotrophies or can be used to produce value added chemicals directly from the 

fungi. It is interesting to note that H2 seems to be the best candidate metabolite to explore for 

bioprocessing because the model suggests that it has the highest available flux yield that can 

be used without compromising growth. This is in agreement with literature sources that 

indicate that stable fungal/H2 consuming methanogen co-cultures are readily formed (Gilmore 

et al., 2019; Li et al., 2019). Furthermore, measured extracellular accumulation of amino 

acids, as shown in Figure S8 in the supplement, qualitatively agree with the predictions of 

Figure 4.6A. In particular, alanine, aspartate and glutamate each accumulate to the highest 

concentration (relative to the other amino acids) in the measured data, which corresponds to 

the predictions of Figure 4.6A that N. lanati can produce these amino acids in excess with the 

least effect on its growth rate. This suggests that amino acid auxotrophies may be another 
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route that can be used to ensure that a faster growing microbial partner does not outcompete 

N. lanati. 

Figure 4.6: The model can be used to predict the maximum available flux of metabolites that can be 

re-directed without compromising the growth rate of N. lanati. The units of each plot in the radial 

direction are mmol/gDW/h. (A) The flux of amino acids, (B) precursor metabolites, and (C) metabolic 

by-products of fermentation that can be re-directed without compromising the overall growth rate of 

N. lanati by more than 10%. The orange data are the theoretical maximum fluxes that can be diverted 

if N. lanati channels all metabolic flux towards the production of each of the metabolites (still subject 

to the mass balance of its genome), while the blue data correspond to the case where the growth rate 

is constrained to not fall below 90% of the optimum growth rate. For each metabolite a dummy sink 

reaction was added to allow the respective metabolite to be generated in excess in the model. Legend: 

All the standard 3 letter abbreviations for amino acids were used, as well as Glu = glucose, Pyr = 

pyruvate, OAA = oxaloacetate, AcCoA = acetyl-coenzyme A, 3PG = 3-phospho-D-glycerate, G3P = 

glyceraldehyde 3-phosphate, Akg = 2-oxoglutarate, SucCoA = succinyl-coenzyme A, PEP = 

phosphoenolpyruvate, G6P = D-glucose 6-phosphate, E4P = D-erythrose 4-phosphate, F6P = fructose-

6-phosphate, R5P = ribose-5-phosphate, Mal = malate, Lac = lactate, Cit = citrate, Ac = acetate, Fum 

= fumarate, EtOH = ethanol, For = formate. 
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4.3 Conclusion  

Here we have introduced a high-quality genome and transcriptome of a novel anaerobic 

gut fungus, N. lanati. While the genome is large, it is relatively unfragmented compared to 

the genomes of the other sequenced anaerobic gut fungi. Additionally, the genome encodes 

for a large number and diversity of CAZymes, most of which are expressed in the 

transcriptome. This genome was used to construct the first genome-scale metabolic model of 

an anaerobic gut fungus. The model, iSW587, accurately recapitulates the observed growth 

rate, in vivo fluxes and substrate consumption/requirement profiles. The model refines and 

expands on our understanding of gut fungal hydrogenosomal metabolism. We confirm 

previous findings that suggested that PFL carries more flux than PFO in the hydrogenosome, 

but an energetically favorable route to hydrogen production still requires the action of PFO. 

The possible presence of a bifurcating hydrogenase and/or a proton pumping mechanism 

suggests that anaerobic fungi may have evolved more complex energy conservation 

mechanisms that allow them to compete with faster growing rumen bacteria (Gilmore et al., 

2019). Experimental work, likely involving the isolation, purification, and enzymatic 

characterization (through assays and proteomic analysis) of the hydrogenosome is necessary 

to further refine our understanding of its metabolism. This model is well poised to serve as a 

platform to build a better understanding of these non-model organisms. Moreover, the model 

will serve as a valuable tool to systematically guide future engineering efforts of gut fungi for 

converting lignocellulose into value-added products.  
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4.4 Materials and methods 

4.4.1 Metabolic reconstruction, visualization and simulation 

All publicly available annotated genomes within the clade Neocallimastigomycota were 

downloaded from the Joint Genome Institute’s (JGI) Mycocosm database (Grigoriev et al., 

2014). This includes the high quality PacBio sequenced genomes of Anaeromyces robustus, 

Piromyces finnis, and Neocallimastix californiae (Haitjema et al., 2017a), as well as the novel 

isolate Neocallimastix lanati introduced here. The genomes of Pecaromyces ruminantium, 

also known as Orpinomyces sp. C1A (Youssef et al., 2013; Hanafy et al., 2017), and 

Piromyces sp. E2 (Haitjema et al., 2017a) were also included for completeness. The gene 

annotation data supplied by the JGI was combined with annotations derived from bi-

directionally blasting (using BLASTp (Camacho et al., 2009)) the predicted genes from the 

gut fungal genomes against the curated Swiss-Prot database from Uniprot (‘UniProt: a 

worldwide hub of protein knowledge’, 2019). Briefly, bi-directional blasting annotates a 

predicted gut fungal gene if 1) the top hit using the fungal genome as the query and the 

reference collection as the database is the same as when 2) the gut fungal genome is used as 

the database and the reference collection is used as the query. Furthermore, only matches with 

e-values smaller than 1e-20 were considered for assigning Enzyme Commission (EC) 

annotations to genes. This information was collated into a master metabolic table, see the 

Supplement, and subsequently used to construct the model and assign genes to reactions. 

Enzyme complexes were assigned by using the “Subunit structure” field in the Uniprot 

database. Protein localization was predicted using DeepLoc (Almagro Armenteros et al., 

2017). Reaction directions were primarily inferred from MetaCyc (Caspi et al., 2018), and the 
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Gibbs free energy change of a reaction calculated using eQuilibrator (Flamholz et al., 2012). 

Transcriptomic and expression experiments for N. lanati were conducted as part of this study. 

These omics datasets were used to assign a confidence score to each gene in the model of N. 

lanati. Gaps in the model of N. lanati were filled by inspecting the EC assignments found for 

each fungus using the approach described above and looking for homologous genes in the 

genome of N. lanati. The universal reactions and metabolites from the BiGG Models platform 

(King et al., 2016) was used to construct the in silico model where possible; if a reaction did 

not exist in that database it was manually added. The KEGG and MetaCyc databases were 

used as references to reconstruct the metabolic model based on the EC assignments of the 

metabolic annotation data (Kanehisa et al., 2016; Caspi et al., 2018). The curated model for 

N. lanati was constructed by carefully following established genome-scale model construction 

protocols (Thiele and Palsson, 2010). Specifically, each reaction was inspected to ensure 

consistency, mass and charge balance where possible. Model quality was benchmarked by the 

Memote application (Lieven et al., 2020). The curated N. lanati model can be found in the 

Supplement. An experimentally measured flux of 1.5 mmol/gDW/h of glucose was used in all 

simulations. Flux balance analysis was used to simulate the genome-scale model of N. lanati 

using the COBRA Toolbox and Cobrapy (Ebrahim et al., 2013; Heirendt et al., 2019). Flux 

samples (N=2000) were generated by sampling from the model and constraining the objective 

function to be within 90% of the optimum found by FBA. Escher was used to visualize the 

metabolism (Rowe, Palsson and King, 2018). Example code used to run the computational 

experiments is supplied in the Supplement. 
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4.4.2 Culturing conditions used for experiments 

Standard anaerobic gut fungal culturing techniques were used (Haitjema et al., 2014) for 

all experiments. Briefly, N. lanati was grown at 39°C in sealed Hungate tubes (10 mL liquid 

volume) or 70 mL serum bottles (40 mL liquid volume) in both undefined complex medium 

C (MC) (Davies et al., 1993), as well as completely defined medium 2 (M2) (Teunissen,’ et 

al., 1991), with 100% CO2 headspace unless otherwise specified. Pressure accumulation was 

used as a proxy for growth and the fungus was serially passaged after 2-3 days of growth. The 

carbon source was cellobiose at 5 g/L unless otherwise noted. The cultures were not shaken.  

4.4.3 Genome and transcriptome isolation, sequencing and analysis of N. lanati 

N. lanati was isolated from a sheep located at the Santa Barbara Zoo, following an 

established protocol (Solomon et al., 2016). Fungal cell pellets for gDNA isolation were 

grown by inoculating 20 mL from a serum bottle of fungi in exponential phase (2 - 3 days of 

growth given a 10% inoculation volume into the serum bottle) into a 1 L bottle of medium C 

using cellobiose as a carbon source. The serum bottle used to grow the inoculum was treated 

with Chloramphenicol to reduce the risk of contamination. After 4 days of growth the fungal 

cell mat was spun down and frozen at -80°C. Four of these frozen samples were subsequently 

shipped to the Arizona Genome Institute (University of Arizona, Tucson, AZ), where high 

quality gDNA was isolated using a modified Cetrimonium bromide (CTAB) protocol (Doyle 

and Doyle, 1987). Briefly, these fungal cell mats were ground to a fine powder in a frozen 

mortar with liquid N2 followed by very gentle extraction in CTAB buffer, which included 

proteinase K, PVP-40 and 2-mercaptoethanol (Sigma, St. Louis, Missouri), for 1 hour at 50°C. 

After centrifugation, the supernatant was gently extracted twice with 24:1 chloroform:iso-
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amyl alcohol. The upper phase was removed and adjusted to 1/10th volume with 3M KAc, 

gently mixed, and the gDNA precipitated with iso-propanol. Subsequently, the gDNA was 

collected by centrifugation, washed with 70% ethanol, air dried for 20 min and dissolved 

thoroughly in 1x TE buffer at room temperature. The purified gDNA was shipped to the JGI 

where it was sequenced.  

RNA for transcriptome and expression analysis was isolated as previously described 

(Solomon et al., 2016; Henske, Wilken, et al., 2018) in the Biological Nanostructures Lab 

(University of California Santa Barbara, CA). For the transcriptome, the RNA was harvested 

from fungal cell pellets grown in serum bottles on a variety of substrates (cellobiose, filter 

paper, reed canary grass and corn stover, solids loading 1% w/v, in both medium C and 

medium 2) to capture as much transcript diversity as possible. For expression analysis 

triplicate serum bottles of fungus grown on medium C and medium 2, using cellobiose as the 

sole carbon source, was used. The RNA was isolated and purified using an RNEasy kit 

(Qiagen, Germantown, MD). The concentration and quality of the RNA was measured on a 

Qubit (Qubit, New York, NY) and Tapestation 2200 (Agilent, Santa Clara, CA). The RNA 

used for the transcriptome was pooled in equal parts before sequencing. RNA libraries were 

made using NEBNext Ultra II Directional RNA with mRNA purification beads (NEB, 

Ipswich, MA), these were subsequently sequenced on a NextSeq 500 (Illumina Inc., San 

Diego, CA) using High Output 300 Cycle settings and 75 base-pair paired-end reads (the 

resultant coverage is 470 and 364 for the transcriptome and expression analysis, respectively). 

The reads were assembled using Trinity (Grabherr et al., 2011). TransDecoder 

(https://github.com/TransDecoder/TransDecoder/wiki) was used to find the highest likelihood 
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coding regions in the transcriptome. The transcript abundance was estimated using Kallisto 

(Bray et al., 2016). 

4.4.4 High performance liquid chromatography (HPLC), gas chromatograph (GC) and 

liquid chromatography/mass spectrometry (LC/MS) measurements 

Liquid samples for HPLC analysis were stored in microcentrifuge tubes at -20°C for batch 

analysis. Sulfuric acid (0.5 M) was added to the samples (1 in 100 volumes), vortexed and 

allowed to mix at room temperature for 5 minutes. Thereafter the samples were centrifuged 

for 5 min at 21000×g and filtered using a 0.22μm syringe filter into HPLC vials. The samples 

were run on an Agilent 1260 Infinity (Agilent, Santa Clara, CA) using a Bio-Rad HPX-87H 

column (Bio-Rad, Hercules, CA). Samples were run at two column conditions to effectively 

separate all the fermentation products (Qiu and Jin, 2002; Chinnici et al., 2005). Succinate, 

lactate, cellobiose, glucose and ethanol were measured at 50°C with a flow rate of 0.5 mL/min. 

Fumarate, formate and acetate were measured at 25°C with a flow rate of 0.4 mL/min. The 

mobile phase in both cases was 5mM sulfuric acid and the injection volume 20 μL. Cellobiose, 

glucose and ethanol were measured with a refractive index detector, and the other compounds 

on a variable wavelength detector (λ=210 nm). Standard curves for each compound were made 

at 3 concentrations bracketing the range expected in the samples. Gas samples were analyzed 

on a Thermo Fisher Scientific TRACE Gas Chromatograph according to a previously 

established protocol (Gilmore et al., 2019). Standard curves of H2 were made daily from 

supplier (Douglas Fluid & Integration Technology, Prosperity, SC) mixed gas at 1, 2, and 5% 

(mole basis). Fatty acid composition and extracellular amino acid concentrations were 

measured on an LC/MS using an Agilent Polaris 3 C18-Ether 150x3.0mm (part number 
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A2021150X030) column. Total run time was 13 minutes, injection volume was 5 ul with 

column temperature of 30°C and flow rate of 0.3 mL/min. The MS was run in negative 

ionization mode, with the gas temperature at 230°C and flow rate 12 L/min. Standards were 

made to bracket the expected concentration ranges of the fatty acids. 

4.4.5 Biomass composition measurements 

The biomass composition of N. lanati was experimentally determined in triplicate for each 

major component (DNA, RNA, lipid, carbohydrate, protein). Cultures grown in serum bottles 

on medium C, with cellobiose as the carbon source, were harvested during exponential phase 

for each measurement. DNA and RNA were immediately isolated from the wet cell pellet 

using a previously established CTAB protocol (Lankiewicz, Cottrell and Kirchman, 2016). A 

reference set of triplicate fungal mats were harvested at the same time and lyophilized to 

estimate the dry mass fraction of DNA and RNA. Lipids and total carbohydrates, which we 

assumed to be exclusively chitin, were isolated following established protocols (Beck, Hunt 

and Carlson, 2018). Lipid composition was further refined by mass spectrometry using a fatty 

acid C18-ether column as described in the methods section. Protein extraction from fungal 

cell pellets followed a previously developed method (Soh et al., 2014) and the concentration 

was measured on a Qubit (Q33327, Thermo Fisher Scientific). The amino acid composition 

of the protein fraction was assumed to follow the amino acid distribution of the predicted 

proteome.  

Additionally, both the growth and non-growth associated maintenance functions (GAM 

and NGAM) were estimated from experimental data. Briefly, five triplicate sets of Hungate 

tubes with varying concentrations of cellobiose (1, 2, 3, 4, 5 g/L initially) in medium 2 were 
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inoculated with 1 mL each (total liquid volume 10 mL) from a single serum bottle of N. lanati 

growing at exponential phase (3 days post inoculation) in medium 2 with cellobiose as the 

carbon source. Pressure accumulation was measured twice daily to calculate the fungal growth 

rate (Theodorou et al., 1995). Liquid and gas samples from each triplicate set was harvested 

during two time points in exponential phase 24 hours apart. The gas samples were analyzed 

on a GC to determine the H2 fraction of the gas, and the liquid samples were analyzed on an 

HPLC for organic acid concentration. At the end of the last measurement the samples were 

harvested, the fungal cell pellet spun down, lyophilized and weighed. The estimated growth 

rate for each sample was then used to extrapolate the dry cell mass at the respective time points 

(Theodorou et al., 1995). The fluxes of the fermentation products could then be estimated by 

the molar accumulation of each compound divided by the time between measurements and 

the difference in cell dry masses between these points. The difference in cell masses was taken 

because each mature cell lyses and dies, thus its remaining biomass no longer contributes to 

metabolism. Finally, these estimated fluxes were used to constrain the model, and maximize 

the ATP yield. The GAM and NGAM was then estimated by finding the line of best fit through 

the plot of maximum ATP yield predicted by the model and the growth rate associated with 

the fluxes previously measured (Thiele and Palsson, 2010).  

4.4.6 13C metabolic flux analysis for N. lanati 

Three serially passaged Hungate tubes using [1,2]-13C glucose as the sole carbon source 

in medium 2 at an initial concentration of 5 g/L were used for the labeling experiment. Each 

Hungate tube was passaged during exponential growth phase, after which the cell pellet and 

remaining media were frozen at -20°C for later processing. The media was analyzed for 
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glucose and fermentation products using the HPLC protocol described above. The pellets were 

lyophilized, after which GC-MS measurements were used to quantify the isotopic labeling of 

protein-bound amino acids, glycogen-bound glucose and RNA-bound ribose as described 

previously (Long and Antoniewicz, 2019). A carbon transition model for flux analysis was 

constructed using the genome-scale model of N. lanati as a basis for the flux reactions and 

biomass equation. Other carbon transition models were used to check the accuracy of the MFA 

model (Crown, Long and Antoniewicz, 2016; Liu, Qiao and Stephanopoulos, 2016). INCA 

was used to perform the flux analysis and sensitivity calculations (Young, 2014). The carbon 

transition model, constraints and the GC-MS data can be found in the supplement. 

4.4.7 Model validation experiments 

Carbon utilization and vitamin essentiality experiments were conducted to test the 

predictive accuracy of the model. Carbon utilization was tested by growing N. lanati in 

medium 2 with each carbon source listed in Table 4.5 at 5 g/L initial concentration instead of 

cellobiose. A carbon substrate was deemed able to support growth if the fungus could be 

passaged on it for 4 generations and still produce more than 8 PSIg of accumulated pressure 

(no carbon blanks produce < 1 PSIg of accumulated pressure). Similarly, the vitamin 

requirements of N. lanati were tested by individually removing each vitamin in medium 2 

(listed in Table 4.5) and growing the fungus without it for 4 consecutive generations using 

cellobiose as the carbon source. Fluxes for comparing model predictions to experimental 

observations were measured similar to how the fluxes for finding the GAM and NGAM 

functions were estimated, however only 5 g/L cellobiose loading was used. The total 

equivalent flux of glucose into the cell was calculated by measuring glucose accumulation and 
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cellobiose depletion in the media. It was assumed that N. lanati imports glucose, and not 

cellobiose, due to release of beta-glucosidases that decomposed the cellobiose in the media.  
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V. In Silico identification of microbial partners to form consortia with 

anaerobic fungi 

This chapter is based upon an article that was published in Processes, Volume 6, 2018, by 

St. Elmo Wilken, Mohan Saxena, Linda R. Petzold, and Michelle A. O’Malley, entitled “In 

Silico Identification of Microbial Partners to Form Consortia with Anaerobic Fungi” 

Copyright Processes. See the published paper for the supplementary information. 

5.1 Introduction 

Modern biotechnology is well poised to take advantage of the current shift towards a more 

sustainable chemical industry (Otero and Nielsen, 2010). Harnessing the estimated 1.6 billion 

tons of energy rich, lignocellulosic agricultural waste generated worldwide each year is a 

promising avenue towards this goal (Saini, Saini and Tewari, 2015). However, extracting 

cellulose (40–50%) and hemicellulose (20–40%) from raw plant biomass has proven to be 

challenging due to the high lignin content of the substrate (Liao et al., 2016). Current industrial 

techniques used to overcome this barrier include physical, chemical and biological treatment 

(e.g., milling, acid hydrolysis and enzyme treatment, respectively) (Sindhu, Binod and 

Pandey, 2016). 

Biological conversion attempts to exploit natural mechanisms to produce chemicals from 

lignocellulose. Currently, two competing alternatives are being investigated: consolidated 

bioprocessing and microbial consortia approaches (Alper and Stephanopoulos, 2009). The 

former seeks to engineer a single organism to both degrade biomass and produce a high value 

commodity chemical (Lynd et al., 2005). The latter seeks to leverage specialist organisms to 

split the associated metabolic burden between them (Brenner, You and Arnold, 2008). 
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Exploiting the natural degradation powers of non-model fungi could prove beneficial in this 

endeavor. 

Currently, fungal enzymes from a handful of organisms, e.g. Trichoderma reesei or 

Aspergillus sp., are utilized on an industrial scale to break down plant biomass (Paloheimo et 

al., 2016). A recent report illustrates the utility of developing consortia between a cellulose 

degrader like T. reesei and the model bacterium Escherichia coli (Minty et al., 2013). A 

potential drawback of this pairing is that T. reesei encodes for the smallest diversity of 

cellulolytic enzymes of any fungus capable of plant cell wall degradation (Martinez et al., 

2009). This could necessitate the addition of (expensive) beta-glucosidases, to convert 

cellobiose to glucose, in some applications. It is hypothesized that under-explored fungal 

clades, like Neocallimastigomycota, could offer substantial benefits in this regard (S Seppälä 

et al., 2017). 

Anaerobic gut fungi, in the phylum Neocallimastigomycota, found in the gastrointestinal 

tract of ruminants, have been shown to be prodigious degraders of plant biomass (Resch et 

al., 2013). Moreover, they possess the highest diversity of lignocellulolytic enzymes, largely 

untapped, within the fungal kingdom (Solomon et al., 2016). These organisms play a pivotal 

role in the digestion of plant biomass in herbivores, due to the physical and chemical way in 

which they degrade plant biomass (Gruninger et al., 2014). Recent work highlights the bounty 

of biotechnological applications of these fungi (Henske, Wilken, et al., 2018). Given that these 

organisms typically thrive in consortia, it is desirable to emulate nature to unlock their 

potential for bioconversion of unpretreated lignocellulose. 

However, these organisms are under-studied, and the mechanisms that promote the 

formation of stable microbial consortia with anaerobic fungi are unknown. Given the wealth 
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of omics-related data available, we speculate that model driven design could elucidate some 

of these questions (S Seppälä et al., 2017). Indeed, model driven analysis has successfully 

been used to study anaerobic organisms (Senger, Yen and Fong, 2014). Necessary 

components for such analyses are accurate genome-scale models of anaerobic gut fungi and 

their consortia partners. While a full genome-scale model of the gut fungi is still under active 

development, it is possible to narrow the field in search of potential consortia partners by 

making use of extant high-quality genome-scale models to highlight mechanisms of 

interaction that would promote microbial partnership and consortium stability. 

In this work, we present a marriage of experimental and computational tools used to 

identify suitable consortia partners for anaerobic gut fungi. Given the vast number of potential 

candidates, it is infeasible to experimentally test all combinations. Instead, we filter microbes 

by simulation to test their compatibility in silico. As a first approximation, we assume no 

interaction between the organisms in consortia: the excess fermentable sugars released by 

fungal hydrolysis of plant biomass, measured experimentally, is available for consumption 

regardless of the identity of the partner microbe. By predicting the growth rate and waste 

production of the partner, we can rank order microbes by the likelihood that they would stably 

co-exist with the gut fungi over the course of active fungal growth in a batch bioreactor. This 

is a valuable tool to reduce the number of costly and time-consuming wet-lab experiments 

necessary to identify suitable partners for anaerobic gut fungal-based consortia. Finally, we 

introduce a novel dynamic flux balance analysis algorithm specifically developed for this task. 
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5.2 Materials and Methods 

5.2.1 Strains and Culture Conditions 

Three isolated anaerobic gut fungi were investigated in this work: Neocallimastix 

californiae, Anaeromyces robustus and a previously uncharacterized fungus Neocallimastix 

sp. S1 (confirmed by ITS sequencing, see the Supplementary Materials). Anaerobic 

conditions, as described in (Trinci et al., 1994), were maintained for all experiments. Starter 

cultures for each experiment were grown on complex media (Theodorou et al., 1996), with 

Reed Canary grass used as a substrate, in 75 mL serum bottles. After four days of growth, 

these cultures were used to start experiments by inoculating 4 mL from them into the 

experiment serum bottles. Gas accumulation in the head space of the starter cultures was 

vented daily. All experiments were conducted in triplicate using 40 mL of M2 media 

(Teunissen,’ et al., 1991) loaded with 2 g of corn stover grass, (4 mm particle size) supplied 

by the USDA-ARS research center (Madison, WI, USA), in 75 mL serum bottles. 

5.2.2 Growth and Metabolite Measurements 

Fungal growth was monitored by measuring pressure in the head space of the serum bottles 

twice daily, approximately 12 h apart (Theodorou et al., 1996). Cultures that accumulated 

significantly more pressure than a control set, without the carbon source Corn Stover, were 

deemed to be growing. The gaseous product is primarily composed of hydrogen and carbon 

dioxide. After the pressure was measured, and prior to venting, 0.2 mL of media was sampled 

for sugar concentration analysis on a high-performance liquid chromatography (HPLC) 

device. Samples were stored at −20 °C for batch-wise analysis. After thawing the samples at 

room temperature, they were centrifuged for 5 min at 21,000×g. By avoiding the pellet, 100 
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μL was transferred to HPLC vials containing 100 μL de-ionized, 0.45 μm filtered water (1:1 

dilution). Subsequently, 20 μL of each sample was run on an Agilent 1260 Infinity HPLC 

(Agilent, Santa Clara, CA, USA) using a Bio-Rad Aminex HPX-87P column (Part No. 

1250098, Bio-Rad, Hercules, CA, USA) with inline filter (Part No. 5067-1551, Agilent, Santa 

Clara, CA, USA), Bio-rad Micro-Guard De-Ashing column (Part No. 1250118, Bio-Rad, 

Hercules, CA, USA), and Bio-Rad Micro-Guard CarboP column (Part No. 1250119, Bio-Rad, 

Hercules, CA, USA) in the following orientation: inline filter → De-Ashing → CarboP → 

HPX-87P columns. Samples were run with water acting as the mobile phase at a flow rate of 

0.6 mL/min and column temperature of 60 °C. Signals were detected using a refractive index 

detector (RID) with a temperature set point of 40 °C. HPLC standards were created in 

triplicate for cellobiose, glucose, fructose, xylose and arabinose at 5 g/L, 1 g/L, and 0.1 g/L 

concentrations in M2. The concentration of each sugar was measured by subtracting the RID 

signal from a blank M2 sample. 

