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Genome Editing Method for the Anaerobic Magnetotactic
Bacterium Desulfovibrio magneticus RS-1

Carly R. Grant,a Lilah Rahn-Lee,a* Kristen N. LeGault,a Arash Komeilia

aDepartment of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA

ABSTRACT Magnetosomes are complex bacterial organelles that serve as model
systems for studying bacterial cell biology, biomineralization, and global iron cycling.
Magnetosome biogenesis is primarily studied in two closely related Alphaproteobac-
teria of the genus Magnetospirillum that form cubooctahedral-shaped magnetite
crystals within a lipid membrane. However, chemically and structurally distinct mag-
netic particles have been found in physiologically and phylogenetically diverse bac-
teria. Due to a lack of molecular genetic tools, the mechanistic diversity of magneto-
some formation remains poorly understood. Desulfovibrio magneticus RS-1 is an
anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite
crystals. A recent forward genetic screen identified 10 genes in the conserved mag-
netosome gene island of D. magneticus that are essential for its magnetic pheno-
type. However, this screen likely missed mutants with defects in crystal size, shape,
and arrangement. Reverse genetics to target the remaining putative magnetosome
genes using standard genetic methods of suicide vector integration have not been
feasible due to the low transconjugation efficiency. Here, we present a reverse ge-
netic method for targeted mutagenesis in D. magneticus using a replicative plasmid.
To test this method, we generated a mutant resistant to 5-fluorouracil by making a
markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase.
We also used this method for targeted marker exchange mutagenesis by replacing
kupM, a gene identified in our previous screen as a magnetosome formation factor,
with a streptomycin resistance cassette. Overall, our results show that targeted mu-
tagenesis using a replicative plasmid is effective in D. magneticus and may also be
applied to other genetically recalcitrant bacteria.

IMPORTANCE Magnetotactic bacteria (MTB) are a group of organisms that form in-
tracellular nanometer-scale magnetic crystals though a complex process involving
lipid and protein scaffolds. These magnetic crystals and their lipid membranes,
termed magnetosomes, are model systems for studying bacterial cell biology and
biomineralization and are potential platforms for biotechnological applications. Due
to a lack of genetic tools and unculturable representatives, the mechanisms of mag-
netosome formation in phylogenetically deeply branching MTB remain unknown.
These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals
that likely form in a manner distinct from that of the cubooctahedral-shaped mag-
netite crystals of the genetically tractable MTB within the Alphaproteobacteria. Here,
we present a method for genome editing in Desulfovibrio magneticus RS-1, a cul-
tured representative of the deeply branching MTB of the class Deltaproteobacteria.
This marks a crucial step in developing D. magneticus as a model for studying di-
verse mechanisms of magnetic particle formation by MTB.
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Magnetotactic bacteria (MTB) are a group of diverse microorganisms that align
along magnetic fields via their intracellular chains of magnetic crystals (1, 2). Each

magnetic crystal consists of either magnetite (Fe3O4) or greigite (Fe3S4) and is synthe-
sized within a complex organelle called a magnetosome (3). The first cultured MTB were
microaerophilic members of the Alphaproteobacteria, which form cubooctahedral-
shaped magnetite crystals and have served as model organisms for understanding mag-
netosome formation (4–7). Early studies on Magnetospirillum spp. revealed a lipid-bilayer
membrane, with a unique suite of proteins, surrounding each magnetite crystal (8–10). The
development of genetic tools in Magnetospirillum magneticum AMB-1 and Magnetospirillum
gryphiswaldense MSR-1 revealed a conserved magnetosome gene island (MAI) that contains
the factors necessary and sufficient for the formation of the magnetosome membrane,
magnetite biomineralization within the lumen of the magnetosome, and alignment of the
magnetosomes in a chain along the length of the cell (3, 11). These molecular advances,
along with the magnetic properties of magnetosomes, have made MTB ideal models for
the study of compartmentalization and biomineralization in bacteria as well as a target for
the development of biomedical and industrial applications.

