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ON SINGULARITIES OF CAPILLARY SURFACES ON TRAPEZOIDAL DOMAINS

Abstract

wé study>ﬁuﬁericai_solutioné to the‘eéuaﬁion of caﬁillary
surfaceé in ‘trapezoidal AOmains when-the boundary contact angle
declines from 90° to some cfitic;l‘value. Théré_is also obtained
a resﬁlf ou behavior of solﬁtions in @dre genéral-domains thét

confirms numerical calculations.
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" ON SINGULARITIES OF CAPILLARY SURFACES ON TRAPEZOIDAL DOMAINS

In this paper we study the behavior of numerical solutions to the
capillary problem in the absence of gra?ity for a cylindrical capillary
tube with trapezoidal cross-section.

From the mathematical point of view the physical properties' of a

liquid in a capillary tube in the absence of gravity can be deScfibed with

the help of only one parameter ~-- the contact angle. This 1s the angle

between the Capillary surface -and- the walls of the cylinder. For homogene-
ous material of walls, the contact'angle must be constant along the boun-

dary.

P. Concus and R. Fiﬁn'[ll have sthn':hat,the'capillary surfacé_does
nof exist for all ﬁhysicaily reasonable contact éﬁgles. They obtaiﬁed a
necessary coﬁdifion for exiStenée of the solution. The condition gives an
éstimate.of‘the codtact'angle iﬁ terms of geometry‘of the base domain of
the cylindef. In the case thatfg;évity is absent the estimate is esgen-
tially nbn-local, ag'it'can not be expressed by means of local geometrical

characteristics of the boundary.

R. ‘Finn in [2] noticed that even for a polygonal domain one cannot
infer information on the existence of a solution from knowledgé of the ver-
tex angles'alone. ‘He has shown that a trapezoidal domain'pfesents a good

example in the sense that,forvany YO, 0« YO < n/2, there exists a small
: : N : ‘ o '

~deformation of rectangular domain to a trapezoidal one such that there is



no solution in the trapezoidal domain for contact angles less than yo.

For the rectangular domain 'a solution exists for any angle larger than

n/4.

We will describe tﬁé results of two kinds of -numerical experiments.
First; for a fixed trapezoid, we consider solutions” as the contact angle
declineé from‘ n/Z to some‘aﬁparéntly critical angle; and second we con-
sider the behavior of'solutions as the base domain ié Aeformed from a rec-

tangle tqlsome critical trapezoid (with the contact ahgle fixed).

1l. ~ Capillarity phénomena

We adduce here some information on capillarity phenomena. TFor a

detailed presentatioh we refer to the article of R. Finn [3].

"We consider a liquid partly filling a vertical cylinder'with a base
domain (; the boundary of 0 1is denoted by 2. We assume that the height
of the equilibrium free surface of the liquid in the cylinder is a single-

valued smooth function u(x,y). We assume also that the volume of the

liquid is sufficiently large to cover the base of the cylinder entirely.
_ In the ‘absence of gravity the height .u(x,y)"of‘the liquid over the
bottom of the cylinder satisfies the equation
dlv(ﬁvu) = 20" e _ (1)

212

where” VJu = (du/dx,3u/dy), W'=4(1'4;|K7u|

The constant H is the mean curvature of the liquid surface. It is

defined by the'cfoss—sectional shape of the cylinder and the boundary con-

Y
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dition satisfiedvby the free surface of the liquid at the cylinder wall.

We will demand the free surface make a- prescribed contact angle Y

" with the cylinder wall. Thus the boundary‘gondition is

‘for (x,y) < S. Here du/dn is the derivative with respecf_to'the'outward

directed normal at”the wall.