5.2.3 Evaluation and Selection of Model Organisms 

The BIGG database is an online repository of curated genome-scale metabolic models 

(King et al., 2016). Currently (Accessed December 2017) the database consists of 84 models 

from a wide diversity of organisms. We hypothesized that the higher level of understanding 

implied by these models may be leveraged into the formation of stable consortia with the 

relatively understudied anaerobic fungi. The first step in identifying possible consortia 

partners is to screen the modeled organisms by three criteria: (1) is the organism an obligate 

aerobe, (2) is the organism pathogenic and (3) is the organism obviously incompatible with 

the anaerobic fungi? If any of these criteria were positive, the model was discarded. For 
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example, Helicobacter pylori is a modeled pathogen and is therefore excluded. In addition, 

Thermotoga maritima is a modeled hyperthermophilic bacterium; it cannot be co-cultured 

with the anaerobic fungi and is immediately discarded as a potential consortia partner. By 

filtering all 84 potential models, we are left with six possible partners, shown in Table 5.1. 

Table 5.1: Genome-scale models of potential consortia partners for the un-modeled anaerobic gut fungi 

used in this work. 

Organism Notes Reference 

Clostridium ljungdahlii DSM 13528 Bacterium, obligate 

anaerobe, acetogen 

(Nagarajan et al., 2013) 

Escherichia coli str. K-12 substr. 

MG1655 

Bacterium, facultative 

anaerobe 

(Monk et al., 2017) 

Escherichia coli str. ZSC113 Bacterium, facultative 

anaerobe, glucose deficient 

(Curtis and Epstein, 1975) 

Lactococcus lactis subsp. cremoris 

MG1363 

Bacterium, facultative 

anaerobe 

(Flahaut et al., 2013) 

Methanosarcina barkeri str. Fusaro Methanogen, obligate 

anaerobe 

(Feist et al., 2006) 

Saccharomyces cerevisiae S288C Fungus, facultative anaerobe (Mo, Palsson and 

Herrgård, 2009) 

 

5.2.4 Dynamic Flux Balance Analysis Formulation 

Flux balance analysis (FBA) is a widely used computational tool that simplifies and 

recasts the metabolic reaction network of a cell into a linear program by making use of a 
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genome-scale model (Orth, Thiele and Palsson, 2010). Central to FBA is the assumption of 

metabolic steady state, 
𝑑𝒙

𝑑𝑡
= 𝑺𝒗 = 𝟎. The space of fluxes, v, that satisfy the mass balance 

implied by the stoichiometric matrix, S, is reduced by assuming that the cell strives to 

maximize an empirically defined biomass objective function, μ(v), subject to additional flux 

constraints, 𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙. Typically, FBA is applied to systems in a steady state; this 

poses a problem for modeling anaerobic gut fungi because no continuous reactor has been 

developed for them yet.  

Dynamic flux balance analysis (dFBA) is a well-established tool used to extend FBA to 

dynamic settings (Varma and Palsson, 1994). It relies on the assumption that intra-cellular 

dynamics are much faster than extra-cellular dynamics. This allows one to discretize time and 

apply classical FBA at each time step. The resultant fluxes are then used to update the biomass 

(X), external substrate (s), and product (p), concentrations by integrating 

𝑑𝑋

𝑑𝑡
= μ𝑋 

𝑑𝒔

𝑑𝑡
= 𝒗𝒔𝑋 

𝑑𝒑

𝑑𝑡
= 𝒗𝒑𝑋 

(5.1) 

 

where μ, vs and vp are the growth rate, substrate and product fluxes, respectively. These are 

then used to update the flux constraints, 

𝒗𝒎𝒊𝒏(𝒔, 𝒑) ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙(𝒔, 𝒑), (5.2) 

used in the FBA algorithm for the next time step (Henson and Hanly, 2014). dFBA has been 

successfully applied to mono-culture (Mahadevan, Edwards and Doyle, 2002; Hjersted and 
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Henson, 2009) and community (Hanly and Henson, 2011; Hanly, Urello and Henson, 2012) 

modeling. 

An inherent weakness of FBA, and by extension dFBA, is the non-uniqueness of the fluxes 

that maximize the cellular growth rate (Mahadevan and Schilling, 2003). Sampling from the 

space of optimal fluxes is feasible for FBA applications because the computational cost is paid 

only once (typically a mixed integer linear program needs to be solved (Saa and Nielsen, 

2016)). For dFBA applications, this is prohibitively expensive due to the iterative nature of 

the algorithm. However, it is well recognized that non-uniqueness of the fluxes can pose 

problems when integrating Equation (5.1). 

Techniques developed to deal with this problem typically involve hierarchal optimization, 

subsequent to the biomass maximization, to constrain the fluxes further. One possibility is to 

maximize the growth rate and then sequentially optimize each external flux using the previous 

optimization problem as a constraint in the current one (Höffner, Harwood and Barton, 2013; 

Gomez, Höffner and Barton, 2014). This method effectively deals with the non-uniqueness 

problem but requires additional assumptions per external flux. These assumptions can 

dramatically affect the results of the simulation but seem to be a problem only when modeling 

multiple species (Gomez, Höffner and Barton, 2014). 

An alternative method is to perform only a single secondary optimization subsequent to 

the biomass maximization, in the hope that this constrains the fluxes sufficiently to ameliorate 

the non-uniqueness issue when performing the integration of Equation (5.1). An example of 

this approach is to minimize the absolute fluxes, based on the principle of maximum enzyme 

efficiency (Sánchez, Pérez-Correa and Agosin, 2014). The drawback with this approach is 
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that it requires the solution of a quadratic program (QP) at each time step. For larger models, 

this can be computationally expensive. 

We chose to keep the imposition of additional assumptions on the modeled systems to a 

minimum because the work is exploratory in nature. Therefore, we combine aspects of 

(Gomez, Höffner and Barton, 2014) with the single secondary optimization approach. In our 

case, the secondary optimization seeks to ensure that the derivative change of each modeled 

flux is minimized between each time step. The rationale for this is that over small time steps 

the flux is unlikely to jump suddenly. Therefore, at each time step, the following procedure is 

followed: 

1. The flux bounds, Equation (5.2), are updated. Typically, Michaelis–Menten kinetics are 

assumed (Hanly and Henson, 2013). Since detailed expression for glucose and xylose uptake 

rates are not known for all the organisms, we assumed, for comparative fairness, 

𝑣𝑚𝑖𝑛,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = max(𝑣𝐺𝑙𝑐
𝑚𝑎𝑥, −

𝐺 + Δ𝑡𝑓𝐺
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

Δ𝑡𝑋𝑚𝑔𝑙𝑢𝑐𝑜𝑠𝑒
) 

𝑣𝑚𝑎𝑥,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = 0 

𝑣𝑚𝑖𝑛,𝑥𝑦𝑙𝑜𝑠𝑒 = max(𝑣𝑋𝑦𝑙
𝑚𝑎𝑥, −

𝑍 + Δ𝑡𝑓𝑍
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

Δ𝑡𝑋𝑚𝑥𝑦𝑙𝑜𝑠𝑒

1

1 +
𝐺

0.005

) 

𝑣𝑚𝑎𝑥,𝑥𝑦𝑙𝑜𝑠𝑒 = 0 

(5.3) 

where 𝑓𝐺
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

, 𝑓𝑍
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

 are the fluxes of glucose and xylose produced by the extracellular 

enzymes, G, Z are the current concentrations of glucose and xylose, and 𝑚𝑔𝑙𝑢𝑐𝑜𝑠𝑒, 𝑚𝑥𝑦𝑙𝑜𝑠𝑒 are 

the respective molar masses. The glucose inhibition term ensures that glucose is preferentially 

metabolized before xylose (Hanly and Henson, 2011). The maximum flux constants, 𝑣𝐺𝑙𝑐
𝑚𝑎𝑥 
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and 𝑣𝑋𝑦𝑙
𝑚𝑎𝑥, were taken from literature and are supplied in Section 5.2.5. See the Supplement 

for motivation of the derivation of Equation (5.3). 

2. A linear program feasibility problem,  

min
𝑠1,𝑠2

∑𝑠1,𝑖

𝑁

𝑖=1

+ 𝑠2,𝑖 (𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑢𝑥𝑒𝑠) 

s. t. 𝑺𝒗 + 𝒔𝟏 − 𝒔𝟐 = 𝒃 (𝑤ℎ𝑒𝑟𝑒 𝑏 𝑖𝑠 𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟) 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

0 ≤ 𝑠1,𝑖 , 𝑠2,𝑖 for all 𝑖 ∈ [1, . . . , 𝑁] 

(5.4) 

is solved to ensure that the genome-scale model is feasible for steps 3 and 4. This problem is 

solved for the “relaxation variables” s1 and s2 (see (Höffner, Harwood and Barton, 2013) for 

justification). 

3. A standard FBA linear program (LP) is solved to determine the optimal growth rate of 

the organism given the constraints of step 1. This problem, 

max
𝒗

𝜇(𝒗) 

s. t. 𝑺𝒗 + 𝒔𝟏 − 𝒔𝟐 = 𝒃 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

(5.5) 

is solved for the unique optimal growth rate μ*. Given μ∗ from Equation (5.5), it is possible to 

solve for the organism biomass concentration by using 
𝑑𝑋

𝑑𝑡
= 𝜇∗𝑋 for at least one time step 

into the future. 

4. A secondary LP, 

min
𝑣

∑𝛾𝑖

𝑖

 for 𝑖 ∈  𝑀 (5.6) 
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𝑠. 𝑡.  𝑺𝒗 + 𝒔𝟏 − 𝒔𝟐 = 𝒃 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

𝜇(𝒗) = 𝜇∗ 

−𝛾𝑖 ≤ 1 −
𝑣𝑡−1,𝑖

𝑣𝑡−1,𝑖 − 𝑣𝑡−2,𝑖
−

𝑣𝑡,𝑖

𝑣𝑡−1,𝑖 − 𝑣𝑡−2,𝑖
≤ 𝛾𝑖  for 𝑖 ∈ 𝑀 

 

is solved to ensure that the resultant fluxes used to integrate Equation (5.1) are sufficiently 

smooth. Here, M is the index set of all modeled substrates and products. A full derivation of 

Equation (5.6) is given in the supplementary material of the paper upon which this chapter is 

based. Briefly, the objective function asserts that ∑ |1 −
𝑑𝑣𝑖

𝑑𝑡 𝑡
/

𝑑𝑣𝑖

𝑑𝑡 𝑡−1
|𝑖   ∀𝑖 ∈ 𝑀 is  minimized, 

where the flux derivative at time t, 
𝑑𝑣𝑖

𝑑𝑡 𝑡
 , is approximated to first order. 

5. Using an integration scheme of choice, e.g., backward Euler, the full dynamic profile 

of the system may be iteratively simulated. If products are being generated at each time step, 

Equation (5.1) needs to include those fluxes as well. 

The primary benefit of Equation (5.6) is that there is only a single secondary LP imposed 

on the system. From a computational point of view, this is very desirable compared to the 

other existing algorithms that solve either a QP or multiple sequential LPs. 

5.2.5 Simulation Parameters 

All simulations restricted the oxygen flux into the system to zero. It was assumed that the 

gas produced by the fungi is 90% carbon dioxide and 10% hydrogen on a mole basis. This is 

in line with previous experimental observations. The maximum glucose and xylose uptake 
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flux constraints, shown in Equation (5.3), were taken from the papers introducing the models 

(see Table 5.1 for the references). These are summarized in Table 5.2. 

Table 5.2: Glucose and xylose maximum uptake rates. 

Organism vGlc [mmol/gDW/h] vXyl [mmol/gDW/h] 

Clostridium ljungdahlii DSM 13528 5 5 

Escherichia coli str. K-12 substr. MG1655 10.5 6 

Escherichia coli str. ZSC113 0 6 

Lactococcus lactis subsp. cremoris MG1363 14.5 0 

Methanosarcina barkeri str. Fusaro 0 0 

Saccharomyces cerevisiae S288C 6.44 0 

 

Note that M. barkeri does not consume glucose or xylose. Instead, it autotrophically 

metabolizes hydrogen and carbon dioxide into methane. The maximum hydrogen uptake rate 

was set at vH2=41.5[mmol/gDW/h], and the maximum carbon dioxide uptake rate was 

unbounded (Feist et al., 2006). All products P produced by the fungi, e.g., sugar and gas (in 

the form of pressure accumulation) were assumed to follow the logistic function, 

𝑃(𝑡) =
𝑘1

1 + 𝑒−𝑘2(𝑡−𝑘3)
 (5.7) 

where the constants were fit to experimental data. Henry’s law was used to model the 

concentration of dissolved gases (hydrogen, carbon dioxide and methane) in the liquid fraction 

given the gas pressure. A backward Euler scheme was used to integrate Equation (5.1) with a 

time step of 0.1 h. The initial conditions for all the substrates and products consumed and 
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produced by the partner microbes were assumed to be zero. The initial biomass concentration 

was assumed to be 1 mg/L. 

5.3 Results and Discussion 

Both experimental and computational data were gathered to evaluate the organisms listed 

in Table 5.1 for their ability to form stable consortia with anaerobic gut fungi. Batch growth 

experiments were used to model the rate of sugar release from the raw plant biomass during 

fungal digestion, as well as the gas accumulation profile. This sheds light on the ability of the 

fungi to accommodate another organism, likely through nutritional linkage of primary 

metabolites. Computational experiments were then used to predict growth rates and waste 

generation of a model partner microbe, given the excess fermentable products determined via 

the batch experiments. 

5.3.1 Anaerobic Fungi Release an Assortment of Products to Enable Consortia 

Formation 

Figure 5.1 shows the experimentally observed sugar release and gas production profiles over 

time of the three anaerobic fungi we investigated. It can be seen that A. robustus produced the 

highest concentration of soluble sugars and the next to highest accumulated pressure. In 

accordance with the variance between culture replicates, N. californiae displayed more erratic 

growth. This behavior is uncharacteristic of the fungus when cultured in complex media. We 

speculate that the M2 defined minimal media was a contributing factor to this phenomenon. 

Neocallimastix sp. S1 performed between the other two fungi in terms of stability and 

sugar/gas production. 
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Figure 5.1: Anaerobic gut fungi release excess sugars for microbial partnership during growth on Corn 

Stover. The solid black line denotes the profile of the accumulated pressure. Other colors represent 

distinct fermentable sugars generated during growth, as indicated. The vertical bars are standard 

deviations of errors for each triplicate measurement. (a) N. californiae; (b) Neocallimastix sp. S1; (c) 

A. robustus. Figure taken from (Wilken et al., 2018). 

 

Based on these data, we selected A. robustus as the best candidate for consortia 

experiments that combine anaerobic fungi with model microbes due to the more stable sugar 

and gas production rates. Constants used to model substrate production rates for glucose, 

xylose and pressure accumulation were fit to Equation (5.7) using A. robustus data, as shown 

in Table 5.3. 
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Table 5.3: Glucose, xylose and gas production rate constants fit to Equation (5.7) for A. robustus 

Product k1 (g/L/h or psi/h) k2 (1/h) k3 (h) 

Glucose 1.39 0.05 148.17 

Xylose 0.53 0.05 150.41 

Pressure 75.04 0.06 76.51 

 

For completeness, we compare the measured gut fungal net specific growth rates found in M2 

defined media, used here, with that of complex media (see Table 5.4). Predictably, the growth 

rates are lower in minimal defined media. A. robustus consistently outperforms the other fungi 

when grown on corn stover. The superior growth characteristics of A. robustus further 

motivate its selection as the gut fungus to investigate in greater depth. 

Table 5.4: Average anaerobic gut fungal growth rates in defined media compared to rich media. 

Organism Growth rate in M2 (1/h) Growth rate in MC (1/h) 

N. californiae 0.029 0.046 

A. robustus 0.033 0.065 

N. sp. S1 0.027 No data 

 

5.3.2 Dynamic Simulations Predict Consortia Partner Feasibility 

By making use of the dFBA algorithm introduced in Section 5.2.4, and using the 

experimental data of A. robustus to fit Equation (5.7) for both glucose and xylose separately, 

we can simulate the growth of the co-cultured partner organisms listed in Table 5.1 

dynamically. We chose to focus only on glucose and xylose utilization at this stage of 
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modeling because more is known about the relative preference of each sugar in microbial 

metabolism (Eiteman, Lee and Altman, 2008). The two classes, fermentable sugar consuming 

heterotrophs, and hydrogen/carbon dioxide consuming autotrophs, of possible consortia 

partners were treated separately. 

5.3.2.1. Heterotroph Partnership with Anaerobic Fungi 

As suggested by Equation (5.3), we assumed, for simplicity, that only glucose and xylose 

are capable of being fermented by each organism under analysis. Furthermore, we assumed 

that glucose would be consumed preferentially to xylose whenever possible. Figure 5.2 

illustrates the output of the dFBA algorithm when pairing the anaerobic bacterium C. 

ljungdahlii with the gut fungus A. robustus. Similar results are available for the other 

organisms of Table 5.1 in the supplementary material of the paper upon which this chapter is 

based. 

C. ljungdahlii can metabolize both glucose and xylose; this is reflected in the sequential 

utilization of the substrates in the simulated time course. To determine the effective average 

growth rate, we fit X(t) = 𝑐1𝑒
𝜇𝑡 to the simulated biomass output. The fit indicated that μ≈0.08 

1/h. The growth rate is the primary criterion we used to determine suitability for consortia 

with the gut fungi. We hypothesized that an optimal pairing would occur if the growth rates 

of the organisms are similar. This would reduce the risk of them out-competing each other. 

Inter-cellular communication, another pivotal component of consortia, is neglected at this 

stage of analysis, as it requires detailed experimental data to model. 
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Figure 5.2: Dynamic simulation of C. ljungdahlii shows that it consumes all the excess sugars released 

by A. robustus. The vertical red line indicates the point where both sugars were depleted. Even though 

the fungal enzymes continuously release sugars, the rate at which they release them is exactly equal to 

the consumption rate beyond the vertical red line. Simulation artifacts cause the growth to continue 

linearly beyond this point. All the simulations assume an inoculation time at 72 h into the experiment. 

This allows the slower-growing gut fungi to establish themselves and produce fermentable products 

prior to the start of the co-culture. Figure taken from (Wilken et al., 2018). 

 

Each modeled organism is also capable of producing metabolic by-products, e.g., ethanol, 

acetate and formate, that are known to inhibit microbial growth. We also recorded the final 

concentration of each compound as a secondary criterion to ascertain compatibility with the 

fungi. The summarized characteristics of each organism, simulated to pair with A. robustus, 

are shown in Table 5.5. 

Table 5.5: Growth rate and end point metabolic by-product concentrations produced by each partner 

microbe assuming inoculation after 72 hours of fungal growth. The end point concentrations are taken 

when the fermentable substrates were depleted for each organism. 

Organism μ (1/h) Ethanol (g/L) Acetate (g/L) Formate (g/L) 

C. ljungdahlii 0.08 0 0.35 0 

E. coli MG1655 0.17 0.02 0.02 0.03 
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E. coli ZSC113 0.04 0.01 0.02 0.03 

L. lactis 0.04 0.13 0.32 0.51 

S. cerevisiae 0.12 0.02 0 0 

 

The models predicted that both S. cerevisiae and E. coli MG1655 have a significantly 

higher growth rate than A. robustus. This suggests that maintaining population stability could 

be difficult for these co-cultures if paired with anaerobic fungi (Goers, Freemont and Polizzi, 

2014). While L. lactis has a comparable growth rate to A. robustus, it is unable to metabolize 

xylose; therefore, it would directly compete for glucose. Additionally, L. lactis produces a 

wide spectrum of metabolic by-products (ethanol, acetate and formate) at relatively high 

concentrations; this lessens its attractiveness as a consortia partner. The glucose deficient E. 

coli strain ZSC113 also has a comparable growth rate but produces less metabolic waste 

products. Additionally, it is genetically amenable to engineering (Bokinsky et al., 2011); this 

suggests that it could be a favorable organism for consortia formation. Finally, C. ljungdahlii 

is also a competitive choice for consortia. While its growth rate is higher than A. robustus, it 

is not in the range of S. cerevisiae and E. coli MG1655. C. ljungdahlii can ferment a wide 

range of sugars as well as autotrophically consume hydrogen (not modeled); this suggests that 

the organism can take full advantage of the fungal products. Recently, genetic engineering 

tools have become available for C. ljungdahlii, further increasing its viability as a consortia 

partner. 
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5.3.2.2 Autotroph Partnership with Anaerobic Fungi 

While the organisms shown in Section 5.3.2.1 utilized the fermentable sugars released by 

the gut fungal enzymes as their carbon source (or preferred carbon source in the case of C. 

ljungdahlii), M. barkeri, a methanogen, metabolizes carbon dioxide and hydrogen. It is well 

known that methanogens are natural consortia partners of gut fungi due to their symbiotic 

relationship (Haitjema et al., 2014). Methanogens consume the hydrogen gas, a likely growth 

inhibitor, produced by an intracellular organelle of the fungi called the hydrogenosome 

(Muller, 1993). Furthermore, it has been shown that methanogens co-cultured with gut fungi 

significantly increase their cellulolytic efficiency (Marvin-Sikkema et al., 1993). 

Figure 5.3 illustrates the simulated growth profile of M. barkeri. Negligible quantities of 

ethanol, acetate and formate are produced, while hydrogen is almost completely consumed. 

The effective growth rate is 0.03 1/h. Since the gas produced by the fungi drive their growth, 

it is not surprising that their growth rates are similar. 

 

Figure 5.3: Computationally predicted growth profile of M. barkeri biomass accumulation over time 

shows a strong dependence on the fungal metabolic by-products. Hydrogen and carbon dioxide, 
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produced by the fungi, are consumed by the methanogen. Simultaneous inoculation is assumed 

because the microbes do not compete for their preferred carbon source. All gas concentrations are in 

mmol/L. Figure taken from (Wilken et al., 2018). 

 

M. barkeri is also an attractive candidate for synthetic gut fungal consortia due to the 

mutualism exhibited by the pairing of fungi and methanogens in nature (Peng, Gilmore and 

O’Malley, 2016). The recent development of genetic technology to manipulate 

Methanosarcina suggests that the pairing is also feasible for bioproduction (Kohler and 

Metcalf, 2012). Finally, given the low levels of by-products generated by M. barkeri, it is 

plausible to consider tri-cultures of A. robustus, M. barkeri and another microbe, like C. 

ljungdahlii. Such a system would be, theoretically, minimally negatively interactive due to 

the reduced substrate competition. This is a desirable property for community stability. 

The benefit of using the dFBA, to screen for consortia partners, is that it is readily 

generalizable to higher order systems. Known interactions can easily be accounted for, and 

quantitative predictions of by-product generation can be used to evaluate partner suitability 

(cf. qualitative literature surveys). The simulation approach is particularly useful for non-

model organisms, like anaerobic fungi, because growth rate predictions in their unique culture 

conditions are not often readily available. 

Experimental validation of these predictions will take the form of community composition 

tracking and by-product generation monitoring. The latter technique is particularly applicable 

to the anaerobic fungi because it is one of the few non-invasive methods that can be used to 

measure growth in gut fungal systems (Theodorou et al., 1995). For example, in the case of 

the A. robustus and M. barkeri pairing, the methane, carbon dioxide and hydrogen production 

over time, compared to the mono-cultures, will indicate the success of the co-culture. Similar 
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indirect measurements could be used to validate the other predictions. However, these detailed 

experiments are beyond the scope of the current work. 

5.4 Conclusions 

To assess the suitability of each organism in Table 5.1 to form stable microbial consortia 

with anaerobic fungi, the identities and contributions of both the gut fungus and partner 

microbe need to be justified. In this work, experiments were used to select an anaerobic fungus 

and simulations, making the least number of assumptions, were used to screen possible 

consortia partners. 

The experimental results of Section 5.3.1 indicate that A. robustus is a more desirable 

building block for consortia (or even mono-cultures) compared to other strains tested here—

both in terms of higher growth rates on Corn Stover (see Table 5.4) as well as enzyme 

effectiveness at releasing fermentable sugars (see Figure 5.1). Barring the generation of 

unknown inhibitory agents, it should be prioritized for further experimentation. 

M. barkeri, a methanogen, is a natural consortia partner for gut fungi (Marvin-Sikkema et 

al., 1993). This is clear from the similar growth rates to A. robustus and consumption of 

hydrogen, a known inhibitor of fungal growth. Additionally, it produces minimal by-products 

that could retard fungal growth. C. ljungdahlii and E. coli ZSC113 are also potentially suitable 

consortia partners. On the other hand, L. lactis, S. cerevisiae and E. coli MG1655 were all 

ruled out due to their by-product generation or significantly higher growth rates. We 

introduced a novel dFBA algorithm that is computationally efficient and that does not impose 

many extra assumptions on the system. Making use of computational tools, such as this, to 
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reduce the number of costly and time-consuming experiments is a boon to developing and 

designing scalable synthetic biosystems (Höffner and Barton, 2014). 

Moreover, building predictive models of consortia systems can be critical to fully 

leveraging the inherent capabilities of micro-organisms as it allows engineers additional 

insight into the mechanics of these complex systems (Mahadevan and Henson, 2012). Fully 

unlocking the inherent capabilities of non-model organisms, like anaerobic gut fungi, will 

require novel tools to inexpensively generate and test hypotheses. Current consortia analysis 

techniques typically assume that the identities of the partner microbes are known and that they 

are modeled. This work provides a framework that can be used to rationally select the them 

even if some of the microbes are not modeled. 
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VI. An Arduino based automatic pressure evaluation system (A-APES) to 

quantify growth of non-model anaerobes in culture 

This chapter is based upon work that is published in the AIChe Journal, Volume 7, 2020, 

by St. Elmo Wilken, Patrick Leggieri, Corey Kerdman-Andrade, Matthew Reilly, Michael K. 

Theodorou and Michelle A. O’Malley, entitled “An Arduino based Automatic Pressure 

Evaluation System (A-APES) to quantify growth of non-model anaerobes in culture”, 

Copyright John Wiley and Sons. See the publication for more detailed information regarding 

the construction and functional tests, as well as the supplementary information mentioned in 

this chapter. 