Improvements in isolation techniques and sequencing have revealed that MTB are
ubiquitous in many aquatic environments. On the basis of phylogeny and magneto-
some morphology, MTB can be categorized into two subgroups. The first subgroup
includes members of the Alphaproteobacteria and Gammaproteobacteria, such as Mag-
netospirillum spp., that synthesize cubooctahedral, elongated octahedral, or elongated
prisms of magnetite (12). The second subgroup comprises MTB from more deep-
branching lineages, including members of the Deltaproteobacteria class and the Nitro-
spirae and Omnitrophica phyla, which synthesize elongated bullet-/tooth-shaped mag-
netite and/or greigite crystals (13, 14). While all MTB sequenced to date have their
putative magnetosome genes arranged in distinct regions of their genomes (3, 15–17),
many of the genes essential for magnetosome biogenesis in Magnetospirillum spp. are
missing from the genomes of deep-branching MTB (14). Likewise, a conserved set of mad
(magnetosome-associated Deltaproteobacteria) genes are only found in deep-branching
MTB (14, 18–20). This suggests a genetic diversity underpinning the control of magne-
tosome morphology and physiology in nonmodel MTB that is distinct from that of the
well-characterized Magnetospirillum spp.

Desulfovibrio magneticus RS-1, one of the few cultured MTB outside the Alphapro-
teobacteria, is an anaerobic sulfate-reducing member of the Deltaproteobacteria that
forms irregular bullet-shaped crystals of magnetite (21, 22). As with the Magnetospiril-
lum spp., the magnetosome genes of D. magneticus are located within a MAI and
include homologs to some mam genes as well as mad genes (14, 18, 23). Recently, we
used a forward genetic screen combining random chemical and UV mutagenesis with
whole-genome resequencing to identify mutations that resulted in nonmagnetic phe-
notypes. These included many mutants that had the entire MAI deleted (ΔMAI) as well
as mutants with point mutations, frameshift mutations, and transposon insertions in 10
mam and mad genes of the D. magneticus MAI that resulted in nonmagnetic pheno-
types (20). However, this screen relied on a strict selection scheme for nonmagnetic
mutants. As such, we likely missed magnetosome genes that are important for regu-
lating the shape, size, and arrangement of magnetosomes. To elucidate the degree of
conservation between mam genes and determine the function of the proteins encoded
by mad genes in D. magneticus, a reverse genetic method for targeted mutagenesis is
necessary.

D. magneticus and other Desulfovibrio spp. have gained much attention for their
importance in the global cycling of numerous elements, in biocorrosion, and in the
bioremediation of toxic metal ions (24, 25). The development of genetic tools, such as
expression vectors, transposons, and targeted genome-editing systems, has enabled a
more detailed examination of the important activities of a few Desulfovibrio spp. (26,
27). Targeted mutagenesis using a one-step double recombination method was first
achieved in Desulfovibrio fructosivorans and, more recently, in Desulfovibrio gigas and
Desulfovibrio desulfuricans ND132 (28–30). With this method, plasmids that are electro-
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porated into the cell are thought to be rapidly linearized by endogenous restriction
modification systems (30–32). The linearized plasmid DNA, carrying a selectable marker
flanked by upstream and downstream regions of homology to a target gene, can then
undergo double recombination into the chromosome in one step (Fig. 1A). This
efficient one-step method, which is dependent on electroporation of the plasmid
(28–30), is unlikely to be applicable for D. magneticus, because plasmid uptake has only
been demonstrated using conjugal transfer (20). The second targeted mutagenesis
method, used in Desulfovibrio vulgaris Hildenborough, is a two-step double recombi-
nation that makes use of a nonreplicative, or suicide, vector (31, 32). In the first step of
this method, a suicide vector, with sequences upstream and downstream of the target
gene, integrates into the genome upon the first homologous recombination event (Fig.
1B). Next, a second recombination event occurs whereby the vector is excised from the
genome, and cells with the desired genotype are selected with an antibiotic marker
and/or a counterselection marker (31, 32) (Fig. 1B). For many bacteria, including D.
magneticus, plasmid uptake and integration occur at frequencies that are too low for
genetic manipulation via suicide vectors (20).