To the equation in divergence forﬁ (1) with boundary condition (2)

there corresponds the following 'vériatiohal principle}“ The solutidn of

(1),(2) is thé minimum of the energy functional

E(u) = ' Wdxdy + 2H [ u dxdy - cos Y Judo . ) (3)
g o a2 2 :

Eq. (1) is the Euler equation for the variational problem of minimiz-
ing (3).
Applying the divergence theorem to (1) with boundary condition (2) we
obtain the relation between the mean curvaturé and the contact angle:
2HQ = Scos) : S (4)

Here and also later we use the same symbols to denote domains and their

measures. Eq. (4) is a ﬁééessary condition for existence of the solution

~to (1),(2). P. Concus and R. Fimn in [1] obtained in addition a more gen-

eral conditiqn than (4).
Let the cross-section 'Q of the cylinder be cut into two parts Q
* : _ : :
and ONQ by a curve [, which intersects the boundary 2 at points P,

. =% - . . .
and p,. Let 3 denote the part of 2 cut off by [~ and adjacent to
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"0 .  Applying the divergence theorem to the domain 0 and taking into
account that '|Y7ﬁ/W[.§.l along T (as everywhere), Concus and Finn proved
the eStihate ‘

24
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' wheré
/s -
V = min (6)
1s*/5 - o¥/q]

The minimization is carried over all curves [ described above such that
2 /2 -0/Q is nonzero. The estimate (5) holds if the solution to (1) and

(2)_eXists.

2. Symﬁetry of the solution-

In our calculations for a trapezoidal domain we will employ the fol-

lowing simple property of the capillary problem.

Theorem: Let u(x,y) be a solution to the problém (1) and (2) in a

’ ’

domain Q  that ié'invariant under reflection: x’ = -x, y = y; - Then

u(k,y) is also symmetric
} u(x,y) = u(-x,y) .
Proof: We put _'   - _ . , E o 4

VLY = ulx,y’) = ulx,y) .



It is easy to see that the equation (1) and the boundary condition (2)
are also invariant hndet reflection._ Thus v(x,y) has to be a solution to

(1) and (2), and by virtue of the uniqueness
v(x,y) = u(x,y) .

(A uniqueneés theorem for (1)‘and'(2) is straightfbrward, following immedi-
ately from the variational formulatioﬁ of the problem, since the energy

functional (3) is convex.)"

Remark: The theorem is true for any domain, invariant under orthogo-

nal transformation, say for a regulaf_polygon.

3. Computational experiments

Now we considerithe problem (1) and (2) when the base domain is a tra-

pezoid.

For numerical expériments an equilateral trapezoid was chosen with the
following parameters: the long base b = 2., the short base a = 1.3 and

the height h'= 25. The angles of the'trapezoid are very close to 900,

.approximately 90° i;0;8°. This trapezoid has sufficiently Iarge altitude

to exhibit clearl‘y._the nonexistenée phénomepon under study, bﬁt not so
large as to require ah'excessive_number of mesh points for representation
of the solution; The departure from a‘rectangle is sufficient to permit
visualizapion of ‘the change to the trapézoid when the shorter base is

decreased from 2 to 1.3,

For the traﬁezoid the quantity V in'(S) giving an upﬁer bound for

the cosine of the contact angle can be caléulétedfnumerically. The minimum



of the'ekpression (6) for V is realized when r Ais*a parficular circular
arc connecting sides of the trapezoid. The calculations gave for the crit-
ical angle YO. for the trapezoid with the above parameters an appfoximaﬁe

value R o S w

In view of the theorem we'SOLVe Eq.'(l) in the half-trapezoid

T ={(x,y) | 0<y <25 0<x<1~0.0l4y)

with the boundary condition (2) on the half~perimeter of the trapezoid and

the boundary condition

bu/bn IX=0 = 0 .

The problem was solved nuﬁericéily usihg arsﬁitabiy modified version
of R. A. Brown’s finite-element program [4] for the capillary problém’in a
rectangle;..The'démain was discretized gmploying’a trapezoidal gfid éon-
struéted as follows. Each base ‘of the half trapezdid- ’ri.was divided
equidistantly into‘ ﬁ parts.and the height_was divided equidistantiy’into
N parts. Mesh pointé'wére formed.by intersectioﬁs qf the mesh lines cqn;
necting the obtéiﬂed poinfs'on tﬁe‘bases and the meShvlines parallel to the

‘x—~axis through the.poiﬁts of partition of the_héight.