6.1 Introduction 

Cultivation techniques applied to model microbes in biotechnology, like Escherichia coli 

and Saccharomyces cerevisiae, are well established, with many commercial tools available to 

automate data collection and analysis (Junker et al., 1994; Bareither and Pollard, 2011). 

Moreover, because model microbes are relatively simple to cultivate, and are well-suspended 

in batch or continuous culture, many lab-scale “do-it-yourself” devices have been constructed 

to facilitate high throughput, automated experiments that make use of optical density 

measurements and continuous recording of select metabolites (Boccazzi et al., 2005; 

Groisman et al., 2005; Klein, Schneider and Heinzle, 2013; Bergenholm et al., 2019) to 

monitor microbial growth. However, non-model microbes often present unique difficulties 

that hamper direct application of these technologies and techniques, often necessitating time 

consuming and/or destructive manual measurements. For example, many such microbes have 
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complex morphologies, are surface-adherent, and/or feature a complex life cycle (Podolsky et 

al., 2019). 

Anaerobic gut fungi, in the phylum Neocallimastigomycota, are relatively understudied 

non-model organisms of high biotechnological value due to their vast array of carbohydrate 

active enzymes (Youssef et al., 2013; Solomon et al., 2016; Haitjema et al., 2017b). However, 

anaerobic fungi have proven exceptionally difficult to characterize in large part due to 

challenges in their cultivation. They are strict anaerobes, temperature sensitive, filamentous 

and typically require specialized media for growth (Haitjema et al., 2014). Further, in contrast 

to model yeasts or fungi, anaerobic gut fungi are not well suited to cultivation in chemostats 

because they adhere to their growth substrates, and themselves, through a filamentous rhizoid 

network (Gruninger et al., 2014). This necessitates either destructive harvesting of samples to 

benchmark cellular biomass or the use of indirect measurements to permit growth rate 

calculations.  

Indirect measurements for anaerobes typically make use of accumulated pressure of 

fermentation products as a proxy for growth, and have been widely adopted in the field 

(Theodorou et al., 1995; Haitjema et al., 2014). For example, for anaerobic gut fungi, gas 

production rate growth curves are often used to study fungal lignocellulolytic properties and 

substrate preferences, yet are typically labor and time intensive to generate when fine 

resolution is required (O’Malley, Theodorou and Kaiser, 2012c; Henske, Wilken, et al., 2018). 

Typically, the fermentation gas pressure in each sample under consideration must be measured 

and vented multiple times per day to obtain an accurate estimate of the fungal growth rate. 

The time intensive nature of measuring accumulated pressure in such cultures has led to the 

design and construction of devices that automate this process (Davies et al., 2000; Adesogan, 
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Krueger and Kim, 2005). In essence, these approaches typically combine a pressure transducer 

with a valve. The transducer measures the accumulated pressure over the course of growth, 

and the valve vents the closed system to prevent over-pressurization periodically, as shown 

schematically in Figure 6.1. Alternative designs include liquid displacement flow-meters, but 

accurate readings can be challenging to attain using such devices (Walker et al., 2009).  

 

Figure 6.1: Conceptual design of automatic pressure measurement and venting devices(Davies et al., 

2000) compared to labor intensive manual measurements. Benefits of each system are shown in blue 

font, with drawbacks in red. (A) Designs typically make use of a pressure transducer (P) that measures 

the rate of pressure increase in a sealed bottle, which is correlated to growth in rumen microbiome 

based systems (Theodorou et al., 1995; Haitjema et al., 2014). To prevent over-pressurization of the 

sealed bottles a valve (V) can be used to vent the system. (B) Manually measuring and venting the 

pressure requires the use of a handheld pressure transducer that is used to measure the pressure in the 

bottle prior to venting. Slight cooling of the bottles is usually observed due to the time it takes to vent 

the culture outside of an incubator.   
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Despite the apparent simplicity of the design shown in Figure 6.1.A, these lab-built 

automated systems have not gained significant traction. This is likely because the electronics 

required to make these systems work are not simple or readily shareable. Relatively expensive 

commercial systems, such as the Ankom RF Gas Production System or the OxiTop Respirator 

system, exist and have been used to study the growth characteristics of anaerobic systems 

(Tagliapietra et al., 2010; Pabón Pereira, Castañares and Van Lier, 2012). On the other hand, 

Arduino based systems have recently become popular foundations to build lab automation 

devices of varying complexity (Urban, 2015, 2018). Importantly, Arduino based systems are 

low cost and relatively simple to build (Sarik and Kymissis, 2010; Grinias et al., 2016). There 

is also a growing drive to towards developing “open-hardware”, which encompasses the 

development of low cost, easily shareable, standardized lab automation designs (Sarik and 

Kymissis, 2010; Gibney, 2016). 

Here we use a non-model anaerobic gut fungus as a test bed to design and build a device 

that can be used to automatically record and release pressure to measure microbial growth. 

This enables the construction of high-quality growth curves for sensitive, strictly anaerobic 

microorganisms that are not amenable to direct biomass measurements. Specifically, this 

device measures and logs the rate of gas production and is particularly applicable to systems 

where the rate of gas production is correlated with biomass growth. The wireless Arduino 

based Automatic Pressure Evaluation System device introduced here, named A-APES, is 

specifically designed to work with strictly anaerobic systems, like rumen microbiome-based 

cultures. In particular, this system is designed to make use of standard lab equipment (serum 

bottles, incubators etc.) that are routinely used in the field. Use of this device will enable the 

collection of cross-lab comparable, high quality data without the need for significant manual 
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oversight. Additionally, due to the use of the Arduino base and modular apparatus, it is 

straightforward to extend the system to include additional monitoring channels or 

simultaneously connect with other measurement devices if desired. The aim is to present a 

low cost, standardized system that can be built in any lab without the need to understand 

complex electronics.  We describe the design of the system, which includes a “ready to be 

manufactured” printed circuit board (PCB) that minimizes the amount of assembly and 

technical know-how required to construct the system.  

Furthermore, to demonstrate the utility of the A-APES device, several high-resolution 

growth curves of an isolated anerobic gut fungus were constructed. Experiments were 

designed to investigate the influence of pressure venting frequency on the growth rate of 

anaerobic fungi. Additionally, these high-quality growth curves revealed that gut fungi appear 

to lack a true exponential phase when grown on lignocellulose. Instead, the growth rate 

appears to be multiphasic, possibly because the polymeric constituents of lignocellulose are 

not digested at the same rate by the gut fungus. The effect of venting frequency on the growth 

rate of the cultures was found not to be significant, suggesting that gas accumulation and 

venting frequency are not key drivers of the observed fungal growth rate. In future, the ability 

to accurately and continuously infer the growth rate of anaerobic gut fungi in real-time could 

be used to perform substrate optimization experiments for which current techniques are 

lacking in measurement frequency, sensitivity and precision. 
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6.2 Materials and Methods 

6.2.1 Design and construction of A-APES 

A schematic diagram of the Arduino based Automatic Pressures Evaluation System (A-

APES) device is shown in Figure 6.2. The Supplement contains the Gerber file that was used 

to manufacture the printed circuit board (PCB), as well as other schematic documents that 

explain how to construct the entire device. Briefly, A-APES uses two XBEE ZIGBEE Mesh 

(DIGI, MI) devices for wireless communication between A-APES and a computer that logs 

the data. The XBEEs are plug-and-play, requiring minimal setup through the free software 

XCTU from DIGI. The first XBEE is connected to the A-APES device; the second XBEE is 

connected to the data logging computer using an XBEE USB Dongle (WRL-11812, Sparkfun, 

CO). A short Python script is used to read and save the data from the USB connection (see the 

supplied code in the Supplement). Copper tubing, which is connected to an all metal syringe 

sealed with epoxy, is used to connect the solenoid valve (RSSM-2-12V, Electric Solenoid 

Valves, NY) and the pressure transducer (PX119-030AI, Omega Engineering, CT) to a bottle 

that is sealed using a 13 mm thick butyl rubber stopper typical for anaerobic experiments. 

Insulated 18-gauge wires are used to connect the solenoid valves to an independent power 

supply via a relay switch (Youngneer 5V relay, Amazon, WA). Additional wires (22-gauge) 

were used to connect the relay, which controls the solenoid valve, as well as the pressure 

transducer to an Arduino microcontroller (Arduino Uno R3, Amazon, WA) via the PCB, 

which used a second power supply. A 16-bit analog-to-digital converter (ADC) (1085, 

Adafruit, NY) is used to translate the transducer’s output to a signal that is interpreted through 
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the Arduino. More detailed information regarding the construction of the device may be found 

in Supplement (the construction guide, parts list and code).  

 

Figure 6.2: A schematic diagram of the primary components of A-APES. In this diagram only a single 

solenoid valve/pressure transducer unit is shown, but the base system can accommodate up to 4 

independent units in total. The construction guide illustrates the assembly process (refer to 

Supplementary Information). 

6.2.2 Tubing and connections leak tests 

Prior to the selection of copper tubing for A-APES, various other plastic tubing types were 

evaluated for their ability to form a gas tight seal between the pressure transducer, the needle 

and the solenoid valve, as depicted in Figure 6.2. This included Tygon (6516T11, McMaster-

Carr, IL), Tygon PVC (8349T12, McMaster-Carr, IL), PFA (EW-06375-01, Cole-Palmer, IL) 

and CFlex (EW-06424-14, Cole-Palmer, IL) tubing. To test the gas-tightness, each type of 

tubing was connected to a pressure transducer and left to equilibrate at 39°C in an incubator 

overnight. Subsequently, a 70 mL serum bottle, half filled with glass beads (2mm diameter, 
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Chemglass, NJ), was pressurized to approximately 138 kPaa with pure CO2 gas 

(representative of the typical operating conditions). This bottle was connected to the 

transducer and the pressure over time was monitored to ascertain the rate of gas leakage 

through the tubing. Copper tubing was used in the final design due to its superior gas tight 

seal, as is discussed later. The entire system was constructed, as shown in the Supplement, 

and leak tested. This entailed pressurizing three 70 mL serum bottles as before and recording 

the change in pressure over time. 

6.2.3 Experimental evaluation of anaerobic growth 

Standard anaerobic gut fungal culturing techniques and conditions were used for all the 

experiments presented in this work (Haitjema et al., 2014). All experiments used 70 mL (total 

volume) serum bottles with 0.5 grams of Corn Stover (supplied by the USDA-ARS Research 

Center, Madison, WI) in 40 mL of MC media (Davies et al., 1993), incubated at 39°C with a 

100% CO2 gas headspace. The filled serum bottles were autoclaved at 121°C for 20 minutes 

prior to use. An anaerobic gut fungus isolate, Neocallimastix lanati, was exclusively used in 

all the experiments. Each experimental triplicate was inoculated with 2 mL from the same 2-

day old serum bottle of growing fungus of the same media composition as the experiment. 

Additionally, 0.5 mL of 10 mg/mL Chloramphenicol (BP904-100, Fisher Scientific, CA) was 

added to each bottle to prevent contamination by other microbes. Butyl rubber stoppers were 

used in all the experiments to ensure a gas tight seal between the serum bottle and the A-APES 

needle (as described above). Each experiment was run until stationary phase was observed, 

typically 4-5 days post inoculation. Any deviations from this are noted in the relevant results 

section. Three independent pressure measurement (transducers) and release valves (solenoids) 
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were used to enable the measurement of culture growth in a triplicate set of serum bottles. The 

venting frequency of headspace gas was varied as noted in the results section. Pressure 

measurements were taken every minute and recorded. 

6.2.4 Data analysis 

The experimental design resulted in three high resolution pressure measurement datasets 

per run. The growth rate for each dataset was determined by log transforming the cumulative 

pressure data and fitting a straight line to time-axis discretized intervals of 12 hours 

(approximately one doubling time) beginning 20 hours after inoculation. This yielded 

instantaneous growth rate data over the entire time course as shown in later figures. The 20-

hour time offset was used to allow the system to equilibrate post-inoculation. For each 

replicate, the maximum straight-line slope over all the discretized intervals of the experiment 

was taken as the maximum growth rate of the dataset. Repeats of runs (each run is a triplicate 

set) were considered consistent with each other if the p-value of the unequal variance T-test 

was above 0.05 for over 50% of comparisons between the pressures measured at equivalent 

time points. The growth rates of different run conditions were also compared using the unequal 

variance T-test with a cutoff p-value of 0.05. The Julia language was used for all the data 

analysis and visualization (Bezanson et al., 2017), while Python and C were used to interface 

the data recording computer with A-APES (code supplied in the Supplement).  
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6.3. Results and discussion 

6.3.1 A-APES is straightforward to construct and is gas tight 

Here we introduce an Arduino based Automatic Pressure Evaluation System (A-APES) 

that can be used to automatically record and vent the pressure in anaerobic cultures. This 

system allows for the generation of high quality and high-resolution pressure accumulation 

data that can be used to infer the growth rate of non-model anaerobes in culture. A complete 

parts list and guide to constructing A-APES is shown in the Supplement. Due to the use of the 

Arduino base, minimal knowledge of electronics is required to build, modify and operate the 

system. Moreover, the PCB is designed to reduce the wiring and assembly time required to 

build the system, which is also relatively inexpensive compared to commercial alternatives. 

The cost to build the base system, i.e. A-APES with a single pressure measurement and 

venting unit, is approximately $430 (as of 2020). The cost for a fully equipped base system 

with 4 independent pressure measurement and venting units is approximately $1000. This 

equates to a price of $250 per measurement unit, which is 3.2 times cheaper per measurement 

unit than the equivalent cost of a commercial system. Beyond the cost savings of A-APES, 

the Arduino base makes the system readily extendible to include other sensors or 

configurations. Specifically, the high accuracy 16-bit ADC is not restricted to the pressure 

transducer. Therefore a wide range of commercially available environmental sensors with 

analogue outputs can also be monitored by the system (Urban, 2018).   

Due to limited incubator space and media costs, it is also desirable to minimize the volume 

of culture vessels used with automated systems. To the best of our knowledge, the smallest 

operable working volume for a commercially available system is 250 mL. Filling a large bottle 
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with a relatively small volume of liquid media results in a large headspace volume in the 

bottle. This larger headspace volume reduces the sensitivity of the measured pressure in the 

bottle. On the other hand, using more liquid media relative to vessel size results in a smaller 

head space volume that can exacerbate the effect gas leaks have on the measured pressure. 

Thus, an important design requirement is that the measurement system is gas tight to 

accurately measure gas production rates, as well as maintain anaerobicity. A-APES is 

designed to be gas tight and not constrained to a particular bottle size. For demonstration 

purposes we used 70 mL total volume glass bottles filled with 40 mL of liquid media. 

However, it should be noted that the A-APES can potentially be used with a wide range of 

vessel sizes if they are sealable with butyl-rubber stoppers.  

Various tubing types were considered and evaluated during the construction of A-APES, 

with the goal of identifying the most gas tight configuration. Figure S1 shows that plastic 

tubing leads to significantly higher gas leak rates, either due to the permeability of CO2 and/or 

the barbed connection fittings that were used. Copper tubing was selected because the rate of 

gas leakage was the lowest (0.01 kPa/h), see Figure S1 in the supplement for details. Since 

copper is not as flexible as plastic, some strain is placed on the connections when new serum 

bottles are connected to A-APES. This strain introduces the potential for leaks if the 

connections are not tight. Sealing the joints with epoxy solves this problem; it was found that 

the leak rate was halved in the final assembled system when epoxy was used to seal the joints, 

see Figure S2 in the supplement. However, using epoxy makes the connections permanent – 

a problem if the system needs to be disassembled and reconfigured. On balance the superior 

gas tightness ensured by the epoxy was deemed worth the inconvenience of permanent 

fixtures. The final gas leakage rate for the assembled system is 0.01 kPa/h. Assuming a 5-day 
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run duration, and 172 kPa of accumulated pressure (typical values recorded), leakage caused 

an error of less than 1% which we consider to be negligible. 

6.3.2 No significant differences were observed between A-APES and manual pressure 

measurements of anaerobic fungal cultures 

Pressure measurement differences between using A-APES and manually measuring and 

venting culture vessels were investigated by running a side-by-side comparison. It is important 

that the A-PES system is able to recapitulate pressure accumulation data measured manually 

because this is the standard in the field and would lend credence to novel observations derived 

from automatically generated data. To this end, A-APES was programmed to vent a set of 

triplicate anaerobic fungal cultures every 12 hours, while another set of triplicate cultures were 

started at the same time, from the same inoculum, and vented manually at the same interval. 

Figure 6.3.A shows the pressures at each measurement interval, and Figure 6.3.B shows the 

cumulative pressure profile. In both cases there were no statistically significant differences 

between the experiments at any point in time, as shown in Figure S3 in the supplement. 

Furthermore, the automatic experiment had a maximum growth rate of 0.087 ± 0.006 1/h, 

while the manual experiment had a maximum growth rate of 0.09 ± 0.012 1/h calculated by 

log transforming data points at the same time and finding the maximum slope for each 

experiment using these data points. The growth rates were also not statistically significantly 

different.  
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Figure 6.3: No statistically significant differences were found when comparing A-APES pressure 

measurements to manual pressure measurements of fungal growth. The pressure production 

measurements of two sets of triplicate N. lanati cultures were compared in a side-by-side experiment. 

Each replicate in both triplicate sets were treated in exactly the same way (2 mL inoculum from the 

same starter bottle into 40 mL complex media with 0.5 grams of corn stover, see the methods section 

for more details), except for the measurement method. One set used conventional manual pressure 

measurements and the other set used A-APES to record the pressure production rate. Both triplicate 

sets were vented every 12 hours. (A) Spot pressure measurements over time for both sets of triplicates. 

(B) The accumulated pressure profiles for each case. Neither the spot pressure measurements (Figure 
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6.3.A), nor the accumulated pressure profile (Figure 6.3.B) was statistically different. The 

measurement noise was lower using the automatic system (shaded region in Figure 6.3.A represents 1 

standard deviation). All error bars represent 1 standard deviation of error from the mean. 

It is informative to note some differences between the manually and automatically vented 

cultures, which were enabled by this comparison. The manually vented cultures cooled down 

slightly during each measurement bout. While the effect of the temperature fluctuation on 

growth is likely small when measuring infrequently, it could play a more significant role when 

smaller test tubes are used instead of individual serum bottles and/or measurements are done 

more frequently. Additionally, by removing the serum bottles from the incubator some 

stirring/mixing occurs. This is completely absent from the cultures that were measured using 

A-APES, as they are never removed, or moved at all, from the incubator.  Despite these 

physical differences, the results suggest that A-APES measures growth rates and pressure 

profiles with no significant difference to the manual experiment, albeit with reduced manual 

labor.   

6.3.3. A-APES demonstrates high run-to-run consistency 

The reproducibility of A-APES was tested by comparing the pressure profiles and growth 

rates of two runs done at different times using the same venting frequency. Figure 6.4.A shows 

the measured spot pressures, and Figure 6.4.B shows the cumulative pressure profile over time 

for both sets of triplicate runs. The cumulative pressure profile is not significantly different 

over the entire growth curve, while the spot measurements are not significantly different over 

89% of the growth curve, see Figure S4 in the supplement. Interestingly, the maximum growth 

rates were found to be statistically significantly different, irrespective of the time interval used 
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to calculate, them as shown in Figure S5 in the supplement. The low measurement noise 

associated with the A-APES system likely makes any experimental or biological noise more 

noticeable, which gave rise to the significant differences noted in Figure S5. 

 

Figure 6.4: A-APES shows high run-to-run measurement consistency with minimal statistically 

significant differences. Two triplicate experiments (run 1 and run 2, respectively), using exactly the 

same experimental conditions (2 mL inoculation of N. lanati, 40 mL complex media with 0.5 grams 

of corn stover, venting every 4 hours and recording pressure measurements every minute, see methods 

section for  more details), were run at different times to gauge the reproducibility of pressure 

measurements using A-APES. (A) The spot pressure measurements for each run. (B) The accumulated 
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pressure profiles for each run. The shaded area represents 1 standard deviation from the mean curve. 

The spot pressure measurements (Figure 6.4.A) were not significantly different over 89% of the 

experimental duration, while the accumulated pressure curves (Figure 6.4.B) were not significantly 

different over the entire duration of the experiments.  

The average difference between the maximum growth rates (as a function of different time 

discretization) was 0.01 ± 0.002 1/h. A leak test was performed to rule out that a leak in the 

connections caused the observed differences; this was found not to be the case. Thus, it is 

likely that these differences have a biological origin, as opposed to indicating problems with 

A-APES. Indeed, relatively high between run variability has been observed in other gut fungal 

isolates. For example, the growth rate of Neocallimastix californiae has been reported to range 

from 0.064 ± 0.007 to 0.072 ± 0.002 1/h growing under the same conditions as those used 

here (Henske, Wilken, et al., 2018; Gilmore et al., 2019). This suggests that there is some 

inherent biological variation that needs to be accounted for when comparing runs done at 

different times. Despite these observations, the high similarity in the measured pressure 

profiles suggest that A-APES is indeed consistent between runs. Furthermore, this result 

suggests that caution should be exercised when interpreting growth rate differences that are 

statistically significant yet small (on the order of 0.01 1/h) for this type of organism. 

6.3.4 High resolution data yields accurate rate data over the entire growth curve 

Manually measured pressure data is typically limited to very few data points, such as 

measuring and venting an anaerobic culture 3 times per day for 5 days, which results in 15 

data points. On the other hand, A-APES can record measurements every minute, yielding 

much finer resolution that can capture significantly more growth dynamics (~15 vs. ~7200 

data points, manual vs. A-APES respectively measured for 5 days). This allows for the 
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inference of growth rates over the entire time course, with much higher resolution compared 

to manual methods. Figure 6.5 reveals that the growth rate of N. lanati, on a lignocellulosic 

substrate (corn stover), is variable. In particular, the growth rate seems to plateau for only a 

short duration (~5 hours), after which it decreases rapidly. By using the high-resolution data 

afforded by A-APES, it is apparent that classic exponential phase (characterized by a constant 

maximum growth rate) is absent. Instead a variable growth rate is observed. This information 

would be obscured by using lower-resolution manual methods. It is possible that the 

fermentable sugars released during the digestion of the lignocellulose by the fungus are 

differentially metabolized. This substrate preference could be the cause of the observed 

variable growth rate. The initially increasing growth rate could be attributed to an excess of 

easily metabolizable substrates being available, but the enzymes required to unlock them from 

the lignocellulose first need to be produce, which limits the growth. The harder-to-metabolize 

substrates are metabolized last, explaining why the growth rate starts to decrease midway 

through the time course.   
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Figure 6.5: High resolution pressure measurements reveal that the growth rate of N. lanati, growing 

on a corn stover, is variable across the growth curve. Pressure was vented every hour, and 

measurements were taken every minute. Each replicate of the triplicate data shown here was grown in 

complex media with 0.5 grams of corn stover and inoculated with 2 ml from the same starter bottle, 

see the methods section for more details. (A) Figure 6.5.A. shows the inferred instantaneous growth 

rate, calculated over 12-hour intervals, peaks at ~0.08 1/h, but only for a short duration (~5 hours). (B) 

Figure 6.5.B. shows the corresponding log transformed accumulated pressure curve. In both cases it is 

apparent that a classic constant rate exponential phase is absent. Differential substrate digestion and 
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metabolization may explain the variable growth rates. For each figure the shaded region represents 1 

standard deviation from the solid blue curve that represents the mean of the measurements 

Alternatively, it has been suggested that hydrogen production and accumulation inhibits 

the gut fungal energy metabolism (Marvin-Sikkema et al., 1994b; Gruninger et al., 2014). To 

investigate this using A-APES, the venting frequency was varied (every 1, 4, and 12 hours in 

triplicate), and the growth rates were compared. By venting more frequently, the partial 

pressure of hydrogen would be reduced, differentially attenuating possible inhibition effects. 

However, as shown in Figure 6.6, it seems unlikely that this type of inhibition plays an 

important role in the observed growth rate decrease. Across all three conditions the growth 

rate profiles were similar and the observed maximum growth rates were approximately similar 

(~0.08 1/h, within the 0.01 1/h margin noted earlier). This suggests that pressure 

accumulation, and by extension hydrogen accumulation, does not significantly reduce the 

growth rate of N. lanati. While the reason for this observed growth rate decrease in anaerobic 

fungi remains unclear, the data suggest there is significant scope to experiment with conditions 

that optimize growth and to engineer anaerobic gut fungi to grow at their maximum rate for a 

longer time duration. In sum, the benefit of using A-APES is apparent here: very high-

resolution data is available to interrogate the effect of experimental perturbations on sensitive 

anaerobic systems.  
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Figure 6.6: The observed instantaneous growth rate is not a function of the venting frequency, 

suggesting that pressure accumulation does not adversely affect the growth rate of N. lanati. Thus, it 

is unlikely that hydrogen inhibition plays an important role in the observed growth rate decrease. Three 

triplicate sets of N. lanati growing on 40 mL of complex media and 0.5 grams corn stover were vented 

at 1, 4 and 12-hour intervals to investigate the effect venting time has on the growth rate of the fungus. 

Higher venting frequencies reduces the buildup of pressure in the closed system, leading to lower 

concentrations of the gaseous fermentation products. The maximum spot pressure observed during the 

1-hour venting experiment was 4.9 kPag, suggesting that there was no significant buildup of hydrogen. 

In contrast, the maximum spot pressure during the 12-hour venting experiment was 49 kPag. In both 
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cases the growth rates were comparable. The growth rates were calculated using 12-hour intervals, and 

the shaded region represents 1 standard deviation from the solid mean curve. Media de-gassing effects 

can be seen in the periodic behavior observed during the 4-hour and 12-hour curves. The high pressure 

between venting intervals causes gas to accumulate in the liquid fraction. After venting, the entrained 

gas escapes into the headspace of the system, which has been reduced to atmospheric pressure, and 

causes a rapid build-up of pressure that is not related to the current pressure production rate. The higher 

the venting frequency the more attenuated this de-gassing effect becomes. 