FIG 1 Schematic of deletion methods used in Desulfovibrio spp. Plasmids (black lines) were designed to replace a target gene (X, aqua arrows) in the
chromosome (blue lines) with a streptomycin resistance cassette (strAB, purple arrows). Regions upstream (*) and downstream (**) of the target gene (blue
boxes) on the chromosome undergo recombination (red lines) with homologous regions that are cloned into the deletion plasmid. Key steps, such as
recombination events (red crosses), are indicated in the boxes, and the selection steps are labeled in red. (A) Double recombination can occur in one step after
plasmids are linearized (dashed lines) by endogenous restriction enzymes. Mutants are selected using the marker (e.g., strAB) that was exchanged with the
target gene. (B) Two-step double recombination is possible when suicide vectors integrate into the chromosome in the first homologous recombination event
and then recombine out after the second homologous recombination event. The first step and second step are selected for with antibiotic resistance markers
(e.g., npt) and counterselectable markers (e.g., sacB), respectively. (C) A replicative deletion plasmid designed to target genes for deletion may undergo double
recombination in one or two steps as shown in panels A and B, respectively. After passaging the cells without antibiotic, the mutants are selected with an
antibiotic resistance cassette (e.g., strAB) and a counterselectable marker (e.g., sacB). mob, mobilization genes (mobA=, mobB, mobC); npt, kanamycin-resistance
gene; oriDm, origin of replication for D. magneticus; oriEc, origin of replication for E. coli.
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Here, we describe the method we developed for targeted gene deletion using a
replicative plasmid, thereby bypassing the need for suicide vector integration (Fig. 1C).
We generated a mutant resistant to 5-fluorouracil by making a markerless deletion of
the upp gene, which encodes an enzyme in the pyrimidine salvage pathway that is
nonessential under standard laboratory conditions. Additionally, we deleted kupM, a
gene encoding a potassium transporter that acts as a magnetosome formation factor
(20), via marker exchange with a streptomycin resistance cassette. The deletion of both
upp and kupM conferred the expected phenotypes, which were subsequently comple-
mented in trans. Overall, our results show that targeted mutagenesis using a replicative
plasmid is possible in D. magneticus. It may also be suitable for other bacteria for which
replicative plasmid uptake is possible but at a rate too low for suicide vector integra-
tion.

RESULTS
Design of a replicative deletion plasmid using sacB counterselection. Targeted

genetic manipulation in most bacteria requires a method to efficiently deliver foreign
DNA destined for integration into the chromosome. One commonly used method
involves suicide vector uptake and integration prior to the first selection step (Fig. 1B).
In D. magneticus, plasmid transfer has only been achieved via conjugation at low
efficiencies, making the uptake and subsequent integration of suicide vectors into its
chromosome an unlikely event (20). As such, we attempted to bypass the use of suicide
vectors and use a stable replicative plasmid designed to delete specific genes via
homologous recombination (Fig. 1C). Two features of this method enable the isolation
of desired mutants: (i) a selectable marker is used to identify double recombination
events at the targeted site and (ii) a counterselectable marker distinguishes the desired
mutant cells, which have lost all remaining copies of the plasmid.

sacB is a common counterselection marker that is effective in many bacteria. The
sacB gene from Bacillus subtilis encodes levansucrase, which converts sucrose to levans
that are lethal to many Gram-negative bacteria, including D. vulgaris Hildenborough
(31, 33, 34). To test its functionality in D. magneticus, we inserted sacB under the
expression of the mamA promoter of D. magneticus (described in reference 20) in a
plasmid that replicates in both Escherichia coli and D. magneticus (Fig. 2A). This plasmid
(pAK914) and a control plasmid were then conjugated into D. magneticus. We found no
growth inhibition for D. magneticus cells with the control plasmid in the presence of
sucrose and kanamycin. In contrast, cells expressing sacB were unable to grow with
kanamycin and sucrose concentrations of 1% (wt/vol) or higher (data not shown). To
test if the plasmids could be cured, D. magneticus with pAK914 was passaged two times
in liquid medium containing no antibiotic and plated on 1% sucrose. Individual
sucrose-resistant (Sucr) colonies were inoculated and screened for kanamycin sensitivity
(Kans). All isolated colonies (n � 16) were Kans, suggesting that the cells had lost the
plasmid. These experiments demonstrate that sacB is a suitable counterselection
marker in D. magneticus.