O

The program usedvreduced'quédratic polyhomials as the basis functions -

-

e

for the finite—elementzmethdd ‘(the reduced quadratic;element'differs'frpm

the full biquadratic' element by the elimination of the xzy2 term and

omissions of the centroid node). The resulting non-linear algebraic prob-



lem is solved using Newton’s method.

_Computatibns were carried .out with N =50, M=4, and were repeated

for N =75, M = 7.  The two series of'computétions showed very good con-

sistency between their results. The method was tested for the 2 x 25 rec-

/

tangle for contact angles close to 45°. ‘The method converged for Y 2_460
and did .not converge for Y < 45° (the step of changing the contact angle

» . o
in test calculations was 17).

The results are’depicted'in figutes 1f3, normélized by the addition of

a constant so- that 'u(O;O)'% 0. 'Iﬁ-figure 1 the'surface height u(O;y)

along the symmetfy line is shown for several contact angles. Y. The

behavior of the solution along other mesh lines in'ﬁhe y direction”

differs very little from that along u(0,y).

In figure 2, the variation of the surface height with x is depicted
for several values‘of‘ y for the case. Y = 58°. - Note that the optimal

curvé I along which thé solution surface wouid becoﬁe verticalvfor the

0’

critical contact.éngle 57.60, is a circular érc of radius 1.444 intersect-

ing the symmetry line x = 0. of the trapezoid at 'y = 17.6 and the slant

edge at y = 17.4.

In figuré 3 are depicted the surface heigﬁts u(O,y) for a sequence
of trapezoids rénging from the rectangle ‘(a = 2) to the élmost-critical
one (a ;'1.3), “for Y = 58°. The téndency toward ﬁerticality is notice— '

able as crititality'is approaéhedg



4. On the gradientfgg.the solution

~ Figure 1 indicates that for Y close to‘the critical angle the graphs

have inflection points where the derivative uy is maximal. The maximum

of uy appears to occur in a small neighborhood of the curve PO for

- which the minimum in the estimate (6) is realized. AThis property is not

incidental. Actually ‘Fb is the curve along which a discontinuity of the
‘solution may arise. Namely du | . ;> @® as'.Y ->VY where d ‘is dif-
R AR TN P | 0> "MCF® ¥
ferentiation with respect to the outward normal to. Fb. More precisely,
the following is valid.
Theorem: = Let a solution to the problem (1) and (2) exist for Y > Yo,

where YO is defined by the equality

cos Y, = min —3=—¢ (6a)

0 "~ ys"-0’s

and let 'PO realize the minimum in (6a). Then
IJ‘ w\7u-n ds| = FO » (7)

"o

as Y —-» Yo..

Proof: Let & > 0 be small and

\

c‘os'-)’0 > cos Y > cos YO - 5 .

) v*.
Applying the divergence theorem to the domain Q ' defined by rO’ we

‘have .



& 5 lg. ;, * 3 cos Y
2 cos Yy + |‘I WVu.n ds | Q o (8)
‘ 0 o

. . . ) | _ , o
Let 03 -20>0 (otherwise we can obtain the necessary estimate
.for '—II %vu.’nds), then it follows : , o
| 0 | . o | |
. * _*® * * Vo=
r‘riv.n ds = (Q'5/Q - $)cosY > (@ 2 -3 )(“'_'ﬁ-‘f' - %)
2 W ) - fo} * *
‘ 0 ' . _ , 20 -23240

. G DRI
=My -8@ §-3) =T,

aSS—)O-_
The theorem is in a sense an inverse to Concus and Finn’s estimate of
the critical angle (6).

By usual means it can be derived from. the theorem'(by_aSSumption of

 the regularity of‘;he solution) the property that bu/bn goes to infinity

on FO’ as Y — YO.
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- Figure Captions

Figu;é l. u(0,y) Vs ¥y for‘contact angles 759, 600, 59°

Figure 2. u(x,yi) vs. X for g = 0,9’15;17.5’20’25;. y = 58°

Figdre 3. u(0,y) vs. y for a =2,1.5,1.4,1.3; Y =58°
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