6.4 Conclusion 

Here we have introduced a fully automated pressure measurement and venting device (A-

APES) that can be used to infer the growth rate of microorganisms where gas production is 

related to biomass accumulation, such as anaerobic gut fungi (Haitjema et al., 2014). The 

device is also relatively simple to construct and operate. It affords the user high resolution gas 

production information that can be used to non-invasively study microorganism growth 

dynamics. Furthermore, due to the Arduino base the device is easy to extend and modify if 

desired, possibly paving the way for the construction of a lab-scale chemostat tailored for 

rumen-based microorganism systems.  Additionally, we have used this device to reveal the 

growth dynamics of a non-model anerobic gut fungus. Due to the very high-resolution data 

afforded by the device, it is apparent that gut fungal growth is punctuated by a short regime 

of very rapid growth, followed by a much longer regime where the growth rate slows down. 

This suggests that the slow growth rate associated with anaerobic gut fungi may be heavily 

influenced by culturing techniques, rather than internal metabolic limitations. 
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VII. Conclusions and future directions 

Anaerobic gut fungi are a promising clade of non-model fungi to explore for biomass 

breakdown and biological production, yet challenges remain to fully exploit them in a 

biotechnological context. These fungi are classified as non-model organisms due to the 

restrictive culturing conditions they require, their slow growth rate and their genetic 

intractability. Here we have documented several approaches aimed at elucidating the inner 

workings of their metabolism and how they can be paired with other organisms to channel 

lignocellulosic carbon into biotechnologically relevant materials.  

7.1 Anaerobic gut fungi are genetically intractable, but omics-based analyses can be used 

to guide efforts to engineer them 

While anaerobic gut fungi are genetically intractable, the vast array of omics datasets that 

have been collected for them can be used to guide future engineering efforts. Their uniquely 

GC-depleted genomes show several interesting features that have consequences for metabolic 

engineering. First, heterologous expression of gut fungal genes in other hosts needs to be 

carefully considered due to the extreme nucleotide biases present in gut fungal genes. Second, 

the gut fungi seem to prefer codons, and amino acids, that are also encoded for by GC-depleted 

sequences. Thus, expressing non-native genes in the gut fungi will likely require codon-

optimization to ensure translational compatibility. Third, the high abundance of repetitive 

genomic sequences may play an important role in the functional efficiency of, for example, 

their CAZymes due to glycosylation. In sum, this suggests that future genetic engineering 

strategies will have to be specifically tailored to the unique properties of the gut fungi to 

optimally leverage their potential. 
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Their metabolism may also be used to exploit their lignocellulolytic abilities. The genome-

scale metabolic model introduced in this thesis will likely prove to be a pivotal building block 

in understanding their phenotypic responses to environmental perturbations and shaping them 

to our benefit. Specifically, the metabolic degeneracy highlighted by the model is indicative 

of an organism that is well adapted to tuning its metabolism to suit the needs of the 

environment. This suggests that there is room to channel carbon and metabolic fluxes without 

compromising the organism unduly. These insights have applications in consortia 

engineering. For example, metabolic models can be used to rationally design and engineer 

inter-species interactions that prevent organisms from out-competing each other. This could 

prove valuable in promoting synthetic consortia stability. Moreover, spreading the metabolic 

burden associated with the production of value-added chemicals between different microbes 

can also be guided through genome-scale models. The precursor flux availability analysis 

highlighted in this thesis suggests that the gut fungi can be used in this context in bioprocesses. 

Additionally, the uncertainty associated with the hydrogenosomal metabolism presents an 

exciting opportunity to understand how these anaerobes survive, and thrive, in a highly 

competitive and challenging environment. Specifically, it is tempting to speculate that their 

growth rate can be significantly enhanced by engineering the hydrogenosome. Our current 

understanding suggests that the organelle is cofactor limited, suggesting a viable route to 

engineer it for better performance.   

7.2 Anaerobic gut fungi show promise to be incorporated in synthetic consortia 

The native environment of anaerobic gut fungi is typically dominated by fast growing 

prokaryotic members. This raises the question of how the relatively slow growing gut fungi 
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manage to persist in such a competitive habitat. In this thesis it was demonstrated that despite 

their low abundance, the gut fungi have a dramatic impact on the fermentation products 

produced by consortia that feature them. This suggests that, beyond their necessity to 

decompose lignocellulose into its constitutive sugar monomers for the host animal, their 

metabolic impact is likely to be important for the stability and function of the lignocellulolytic 

microbiome. Indeed, their ability to produce H2 is critical for the growth of methanogens, for 

example. Model based simulations also indicate that the anaerobic gut fungi form a mutualistic 

relationship with methanogens due to their ability to cross-feed and not compete with each 

other for resources to the same extent as other heterotrophic bacteria also present in their 

microbiome.  

Given the current genetic intractability of the gut fungi, their ability to form stable 

consortia with methanogens and bacteria, which are typically more amenable to genetic 

engineering, represents a promising alternative approach to utilizing their lignocellulolytic 

potential. It could be fruitful to pair the gut fungi with organisms that are known to form stable 

consortia with them and engineer the other members to produce valuable products. In sum, 

this suggests that there exist possible routes forward for designing consortia that channel 

carbon to products of interest without necessarily directly engineering the gut fungi.   

7.3 Future directions 

Several open questions remain that need to be addressed to better understand anaerobic 

gut fungi and unlock their potential. First is the metabolism and proteins found within the 

anaerobic fungal hydrogenosome. While the core enzymes of this organelle have been 

identified, the presence or absence of the bifurcating hydrogenase and/or a functioning proton 
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pumping mechanism would dramatically affect the way we understand how the gut fungi 

maintain their energy balance. Organellular isolation, purification and biochemical 

characterization will be a necessity in this regard. Second is a robust way to genetically 

engineer the gut fungi. The lack of genetic tools hampers our ability to channel metabolic 

fluxes (informed by the genome-scale model) to pathways of interest. The ability to insert a 

constitutively expressed fluorescent tag would also enable a robust way to estimate biomass 

accumulation, beyond the current gas production inference method. This will prove invaluable 

for consortia, and even monoculture, modeling. Third, metabolic modeling of other rumen-

based microorganisms will facilitate the establishment of stable pairings with the gut fungi 

that are amenable to systematic analysis. Currently, co-cultures with the gut fungi and 

microorganisms not isolated from their native habitat tend to be unstable. On the other hand, 

consortia down-selected from the same rumen-based microbiome have been shown to be very 

stable. This is likely due to complex metabolic interactions that we do not fully understand 

yet, e.g. the role methanogens play in diverting metabolic flux to the hydrogenosome. 

Isolating and modeling an organism that is known to form a stable pairing with a gut fungus 

will aid in better studying and understanding these interactions. Taken together, these 

questions can be used to unlock the potential of anaerobic gut fungi for sustainable 

bioprocessing of lignocellulosic waste. 
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VIII. Appendices 

8.1 Isolating, purifying and characterizing the fungal hydrogenosome 

8.1.1 Introduction 

Anaerobic gut fungi possess hydrogenosomes (Yarlett et al., 1986; Marvin-Sikkema et 

al., 1994b; Boxma et al., 2004; Hackstein et al., 2019). The hydrogenosome is a double 

membrane-enclosed, oxygen sensitive organelle that produces H2 and ATP typically through 

substrate level phosphorylation (Muller et al., 2012). These organelles are also found in other 

anaerobes, and are believed to be related to mitochondria, albeit highly reduced (Boxma et 

al., 2005). It is believed that the gut fungal hydrogenosome does not possess an electron 

transport chain, despite one earlier study to the contrary (Marvin-Sikkema et al., 1994a). 

Notably, other organisms, such as Nyctotherus ovalis, possess anaerobic mitochondria-like 

organelles that have an electron transport chain and produce H2. These organelles are termed 

H2 producing mitochondria instead of hydrogenosomes (Muller et al., 2012). As shown in 

Chapter IV, much is unknown about the metabolic functioning of the gut fungal 

hydrogenosome. It is important that the metabolism of this organelle be understood because 

it likely plays a central role in the energy generation pathways of the gut fungi. Specific 

questions that need to be answered (see Chapter IV for the motivation): 

1. What is the role of pyruvate formate oxidoreductase (PFO) and pyruvate formate 

lyase (PFL) in the hydrogenosome? Is PFL associated with H2 production, and if 

so, how? 

2. Is the hydrogenase in the hydrogenosome bifurcating? 

3. Do complexes I and II form part of a reduced electron transport chain in the gut 

fungal hydrogenosome, as possibly suggested in Figure 8.1? 
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Here we discuss progress made in addressing these questions and some remaining 

obstacles. 

8.1.2 Previous work isolating and purifying the gut fungal hydrogenosome 

There are a number of studies that have isolated, purified and attempted to enzymatically 

characterize the gut fungal hydrogenosome (Yarlett et al., 1986; Marvin-Sikkema et al., 1993, 

1994a). The papers by Marvin-Sikkema et al. primarily used gut fungal mycelium, while the 

paper by Yarlett et al. used zoospores to isolate the hydrogenosomes from the fungal cells. 

During our attempts to purify hydrogenosomes we primarily relied on the protocol proposed 

by Marvin-Sikkema and only used fungal mycelia for the extractions. We used both a 

hydrogenase as well as a malic enzyme assay (described in (Lindmark and Müller, 1973, 

1974)) to validate that we isolated an organelle with the “expected” hydrogenosome activity.  

While all the isolations we performed had both hydrogenase and malic enzyme activity, 

the purification part of the protocol (via sucrose density gradient fractionation) did not yield 

layers with distinct activity, i.e., essentially all the fractions exhibited significant hydrogenase 

and malic enzyme activities. This suggests that the lysing procedure used by Marvin-Sikkema 

(grinding the mycelia with sand) is an inappropriate technique. For both enzymatic 

characterization as well as proteomic analysis, it is crucial that the hydrogenosome fraction is 

as pure as possible. Mixed samples will make the characterization difficult since some of the 

uncertainty in the hydrogenosome metabolism centers around enzymes that could be localized 

to either the cytosol, the hydrogenosome, or both. 

Going forward, we suggest that the protocol in Yarlett et al. be followed. Specifically, 

zoospores should be used instead to mycelia, and the lysis procedure should use something 
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similar to a Potter/Dounce homogenizer (as suggested in Yarlett et al. 1986). Electron 

microscopy should be used to compare the density gradient fractions to the micrographs in 

Yarlett et al. Concurrently, enzymatic assays should be performed to ensure that the fractions 

display hydrogenosomal activity. We recommend the hydrogenase, malic enzyme, and 

pyruvate ferredoxin oxidoreductase assays as described in Yarlett et al. Next we describe the 

current recommended protocol for isolating and purifying hydrogenosomes from anaerobic 

gut fungi. 

8.1.3 Hydrogenosome isolation and purification protocol 

This protocol is adapted from Yarlett et. al., “Hydrogenosomes in the rumen fungus 

Neocallimastix pariciarum”, Biochemical Journal, 1986. 

All work should be performed in the anaerobic chamber as O2 deactivates the 

hydrogenase. 

Isolation and purification 

1. Inoculate 1 liter of gut fungi in complex media using a soluble carbon substrate (e.g., 

cellobiose).  Let it grow at 39°C for 3-4 days or until the culture reaches “mid-

exponential” phase i.e., actively growing. 

2. Open the bottle(s) inside the anaerobic chamber. Collect the fungal zoospores by 

filtering the cultures through cheese cloth into 50 mL conical tubes (~20 tubes). 

Discard the cell matt in the cheese cloth. Centrifuge the tubes (with the filtrate) at 

2500x g for 3 min at 39°C (the conical tubes are air-tight enough for these short spins). 

The zoospores, and some cell debris, will collect at the bottom of the conical tubes. 

Discard the supernatant in each tube and gently re-dissolve the zoospores in M2 media 

(i.e., the salt solution mentioned in Yarlett et. al.).  

3. Wash the concentrated zoospores at least once (Yarlett et. al. does it twice). 

4. Disrupt the pellets with a Teflon/glass Potter (a.k.a. Dounce) homogenizer. Use the 

disruption buffer (g/l): sucrose, 85.6; EDTA, 0.27; KCI, 1.49; KH2PO4, 1.36; MgCl2, 

1.0; Tris/HCl (pH 7.4), 1.21. Alternatively, one could also use a sonicator. 

5. Centrifuge (4°C) the homogenate at 2600xg to remove debris – it will pellet out. Use 

the supernatant, which should contain all the organelles for the next step. Discard the 

pellet (P1). 
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6. Perform the following centrifugations at 4°C, with the supernatant from (5), using an 

ultra-centrifuge at 105x g-min. Collect the sediment (call this P2), keep the supernatant 

for controls as required, but keep/use the pellet (P2) – it contains the hydrogenosome 

– for downstream work. 

7. Prepare a sucrose density gradient as described in Yarlett and use the ultra-centrifuge 

to fractionate the hydrogenosome.  

8. Yarlett found that the hydrogenosomes collect at ~1.20 g/mL sucrose. Perform assays 

(hydrogenase, PFO, PFL, malic enzyme etc.) on each fraction and use the fraction with 

the highest hydrogenase (this is the one Yarlett et. al. favored) activity.  

9. Use the mostly pure fraction of hydrogenosome in assays/proteomics for 

characterization. 

 

Assays 

1) The protocol for the hydrogenase and PFO assays, see (Lindmark and Müller, 1973).  

2) For the protocol of the malic enzyme, see (Lindmark and Müller, 1974). 
 

Note that both of the Lindmark et. al. papers contain many other useful assays for 

characterizing the hydrogenosome. 

8.1.4 Characterizing the hydrogenosome 

Once the hydrogenosomes have been purified we recommend that the other assays in 

Yarlett et al. be performed. These assays can be used to confirm the presence (or absence) of 

enzymes in the hydrogenosome model. Additionally, the bifurcating hydrogenase can be 

assayed using a method similar to that found in (Gerrit J. Schut and Adams, 2009). The 

electron transport chain may be probed using techniques similar to those used for 

mitochondria (e.g., fluorescent imaging and/or other assays). Finally, proteomic analysis will 

add value to the analysis and discovery process.   

8.1.5 Conclusion 

The hydrogenosome is an understudied yet important organelle in the gut fungal 

metabolism. It is likely responsible for a large portion of the energy generated by the fungal 
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cells. Isolating, purifying and enzymatically characterizing its metabolism will be a valuable 

addition to understanding the cellular metabolism of anaerobic gut fungi. 

 

 

Figure 8.1: Zoospores were stained for the presence of intracellular organelles with electrical potential 

using the dye JC-1 as well as DAPI to illuminate the nuclear structure. Blue represents the DAPI stain 

and orange/red represents the JC-1 stain, which indicates the presence of a pH gradient in the 

hydrogenosome (JC-1 is a mitrochondrial selective strain, but here the mitochondria is replaced with 

the hydrogenosome). The JC-1 Dye was purchased from Invitrogen (Part No. T3168, Carlsbad, CA, 

USA) and a standard protocol was used to visualize the presence of electrochemical gradients. Briefly, 

JC-1 was dissolved in DMSO (1 mg/mL) and frozen until use. Dye aliquots were thawed and added to 

cultures of anaerobic gut fungal zoospores using final dye concentrations of 1 µg/mL. Zoospores were 

incubated with JC-1 for 30 minutes anaerobically in standard M2 medium at +39°C. After incubation, 
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cultures were filtered onto 3 µm polycarbonate membranes (Part No. TSTP02500 MilliporeSigma, 

Burlington, MA, USA) with a nitrocellulose backing filter (Part No. HAWP04700, MilliporeSigma). 

Cells were counterstained with DAPI (2 µg/mL) and mounted on glass slides using an antifade 

mounting solution composed of 4:1 Citiflour:Vectasheild (Part No. AF1, Electron Microscopy 

Sciences, Hatfield PA, USA: Part No. H-1000, Vector Laboratories, Burlingame, CA, USA). Prepared 

slides were placed on ice and imaged immediately using a Zeiss Axiovert M200 fluorescence 

microscope (Carl Zeiss AG, Oberkochen, DE). Image courtesy of Thomas S. Lankiewicz. 

8.2 Using neural networks to learn from biological datasets 

8.2.1 Introduction 

Machine learning is a broad term used to describe computer-based algorithms designed to 

extract and recognize patterns in data for classification, regression or prediction. With the rise 

of high throughput experiments and the resultant “big” biological datasets, it has become 

possible to apply machine learning algorithms to biological problems (Camacho et al., 2018; 

Costello and Martin, 2018). Of particular importance to biological modeling is the ability to 

predict the function of a gene from sequencing data. Recent examples include gene annotation 

(Clauwaert, Menschaert and Waegeman, 2019) and protein localization (Almagro Armenteros 

et al., 2017) software. In the latter case, a neural network was trained to predict the localization 

of proteins using only the primary amino acid sequence data with ~70% accuracy. This 

promising result suggests that complex data can be used to guide experimental and modeling 

effort with high reliability. In this section neural networks are introduced and used to predict 

the enrichment of a library of yeast cells with mutations in the binding pocket of an A2a 

receptor (Yoo, Daugherty and O’Malley, 2020).  
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8.2.2 Neural networks 

A neural network is a supervised machine learning algorithm that maps inputs to outputs 

using a series of nonlinear functions. Arbitrary network topologies may be used to effect this 

transformation. Figure 8.2 depicts a basic feed forward topology using three layers. 

 

Figure 8.2: A simple feed forward neural network with one input layer (x), one hidden layer (z), and 

one output layer (y). 

Figure 8.2 shows a specific example where there are only two nodes (x1, x2) in the input 

layer. Similarly, there are only two hidden and output layer nodes respectively. The bias terms 

(x0, z0 = 1.0) are artificial inputs that are included so that an input of zero to a layer does not 

necessarily have to result in a constant output. Generalization to an arbitrary number of nodes 

is straightforward. When more than one hidden layer is present the model is called a deep 

network. We will only consider conventional feed forward neural networks here. In the case 

of D input nodes, M hidden nodes in a single layer, and K output nodes, the relationship 
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between the input layer to a specific output node is shown in equation (8.1). Each layer can 

have a nonlinear function (termed an activation function) applied to it to allow greater model 

expressivity. In equation (8.1) these nonlinear functions are denoted by f(…). 

 

(8.1) 

Despite the apparent simplicity of equation (8.1), theoretical analysis has shown that a 

three-layer neural network is a universal function approximator, i.e. it can, to arbitrary 

precision, approximate any function on a compact domain given enough hidden layer nodes 

(Sonoda and Murata, 2017). 

A challenge associated with using neural networks for regression or classification is that, 

although they may be able to model any function (like a discriminant function for 

classification), finding the set of parameters (e.g. the number of hidden nodes or weights w) 

that achieves this is difficult. This is due to the extremely high dimensionality of these 

networks for all but trivial problems. Configuring the network for the best results entails 

finding the optimum number of hidden nodes and the optimum weights. In practice the number 

of hidden nodes is generally adjusted through trial and error while conventional or 

unconventional optimization algorithms are used to minimize the error produced over training 

examples. 

The error function and nonlinear activations functions are usually determined based on the 

type of problem under consideration. In the case of multi-class classification, the cross-

entropy error function and the soft-max output function are used (Dreiseitl and Ohno-

Machado, 2002). This allows a probabilistic interpretation of the results that aids analysis and 
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extension. For regression, mean squared error is often used (Dreiseitl and Ohno-Machado, 

2002). The nonlinear function mapping the input layer to the hidden layer can theoretically be 

any function, although some guidelines exist that make training the system much more 

manageable4.  

Training a neural network entails modifying the weight matrices (w(1) and w(2) in 

equation (8.1)) to minimize the prediction or regression error. Due to the aforementioned 

dimensionality issues, this can be challenging to achieve efficiently. Various optimization 

strategies are used to find the minimum of the error function, with the most popular strategy 

being gradient descent, as shown in equation (8.2), where η is known as the learning rate. 

 
(8.2) 

It may be necessary to run the optimization routine multiple times because the nonlinear 

(and quite possibly non-convex) nature of the problem almost guarantees that there will be 

local minima (which the algorithm might get trapped in). Repeatedly running the optimization 

algorithm with different initial weights of w(1) and w(2) is a way of avoiding this problem and 

finding the global (or close to it) minimum of the error function. 

Error back-propagation (backprop) is an efficient way of calculating ∇E(wτ) that is 

necessary for most derivative based optimization methods(Karnin, 1990). Backprop works by 

forward propagating an input vector signal x (i.e. calculating the values of the hidden and 

output nodes) and then using that information to calculate the partial derivatives over each 

weighting vector going backwards from the outputs to the inputs. Due to the increasing 

 
4 See https://stats.stackexchange.com/questions/352036/what-should-i-do-when-my-

neural-network-doesnt-learn 

https://stats.stackexchange.com/questions/352036/what-should-i-do-when-my-neural-network-doesnt-learn
https://stats.stackexchange.com/questions/352036/what-should-i-do-when-my-neural-network-doesnt-learn
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popularity of neural network based machine learning architectures, well designed, optimized 

programming libraries exist (Innes, 2018; Innes et al., 2018). These libraries can be used to 

rapidly develop neural networks without having to program the fundamental algorithms (e.g. 

backprop) from scratch. 

8.2.3 Predicting GPCR enrichments using neural networks 

Making use of machine learning to assist directed protein evolution is becoming an 

increasingly common way to deal with the exceptionally large design space inherent to protein 

engineering (Wu et al., 2019). Assuming only the 20 standard amino acids can be used in 

protein synthesis, and the average length of a protein is 300 amino acids, suggests that 20300 

distinct proteins can be made. This is an impractically large space to exhaustively explore with 

experiments to optimize protein performance. Instead, machine learning methods can be used 

to screen proteins in silico. To achieve this, a fraction of the space needs to be explored 

experimentally to train a machine learning algorithm. By finding patterns in the data, the 

algorithm can be used to direct experimental effort into areas more likely to yield promising 

results, as has been demonstrated previously (Wu et al., 2019).  

To explore this idea, we have made use of data from a deep mutational scanning library 

that correlates mutations in the binding pocket of an A2a GPCR receptor in S. cerevisiae to 

the rate of enrichment of each mutational variant based on experimental data (Yoo, Daugherty 

and O’Malley, 2020). The goal is to be able to predict the enrichment rate of a variant given 

only the primary amino acid sequence data of the area that was mutated in the binding pocket. 

Table 8.1 shows a few examples of the raw data. 
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A single hidden layer feedforward neural network was constructed to model the 

relationship between the variants and the reported enrichment rate. A mean squared error 

function (predicted enrichment vs. actual enrichment) was used as the loss function to be 

optimized. Each amino acid was encoded as previously described (Sønderby et al., 2015) to 

form a unique input vector for each variant. Approximately 10% of the raw data was held out 

for testing, with the balance used for training. Of the ~180,000 variants recorded in the study, 

only ~2200 had a non-zero reported enrichment. Only this reduced set of data points were 

used for training/testing due to confidence issues with the remainder of the data5. 

Table 8.1: Example of the format of the raw data used to train the neural network. 

Variant (amino acid sequence of 

binding pocket) 

Enrichment rate 

SLNIG 790.5 

TSWIH 787.2 

TTYLH 635.2 

… … 

  

Figure 8.3 shows the training and testing errors when a neural network with 256 hidden 

nodes was used. For both the training and testing cases the mean squared error is very high. 

The high error renders the predictions unreliable. Interestingly, it is clear that over-fitting 

occurs because the training error is significantly lower than the testing error at later epochs. 

The likely explanation for the poor predictive power of the network is the low number of 

 
5 The author, Dr. Justin Yoo, recommended this. 
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training examples and relative complexity of the task. In other regression work that uses neural 

networks on biological data, more than two orders of magnitude more training data is typically 

used (Wu et al., 2019).  

8.2.4 Conclusion 

Here we have developed a small feed forward neural network to attempt to predict the 

enrichment rate of mutant variants of GPCRs. While neural networks are becoming a powerful 

tool in biology, the size of the dataset was too small to make reliable predictions.  

Figure 8.3: Training and testing errors for a neural network composed of 256 hidden nodes, using the 

ReLu activation function. The high errors are likely due to the small number of training data available. 

Overfitting is seen to occur at later epochs. 

 

 

  



 

181 

 

IX. References 

Adesogan, A. T., Krueger, N. K. and Kim, S. C. (2005) ‘A novel, wireless, automated 

system for measuring fermentation gas production kinetics of feeds and its application to feed 

characterization’, Animal Feed Science and Technology, 123-124 Part 1, pp. 211–223. doi: 

10.1016/j.anifeedsci.2005.04.058. 

Adney, W. S. et al. (1991) ‘Anaerobic digestion of lignocellulosic biomass and wastes - 

Cellulases and related enzymes’, Applied Biochemistry and Biotechnology. Humana Press, 

30(2), pp. 165–183. doi: 10.1007/BF02921684. 

Adrio, J. L. and Demain, A. L. (2014) ‘Microbial enzymes: tools for biotechnological 

processes.’, Biomolecules. Multidisciplinary Digital Publishing Institute  (MDPI), 4(1), pp. 

117–139. doi: 10.3390/biom4010117. 

Akhmanova, A. et al. (1999) ‘A hydrogenosome with pyruvate formate-lyase: anaerobic 

chytrid fungi use an alternative route for pyruvate catabolism’, Molecular Microbiology. John 

Wiley & Sons, Ltd, 32(5), pp. 1103–1114. doi: 10.1046/j.1365-2958.1999.01434.x. 

Akiva, E. et al. (2014) ‘The Structure–Function Linkage Database’, Nucleic Acids 

Research, 42(D1), pp. D521–D530. doi: 10.1093/nar/gkt1130. 

Albà, M. M., Tompa, P. and Veitia, R. A. (2007) ‘Amino Acid Repeats and the Structure 

and Evolution of Proteins’, in Gene and Protein Evolution. Basel: KARGER, pp. 119–130. 

doi: 10.1159/000107607. 

Allen, F. et al. (2009) ‘Mary Elizabeth Hickox Mandels, 90, bioenergy leader’, 

Biotechnology for Biofuels, 2, p. 22. doi: 10.1186/1754-6834-2-22. 

Almagro Armenteros, J. J. et al. (2017) ‘DeepLoc: prediction of protein subcellular 

localization using deep learning’, Bioinformatics (Oxford, England), 33(21), pp. 3387–3395. 