Construction of a �upp strain by markerless deletion. To test our replicative
deletion method, we chose to target the upp gene, the mutation of which has a
selectable phenotype. The upp gene encodes uracil phosphoribosyltransferase (UPR-
Tase), a key enzyme in the pyrimidine salvage pathway that catalyzes the reaction of
uracil with 5-phosphoribosyl-�-1-pyrophosphate (PRPP) to UMP and PPi (35) (Fig. 3A).
When given the pyrimidine analog 5-fluorouracil (5-FU), UPRTase catalyzes the produc-
tion of 5-fluoroxyuridine monophosphate (5-FUMP). 5-FUMP is further metabolized and
incorporated into DNA, RNA, and sugar nucleotides resulting in eventual cell death (Fig.
3A) (36, 37). Previous studies have shown that Δupp mutants of D. vulgaris Hildenbor-
ough are resistant to 5-FU, while wild-type (WT) cells are effectively killed by the
pyrimidine analog (32, 38). The D. magneticus genome has a homolog (DMR_08390) to
the D. vulgaris Hildenborough upp gene that is likely functional, as detected by the
sensitivity of D. magneticus to 5-FU (Fig. 3B and 4A). To show that the upp gene product
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confers 5-FU sensitivity and to validate our replicative deletion system, we chose to
target the D. magneticus upp gene for markerless deletion.

To construct a upp deletion vector, a markerless cassette containing the regions
upstream and downstream of the upp gene were inserted into plasmid pAK914 (Fig. 2B).
The resulting plasmid (pAK1126) was transferred to WT D. magneticus by conjugation
and single kanamycin-resistant (Kanr) colonies were isolated and passaged in growth
medium containing no antibiotic. Since D. magneticus has interesting features inde-
pendent of its magnetosomes, the same deletion procedure was also carried out in a
nonmagnetic strain (ΔMAI) isolated in our previous genetic studies (20). After the third
passage, upp mutants that had lost the vector backbone were selected for with 5-FU
and sucrose. Compared with those obtained using a control plasmid (pAK914), �20-
fold more 5-FU-resistant (5-FUr) mutants were generated using pAK1126 at a frequency
of approximately 10�6. PCR of the region flanking the upp gene confirmed that the
5-FUr colonies harboring pAK1126 resulted from a markerless deletion of upp (Δupp),
while 5-FUr colonies harboring pAK914 were likely the result of point mutations (Fig. 3B
and D). Similar to the results obtained for D. vulgaris Hildenborough (32), the Δupp
mutant of D. magneticus grew in the presence of 5-FU (Fig. 4B and Table 1). Comple-
mentation of the upp gene in trans restored UPRTase function, and the cells no longer
grew with 5-FU (Fig. 2C and 4C and Table 1). These experiments demonstrate that a
replicative plasmid can be used to directly edit the D. magneticus genome.

Construction of a �kup strain by marker exchange mutagenesis. Because many
genetic mutations do not confer a selectable phenotype, we sought to develop our
replicative deletion plasmid for marker exchange mutagenesis. To test this system, we
chose to replace a gene with a known phenotype, kupM (DMR_40800), with a
streptomycin-resistance gene cassette (strAB). kupM is located in the D. magneticus MAI
and encodes a functional potassium transporter (20). Mutant alleles in kupM, including
missense, nonsense, and frameshift mutations, were previously identified in our screen

FIG 2 Plasmids constructed for the present study. (A) Expression plasmid pAK914 expresses sacB from
the mamA promoter and is the parent vector for the deletion plasmids and upp expression plasmid
described below. (B) Replicative deletion plasmid to target upp for markerless deletion. The upp deletion
cassette was cloned into XbaI-SacI of pAK914. (C) Expression plasmid used for upp complementation. The
upp gene and its promoter were cloned into BamHI-SacI of pAK914. (D) Replicative deletion plasmid to
target kupM for marker exchange mutagenesis with strAB. The kupM::strAB deletion cassette was cloned
into XbaI of pAK914. Labeling and colors correspond to those in Fig. 1.
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for nonmagnetic mutants (20). These kupM mutations resulted in cells that rarely
contained electron-dense particles and were unable to turn in a magnetic field, as
measured by the coefficient of magnetism (Cmag) (20).

To mutate kupM, we inserted a marker exchange cassette, with regions upstream
and downstream of kupM flanking strAB, into pAK914 (Fig. 2D) to create the deletion
plasmid pAK941. Following conjugation, single colonies of D. magneticus harboring
pAK941 were isolated by kanamycin selection. After three passages in growth medium
without selection, potential mutants were isolated at a frequency of approximately
10�6 on plates containing streptomycin and sucrose. Single colonies that were strep-
tomycin resistant (Strr) and Sucr were inoculated in liquid medium and screened for
Kans. Of the isolates screened (n � 48), 20% were Kans and 4% had the correct
genotype (ΔkupM::strAB) as confirmed by PCR and sequencing (Fig. 3C and E).

FIG 3 (A) The upp gene encodes UPRTase, which is a key enzyme in the uracil salvage pathway. The product of the
UPRTase reaction, UMP, is processed by downstream enzymes in pathways for RNA, DNA, and sugar nucleotide
synthesis. 5-FU causes cell death by incorporating into this pathway via UPRTase. (B) Schematic of genomic regions
of upp in the WT or the ΔMAI mutant (top) and the Δupp mutant (bottom). (C) Genomic region of kup in WT (top)
and kup::strAB (bottom) strains. Primers used to screen for the correct genotype are indicated with half arrows. (D)
Δupp mutants in WT and ΔMAI backgrounds were confirmed by PCR using primers P19/P20 and agarose gel
electrophoresis. WT and ΔMAI strains show a band corresponding to the upp gene (2,691 bp), while the Δupp
mutants have a smaller band corresponding to a markerless deletion of the upp gene (2,079 bp). The lower bands
are likely nonspecific PCR products. (E) kupM::strAB genotype confirmation by PCR and agarose gel electrophoresis
using primers P21/P22 (WT, 3,069 bp; kupM::strAB, 3,263 bp; ΔMAI, not applicable [NA]).
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Similar to the phenotypes previously observed in kupM mutants (20), ΔkupM::strAB
cells were severely defective in magnetosome synthesis and turning in a magnetic field
(Fig. 5). Although a slight Cmag was measured, few cells contained electron-dense
particles or magnetosomes. Importantly, the WT phenotype was rescued by expressing
kupM from a plasmid in the ΔkupM::strAB mutant (Fig. 5). These results confirm that the
replicative deletion plasmid method described here can be used successfully for marker
exchange mutagenesis.

FIG 4 upp mutant and complementation phenotype. Growth of the parent strain (ΔMAI) (A), upp deletion
(ΔMAI Δupp) (B), and complementation of the upp deletion (ΔMAI Δupp/upp�) (C) when grown with 1.25
�g/ml 5-FU (Œ) or without 5-FU (�). Data presented are averages from 2 to 3 independent cultures; error
bars indicate the standard deviations.

TABLE 1 Growth rates and generation times of the parent strain (ΔMAI), Δupp mutant,
and upp complementation in trans with and without treatment with 5-FU

Strain

Growth rate (h�1) Generation time (h)

Without 5-FU With 5-FU
Without
5-FU

With
5-FU

ΔMAI 0.077 � 0.0017 NAa 9.1 � 0.2 NA
ΔMAI Δupp 0.079 � 0.0017 0.070 � 0.0040 8.8 � 0.2 10.0 � 0.6
ΔMAI Δupp/upp� 0.076 � 0.0041 NA 9.1 � 0.5 NA
aNA, not applicable.
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DISCUSSION

In this study, we expand the genetic toolbox for D. magneticus to include a
replicative plasmid method for targeted mutagenesis (Fig. 1C). We show the utility of
this method for markerless deletion of genes with a selectable phenotype and for
marker exchange mutagenesis. Some of the earliest examples of targeted mutagenesis
in Gram-negative bacteria used replicative plasmids, similar to the method described
here (34, 39). These studies, which predated the application of suicide vectors, relied on
plasmid instability by introducing a second plasmid of the same incompatibility group
or by limiting nutrients in the growth medium (34, 39).