 

182 

 

doi: 10.1093/bioinformatics/btx431. 

Alper, H. and Stephanopoulos, G. (2009) ‘Engineering for biofuels: Exploiting innate 

microbial capacity or importing biosynthetic potential?’, Nature Reviews Microbiology, pp. 

715–723. doi: 10.1038/nrmicro2186. 

Amore, A., Giacobbe, S. and Faraco, V. (2013) ‘Regulation of cellulase and hemicellulase 

gene expression in fungi.’, Current genomics. Bentham Science Publishers, 14(4), pp. 230–

49. doi: 10.2174/1389202911314040002. 

Arazoe, T. et al. (2015) ‘Tailor-made TALEN system for highly efficient targeted gene 

replacement in the rice blast fungus’, Biotechnology and Bioengineering, 112(7), pp. 1335–

1342. doi: 10.1002/bit.25559. 

Arima, K., Iwasaki, S. and Tamura, G. (1967) ‘Milk Clotting Enzyme from 

Microorganisms’, Agricultural and Biological Chemistry, 31(5), pp. 540–551. doi: 

10.1080/00021369.1967.10858849. 

Arkin, A. P. et al. (2018) ‘KBase: The United States Department of Energy Systems 

Biology Knowledgebase’, Nature Biotechnology, 36(7), pp. 566–569. doi: 10.1038/nbt.4163. 

Arnaud, M. B. et al. (2010) ‘The Aspergillus Genome Database, a curated comparative 

genomics resource for gene, protein and sequence information for the Aspergillus research 

community’, Nucleic Acids Research, 38(suppl 1), pp. D420–D427. doi: 10.1093/nar/gkp751. 

Artzi, L., Bayer, E. A. and Moraïs, S. (2017) ‘Cellulosomes: bacterial nanomachines for 

dismantling plant polysaccharides’, Nature Reviews Microbiology, 15(2), pp. 83–95. doi: 

10.1038/nrmicro.2016.164. 

Atasoglu, C. and Wallace, R. J. (2002) ‘De novo synthesis of amino acids by the ruminal 

anaerobic fungi, Piromyces communis and Neocallimastix frontalis’, FEMS Microbiology 



 

183 

 

Letters. Narnia, 212(2), pp. 243–247. doi: 10.1111/j.1574-6968.2002.tb11273.x. 

Aung, H. W., Henry, S. A. and Walker, L. P. (2013) ‘Revising the Representation of Fatty 

Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast 

Metabolism’, Industrial Biotechnology, 9(4), pp. 215–228. doi: 10.1089/ind.2013.0013. 

Bach, A., Calsamiglia, S. and Stern, M. D. (2005) ‘Nitrogen Metabolism in the Rumen’, 

Journal of Dairy Science. Elsevier, 88, pp. E9–E21. doi: 10.3168/JDS.S0022-0302(05)73133-

7. 

Bajpai, P., Mehna, A. and Bajpai, P. K. (1993) ‘Decolorization of kraft bleach plant 

effluent with the white rot fungus Trametes versicolor’, Process Biochemistry, 28(6), pp. 377–

384. doi: 10.1016/0032-9592(93)80024-B. 

Banerjee, G., Scott-Craig, J. S. and Walton, J. D. (2010) ‘Improving enzymes for biomass 

conversion: A basic research perspective’, Bioenergy Research, 3(1), pp. 82–92. doi: 

10.1007/s12155-009-9067-5. 

Bareither, R. and Pollard, D. (2011) ‘A review of advanced small-scale parallel bioreactor 

technology for accelerated process development: Current state and future need’, 

Biotechnology Progress. American Chemical Society (ACS), 27(1), pp. 2–14. doi: 

10.1002/btpr.522. 

Beck, A. E., Hunt, K. A. and Carlson, R. P. (2018) ‘Measuring cellular biomass 

composition for computational biology applications’, Processes. MDPI AG, 6(5). doi: 

10.3390/pr6050038. 

Beckham, G. T. et al. (2010) ‘The O-Glycosylated Linker from the Trichoderma reesei 

Family 7 Cellulase Is a Flexible, Disordered Protein’, Biophysical Journal. Cell Press, 99(11), 

pp. 3773–3781. doi: 10.1016/J.BPJ.2010.10.032. 



 

184 

 

Beckham, G. T. et al. (2012) ‘Harnessing glycosylation to improve cellulase activity’, 

Current Opinion in Biotechnology, 23(3), pp. 338–345. doi: 10.1016/j.copbio.2011.11.030. 

Bergenholm, D. et al. (2019) ‘Construction of mini‐chemostats for high‐throughput strain 

characterization’, Biotechnology and Bioengineering, 116(5), pp. 1029–1038. doi: 

10.1002/bit.26931. 

Bezanson, J. et al. (2017) ‘Julia: A Fresh Approach to Numerical Computing *’, Society 

for Industrial and Applied Mathematics, 59(1). doi: 10.1137/141000671. 

Bhattacharya, A. S., Bhattacharya, A. and Pletschke, B. I. (2015) ‘Synergism of fungal 

and bacterial cellulases and hemicellulases: A novel perspective for enhanced bio-ethanol 

production’, Biotechnology Letters, 37(6), pp. 1117–1129. doi: 10.1007/s10529-015-1779-3. 

Billings, A. F. et al. (2015) ‘Genome sequence and description of the anaerobic lignin-

degrading bacterium Tolumonas lignolytica sp. nov.’, Standards in Genomic Sciences, 10(1), 

p. 106. doi: 10.1186/s40793-015-0100-3. 

Birdsell, J. (2002) ‘Integrating genomics, bioinformatics, and classical genetics to study 

the effects of recombination on genome evolution’, Mol. Biol. Evol., 19, pp. 1181–1197. 

Bischof, R. H., Ramoni, J. and Seiboth, B. (2016) ‘Cellulases and beyond: the first 

70 years of the enzyme producer Trichoderma reesei.’, Microbial cell factories, 15(1), p. 106. 

doi: 10.1186/s12934-016-0507-6. 

Blackwell, M. (2011) ‘The Fungi: 1, 2, 3 ... 5.1 million species?’, American Journal of 

Botany, 98(3), pp. 426–438. doi: 10.3732/ajb.1000298. 

Blazeck, J. and Alper, H. (2010) ‘Systems metabolic engineering: Genome-scale models 

and beyond’, Biotechnology Journal, 5(7), pp. 647–659. doi: 10.1002/biot.200900247. 

Boccazzi, P. et al. (2005) ‘Gene expression analysis of Escherichia coli grown in 



 

185 

 

miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data’, 

Applied Microbiology and Biotechnology, 68(4), pp. 518–532. doi: 10.1007/s00253-005-

1966-6. 

Boch, J. et al. (2009) ‘Breaking the code of DNA binding specificity of TAL-type III 

effectors.’, Science (New York, N.Y.), 326(5959), pp. 1509–1512. doi: 

10.1126/science.1178811. 

Bokinsky, G. et al. (2011) ‘Synthesis of three advanced biofuels from ionic liquid-

pretreated switchgrass using engineered Escherichia coli’, Proceedings of the National 

Academy of Sciences of the United States of America, 108(50), pp. 19949–19954. doi: 

10.1073/pnas.1106958108. 

Bolger, A. M., Lohse, M. and Usadel, B. (2014) ‘Trimmomatic: a flexible trimmer for 

Illumina sequence data’, Bioinformatics, 30(15), pp. 2114–2120. doi: 

10.1093/bioinformatics/btu170. 

Bonugli-Santos, R. C. et al. (2015) ‘Marine-derived fungi: diversity of enzymes and 

biotechnological applications’, Frontiers in Microbiology. Frontiers, 6, p. 269. doi: 

10.3389/fmicb.2015.00269. 

Borneman, W. S. et al. (1991) ‘Isolation and characterization of p-coumaroyl esterase 

from the anaerobic fungus Neocallimastix strain MC-2.’, Applied and environmental 

microbiology, 57(8), pp. 2337–2344. 

Bothast, R. J. and Schlicher, M. A. (2005) ‘Biotechnological processes for conversion of 

corn into ethanol’, Applied Microbiology and Biotechnology, 67(1), pp. 19–25. doi: 

10.1007/s00253-004-1819-8. 

Boxma, B. et al. (2004) ‘The anaerobic chytridiomycete fungus Piromyces sp. E2 



 

186 

 

produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E’, Molecular 

Microbiology. John Wiley & Sons, Ltd, 51(5), pp. 1389–1399. doi: 10.1046/j.1365-

2958.2003.03912.x. 

Boxma, B. et al. (2005) ‘An anaerobic mitochondrion that produces hydrogen’, Nature. 

Nature Publishing Group, 434(7029), pp. 74–79. doi: 10.1038/nature03343. 

Boxma, B. et al. (2007) ‘The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric 

origin’, BMC Evolutionary Biology. BioMed Central, 7(1), p. 230. doi: 10.1186/1471-2148-

7-230. 

Boyarskiy, S. and Tullman-Ercek, D. (2015) ‘Getting pumped: Membrane efflux 

transporters for enhanced biomolecule production’, Current Opinion in Chemical Biology. 

Elsevier Ltd, pp. 15–19. doi: 10.1016/j.cbpa.2015.05.019. 

Bray, N. L. et al. (2016) ‘Near-optimal probabilistic RNA-seq quantification’, Nature 

Biotechnology. Nature Publishing Group, 34(5), pp. 525–527. doi: 10.1038/nbt.3519. 

Brenner, K., You, L. and Arnold, F. H. (2008) ‘Engineering microbial consortia: a new 

frontier in synthetic biology’, Trends in Biotechnology, pp. 483–489. doi: 

10.1016/j.tibtech.2008.05.004. 

Brown, M. E. and Chang, M. C. (2014) ‘Exploring bacterial lignin degradation’, Current 

Opinion in Chemical Biology, 19, pp. 1–7. doi: 10.1016/j.cbpa.2013.11.015. 

Brownlee, A. G. (1989) ‘Remarkably AT-rich genomic DNA from the anaerobic fungus 

Neocallimastix.’, Nucleic acids research, 17(4), pp. 1327–35. 

Calkins, S. S. et al. (2018) ‘Development of an RNA interference (RNAi) gene 

knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A’, 

PeerJ, 6, p. e4276. doi: 10.7717/peerj.4276. 



 

187 

 

Camacho, C. et al. (2009) ‘BLAST+: architecture and applications’, BMC Bioinformatics, 

10(1), p. 421. doi: 10.1186/1471-2105-10-421. 

Camacho, D. M. et al. (2018) ‘Next-Generation Machine Learning for Biological 

Networks’, Cell. Cell Press, pp. 1581–1592. doi: 10.1016/j.cell.2018.05.015. 

Camiolo, S. et al. (2019) ‘An analysis of codon bias in six red yeast species’, Yeast. John 

Wiley & Sons, Ltd, 36(1), pp. 53–64. doi: 10.1002/yea.3359. 

Campanaro, S. et al. (2016) ‘Metagenomic analysis and functional characterization of the 

biogas microbiome using high throughput shotgun sequencing and a novel binning strategy’, 

Biotechnology for Biofuels, 9(1), p. 26. doi: 10.1186/s13068-016-0441-1. 

Carlson, M. et al. (2019) ‘PFAM.db: A set of protein ID mappings for PFAM’, R package 

version 3.8.2. 

Caspi, R. et al. (2018) ‘The MetaCyc database of metabolic pathways and enzymes’, 

Nucleic Acids Research. Oxford University Press, 46(D1), pp. D633–D639. doi: 

10.1093/nar/gkx935. 

Chakraborty, R. and Coates, J. D. (2004) ‘Anaerobic degradation of monoaromatic 

hydrocarbons’, Applied Microbiology and Biotechnology, 64(4), pp. 437–446. doi: 

10.1007/s00253-003-1526-x. 

Chan, P. P. and Lowe, T. M. (2019) ‘tRNAscan-SE: Searching for tRNA Genes in 

Genomic Sequences’, in Methods in molecular biology (Clifton, N.J.), pp. 1–14. doi: 

10.1007/978-1-4939-9173-0_1. 

Chandel, A. K. et al. (2015) ‘Biodelignification of lignocellulose substrates: An intrinsic 

and sustainable pretreatment strategy for clean energy production’, Critical Reviews in 

Biotechnology, 35(3), pp. 281–293. doi: 10.3109/07388551.2013.841638. 



 

188 

 

Chandra, R. P. et al. (2007) ‘Substrate pretreatment: The key to effective enzymatic 

hydrolysis of lignocellulosics?’, Advances in Biochemical Engineering/Biotechnology, 

108(May), pp. 67–93. doi: 10.1007/10_2007_064. 

Chang, Y. et al. (2015) ‘Phylogenomic Analyses Indicate that Early Fungi Evolved 

Digesting Cell Walls of Algal Ancestors of Land Plants’, Genome Biology and Evolution, 

7(6), pp. 1590–1601. doi: 10.1093/gbe/evv090. 

Chen, I.-M. A. et al. (2017) ‘IMG/M: integrated genome and metagenome comparative 

data analysis system’, Nucleic Acids Research, 45(D1), pp. D507–D516. doi: 

10.1093/nar/gkw929. 

Chen, W. et al. (2012) ‘Genomic characteristics comparisons of 12 food-related 

filamentous fungi in tRNA gene set, codon usage and amino acid composition’, Gene. 

Elsevier, 497(1), pp. 116–124. doi: 10.1016/J.GENE.2012.01.016. 

Chen, Y. et al. (2012) ‘Kraft lignin biodegradation by Novosphingobium sp. B-7 and 

analysis of the degradation process’, Bioresource Technology, 123, pp. 682–685. doi: 

10.1016/j.biortech.2012.07.028. 

Cheng, Y. S. et al. (2014) ‘Structural analysis of a glycoside hydrolase family 11 xylanase 

from Neocallimastix patriciarum: Insights into the molecular basis of a thermophilic enzyme’, 

Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology 

Inc., 289(16), pp. 11020–11028. doi: 10.1074/jbc.M114.550905. 

Cheng, Y. S. et al. (2015) ‘Improving the catalytic performance of a GH11 xylanase by 

rational protein engineering’, Applied Microbiology and Biotechnology. Springer Verlag, 

99(22), pp. 9503–9510. doi: 10.1007/s00253-015-6712-0. 

Cherry, J. M. et al. (2012) ‘Saccharomyces Genome Database: the genomics resource of 



 

189 

 

budding yeast’, Nucleic Acids Research, 40(Database issue), pp. D700–705. doi: 

10.1093/nar/gkr1029. 

Chinnici, F. et al. (2005) ‘Optimization of the determination of organic acids and sugars 

in fruit juices by ion-exclusion liquid chromatography’, Journal of Food Composition and 

Analysis, 18(2–3), pp. 121–130. doi: 10.1016/j.jfca.2004.01.005. 

Chokhawala, H. A. et al. (2015) ‘Mutagenesis of Trichoderma reesei endoglucanase I: 

impact of expression host on activity and stability at elevated temperatures’, BMC 

Biotechnology. BioMed Central, 15(1), p. 11. doi: 10.1186/s12896-015-0118-z. 

Chubukov, V. et al. (2018) ‘Synthetic and systems biology for microbial production of 

commodity chemicals’, npj Systems Biology and Applications. Nature Publishing Group, pp. 

1–11. doi: 10.1038/npjsba.2016.9. 

Clauwaert, J., Menschaert, G. and Waegeman, W. (2019) ‘DeepRibo: a neural network 

for precise gene annotation of prokaryotes by combining ribosome profiling signal and 

binding site patterns’, Nucleic Acids Research, 47(6), p. 36. doi: 10.1093/nar/gkz061. 

Coker, J. A. (2016) ‘Extremophiles and biotechnology: current uses and prospects.’, 

F1000Research. Faculty of 1000 Ltd, 5. doi: 10.12688/f1000research.7432.1. 

Corradi, N. et al. (2010) ‘The complete sequence of the smallest known nuclear genome 

from the microsporidian Encephalitozoon intestinalis.’, Nature communications, 1, p. 77. doi: 

10.1038/ncomms1082. 

Costello, Z. and Martin, H. G. (2018) ‘A machine learning approach to predict metabolic 

pathway dynamics from time-series multiomics data’, npj Systems Biology and Applications. 

Nature Publishing Group, 4(1), p. 19. doi: 10.1038/s41540-018-0054-3. 

Cowan, D. et al. (2005) ‘Metagenomic gene discovery: Past, present and future’, Trends 



 

190 

 

in Biotechnology, 23(6), pp. 321–329. doi: 10.1016/j.tibtech.2005.04.001. 

Crous, P. W. et al. (2012) ‘Fungal Planet description sheets: 107–127’, Persoonia : 

Molecular Phylogeny and Evolution of Fungi, 28, pp. 138–182. doi: 

10.3767/003158512X652633. 

Crown, S. B., Long, C. P. and Antoniewicz, M. R. (2016) ‘Optimal tracers for parallel 

labeling experiments and 13 C metabolic flux analysis: A new precision and synergy scoring 

system’, Metabolic Engineering. Academic Press Inc., 38, pp. 10–18. doi: 

10.1016/j.ymben.2016.06.001. 

Curran, K. A. and Alper, H. S. (2012) ‘Expanding the chemical palate of cells by 

combining systems biology and metabolic engineering’, Metabolic Engineering, 14, pp. 289–

297. doi: 10.1016/j.ymben.2012.04.006. 

Curtis, S. J. and Epstein, W. (1975) ‘Phosphorylation of D glucose in Escherichia coli 

mutants defective in glucosephosphotransferase, mannosephosphotransferase, and 

glucokinase’, Journal of Bacteriology, 122(3), pp. 1189–1199. 

Dashtban, M., Schraft, H. and Qin, W. (2009) ‘Fungal bioconversion of lignocellulosic 

residues: Opportunities & perspectives’, International Journal of Biological Sciences, 5(6), 

pp. 578–595. doi: 10.7150/ijbs.5.578. 

Davies, D. R. et al. (1993) ‘Distribution of anaerobic fungi in the digestive tract of cattle 

and their survival in faeces’, Journal of General Microbiology, 139(6), pp. 1395–1400. doi: 

10.1099/00221287-139-6-1395. 

Davies, Z. S. et al. (2000) ‘An automated system for measuring gas production from 

forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass 

silage’, Animal Feed Science and Technology, 83(3–4), pp. 205–221. doi: 10.1016/S0377-



 

191 

 

8401(99)00138-8. 

Davis, R. et al. (2013) ‘Process design and economics for the conversion of lignocellulosic 

biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and 

biological conversion of sugars to hydrocarbons’, National Renewable Energy Laboratory, p. 

NREL/TP-5100-60223. 

Dean, R. A. et al. (2005) ‘The genome sequence of the rice blast fungus Magnaporthe 

grisea’, Nature, 434(7036), pp. 980–986. doi: 10.1038/nature03449. 

Demirbas, A. and Demirbas, M. F. (2010) ‘Biorefineries’, in, pp. 159–181. doi: 

10.1007/978-1-84996-050-2_7. 

Deshpande, N. et al. (2008) ‘Protein glycosylation pathways in filamentous fungi’, 

Glycobiology. Narnia, 18, pp. 626–637. doi: 10.1093/glycob/cwn044. 

Diener, A. C. and Fink, G. R. (1996) ‘DLH1 is a functional Candida albicans homologue 

of the meiosis-specific gene DMC1’, Genetics, 143(2), pp. 769–776. 

Dighton, J. (2007) ‘Nutrient cycling by saprotrophic fungi in terrestrial habitats’, 

Environmental and Microbial Relationships. Berlin, Heidelberg: Springer Berlin Heidelberg, 

pp. 287–300. doi: 10.1007/978-3-540-71840-6_16. 

Dollhofer, V. et al. (2019) ‘The biotechnological potential of the anaerobic gut fungi’, in 

The Mycota. 

Doyle, J. J. and Doyle, J. L. (1987) ‘A rapid DNA isolation procedure for small quantities 

of fresh leaf tissue’, PHYTOCHEMICAL BULLETIN. Available at: 

https://worldveg.tind.io/record/33886 (Accessed: 4 August 2020). 

Doyle, S. (2011) ‘Fungal proteomics: from identification to function’, FEMS 

microbiology letters, 321(1), pp. 1–9. doi: 10.1111/j.1574-6968.2011.02292.x. 



 

192 

 

Dreiseitl, S. and Ohno-Machado, L. (2002) ‘Logistic regression and artificial neural 

network classification models: A methodology review’, Journal of Biomedical Informatics. 

Academic Press Inc., 35(5–6), pp. 352–359. doi: 10.1016/S1532-0464(03)00034-0. 

Duarte, I. and Huynen, M. A. (2019) ‘Contribution of Lateral Gene Transfer to the 

evolution of the eukaryotic fungus Piromyces sp. E2: Massive bacterial transfer of genes 

involved in carbohydrate metabolism’, bioRxiv, (2001), p. 514042. doi: 10.1101/514042. 

Duplessis, S. et al. (2011) ‘Obligate biotrophy features unraveled by the genomic analysis 

of rust fungi’, Proceedings of the National Academy of Sciences, 108(22), pp. 9166–9171. 

doi: 10.1073/pnas.1019315108. 

Durand, R. et al. (1997) ‘Transient expression of the beta-glucuronidase gene after 

biolistic transformation of the anaerobic fungus Neocallimastix frontalis.’, Current genetics, 

31(2), pp. 158–61. 

Durand, R., Rascle, C. and Fèvre, M. (1999) ‘Expression of a catalytic domain of a 

Neocallimastix frontalis endoxylanase gene (xyn3) in Kluyveromyces lactis and Penicillium 

roqueforti.’, Applied microbiology and biotechnology, 52(2), pp. 208–214. 

Duret, L. and Galtier, N. (2009) ‘Biased gene conversion and the evolution of mammalian 

genomic landscapes’, Annual Review of Genomics and Human Genetics, 10, pp. 285–311. 

Ebrahim, A. et al. (2013) ‘COBRApy: COnstraints-Based Reconstruction and Analysis 

for Python’, BMC Systems Biology. BioMed Central, 7(1), p. 74. doi: 10.1186/1752-0509-7-

74. 

Eiteman, M. A., Lee, S. A. and Altman, E. (2008) ‘A co-fermentation strategy to consume 

sugar mixtures effectively’, Journal of Biological Engineering, 2. doi: 10.1186/1754-1611-2-

3. 



 

193 

 

Elliott, A. R. et al. (1999) ‘Transformation of Bacillus subtilis using the particle inflow 

gun and submicrometer particles obtained by the polyol process’, Analytical Biochemistry, 

269(2), pp. 418–420. doi: 10.1006/abio.1999.4036. 

Falade, A. O. et al. (2017) ‘Lignin peroxidase functionalities and prospective 

applications.’, MicrobiologyOpen. Wiley-Blackwell, 6(1). doi: 10.1002/mbo3.394. 

Feist, A. M. et al. (2006) ‘Modeling methanogenesis with a genome-scale metabolic 

reconstruction of Methanosarcina barkeri’, Molecular Systems Biology, 2. doi: 

10.1038/msb4100046. 

Feist, A. M. and Palsson, B. O. (2010) ‘The biomass objective function’, Current Opinion 

in Microbiology, pp. 344–349. doi: 10.1016/j.mib.2010.03.003. 

Field, J. A. et al. (1993) ‘Screening for ligninolytic fungi applicable to the biodegradation 

of xenobiotics’, Trends in biotechnology, 11(2), pp. 44–49. doi: 10.1016/0167-

7799(93)90121-O. 

Fischer, M., Durand, R. and Fèvre, M. (1995) ‘Characterization of the promoter region of 

the enolase-encoding gene enol from the anaerobic fungus Neocallimastix frontalis: Sequence 

and promoter analysis.’, Current genetics, 28(1), pp. 80–6. 

Flahaut, N. A. L. et al. (2013) ‘Genome-scale metabolic model for Lactococcus lactis 

MG1363 and its application to the analysis of flavor formation’, Applied Microbiology and 

Biotechnology, 97(19), pp. 8729–8739. doi: 10.1007/s00253-013-5140-2. 

Flamholz, A. et al. (2012) ‘EQuilibrator - The biochemical thermodynamics calculator’, 

Nucleic Acids Research, 40(D1). doi: 10.1093/nar/gkr874. 

Flint, H. J. et al. (2008) ‘Polysaccharide utilization by gut bacteria: Potential for new 

insights from genomic analysis’, Nature Reviews Microbiology. Nature Publishing Group, pp. 



 

194 

 

121–131. doi: 10.1038/nrmicro1817. 

Floudas, D. et al. (2012) ‘The Paleozoic origin of enzymatic lignin decomposition 

reconstructed from 31 fungal genomes.’, Science (New York, N.Y.), 336(6089), pp. 1715–9. 

doi: 10.1126/science.1221748. 

Fondon III, J. W. and Garner, H. R. (2004) Molecular origins of rapid and continuous 

morphological evolution, Harvard Medical School. Available at: 

www.pnas.orgcgidoi10.1073pnas.0408118101 (Accessed: 12 June 2019). 

Gadd, G. M. (2007) ‘Geomycology: biogeochemical transformations of rocks, minerals, 

metals and radionuclides by fungi, bioweathering and bioremediation’, Mycological 

Research, 111(1), pp. 3–49. doi: 10.1016/j.mycres.2006.12.001. 

Galagan, J. E. et al. (2003) ‘The genome sequence of the filamentous fungus Neurospora 

crassa’, Nature, 422(6934), pp. 859–868. doi: 10.1038/nature01554. 

Galbe, M. and Zacchi, G. (2012) ‘Pretreatment: The key to efficient utilization of 

lignocellulosic materials’, Biomass and Bioenergy. Elsevier Ltd, 46, pp. 70–78. doi: 

10.1016/j.biombioe.2012.03.026. 

Galtier, N. (2001) ‘GC-Content Evolution in Mammalian Genomes: The Biased Gene 

Conversion Hypothesis’, Genetics, 159(1), pp. 907–911. doi: 10.3138/physio.61.1.51. 

Garcia-Campayo, V. and Wood, T. M. (1993) ‘Purification and characterisation of a beta-

D-xylosidase from the anaerobic rumen fungus Neocallimastix frontalis.’, Carbohydrate 

research, 242, pp. 229–245. 

Gasiunas, G. et al. (2012) ‘Cas9-crRNA ribonucleoprotein complex mediates specific 

DNA cleavage for adaptive immunity in bacteria.’, Proceedings of the National Academy of 

Sciences of the United States of America, 109(39), pp. E2579–86. doi: 



 

195 

 

10.1073/pnas.1208507109. 

Gazis, R. et al. (2016) ‘The genome of Xylona heveae provides a window into fungal 

endophytism’, Fungal Biology, 120(1), pp. 26–42. doi: 10.1016/j.funbio.2015.10.002. 

Gentzsch, M. and Tanner, W. (1996) ‘The PMT gene family: protein O-glycosylation in 

Saccharomyces cerevisiae is vital.’, The EMBO Journal. John Wiley & Sons, Ltd, 15(21), pp. 

5752–5759. doi: 10.1002/j.1460-2075.1996.tb00961.x. 

Gerngross, T. U. (2004) ‘Advances in the production of human therapeutic proteins in 

yeasts and filamentous fungi’, Nature Biotechnology. Nature Publishing Group, 22(11), pp. 

1409–1414. doi: 10.1038/nbt1028. 

Gessner, M. O. et al. (2007) ‘Fungal decomposers of plant litter in aquatic ecosystems’, 

Environmental and Microbial Relationships. Berlin, Heidelberg: Springer Berlin Heidelberg, 

pp. 301–324. doi: 10.1007/978-3-540-71840-6_17. 

Gharechahi, J. and Salekdeh, G. H. (2018) ‘A metagenomic analysis of the camel rumen’s 

microbiome identifies the major microbes responsible for lignocellulose degradation and 

fermentation’, Biotechnology for Biofuels. BioMed Central Ltd., 11(1). doi: 10.1186/s13068-

018-1214-9. 

Gianoulis, T. A. et al. (2012) ‘Genomic analysis of the hydrocarbon-producing, 

cellulolytic, endophytic fungus Ascocoryne sarcoides’, PLoS Genet, 8(3), p. e1002558. doi: 

10.1371/journal.pgen.1002558. 

Gibney, E. (2016) ‘“Open-hardware” pioneers push for low-cost lab kit’, Nature. Nature 

Publishing Group, pp. 147–148. doi: 10.1038/531147a. 

van der Giezen, M. et al. (1998) ‘The hydrogenosomal malic enzyme from the anaerobic 

fungus neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast 



 

196 

 

Hansenula polymorpha.’, Current genetics, 33(2), pp. 131–135. 

Gilbert, H. J. et al. (1992) ‘Homologous catalytic domains in a rumen fungal xylanase: 

evidence for gene duplication and prokaryotic origin.’, Molecular microbiology, 6(15), pp. 

2065–2072. 

Gilmore, S. P. et al. (2019) ‘Top-Down Enrichment Guides in Formation of Synthetic 

Microbial Consortia for Biomass Degradation’, ACS Synthetic Biology. American Chemical 

Society (ACS). doi: 10.1021/acssynbio.9b00271. 

Gilmore, S. P., Henske, J. K. and O’Malley, M. A. (2015) ‘Driving biomass breakdown 

through engineered cellulosomes.’, Bioengineered, 6(4), pp. 204–208. doi: 

10.1080/21655979.2015.1060379. 

Glass, N. L., Grotelueschen, J. and Metzenberg, R. L. (1990) ‘Neurospora crassa A 

mating-type region.’, Proceedings of the National Academy of Sciences of the United States 

of America, 87(13), pp. 4912–4916. 

Glémin, S. (2015) ‘Quantification of GC-biased gene conversion in the human genome’, 

Genome Research, (25), pp. 1215–1228. 

Glenn, J. K. and Gold, M. H. (1983) ‘Decolorization of several polymeric dyes by the 

lignin-degrading basidiomycete Phanerochaete chrysosporium’, Applied and Environmental 

Microbiology, 45(6), pp. 1741–1747. 

Goers, L., Freemont, P. and Polizzi, K. M. (2014) ‘Co-culture systems and technologies: 

Taking synthetic biology to the next level’, Journal of the Royal Society Interface. Royal 

Society. doi: 10.1098/rsif.2014.0065. 

Goffeau, A. et al. (1996) ‘Life with 6000 genes’, Science, 274(5287), pp. 546, 563–567. 

Gomez, J. A., Höffner, K. and Barton, P. I. (2014) ‘DFBAlab: A fast and reliable 



 

197 

 

MATLAB code for dynamic flux balance analysis’, BMC Bioinformatics. BioMed Central 

Ltd., 15(1). doi: 10.1186/s12859-014-0409-8. 

Grabherr, M. G. et al. (2011) ‘Full-length transcriptome assembly from RNA-Seq data 

without a reference genome’, Nature Biotechnology, 29(7), pp. 644–652. doi: 

10.1038/nbt.1883. 

Greene, E. R. et al. (2015) ‘Glycosylation of Cellulases: Engineering Better Enzymes for 

Biofuels’, Advances in Carbohydrate Chemistry and Biochemistry. Academic Press, 72, pp. 

63–112. doi: 10.1016/BS.ACCB.2015.08.001. 

Grigoriev, I. V. et al. (2014) ‘MycoCosm portal: gearing up for 1000 fungal genomes’, 

Nucleic Acids Research. Narnia, 42(D1), pp. D699–D704. doi: 10.1093/nar/gkt1183. 

Grinias, J. P. et al. (2016) ‘An Inexpensive, Open-Source USB Arduino Data Acquisition 

Device for Chemical Instrumentation’, Journal of Chemical Education, 93(7), pp. 1316–1319. 

doi: 10.1021/acs.jchemed.6b00262. 

Groisman, A. et al. (2005) ‘A microfluidic chemostat for experiments with bacterial and 

yeast cells’, Nature Methods, 2(9), pp. 685–689. doi: 10.1038/nmeth784. 

Groussin, M. et al. (2017) ‘Unraveling the processes shaping mammalian gut microbiomes 

over evolutionary time’, Nature Communications. Nature Publishing Group, 8. doi: 

10.1038/ncomms14319. 

Gruninger, R. J. et al. (2014) ‘Anaerobic fungi (phylum Neocallimastigomycota): 

Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological 

potential’, FEMS Microbiology Ecology. Blackwell Publishing Ltd, 90(1), pp. 1–17. doi: 

10.1111/1574-6941.12383. 

Guerriero, G. et al. (2015) ‘Destructuring plant biomass: Focus on fungal and 



 

198 

 

extremophilic cell wall hydrolases’, Plant Science. Elsevier Ireland Ltd, 234, pp. 180–193. 

doi: 10.1016/j.plantsci.2015.02.010. 

Güllert, S. et al. (2016) ‘Deep metagenome and metatranscriptome analyses of microbial 

communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces 

reveal major differences in carbohydrate hydrolysis strategies’, Biotechnology for Biofuels, 

9(1), p. 121. doi: 10.1186/s13068-016-0534-x. 

Hackstein, J. H. P. et al. (2019) ‘Hydrogenosomes of Anaerobic Fungi: An Alternative 

Way to Adapt to Anaerobic Environments’, in. Springer, Cham, pp. 159–175. doi: 

10.1007/978-3-030-17941-0_7. 

Haghighi Mood, S. et al. (2013) ‘Lignocellulosic biomass to bioethanol, a comprehensive 

review with a focus on pretreatment’, Renewable and Sustainable Energy Reviews, 27, pp. 

77–93. doi: 10.1016/j.rser.2013.06.033. 

Haitjema, C. H. et al. (2014) ‘Anaerobic gut fungi: Advances in isolation, culture, and 

cellulolytic enzyme discovery for biofuel production’, Biotechnology and Bioengineering, 

111(8), pp. 1471–1482. doi: 10.1002/bit.25264. 

Haitjema, C. H. et al. (2017a) ‘A parts list for fungal cellulosomes revealed by 

comparative genomics’, Nature Microbiology. Nature Publishing Group, 2(May), pp. 1–8. 

doi: 10.1038/nmicrobiol.2017.87. 

Haitjema, C. H. et al. (2017b) ‘A parts list for fungal cellulosomes revealed by 

comparative genomics’, Nature Microbiology. Nature Publishing Group, 2(May), pp. 1–8. 

doi: 10.1038/nmicrobiol.2017.87. 

Hamilton, W. L. et al. (2017) ‘Extreme mutation bias and high AT content in Plasmodium 

falciparum.’, Nucleic acids research. Oxford University Press, 45(4), pp. 1889–1901. doi: 



 

199 

 

10.1093/nar/gkw1259. 

Hanafy, R. A. et al. (2017) ‘Pecoramyces ruminantium , gen. nov., sp. nov., an anaerobic 

gut fungus from the feces of cattle and sheep’, Mycologia. Taylor & Francis, 109(2), pp. 231–

243. doi: 10.1080/00275514.2017.1317190. 

Hanly, T. J. and Henson, M. A. (2011) ‘Dynamic flux balance modeling of microbial co-

cultures for efficient batch fermentation of glucose and xylose mixtures’, Biotechnology and 

Bioengineering, 108(2), pp. 376–385. doi: 10.1002/bit.22954. 

Hanly, T. J. and Henson, M. A. (2013) ‘Unstructured modeling of a synthetic microbial 

consortium for consolidated production of ethanol’, in IFAC Proceedings Volumes (IFAC-

PapersOnline). IFAC Secretariat, pp. 157–162. doi: 10.3182/20131216-3-IN-2044.00003. 

Hanly, T. J., Urello, M. and Henson, M. A. (2012) ‘Dynamic flux balance modeling of S. 

cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures’, 

Applied Microbiology and Biotechnology, 93(6), pp. 2529–2541. doi: 10.1007/s00253-011-

3628-1. 

Harhangi, H. R. et al. (2002) ‘A highly expressed family 1 beta-glucosidase with 

transglycosylation capacity from the anaerobic fungus Piromyces sp. E2.’, Biochimica et 

biophysica acta, 1574(3), pp. 293–303. 

Hartfield, M. (2016) ‘Evolutionary genetic consequences of facultative sex and 

outcrossing’, Journal of Evolutionary Biology, 29(1), pp. 5–22. doi: 10.1111/jeb.12770. 

Hebraud, M. and Fevre, M. (1990a) ‘Purification and characterization of an aspecific 

glycoside hydrolase from the anaerobic ruminal fungus Neocallimastix frontalis.’, Applied 

and environmental microbiology, 56(10), pp. 3164–3169. 

Hebraud, M. and Fevre, M. (1990b) ‘Purification and characterization of an extracellular 



 

200 

 

beta-xylosidase from the rumen anaerobic fungus Neocallimastix frontalis.’, FEMS 

microbiology letters, 60(1–2), pp. 11–16. 

Heirendt, L. et al. (2019) ‘Creation and analysis of biochemical constraint-based models 

using the COBRA Toolbox v.3.0’, Nature Protocols. Nature Publishing Group, 14(3), pp. 

639–702. doi: 10.1038/s41596-018-0098-2. 

Henry, C. S. et al. (2010) ‘High-throughput generation, optimization and analysis of 

genome-scale metabolic models’, Nature Biotechnology, 28(9), pp. 977–982. doi: 

10.1038/nbt.1672. 

Henske, J. K., Gilmore, S. P., et al. (2018) ‘Biomass-degrading enzymes are catabolite 

repressed in anaerobic gut fungi’, AIChE Journal, 64(12), pp. 4263–4270. doi: 

10.1002/aic.16395. 

Henske, J. K., Wilken, S. E., et al. (2018) ‘Metabolic characterization of anaerobic fungi 

provides a path forward for bioprocessing of crude lignocellulose’, Biotechnology and 

Bioengineering, 115(4), pp. 874–884. doi: 10.1002/bit.26515. 

Henson, M. A. and Hanly, T. J. (2014) ‘Dynamic flux balance analysis for synthetic 

microbial communities’, IET Systems Biology. Institution of Engineering and Technology, 

8(5), pp. 214–229. doi: 10.1049/iet-syb.2013.0021. 

Hershberg, R. and Petrov, D. (2010) ‘Evidence that mutation is universally biased towards 

AT in bacteria’, PLoS Genetics, 6(9), p. e1001115. 

Hess, M. et al. (2011) ‘Metagenomic discovery of biomass-degrading genes and genomes 

from cow rumen’, Science, 331(6016), pp. 463–467. doi: 10.1126/science.1200387. 

Hibbett, D. S. et al. (2007) ‘A higher-level phylogenetic classification of the Fungi’, 

Mycological Research, 111(5), pp. 509–547. doi: 10.1016/j.mycres.2007.03.004. 



 

201 

 

Hildebrand, F., Meyer, A. and Eyre-Walker, A. (2010) ‘Evidence of selection upon 

genomic GC-content in bacteria’, PLoS Genetics, 6(9), p. e1001107. 

Himmel, M. E. et al. (2007) ‘Biomass recalcitrance: Engineering plants and enzymes for 

biofuels production’, Science, 454, pp. 804–807. doi: 10.1126/science.1137016. 

Hjersted, J. L. and Henson, M. A. (2009) ‘Steady-state and dynamic flux balance analysis 

of ethanol production by Saccharomyces cerevisiae’, IET Systems Biology, 3(3), pp. 167–179. 

doi: 10.1049/iet-syb.2008.0103. 

Höffner, K. and Barton, P. I. (2014) ‘Design of microbial consortia for industrial 

biotechnology’, in Computer Aided Chemical Engineering. Elsevier B.V., pp. 65–74. doi: 

10.1016/B978-0-444-63433-7.50008-0. 

Höffner, K., Harwood, S. M. and Barton, P. I. (2013) ‘A reliable simulator for dynamic 

flux balance analysis’, Biotechnology and Bioengineering, 110(3), pp. 792–802. doi: 

10.1002/bit.24748. 

Hofrichter, M. et al. (2010) ‘New and classic families of secreted fungal heme 

peroxidases’, Applied Microbiology and Biotechnology, 87(3), pp. 871–897. doi: 

10.1007/s00253-010-2633-0. 

Hong, J. et al. (2001) ‘Cloning of a gene encoding a highly stable endo-beta-1,4-glucanase 

from Aspergillus niger and its expression in yeast’, Journal of Bioscience and Bioengineering, 

92(5), pp. 434–441. 

Horn, S. J. et al. (2012) ‘Novel enzymes for the degradation of cellulose’, Biotechnology 

for Biofuels. doi: 10.1186/1754-6834-5-45. 

Houston, K. et al. (2016) ‘The Plant Cell Wall: A Complex and Dynamic Structure As 

Revealed by the Responses of Genes under Stress Conditions.’, Frontiers in plant science, 7, 



 

202 

 

p. 984. doi: 10.3389/fpls.2016.00984. 

Hrdy, I. et al. (2004) ‘Trichomonas hydrogenosomes contain the NADH dehydrogenase 

module of mitochondrial complex I’, Nature. Nature Publishing Group, 432(7017), pp. 618–

622. doi: 10.1038/nature03149. 

Hull, C. M., Raisner, R. M. and Johnson, A. D. (2000) ‘Evidence for mating of the 

“asexual” yeast Candida albicans in a mammalian host’, Science, 289(5477), pp. 307–310. 

doi: 10.1126/science.289.5477.307. 

Ilmberger, N. (2013) ‘Cellulases in ionic liquids-the long term stability of Aspergillus sp. 

cellulase’, Catalysts, 3, pp. 584–587. 

Innes, M. et al. (2018) ‘Fashionable Modelling with Flux’, arXiv. Available at: 

http://arxiv.org/abs/1811.01457 (Accessed: 8 August 2020). 

Innes, M. (2018) ‘Flux: Elegant machine learning with Julia’, Journal of open source 

software. doi: 10.21105/joss.00602. 

James, T. Y. et al. (2013) ‘Shared Signatures of Parasitism and Phylogenomics Unite 

Cryptomycota and Microsporidia’, Current Biology, 23(16), pp. 1548–1553. doi: 

10.1016/j.cub.2013.06.057. 

Jiang, W. et al. (2013) ‘RNA-guided editing of bacterial genomes using CRISPR-Cas 

systems’, Nature Biotechnology. Nature Publishing Group, 31(3), pp. 233–239. doi: 

10.1038/nbt.2508. 

Jones, C. M., Hernández Lozada, N. J. and Pfleger, B. F. (2015) ‘Efflux systems in bacteria 

and their metabolic engineering applications’, Applied Microbiology and Biotechnology. 

Springer Verlag, pp. 9381–9393. doi: 10.1007/s00253-015-6963-9. 

Jorgensen, H., Kristensen, J. B. and Felby, C. (2007) ‘Enzymatic conversion of 



 

203 

 

lignocellulose into fermentable sugars: challenges and opportunities’, Biofuels, Bioproducts 

and Biorefining, 1(3), pp. 119–134. doi: 10.1002/bbb. 

Junker, B. H. et al. (1994) ‘On-line and in-situ monitoring technology for cell density 

measurement in microbial and animal cell cultures’, Bioprocess Engineering. Springer-

Verlag, 10(5–6), pp. 195–207. doi: 10.1007/BF00369530. 

Kämper, J. et al. (2006) ‘Insights from the genome of the biotrophic fungal plant pathogen 

Ustilago maydis’, Nature, 444(7115), pp. 97–101. doi: 10.1038/nature05248. 

Kanaly, R. A. and Harayama, S. (2000) ‘Biodegradation of high-molecular-weight 

polycyclic aromatic hydrocarbons by bacteria’, Journal of Bacteriology, 182(8), pp. 2059–

2067. doi: 10.1128/JB.182.8.2059-2067.2000. 

Kanehisa, M. et al. (2016) ‘KEGG as a reference resource for gene and protein 

annotation’, Nucleic Acids Research. Oxford University Press, 44(D1), pp. D457–D462. doi: 

10.1093/nar/gkv1070. 

Kang, D. et al. (2019) ‘MetaBAT 2: an adaptive binning algorithm for robust and efficient 

genome reconstruction from metagenome assemblies’. PeerJ Inc. doi: 

10.7287/peerj.preprints.27522v1. 

Karlin, S. et al. (2002) ‘Amino acid runs in eukaryotic proteomes and disease 

associations.’, Proceedings of the National Academy of Sciences of the United States of 

America. National Academy of Sciences, 99(1), pp. 333–8. doi: 10.1073/pnas.012608599. 

Karnin, E. D. (1990) ‘A Simple Procedure for Pruning Back-Propagation Trained Neural 

Networks’, IEEE Transactions on Neural Networks, pp. 239–242. doi: 10.1109/72.80236. 

Karplus, K., Barrett, C. and Hughey, R. (1998) ‘Hidden Markov models for detecting 

remote protein homologies.’, Bioinformatics, 14(10), pp. 846–856. doi: 



 

204 

 

10.1093/bioinformatics/14.10.846. 

Kell, D. B. et al. (2015) ‘Membrane transporter engineering in industrial biotechnology 

and whole cell biocatalysis’, Trends in Biotechnology. Elsevier Ltd, pp. 237–246. doi: 

10.1016/j.tibtech.2015.02.001. 

Kern, H. W. and Kirk, T. K. (1987) ‘Influence of molecular size and ligninase pretreatment 

on degradation of lignins by Xanthomonas sp. strain 99’, Applied and Environmental 

Microbiology, 53(9), pp. 2242–2246. 

Kerr, T. J., Kerr, R. D. and Benner, R. (1983) ‘Isolation of a bacterium capable of 

degrading peanut hull lignin’, Applied and Environmental Microbiology, 46(5), pp. 1201–

1206. 

Khodayari, A. et al. (2014) ‘A kinetic model of Escherichia coli core metabolism 

satisfying multiple sets of mutant flux data.’, Metabolic engineering. Elsevier, 25, pp. 50–62. 

doi: 10.1016/j.ymben.2014.05.014. 

Kiktev, D. A. et al. (2018) ‘GC content elevates mutation and recombination rates in the 

yeast Saccharomyces cerevisiae’, Proceedings of the National Academy of Sciences, 115(30), 

pp. E7109–E7118. doi: 10.1073/pnas.1807334115. 

Kim, H. et al. (2014) ‘Analysis of cellodextrin transporters from Neurospora crassa in 

Saccharomyces cerevisiae for cellobiose fermentation’, Applied Microbiology and 

Biotechnology. Springer Verlag, 98(3), pp. 1087–1094. doi: 10.1007/s00253-013-5339-2. 

King, Z. A. et al. (2015) ‘Next-generation genome-scale models for metabolic 

engineering’, Current Opinion in Biotechnology. Elsevier Ltd, pp. 23–29. doi: 

10.1016/j.copbio.2014.12.016. 

King, Z. A. et al. (2016) ‘BiGG Models: A platform for integrating, standardizing and 



 

205 

 

sharing genome-scale models’, Nucleic Acids Research. Oxford University Press, 44(D1), pp. 

D515–D522. doi: 10.1093/nar/gkv1049. 

Klein-Marcuschamer, D. et al. (2012) ‘The challenge of enzyme cost in the production of 

lignocellulosic biofuels’, Biotechnology and Bioengineering, 109(4), pp. 1083–1087. doi: 

10.1002/bit.24370. 

Klein, T., Schneider, K. and Heinzle, E. (2013) ‘A system of miniaturized stirred 

bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved 

oxygen and off-gas’, Biotechnology and Bioengineering, 110(2), pp. 535–542. doi: 

10.1002/bit.24633. 

Kleinstiver, Benjamin P et al. (2015) ‘Broadening the targeting range of Staphylococcus 

aureus CRISPR-Cas9 by modifying PAM recognition’, Nature Biotechnology. Nature 

Publishing Group, 33(12), pp. 1293–1298. doi: 10.1038/nbt.3404. 

Kleinstiver, Benjamin P. et al. (2015) ‘Engineered CRISPR-Cas9 nucleases with altered 

PAM specificities’, Nature. Nature Publishing Group, 523(7561), pp. 481–485. doi: 

10.1038/nature14592. 

Knauer, R. and Lehle, L. (1999) ‘The oligosaccharyltransferase complex from yeast’, 

Biochimica et Biophysica Acta (BBA) - General Subjects. Elsevier, 1426(2), pp. 259–273. doi: 

10.1016/S0304-4165(98)00128-7. 

Knight, R. D., Freeland, S. J. and Landweber, L. F. (2001) ‘A simple model based on 

mutation and selection explains trends in codon and amino-acid usage and GC composition 

within and across genomes’, Genome Biology. BioMed Central, 2(4), p. research0010.1. doi: 

10.1186/gb-2001-2-4-research0010. 

Kohler, P. R. A. and Metcalf, W. W. (2012) ‘Genetic manipulation of Methanosarcina 



 

206 

 

spp.’, Frontiers in Microbiology. Frontiers Research Foundation. doi: 

10.3389/fmicb.2012.00259. 

Komar, A. A. (2016) ‘The Yin and Yang of codon usage’, Human Molecular Genetics, 

25(R2), pp. R77–R85. doi: 10.1093/hmg/ddw207. 

Krogh, A. et al. (2001) ‘Predicting transmembrane protein topology with a hidden Markov 

model: Application to complete genomes’, Journal of Molecular Biology. Academic Press, 

305(3), pp. 567–580. doi: 10.1006/jmbi.2000.4315. 

Kuhad, R. C., Gupta, R. and Singh, A. (2011) ‘Microbial cellulases and their industrial 

applications.’, Enzyme research, 2011, p. 280696. doi: 10.4061/2011/280696. 

Kuyper, M. et al. (2003) ‘High-level functional expression of a fungal xylose isomerase: 

The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?’, FEMS 

Yeast Research, 4(1), pp. 69–78. doi: 10.1016/S1567-1356(03)00141-7. 

Lamed, R. et al. (1985) ‘Major characteristics of the cellulolytic system of Clostridium 

thermocellum coincide with those of the purified cellulosome’, Enzyme and Microbial 

Technology, 7(1), pp. 37–41. doi: 10.1016/0141-0229(85)90008-0. 

Langston, J. A. et al. (2011) ‘Oxidoreductive cellulose depolymerization by the enzymes 

cellobiose dehydrogenase and glycoside hydrolase 61’, Applied and Environmental 

Microbiology, 77(19), pp. 7007–7015. doi: 10.1128/AEM.05815-11. 

Lankiewicz, T. S., Cottrell, M. T. and Kirchman, D. L. (2016) ‘Growth rates and rRNA 

content of four marine bacteria in pure cultures and in the Delaware estuary’, ISME Journal. 

Nature Publishing Group, 10(4), pp. 823–832. doi: 10.1038/ismej.2015.156. 

Leberer, E. et al. (1996) ‘Signal transduction through homologs of the Ste20p and Ste7p 

protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.’, 



 

207 

 

Proceedings of the National Academy of Sciences of the United States of America, 93(23), pp. 

13217–22. 

Lee, J. M. et al. (1993) ‘Cloning of a xylanase gene from the ruminal fungus 

Neocallimastix patriciarum 27 and its expression in Escherichia coli.’, Canadian journal of 

microbiology, 39(1), pp. 134–139. 

Levasseur, A. et al. (2013) ‘Expansion of the enzymatic repertoire of the CAZy database 

to integrate auxiliary redox enzymes’, Biotechnology for Biofuels, 6(1), p. 41. doi: 

10.1186/1754-6834-6-41. 

Li, X.-L. et al. (2004) ‘Properties of a recombinant beta-glucosidase from polycentric 

anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis.’, Applied 

biochemistry and biotechnology, 113–116, pp. 233–250. 

Li, X. and Calza, R. E. (1991) ‘Purification and characterization of an extracellular β-

glucosidase from the rumen fungus Neocallimastix frontalis EB188’, Enzyme and Microbial 

Technology, 13(8), pp. 622–628. doi: 10.1016/0141-0229(91)90075-L. 

Li, X. L. et al. (2007) ‘Expression of an AT-rich xylanase gene from the anaerobic fungus 

Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea 

jecorina’, Applied Microbiology and Biotechnology, 74(6), pp. 1264–1275. doi: 

10.1007/s00253-006-0787-6. 