Because the D. magneticus genetic toolbox has a limited number of plasmids,
antibiotic markers, and narrow growth constraints, we used a replicative plasmid and
established sacB as a counterselection marker to generate and isolate mutants. While
sacB counterselection was ultimately successful, a large number of false positives were
also isolated at the sucrose selection step. Mutations in sacB have been found to occur
at a high frequency in many bacteria (31, 40–43). Indeed, we found that deletions and
mutations in PmamA-sacB are abundant in the false-positive Sucr Strr isolates (data not
shown). Alternative counterselection markers, including upp, have been shown to
select for fewer false positives (32, 43–45). Since D. magneticus is sensitive to 5-FU only
when the upp gene is present (Fig. 4), the upp mutants generated in this study may be
used as the parent strains for future targeted mutagenesis with upp, rather than sacB,
serving as a counterselectable marker. Additionally, the combined use of upp and sacB
for counterselection might reduce the false-positive background that results from the
accumulation of mutations in these markers.

The replicative deletion plasmid described here was designed to replace a target
gene with an antibiotic resistance marker. As such, the construction of strains with
multiple directed mutations will be complicated by the need for additional antibiotic-
resistance markers, which are limited in D. magneticus. These limitations may be
overcome by removing the chromosomal antibiotic marker in subsequent steps (34, 46,
47). Ultimately, improvements in conjugation efficiency or methods for electroporation
with high transformation efficiency are desired. Similar to the ongoing development of
genetics in D. vulgaris Hildenborough, the establishment of a suicide vector delivery
system in D. magneticus will enable more high-throughput targeted mutagenesis and
even the construction of markerless deletion mutants (26, 32).

Overall, we demonstrated the utility of a replicative deletion plasmid to generate
targeted mutants of D. magneticus. This method marks a crucial step in developing D.
magneticus as a model for the study of anaerobic sulfate reduction and diverse
mechanisms of magnetic particle formation by MTB. Both MTB and sulfate-reducing
bacteria have been singled out for their role in the global cycling of numerous elements
and for potential applications, such as bioremediation (24, 25, 48, 49). D. magneticus, in
particular, may be useful in the bioremediation of heavy metals and in the global

FIG 5 kupM mutant and complementation phenotype. Cmag values (A) and electron micrographs of WT (B), kupM::strAB (C),
and ΔkupM::strAB/kup� (D) strains. Scale bars, 200 nm. Data presented are averages from 4 independent cultures; error bars
indicate the standard deviations.
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cycling of iron, since it can form both magnetosomes and other iron-containing
organelles (50, 51). Through genetic manipulation of D. magneticus, pathways of
elemental cycling and heavy-metal turnover may now be explored. Additionally, ge-
netic manipulation of D. magneticus will further our understanding of magnetosome
formation and provide answers to many longstanding questions for the deeply branch-
ing MTB. Which proteins regulate and control magnetosome formation? To what extent
are lipid membranes involved in forming these crystals? How is the elongated and
irregular crystal shape achieved? Finally, in addition to D. magneticus, the method
described here may extend to other bacteria that are not amenable to targeted
mutagenesis with suicide vectors but are able to accommodate replicative plasmids.