Li, X. L., Chen, H. and Ljungdahl, L. G. (1997) ‘Two cellulases, CelA and CelC, from the 

polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains 

for a cellulase-hemicellulase complex.’, Applied and Environmental Microbiology, 63(12), 

pp. 4721–4728. 

Li, Yuanfei et al. (2019) ‘Combined Genomic, Transcriptomic, Proteomic, and 



 

208 

 

Physiological Characterization of the Growth of Pecoramyces sp. F1 in Monoculture and Co-

culture With a Syntrophic Methanogen’, Frontiers in Microbiology. Frontiers Media S.A., 

10(MAR), p. 435. doi: 10.3389/fmicb.2019.00435. 

Liao, J. C. et al. (2016) ‘Fuelling the future: Microbial engineering for the production of 

sustainable biofuels’, Nature Reviews Microbiology. Nature Publishing Group, pp. 288–304. 

doi: 10.1038/nrmicro.2016.32. 

Lieven, C. et al. (2020) ‘MEMOTE for standardized genome-scale metabolic model 

testing’, Nature Biotechnology. Nature Research, pp. 272–276. doi: 10.1038/s41587-020-

0446-y. 

Liggenstoffer, A. S. et al. (2010) ‘Phylogenetic diversity and community structure of 

anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant 

herbivores.’, The ISME journal, 4(10), pp. 1225–35. doi: 10.1038/ismej.2010.49. 

Lindmark, D. G. and Müller, M. (1973) ‘Hydrogenosome, a Cytoplasmic Organelle of the 

Anaerobic Flagellate Tritrichomonas foetus, and Its Role in Pvruvate Metabolism’, THE 

JOURNAL OF BIOLOGICAL CHEMISTRY, 248(22), p. 1073. Available at: 

http://www.jbc.org/ (Accessed: 9 August 2020). 

Lindmark, D. G. and Müller, M. (1974) ‘Biochemical Cytology of Trichomonad 

Flagellates. II. Subcellular Distribution of Oxidoreductases and Hydrolases in 

Monocercomonas sp.*’, The Journal of Protozoology. John Wiley & Sons, Ltd, 21(2), pp. 

374–378. doi: 10.1111/j.1550-7408.1974.tb03673.x. 

Liu, G., Zhang, J. and Bao, J. (2016) ‘Cost evaluation of cellulase enzyme for industrial-

scale cellulosic ethanol production based on rigorous Aspen Plus modeling’, Bioprocess and 

Biosystems Engineering. Springer Berlin Heidelberg, 39(1), pp. 133–140. doi: 



 

209 

 

10.1007/s00449-015-1497-1. 

Liu, H. et al. (2018) ‘Tetrad analysis in plants and fungi finds large differences in gene 

conversion rates but no GC bias’, Nature Ecology and Evolution. Springer US, 2(1), pp. 164–

173. doi: 10.1038/s41559-017-0372-7. 

Liu, J.-H. et al. (1997) ‘Plant seed oil-bodies as an immobilization matrix for a 

recombinant xylanase from the rumen fungus Neocallimastix patriciarum’, Molecular 

Breeding. Kluwer Academic Publishers, 3(6), pp. 463–470. doi: 10.1023/A:1009604119618. 

Liu, J.-R. et al. (2005) ‘Direct cloning of a xylanase gene from the mixed genomic DNA 

of rumen fungi and its expression in intestinal Lactobacillus reuteri.’, FEMS microbiology 

letters, 251(2), pp. 233–241. doi: 10.1016/j.femsle.2005.08.008. 

Liu, N., Qiao, K. and Stephanopoulos, G. (2016) ‘13C Metabolic Flux Analysis of acetate 

conversion to lipids by Yarrowia lipolytica’, Metabolic Engineering. Academic Press Inc., 38, 

pp. 86–97. doi: 10.1016/j.ymben.2016.06.006. 

Lombard, V. et al. (2014) ‘The carbohydrate-active enzymes database (CAZy) in 2013’, 

Nucleic Acids Research, 42(D1). doi: 10.1093/nar/gkt1178. 

Long, C. P. and Antoniewicz, M. R. (2019) ‘High-resolution 13C metabolic flux analysis’, 

Nature Protocols. Nature Publishing Group, 14(10), pp. 2856–2877. doi: 10.1038/s41596-

019-0204-0. 

Lowe, S. E., Theodorou, M. K. and Trinci, A. P. (1987a) ‘Cellulases and xylanase of an 

anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and 

xylan.’, Applied and environmental microbiology. American Society for Microbiology 

(ASM), 53(6), pp. 1216–1223. 

Lowe, S. E., Theodorou, M. K. and Trinci, A. P. (1987b) ‘Growth and fermentation of an 



 

210 

 

anaerobic rumen fungus on various carbon sources and effect of temperature on 

development.’, Applied and environmental microbiology, 53(6), pp. 1210–5. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3606103 (Accessed: 17 January 2020). 

Lu, H. et al. (2017) ‘Comprehensive reconstruction and in silico analysis of Aspergillus 

niger genome-scale metabolic network model that accounts for 1210 ORFs’, Biotechnology 

and Bioengineering. John Wiley & Sons, Ltd, 114(3), pp. 685–695. doi: 10.1002/bit.26195. 

Lynd, L. R. et al. (2005) ‘Consolidated bioprocessing of cellulosic biomass: An update’, 

Current Opinion in Biotechnology, pp. 577–583. doi: 10.1016/j.copbio.2005.08.009. 

Machado, D. et al. (2018) ‘Fast automated reconstruction of genome-scale metabolic 

models for microbial species and communities’, Nucleic Acids Research, 46(15), pp. 7542–

7553. doi: 10.1093/nar/gky537. 

Magee, B. B. (2002) ‘Induction of Mating in Candida albicans by Construction of MTLa 

and MTLalpha Strains’, Science, 289(5477), pp. 310–313. doi: 

10.1126/science.289.5477.310. 

Mahadevan, R., Edwards, J. S. and Doyle, F. J. (2002) ‘Dynamic Flux Balance Analysis 

of diauxic growth in Escherichia coli’, Biophysical Journal. Biophysical Society, 83(3), pp. 

1331–1340. doi: 10.1016/S0006-3495(02)73903-9. 

Mahadevan, R. and Henson, M. A. (2012) ‘Genome-based modeling and design of 

metabolic interactions in microbial communities’, Computational and Structural 

Biotechnology Journal. Research Network of Computational and Structural Biotechnology, 

p. e201210008. doi: 10.5936/csbj.201210008. 

Mahadevan, R. and Schilling, C. H. (2003) ‘The effects of alternate optimal solutions in 

constraint-based genome-scale metabolic models’, Metabolic Engineering. Academic Press 



 

211 

 

Inc., 5(4), pp. 264–276. doi: 10.1016/j.ymben.2003.09.002. 

Mantovani, C. F., Geimba, M. P. and Brandelli, A. (2005) ‘Enzymatic clarification of fruit 

juices by fungal pectin lyase’, Food Biotechnology, 19(3), pp. 173–181. doi: 

10.1080/08905430500316284. 

Martinez, D. et al. (2008) ‘Genome sequencing and analysis of the biomass-degrading 

fungus Trichoderma reesei (syn. Hypocrea jecorina)’, Nature Biotechnology, 26(5), pp. 553–

560. doi: 10.1038/nbt1403. 

Martinez, D. et al. (2009) ‘Genome, transcriptome, and secretome analysis of wood decay 

fungus Postia placenta supports unique mechanisms of lignocellulose conversion’, 

Proceedings of the National Academy of Sciences, 106(6), pp. 1954–1959. doi: 

10.1073/pnas.0809575106. 

Martínez, I. et al. (2008) ‘Replacing Escherichia coli NAD-dependent glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium 

acetobutylicum facilitates NADPH dependent pathways’, Metabolic Engineering. Academic 

Press, 10(6), pp. 352–359. doi: 10.1016/j.ymben.2008.09.001. 

Marvin-Sikkema, F. D. et al. (1993) ‘Characterization of hydrogenosomes and their role 

in glucose metabolism of Neocallimastix sp. L2’, Archives of Microbiology. Springer-Verlag, 

160(5), pp. 388–396. doi: 10.1007/BF00252226. 

Marvin-Sikkema, F. D. et al. (1994a) ‘Metabolic energy generation in hydrogenosomes 

of the anaerobic fungus Neocallimastix: evidence for a functional relationship with 

mitochondria’, Mycological Research. Elsevier, 98(2), pp. 205–212. doi: 10.1016/S0953-

7562(09)80187-1. 

Marvin-Sikkema, F. D. et al. (1994b) ‘Metabolic energy generation in hydrogenosomes 



 

212 

 

of the anaerobic fungus Neocallimastix: evidence for a functional relationship with 

mitochondria’, Mycological Research, 98(2), pp. 205–212. doi: 10.1016/S0953-

7562(09)80187-1. 

McGinnis, S. and Madden, T. L. (2004) ‘BLAST: at the core of a powerful and diverse 

set of sequence analysis tools’, Nucleic Acids Research, 32(suppl 2), pp. W20–W25. doi: 

10.1093/nar/gkh435. 

Mee, M. T. et al. (2014) ‘Syntrophic exchange in synthetic microbial communities’, 

Proceedings of the National Academy of Sciences of the United States of America. National 

Academy of Sciences, 111(20), pp. E2149–E2156. doi: 10.1073/pnas.1405641111. 

Meerupati, T. et al. (2013) ‘Genomic mechanisms accounting for the adaptation to 

parasitism in nematode-trapping fungi’, PLoS Genet, 9(11), p. e1003909. doi: 

10.1371/journal.pgen.1003909. 

Mertens, S. et al. (2015) ‘A Large Set of Newly Created Interspecific Saccharomyces 

Hybrids Increases Aromatic Diversity in Lager Beers’, Applied and Environmental 

Microbiology, 81(23), pp. 8202–8214. doi: 10.1128/AEM.02464-15.Editor. 

Meunier, J. and Duret, L. (2004) ‘Recombination drives the evolution of GC-content in 

the human genome’, Molecular Biology and Evolution, 21(6), pp. 984–990. doi: 

10.1093/molbev/msh070. 

Mih, N. and Palsson, B. O. (2019) ‘Expanding the uses of genome‐scale models with 

protein structures’, Molecular Systems Biology, 15(11). doi: 10.15252/msb.20188601. 

Minty, J. J. et al. (2013) ‘Design and characterization of synthetic fungal-bacterial 

consortia for direct production of isobutanol from cellulosic biomass’, Proceedings of the 

National Academy of Sciences of the United States of America. National Academy of 



 

213 

 

Sciences, 110(36), pp. 14592–14597. doi: 10.1073/pnas.1218447110. 

Mo, M. L., Palsson, B. and Herrgård, M. J. (2009) ‘Connecting extracellular metabolomic 

measurements to intracellular flux states in yeast’, BMC Systems Biology, 3. doi: 

10.1186/1752-0509-3-37. 

Monciardini, P. et al. (2014) ‘Discovering new bioactive molecules from microbial 

sources’, Microbial Biotechnology, 7(3), pp. 209–220. doi: 10.1111/1751-7915.12123. 

Mondo, S. J. et al. (2017) ‘Widespread adenine N6-methylation of active genes in fungi’, 

Nature Genetics, 49(6), pp. 964–968. doi: 10.1038/ng.3859. 

Monk, J. M. et al. (2017) ‘iML1515, a knowledgebase that computes Escherichia coli 

traits’, Nature Biotechnology. Nature Publishing Group, pp. 904–908. doi: 10.1038/nbt.3956. 

Morrison, J. M., Elshahed, M. S. and Youssef, N. H. (2016) ‘Defined enzyme cocktail 

from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from 

pretreated corn stover and switchgrass’, Scientific Reports. Nature Publishing Group, 6(May), 

p. 29217. doi: 10.1038/srep29217. 

Mountfort, D. O. and Asher, R. A. (1985) ‘Production and regulation of cellulase by two 

strains of the rumen anaerobic fungus Neocallimastix frontalis.’, Applied and environmental 

microbiology, 49(5), pp. 1314–1322. 

Mukherjee, S. et al. (2017) ‘1,003 reference genomes of bacterial and archaeal isolates 

expand coverage of the tree of life’, Nature Biotechnology. Nature Publishing Group, 35(7), 

pp. 676–683. doi: 10.1038/nbt.3886. 

Muller, M. (1993) ‘Review Article: The hydrogenosome’, Journal of General 

Microbiology. Microbiology Society, 139(12), pp. 2879–2889. doi: 10.1099/00221287-139-

12-2879. 



 

214 

 

Muller, M. et al. (2012) ‘Biochemistry and Evolution of Anaerobic Energy Metabolism 

in Eukaryotes’, Microbiology and Molecular Biology Reviews. American Society for 

Microbiology, 76(2), pp. 444–495. doi: 10.1128/mmbr.05024-11. 

Müller, V., Chowdhury, N. P. and Basen, M. (2018a) ‘Electron Bifurcation: A Long-

Hidden Energy-Coupling Mechanism’, Annual Review of Microbiology. Annual Reviews, 

72(1), pp. 331–353. doi: 10.1146/annurev-micro-090816-093440. 

Müller, V., Chowdhury, N. P. and Basen, M. (2018b) ‘Electron Bifurcation: A Long-

Hidden Energy-Coupling Mechanism’, Annual Review of Microbiology.  Annual Reviews , 

72(1), pp. 331–353. doi: 10.1146/annurev-micro-090816-093440. 

Murphy, C. L. et al. (2019) ‘Horizontal Gene Transfer as an Indispensable Driver for 

Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage’, Applied 

and Environmental Microbiology. American Society for Microbiology, 85(15). doi: 

10.1128/aem.00988-19. 

Nagarajan, H. et al. (2013) ‘Characterizing acetogenic metabolism using a genome-scale 

metabolic reconstruction of Clostridium ljungdahlii’, Microbial Cell Factories. BioMed 

Central Ltd., 12(1). doi: 10.1186/1475-2859-12-118. 

Nicholson, M. J., Theodorou, M. K. and Brookman, J. L. (2005) ‘Molecular analysis of 

the anaerobic rumen fungus Orpinomyces - Insights into an AT-rich genome’, Microbiology, 

151(1), pp. 121–133. doi: 10.1099/mic.0.27353-0. 

Nierman, W. C. et al. (2005) ‘Genomic sequence of the pathogenic and allergenic 

filamentous fungus Aspergillus fumigatus’, Nature, 438(7071), pp. 1151–1156. doi: 

10.1038/nature04332. 

Nieuwenhuis, B. P. S. and James, T. Y. (2016) ‘The frequency of sex in fungi’, 



 

215 

 

Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 

10.1098/rstb.2015.0540. 

Nørholm, M. H. H. (2019) ‘Meta synthetic biology: controlling the evolution of 

engineered living systems.’, Microbiol Biotechnol, 12(1), pp. 35–37. 

Nurk, S. et al. (2017) ‘MetaSPAdes: A new versatile metagenomic assembler’, Genome 

Research. Cold Spring Harbor Laboratory Press, 27(5), pp. 824–834. doi: 

10.1101/gr.213959.116. 

O’Leary, N. A. et al. (2016) ‘Reference sequence (RefSeq) database at NCBI: current 

status, taxonomic expansion, and functional annotation’, Nucleic Acids Research, 44(D1), pp. 

D733–D745. doi: 10.1093/nar/gkv1189. 

O’Malley, M. A., Theodorou, M. K. and Kaiser, C. A. (2012a) ‘Evaluating expression and 

catalytic activity of anaerobic fungal fibrolytic enzymes cative to Piromyces sp E2 in 

Saccharomyces cerevisiae’, Environmental Progress and Sustainable Energy, 31(1), pp. 37–

46. doi: 10.1002/ep. 

O’Malley, M. A., Theodorou, M. K. and Kaiser, C. A. (2012b) ‘Evaluating expression and 

catalytic activity of anaerobic fungal fibrolytic enzymes native topiromyces sp E2 

inSaccharomyces cerevisiae’, Environmental Progress & Sustainable Energy. John Wiley & 

Sons, Ltd, 31(1), pp. 37–46. doi: 10.1002/ep.10614. 

O’Malley, M. A., Theodorou, M. K. and Kaiser, C. A. (2012c) ‘Evaluating expression and 

catalytic activity of anaerobic fungal fibrolytic enzymes native topiromyces sp E2 

inSaccharomyces cerevisiae’, Environmental Progress & Sustainable Energy. John Wiley & 

Sons, Ltd, 31(1), pp. 37–46. doi: 10.1002/ep.10614. 

Obembe, O. O. et al. (2007) ‘Promiscuous, non-catalytic, tandem carbohydrate-binding 



 

216 

 

modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana 

tabacum) plants.’, Journal of plant research, 120(5), pp. 605–617. doi: 10.1007/s10265-007-

0099-7. 

Ohm, R. A. et al. (2012) ‘Diverse lifestyles and strategies of plant pathogenesis encoded 

in the genomes of eighteen Dothideomycetes fungi’, PLoS Pathog, 8(12), p. e1003037. doi: 

10.1371/journal.ppat.1003037. 

Ohm, R. A. et al. (2014) ‘Genomics of wood-degrading fungi’, Fungal Genetics and 

Biology, 72, pp. 82–90. doi: 10.1016/j.fgb.2014.05.001. 

Olm, M. R. et al. (2017) ‘DRep: A tool for fast and accurate genomic comparisons that 

enables improved genome recovery from metagenomes through de-replication’, ISME 

Journal. Nature Publishing Group, 11(12), pp. 2864–2868. doi: 10.1038/ismej.2017.126. 

Orpin, C. G. (1975) ‘Studies on the rumen flagellate Neocallimastix frontalis.’, Journal of 

general microbiology, 91(2), pp. 249–62. doi: 10.1099/00221287-91-2-249. 

Orpin, C. G. (1977) ‘The occurrence of chitin in the cell walls of the rumen organisms 

Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis.’, Journal of 

general microbiology, 99(1), pp. 215–218. doi: 10.1099/00221287-99-1-215. 

Orpin, C. G. and Greenwood, Y. (1986) ‘The role of haems and related compounds in the 

nutrition and zoosporogenesis of the rumen chytridiomycete Neocallimastix frontalis H8’, 

Journal of General Microbiology. Microbiology Society, 132(8), pp. 2179–2185. doi: 

10.1099/00221287-132-8-2179. 

Orth, J. D., Thiele, I. and Palsson, B. O. (2010) ‘What is flux balance analysis?’, Nature 

Biotechnology, pp. 245–248. doi: 10.1038/nbt.1614. 

Otero, J. M. J. M. and Nielsen, J. (2010) Industrial systems biology, Biotechnology and 



 

217 

 

Bioengineering. doi: 10.1002/bit.22592. 

Oyola, S. O. et al. (2012) ‘Optimizing illumina next-generation sequencing library 

preparation for extremely at-biased genomes’, BMC Genomics. BioMed Central, 13(1), p. 1. 

doi: 10.1186/1471-2164-13-1. 

Pabón Pereira, C. P., Castañares, G. and Van Lier, J. B. (2012) ‘An OxiTop® protocol for 

screening plant material for its biochemical methane potential (BMP)’, Water Science and 

Technology. IWA Publishing, 66(7), pp. 1416–1423. doi: 10.2166/wst.2012.305. 

Paloheimo, M. et al. (2016) ‘Production of Industrial Enzymes in Trichoderma reesei’, in, 

pp. 23–57. doi: 10.1007/978-3-319-27951-0_2. 

Pan, S. et al. (2017) ‘Model-enabled gene search (MEGS) allows fast and direct discovery 

of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri’, Journal 

of Biological Chemistry. American Society for Biochemistry and Molecular Biology Inc., 

292(24), pp. 10250–10261. doi: 10.1074/jbc.M116.763193. 

Parks, D. H. et al. (2015) ‘CheckM: Assessing the quality of microbial genomes recovered 

from isolates, single cells, and metagenomes’, Genome Research. Cold Spring Harbor 

Laboratory Press, 25(7), pp. 1043–1055. doi: 10.1101/gr.186072.114. 

Payne, C. M. et al. (2015) ‘Fungal cellulases’, Chemical Reviews. American Chemical 

Society, 115(3), pp. 1308–1448. doi: 10.1021/cr500351c. 

Pearce, P. D. and Bauchop, T. (1985) ‘Glycosidases of the rumen anaerobic fungus 

Neocallimastix frontalis grown on cellulosic substrates.’, Applied and environmental 

microbiology, 49(5), pp. 1265–1269. 

Peng, X. et al. (2018) ‘Methods for genomic characterization and maintenance of 

anaerobic fungi’, in Methods in Molecular Biology. Humana Press Inc., pp. 53–67. doi: 



 

218 

 

10.1007/978-1-4939-7804-5_5. 

Peng, X. “Nick”, Gilmore, S. P. and O’Malley, M. A. (2016) ‘Microbial communities for 

bioprocessing: lessons learned from nature’, Current Opinion in Chemical Engineering. 

Elsevier Ltd, pp. 103–109. doi: 10.1016/j.coche.2016.09.003. 

Petersen, T. N. et al. (2011) ‘SignalP 4.0: Discriminating signal peptides from 

transmembrane regions’, Nature Methods, pp. 785–786. doi: 10.1038/nmeth.1701. 

Piao, H. et al. (2014) ‘Identification of novel biomass-degrading enzymes from genomic 

dark matter: Populating genomic sequence space with functional annotation’, Biotechnology 

and Bioengineering, 111(8), pp. 1550–1565. doi: 10.1002/bit.25250. 

Podolsky, I. et al. (2019) ‘Harnessing Nature’s Anaerobes for Biotechnology and 

Bioprocessing.’, Annual Review of Chemical and Biomolecular Engineering. doi: 

https://doi.org/10.1146/annurev-chembioeng-060718-030340. 

Poidevin, L. et al. (2009) ‘Heterologous production of the Piromyces equi cinnamoyl 

esterase in Trichoderma reesei for biotechnological applications.’, Letters in applied 

microbiology, 49(6), pp. 673–678. doi: 10.1111/j.1472-765X.2009.02734.x. 

Qiu, J. and Jin, X. (2002) ‘Development and optimization of organic acid analysis in 

tobacco with ion chromatography and suppressed conductivity detection’, Journal of 

Chromatography A, 950(1–2), pp. 81–88. doi: 10.1016/S0021-9673(02)00034-1. 

Ramanjaneyulu, G. and Rajasekhar Reddy, B. (2016) ‘Optimization of xylanase 

production through response surface methodology by Fusarium sp. BVKT R2 isolated from 

forest soil and its application in saccharification.’, Frontiers in microbiology, 7, p. 1450. doi: 

10.3389/fmicb.2016.01450. 

Ranganathan, A. et al. (2017) ‘Utilizing Anaerobic Fungi for Two-stage Sugar Extraction 



 

219 

 

and Biofuel Production from Lignocellulosic Biomass’, Frontiers in Microbiology. Frontiers 

Research Foundation, 8(APR), p. 635. doi: 10.3389/fmicb.2017.00635. 

Raymond, M. et al. (1998) ‘A Ste6p/P-glycoprotein homologue from the asexual yeast 

Candida albicans transports the a-factor mating pheromone in Saccharomyces cerevisiae’, 

Molecular Microbiology, 27(3), pp. 587–598. doi: 10.1046/j.1365-2958.1998.00704.x. 

Reichenberger, E. R. et al. (2015) ‘Prokaryotic Nucleotide Composition Is Shaped by Both 

Phylogeny and the Environment’, Genome biology and evolution, 7(5), pp. 1380–1389. 

Resch, M. G. et al. (2013) ‘Fungal cellulases and complexed cellulosomal enzymes exhibit 

synergistic mechanisms in cellulose deconstruction’, Energy and Environmental Science, 

6(6), pp. 1858–1867. doi: 10.1039/c3ee00019b. 

Reymond, P. et al. (1991) ‘Molecular cloning of genes from the rumen anaerobic fungus 

Neocallimastix frontalis: expression during hydrolase induction’, FEMS Microbiology 

Letters, 77(1), pp. 107–112. doi: 10.1111/j.1574-6968.1991.tb04330.x. 

Reymond, P. et al. (1992) ‘Sequence of the phosphoenolpyruvate carboxykinase-encoding 

cDNA from the rumen anaerobic fungus Neocallimastix frontalis: Comparison of the amino 

acid sequence with animals and yeast’, Gene, 110(1), pp. 57–63. doi: 10.1016/0378-

1119(92)90444-T. 

Rhind, N. et al. (2011) ‘Comparative functional genomics of the fission yeasts’, Science, 

332(6032), pp. 930–936. doi: 10.1126/science.1203357. 

Rigden, D. J. (2005) ‘Analysis of glycoside hydrolase family 98: Catalytic machinery, 

mechanism and a novel putative carbohydrate binding module’, FEBS Letters, 579(25), pp. 

5466–5472. doi: 10.1016/j.febslet.2005.09.011. 

Riley, R. et al. (2014) ‘Extensive sampling of basidiomycete genomes demonstrates 



 

220 

 

inadequacy of the white-rot/brown-rot paradigm for wood decay fungi’, Proceedings of the 

National Academy of Sciences, 111(27), pp. 9923–9928. doi: 10.1073/pnas.1400592111. 

Rocha-Martin, J. et al. (2014) ‘Emerging strategies and integrated systems microbiology 

technologies for biodiscovery of marine bioactive compounds.’, Marine drugs. 

Multidisciplinary Digital Publishing Institute  (MDPI), 12(6), pp. 3516–3559. doi: 

10.3390/md12063516. 

Rogers, J. N. et al. (2017) ‘An assessment of the potential products and economic and 

environmental impacts resulting from a billion ton bioeconomy’, Biofuels, Bioproducts and 

Biorefining. John Wiley & Sons, Ltd, 11(1), pp. 110–128. doi: 10.1002/bbb.1728. 

Ropars, J. et al. (2016) ‘Evidence for the sexual origin of heterokaryosis in arbuscular 

mycorrhizal fungi’, Nature Microbiology, 1(6), pp. 1–9. doi: 10.1038/nmicrobiol.2016.33. 

Rowe, E., Palsson, B. O. and King, Z. A. (2018) ‘Escher-FBA: a web application for 

interactive flux balance analysis’, BMC systems biology. NLM (Medline), 12(1), p. 84. doi: 

10.1186/s12918-018-0607-5. 

Rubin, E. M. (2008) ‘Genomics of cellulosic biofuels’, Nature, 454(7206), pp. 841–845. 

doi: 10.1038/nature07190. 

Saa, P. A. and Nielsen, L. K. (2016) ‘Ll-ACHRB: A scalable algorithm for sampling the 

feasible solution space of metabolic networks’, Bioinformatics. Oxford University Press, 

32(15), pp. 2330–2337. doi: 10.1093/bioinformatics/btw132. 

Sadhu, C. et al. (1992) ‘A G-protein alpha subunit from asexual Candida albicans 

functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is 

regulated by the a1-alpha 2 repressor.’, Molecular and Cellular Biology, 12(5), pp. 1977–

1985. doi: 10.1128/mcb.12.5.1977. 



 

221 

 

Saini, J. K., Saini, R. and Tewari, L. (2015) Lignocellulosic agriculture wastes as biomass 

feedstocks for second-generation bioethanol production: concepts and recent developments, 

3 Biotech. Springer Verlag. doi: 10.1007/s13205-014-0246-5. 

Sammond, D. W. et al. (2012) ‘Cellulase Linkers Are Optimized Based on Domain Type 

and Function: Insights from Sequence Analysis, Biophysical Measurements, and Molecular 

Simulation’, PLoS ONE. Edited by V. Arcus. Public Library of Science, 7(11), p. e48615. doi: 

10.1371/journal.pone.0048615. 

Sánchez, B. J., Pérez-Correa, J. R. and Agosin, E. (2014) ‘Construction of robust dynamic 

genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-

parameterization’, Metabolic Engineering. Academic Press Inc., 25, pp. 159–173. doi: 

10.1016/j.ymben.2014.07.004. 

Sanderson, K. (2011) ‘Lignocellulose: A chewy problem.’, Nature, 474(7352), pp. S12–

S14. doi: 10.1038/474S012a. 

Sarik, J. and Kymissis, I. (2010) ‘Lab kits using the arduino prototyping platform’, in 

Proceedings - Frontiers in Education Conference, FIE. doi: 10.1109/FIE.2010.5673417. 

Sarkar, N. et al. (2012) ‘Bioethanol production from agricultural wastes: An overview’, 

Renewable Energy. Elsevier Ltd, 37(1), pp. 19–27. doi: 10.1016/j.renene.2011.06.045. 

Scarlat, N. et al. (2015) ‘The role of biomass and bioenergy in a future bioeconomy: 

Policies and facts’, Environmental Development. Elsevier, 15, pp. 3–34. doi: 

10.1016/j.envdev.2015.03.006. 

Schneider, R. E. et al. (2011) ‘The Trichomonas vaginalis hydrogenosome proteome is 

highly reduced relative to mitochondria, yet complex compared with mitosomes’, 

International Journal for Parasitology. Australian Society for Parasitology Inc., 41(13–14), 



 

222 

 

pp. 1421–1434. doi: 10.1016/j.ijpara.2011.10.001. 

Schuetz, R., Kuepfer, L. and Sauer, U. (2007) ‘Systematic evaluation of objective 

functions for predicting intracellular fluxes in Escherichia coli’, Molecular Systems Biology, 

3(1), p. 119. doi: 10.1038/msb4100162. 

Schut, Gerrit J and Adams, M. W. W. (2009) ‘The iron-hydrogenase of Thermotoga 

maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic 

hydrogen production.’, Journal of bacteriology. American Society for Microbiology Journals, 

191(13), pp. 4451–7. doi: 10.1128/JB.01582-08. 

Schut, Gerrit J. and Adams, M. W. W. (2009) ‘The iron-hydrogenase of Thermotoga 

maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic 

hydrogen production’, Journal of Bacteriology. American Society for Microbiology Journals, 

191(13), pp. 4451–4457. doi: 10.1128/JB.01582-08. 

Schwarz, W. H. (2001) ‘The cellulosome and cellulose degradation by anaerobic bacteria’, 

Applied Microbiology and Biotechnology, 56(5–6), pp. 634–649. 

Segata, N. et al. (2013) ‘PhyloPhlAn is a new method for improved phylogenetic and 

taxonomic placement of microbes’, Nature Communications, 4. doi: 10.1038/ncomms3304. 

Sekowska, A. et al. (2016) ‘Generation of mutation hotspots in ageing bacterial colonies’, 

Scientific Reports, 6, p. 2. 

Senger, R. S., Yen, J. Y. and Fong, S. S. (2014) ‘A review of genome-scale metabolic flux 

modeling of anaerobiosis in biotechnology’, Current Opinion in Chemical Engineering. 

Elsevier Ltd, pp. 33–42. doi: 10.1016/j.coche.2014.08.003. 

Seppälä, S. et al. (2016) ‘Mapping the membrane proteome of anaerobic gut fungi 

identifies a wealth of carbohydrate binding proteins and transporters’, Microbial Cell 



 

223 

 

Factories. Edited by A. P. Mitchell. BioMed Central, 15(1), p. 212. doi: 10.1186/s12934-016-

0611-7. 

Seppälä, S et al. (2017) ‘The importance of sourcing enzymes from non-conventional 

fungi for metabolic engineering and biomass breakdown.’, Metabolic Engineering, 44, pp. 

45–59. 

Seppälä, Susanna et al. (2017) The importance of sourcing enzymes from non-

conventional fungi for metabolic engineering and biomass breakdown, Metabolic 

Engineering. doi: 10.1016/j.ymben.2017.09.008. 

Seppälä, S. et al. (2019) ‘Heterologous transporters from anaerobic fungi bolster fluoride 

tolerance in Saccharomyces cerevisiae’, Metabolic Engineering Communications. Elsevier, 9, 

p. e00091. doi: 10.1016/J.MEC.2019.E00091. 

Seshadri, R. et al. (2018) ‘Cultivation and sequencing of rumen microbiome members 

from the Hungate1000 Collection’, Nature Biotechnology, 36(4), pp. 359–367. doi: 

10.1038/nbt.4110. 

Simeonidis, E. and Price, N. D. (2015) ‘Genome-scale modeling for metabolic 

engineering’, Journal of Industrial Microbiology and Biotechnology. Springer Verlag, pp. 

327–338. doi: 10.1007/s10295-014-1576-3. 

Sindhu, R., Binod, P. and Pandey, A. (2016) ‘Biological pretreatment of lignocellulosic 

biomass - An overview’, Bioresource Technology. Elsevier Ltd, pp. 76–82. doi: 

10.1016/j.biortech.2015.08.030. 

Singh Arora, D. and Kumar Sharma, R. (2010) ‘Ligninolytic fungal laccases and their 

biotechnological applications’, Applied Biochemistry and Biotechnology, 160(6), pp. 1760–

1788. doi: 10.1007/s12010-009-8676-y. 



 

224 

 

Smidt, H. et al. (2001) ‘Clostridium beijerinckii cells expressing Neocallimastix 

patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production’, 

Appl. Environ. Microbiol., 67(11), pp. 5127–5133. doi: 10.1128/AEM.67.11.5127. 

Soh, L. et al. (2014) ‘Evaluating microalgal integrated biorefinery schemes: Empirical 

controlled growth studies and life cycle assessment’, Bioresource Technology. Elsevier Ltd, 

151, pp. 19–27. doi: 10.1016/j.biortech.2013.10.012. 

Solden, L. M. et al. (2018) ‘Interspecies cross-feeding orchestrates carbon degradation in 

the rumen ecosystem’, Nature Microbiology. Nature Publishing Group, 3(11), pp. 1274–1284. 

doi: 10.1038/s41564-018-0225-4. 

Solieri, L. et al. (2015) ‘Fast method for identifying inter- and intra-species 

Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding’, 

Journal of Applied Microbiology, 119(1), pp. 149–161. doi: 10.1111/jam.12827. 

Solomon, K. V et al. (2016) ‘Early-branching gut fungi possess a large, comprehensive 

array of biomass-degrading enzymes’, Science, 351(6278), pp. 1192–1196. doi: 

10.1126/science.aad1431. 

Sonan, G. K. et al. (2007) ‘The linker region plays a key role in the adaptation to cold of 

the cellulase from an Antarctic bacterium.’, The Biochemical journal. Portland Press Limited, 

407(2), pp. 293–302. doi: 10.1042/BJ20070640. 

Sønderby, S. K. et al. (2015) ‘Convolutional LSTM networks for subcellular localization 

of proteins’, in Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 68–80. doi: 

10.1007/978-3-319-21233-3_6. 

Sonoda, S. and Murata, N. (2017) ‘Neural network with unbounded activation functions 



 

225 

 

is universal approximator’, Applied and Computational Harmonic Analysis. Academic Press 

Inc., 43(2), pp. 233–268. doi: 10.1016/j.acha.2015.12.005. 

Sørensen, A. et al. (2013) ‘Fungal beta-glucosidases: A bottleneck in industrial use of 

lignocellulosic materials’, Biomolecules, 3(3), pp. 612–631. doi: 10.3390/biom3030612. 

Staben, C. and Yanofsky, C. (1990) ‘Neurospora crassa a mating-type region (sexual 

reproduction/vegetative incompatibility/perithecium formation/filamentous fungus)’, 

Genetics, 87(July), pp. 4917–4921. 

Stairs, C. W., Roger, A. J. and Hampl, V. (2011) ‘Eukaryotic Pyruvate Formate Lyase and 

Its Activating Enzyme Were Acquired Laterally from a Firmicute’, Molecular Biology and 

Evolution. Narnia, 28(7), pp. 2087–2099. doi: 10.1093/molbev/msr032. 

Steensels, J., Snoek, T., et al. (2014) ‘Improving industrial yeast strains: exploiting natural 

and artificial diversity.’, FEMS microbiology reviews. Wiley-Blackwell, 38(5), pp. 947–95. 

doi: 10.1111/1574-6976.12073. 

Steensels, J., Meersman, E., et al. (2014) ‘Large-Scale Selection and Breeding To 

Generate Industrial Yeasts with Superior Aroma Production’, Applied and Environmental 

Microbiology, 80(22), pp. 6965–6975. doi: 10.1128/aem.02235-14. 

Stewart, R. D. et al. (2018) ‘Assembly of 913 microbial genomes from metagenomic 

sequencing of the cow rumen’, Nature Communications. Springer US, 9(1), pp. 1–11. doi: 

10.1038/s41467-018-03317-6. 

Stewart, R. D. et al. (2019) ‘Compendium of 4,941 rumen metagenome-assembled 

genomes for rumen microbiome biology and enzyme discovery’, Nature Biotechnology. 

Nature Publishing Group, 37(8), pp. 953–961. doi: 10.1038/s41587-019-0202-3. 

Sukumaran, R. K. et al. (2009) ‘Cellulase production using biomass feed stock and its 



 

226 

 

application in lignocellulose saccharification for bio-ethanol production’, Renewable Energy. 

Pergamon, 34(2), pp. 421–424. doi: 10.1016/J.RENENE.2008.05.008. 

Sukumaran, R. K., Singhania, R. R. and Pandey, A. (2005) ‘Microbial cellulases - 

Production, applications and challenges’, Journal of Scientific and Industrial Research, 

64(11), pp. 832–844. 

Svartström, O. et al. (2017) ‘Ninety-nine de novo assembled genomes from the moose 

(Alces alces) rumen microbiome provide new insights into microbial plant biomass 

degradation’, ISME Journal. Nature Publishing Group, 11(11), pp. 2538–2551. doi: 

10.1038/ismej.2017.108. 

Tagliapietra, F. et al. (2010) ‘In vitro rumen fermentation: Effect of headspace pressure 

on the gas production kinetics of corn meal and meadow hay’, Animal Feed Science and 

Technology, 158(3–4), pp. 197–201. doi: 10.1016/j.anifeedsci.2010.04.003. 

Tedersoo, L. et al. (2014) ‘Global diversity and geography of soil fungi’, Science, 

346(6213). 

Teunissen,’, M. J. et al. (1991) Comparison of growth characteristics of anaerobic fungi 

isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium, 

Journal of General Microbiology. 

Teunissen, M. J. et al. (1992) ‘Purification and characterization of an extracellular beta-

glucosidase from the anaerobic fungus Piromyces sp. strain E2’, Archives of Microbiology. 

Springer-Verlag, 158(4), pp. 276–281. doi: 10.1007/BF00245245. 

Theodorou, M. K. et al. (1995) ‘Determination of growth of anaerobic fungi on soluble 

and cellulosic substrates using a pressure transducer’, Microbiology. Microbiology Society, 

141(3), pp. 671–678. doi: 10.1099/13500872-141-3-671. 



 

227 

 

Theodorou, M. K. et al. (1996) ‘Anaerobic fungi in the digestive tract of mammalian 

herbivores and their potential for exploitation.’, The Proceedings of the Nutrition Society, 

55(3), pp. 913–926. doi: 10.1079/PNS19960088. 

Theodorou, M. K., Gascoyne, D. J. and Beever, D. E. (1984) ‘The role of consecutive 

batch culture in rumen microbiology’, Canadian Journal of Animal Science, 64(5), pp. 47–

48. doi: 10.4141/cjas84-150. 

Thiele, I. and Palsson, B. (2010) ‘A protocol for generating a high-quality genome-scale 

metabolic reconstruction’, Nature Protocols, 5(1), pp. 93–121. doi: 10.1038/nprot.2009.203. 

Thies, S. et al. (2016) ‘Metagenomic discovery of novel enzymes and biosurfactants in a 

slaughterhouse biofilm microbial community.’, Scientific reports. Nature Publishing Group, 

6, p. 27035. doi: 10.1038/srep27035. 

Tisserant, E. et al. (2013) ‘Genome of an arbuscular mycorrhizal fungus provides insight 

into the oldest plant symbiosis’, Proceedings of the National Academy of Sciences, 110(50), 

pp. 20117–20122. doi: 10.1073/pnas.1313452110. 

Tomàs-Gamisans, M., Ferrer, P. and Albiol, J. (2016) ‘Integration and Validation of the 

Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein 

Glycosylation Pathways, Lipid and Energy Metabolism’, PLOS ONE. Edited by W. L. Araujo. 

Public Library of Science, 11(1), p. e0148031. doi: 10.1371/journal.pone.0148031. 

Traeger, S. et al. (2013) ‘The genome and development-dependent transcriptomes of 

Pyronema confluens: A window into fungal evolution’, PLoS Genet, 9(9), p. e1003820. doi: 

10.1371/journal.pgen.1003820. 

Trinci, A. P. J. et al. (1994) ‘Anaerobic fungi in herbivorous animals’, Mycological 

Research, pp. 129–152. doi: 10.1016/S0953-7562(09)80178-0. 



 

228 

 

Tsirigos, K. D. et al. (2015) ‘The TOPCONS web server for consensus prediction of 

membrane protein topology and signal peptides’, Nucleic Acids Research, 43(W1), pp. 

W401–W407. doi: 10.1093/nar/gkv485. 

U.S. Department of Energy (2016) 2016 Billion-ton report: Advancing domestic resources 

for a thriving bioeconomy, volume 1: Economic availability of feedstocks. M. H. Langholtz, 

L. M. Eaton (Eds.), ORNL/TM-2016/160. Oak Ridge National Laboratory, Oak Ridge, TN. 

U.S. Department of Energy (2017) 2016 Billion-ton report: Advancing domestic resources 

for a thriving bioeconomy, volume 2: Environmental sustainability effects of select scenarios 

from volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.), 

ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN. 

Uehling, J. et al. (2017) ‘Comparative genomics of Mortierella elongata and its bacterial 

endosymbiont Mycoavidus cysteinexigens’, Environmental Microbiology. doi: 

10.1111/1462-2920.13669. 

‘UniProt: a worldwide hub of protein knowledge’ (2019) Nucleic Acids Research. Narnia, 

47(D1), pp. D506–D515. doi: 10.1093/nar/gky1049. 

Urban, P. L. (2015) ‘Universal electronics for miniature and automated chemical assays’, 

Analyst. Royal Society of Chemistry, 140(4), pp. 963–975. doi: 10.1039/c4an02013h. 

Urban, P. L. (2018) ‘Prototyping Instruments for the Chemical Laboratory Using 

Inexpensive Electronic Modules’, Angewandte Chemie International Edition, 57(34), pp. 

11074–11077. doi: 10.1002/anie.201803878. 

Vanwonterghem, I. et al. (2016) ‘Genome-centric resolution of microbial diversity, 

metabolism and interactions in anaerobic digestion’, Environmental Microbiology, 18(9), pp. 

3144–3158. doi: 10.1111/1462-2920.13382. 



 

229 

 

Vardakou, M. et al. (2008) ‘Understanding the structural basis for substrate and inhibitor 

recognition in eukaryotic GH11 xylanases.’, Journal of molecular biology, 375(5), pp. 1293–

1305. doi: 10.1016/j.jmb.2007.11.007. 

Varghese, N. J. et al. (2015) ‘Microbial species delineation using whole genome 

sequences’, Nucleic Acids Research, 43(14), pp. 6761–6771. doi: 10.1093/nar/gkv657. 

Varma, A. and Palsson, B. O. (1994) ‘Stoichiometric flux balance models quantitatively 

predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110’, 

Applied and Environmental Microbiology, 60(10), pp. 3724–3731. 

Videvall, E. (2018) ‘Plasmodium parasites of birds have the most AT-rich genes of 

eukaryotes’, Microbial Genomics, 4(2). doi: 10.1099/mgen.0.000150. 

Vongsangnak, W. et al. (2016) ‘Genome-scale metabolic modeling of Mucor 

circinelloides and comparative analysis with other oleaginous species’, Gene, 583(2), pp. 

121–129. Available at: 

https://www.sciencedirect.com/science/article/pii/S0378111916300956 (Accessed: 11 July 

2019). 

Walker, M. et al. (2009) ‘Potential errors in the quantitative evaluation of biogas 

production in anaerobic digestion processes’, Bioresource Technology. Elsevier, 100(24), pp. 

6339–6346. doi: 10.1016/j.biortech.2009.07.018. 

Wang, C. et al. (2019) ‘Efficient production of glycyrrhetinic acid in metabolically 

engineered Saccharomyces cerevisiae via an integrated strategy’, Microbial Cell Factories. 

BioMed Central, 18(1), p. 95. doi: 10.1186/s12934-019-1138-5. 

Wang, D. et al. (2013) ‘Draft genome sequence of Rhizopus chinensis CCTCCM201021, 

used for brewing traditional Chinese alcoholic beverages’, Genome Announcements, 1(2), pp. 



 

230 

 

e00195-12. doi: 10.1128/genomeA.00195-12. 

Wang, H.-C., Chen, Y.-C. and Hseu, R.-S. (2014) ‘Purification and characterization of a 

cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11.’, 

Biochemical and biophysical research communications, 451(2), pp. 190–195. doi: 

10.1016/j.bbrc.2014.07.088. 

Wang, H. et al. (2018) ‘RAVEN 2.0: A versatile toolbox for metabolic network 

reconstruction and a case study on Streptomyces coelicolor’, PLoS Computational Biology. 

Public Library of Science, 14(10). doi: 10.1371/journal.pcbi.1006541. 

Wang, T. Y. et al. (2011) ‘Functional characterization of cellulases identified from the 

cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic 

analyses’, Biotechnology for Biofuels, 4. doi: 10.1186/1754-6834-4-24. 

Weimer, P. J., Russell, J. B. and Muck, R. E. (2009) ‘Lessons from the cow: What the 

ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass’, 

Bioresource Technology, 100(21), pp. 5323–5331. doi: 10.1016/j.biortech.2009.04.075. 

Wilken, S. et al. (2018) ‘In Silico Identification of Microbial Partners to Form Consortia 

with Anaerobic Fungi’, Processes, 6(1), p. 7. doi: 10.3390/pr6010007. 

Wilken, S. E. et al. (2019) ‘Linking “omics” to function unlocks the biotech potential of 

non-model fungi’, Current Opinion in Systems Biology, pp. 9–17. doi: 

10.1016/j.coisb.2019.02.001. 

Wilken, S. E. et al. (2020) ‘Genomic and proteomic biases inform metabolic engineering 

strategies for anaerobic fungi’, Metabolic Engineering Communications. Elsevier B.V., 10. 

doi: 10.1016/j.mec.2019.e00107. 

Wilkens, C. et al. (2017) ‘GH62 arabinofuranosidases: Structure, function and 



 

231 

 

applications’, Biotechnology Advances. Elsevier Inc., pp. 792–804. doi: 

10.1016/j.biotechadv.2017.06.005. 

Wilkinson, T. J. et al. (2018) ‘CowPI: A Rumen Microbiome Focussed Version of the 

PICRUSt Functional Inference Software’, Frontiers in Microbiology, 9. doi: 

10.3389/fmicb.2018.01095. 

Williams, A. G. and Orpin, C. G. (1987) ‘Polysaccharide-degrading enzymes formed by 

three species of anaerobic rumen fungi grown on a range of carbohydrate substrates.’, 

Canadian journal of microbiology, 33(5), pp. 418–426. 

Wolin, M. J. (1981) ‘Fermentation in the rumen and human large intestine’, Science, 

213(4515), pp. 1463–1468. doi: 10.1126/science.7280665. 

Woo, H. L. et al. (2014) ‘Complete genome sequence of the lignin-degrading bacterium 

Klebsiella sp. strain BRL6-2’, Standards in Genomic Sciences, 9(1), p. 19. doi: 10.1186/1944-

3277-9-19. 

Wood, T. M. et al. (1986) ‘A highly active extracellular cellulase from the anaerobic 

rumen fungus Neocallimastix frontalis’, FEMS Microbiology Letters, 34(1), pp. 37–40. 

Wright, P. E. and Dyson, H. J. (2015) ‘Intrinsically disordered proteins in cellular 

signalling and regulation’, Nature Reviews Molecular Cell Biology. Nature Publishing Group, 

16(1), pp. 18–29. doi: 10.1038/nrm3920. 

Wu, H. et al. (2012) ‘On the molecular mechanism of GC content variation among 

eubacterial genomes’, Biology Direct, 7, p. 2. 

Wu, I. and Arnold, F. H. (2013) ‘Engineered thermostable fungal Cel6A and Cel7A 

cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures’, Biotechnology 

and Bioengineering. Wiley Subscription Services, Inc., A Wiley Company, 110(7), pp. 1874–



 

232 

 

1883. doi: 10.1002/bit.24864. 

Wu, Z. et al. (2019) ‘Machine learning-assisted directed protein evolution with 

combinatorial libraries’, Proceedings of the National Academy of Sciences of the United States 

of America. National Academy of Sciences, 116(18), pp. 8852–8858. doi: 

10.1073/pnas.1901979116. 

Ximenes, E. A. et al. (2005) ‘A mannanase, ManA, of the polycentric anaerobic fungus 

Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules’, Canadian 

Journal of Microbiology, 51(7), pp. 559–568. doi: 10.1139/w05-033. 

Xue, G. P. et al. (1992) ‘Cloning and expression of multiple cellulase cDNAs from the 

anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli.’, J Gen Microbiol., 

138(7), pp. 1413–1420. 

Xue, G. P. et al. (1997) ‘Improvement of expression and secretion of a fungal xylanase in 

the rumen bacterium Butyrivibrio fibrisolvens OB156 by manipulation of promoter and signal 

sequences.’, Journal of biotechnology, 54(2), pp. 139–148. 

Xue, G. P., Gobius, K. S. and Orpin, C. G. (1992) ‘A novel polysaccharide hydrolase 

cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic 

domains with high endoglucanase, cellobiohydrolase and xylanase activities’, Journal of 

General Microbiology, 138, pp. 2397–2403. 

Yarlett, N. et al. (1986) ‘Hydrogenosomes in the rumen fungus Neocallimastix 

patriciarum’, Biochemical Journal. Portland Press, 236(3), pp. 729–739. doi: 

10.1042/bj2360729. 

Yoo, J. I., Daugherty, P. S. and O’Malley, M. A. (2020) ‘Bridging non-overlapping reads 

illuminates high-order epistasis between distal protein sites in a GPCR’, Nature 



 

233 

 

Communications. Nature Research, 11(1), pp. 1–12. doi: 10.1038/s41467-020-14495-7. 

Young, J. D. (2014) ‘INCA: a computational platform for isotopically non-stationary 

metabolic flux analysis’, Bioinformatics. Oxford University Press, 30(9), pp. 1333–1335. doi: 

10.1093/bioinformatics/btu015. 

Youssef, N. H. et al. (2013) ‘The genome of the anaerobic fungus Orpinomyces sp. strain 

C1A reveals the unique evolutionary history of a remarkable plant biomass degrader.’, 

Applied and environmental microbiology, 79(15), pp. 4620–34. doi: 10.1128/AEM.00821-13. 

Zetsche, B. et al. (2015) ‘Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 

CRISPR-Cas System’, Cell. Cell Press, 163(3), pp. 759–771. doi: 

10.1016/J.CELL.2015.09.038. 

Zhang, G. et al. (2016) ‘Bioprospecting metagenomics of a microbial community on 

cotton degradation: Mining for new glycoside hydrolases’, Journal of Biotechnology, 234, pp. 

35–42. doi: 10.1016/j.jbiotec.2016.07.017. 

Zoltan, I. K. and John, J. W. (1933) ‘Process of treating plant juices and extracts (Patent 

US 1932833 A)’. 

Zorova, L. D. et al. (2018) ‘Mitochondrial membrane potential’, Analytical Biochemistry. 

Academic Press Inc., 552, pp. 50–59. doi: 10.1016/j.ab.2017.07.009. 

Zou, Y. et al. (2019) ‘1,520 reference genomes from cultivated human gut bacteria enable 

functional microbiome analyses’, Nature Biotechnology. Nature Publishing Group, 37(2), pp. 

179–185. doi: 10.1038/s41587-018-0008-8. 

 