MATERIALS AND METHODS
Strains, media, and growth conditions. The bacterial strains used in this study are listed in Table

2. All E. coli strains were cultured aerobically with continuous shaking at 250 rpm at 37°C in lysogeny
broth (LB). D. magneticus strains were grown anaerobically at 30°C in sealed Balch tubes with a N2

headspace containing RS-1 growth medium (RGM) that was degassed with N2, unless otherwise stated
(51). Sodium pyruvate (10 mM) was used as an electron donor with fumaric acid disodium (10 mM) as
the terminal electron acceptor. RGM was buffered with HEPES, and the pH was adjusted to 6.7 with NaOH
(20). Before inoculating with cells, RGM was supplemented with 0.8% (vol/vol) Wolfe’s vitamins, 100 �M
ferric malate, and 285 �M cysteine-HCl (51). Solid agar plates were prepared by adding 1.5% agar (wt/vol)
to LB and 1% agar (wt/vol) to RGM. Vitamins (0.8% [vol/vol]), ferric malate (20 �M), and cysteine (285 �M),
as well as antibiotics and selective agents, were added to the molten RGM agar as needed. For D.
magneticus, all plating steps were carried out aerobically, and the bacteria were transferred to an
anaerobic jar and incubated at 30°C for 10 to 14 days, as described previously (20). The antibiotics and
selective agents used are as follows: kanamycin (50 �g/ml for E. coli strains, 125 �g/ml for D. magneticus
strains), streptomycin (50 �g/ml for E. coli and D. magneticus strains), diaminopimelic acid (300 �M for
E. coli WM3064), 5-FU (2.5 �g/ml for D. magneticus strains), and sucrose (1% for D. magneticus strains).

Plasmids and cloning. All plasmids used in this work are listed in Table 2. All cloning was performed
in E. coli DH5� �pir using the Gibson method (52) or restriction enzyme ligation. For PCR amplification,
KOD (EMD Millipore, Germany) and GoTaq (Promega, USA) DNA polymerases were used with the primers
listed in Table 3. All upstream and downstream homology regions were amplified from D. magneticus
genomic DNA. strAB and Pnpt were amplified from pBMS6 and pLR6, respectively, and subcloned into
pBMC7 to make pAK920, which served as the template for amplifying Pnpt-strAB for the deletion vectors.
sacB was amplified from pAK0 and inserted into pLR6 digested with SalI and XbaI to create pAK914. To
construct a plasmid for the targeted deletion of upp (DMR_08390), 991 bp upstream and 1,012 bp
downstream of upp were amplified and inserted into pAK914 digested with XbaI and SacI using a 3-piece

TABLE 2 Bacterial strains and plasmids used in this study

Strain or plasmid Genotype or relevant characteristics Reference or source

Strains
E. coli

DH5� �pir Cloning strain Lab strain
WM3064 Conjugation strain; DAP auxotroph used for plasmid transfer Lab strain

D. magneticus
AK80 Nonmotile mutant of D. magneticus strain RS-1, referred to

as wild type
51

AK201 ΔMAI 20
AK267 ΔMAI Δupp This study
AK268 Δupp This study
AK270 ΔkupM::strAB This study

Plasmids
pBMK7 Conjugative vector with pBG1 and pMB1 replicons; Kanr 53
pBMC7 Conjugative vector with pBG1 and pMB1 replicons; Cmr 53
pBMS6 Cloning vector; source of strAB; Strr 53
pLR6 pBMK7 with PmamA in HindIII-SalI; source of Pnpt; Kanr 20
pLR41 pLR6 with PmamA-kupM in SalI; Kanr 20
pAK0 Cloning vector, source of sacB; Kanr 10
pAK914 pLR6 with sacB in SalI-XbaI; Kanr This study
pAK920 pBMC7 with Pnpt-strAB inserted into SacI site; Cmr Strr This study
pAK941 pAK914 with cassette of 1,064 bp upstream and 1,057 bp

downstream of kupM flanking Pnpt-strAB in XbaI; Kanr Strr

This study

pAK1126 pAK914 with cassette of 991 bp upstream and 1,012 bp
downstream of upp in XbaI-SacI; Kanr

This study

pAK1127 pAK914 with Pupp-upp in BamHI-SacI; Kanr This study
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Gibson assembly. To create the upp complementation plasmid, pAK914 was digested with BamHI and
SacI, and the upp gene, with its promoter, was PCR amplified from D. magneticus genomic DNA. To
construct pAK941 for marker exchange mutagenesis of kupM, a cassette of a 1,064-bp upstream region
and 1,057-bp downstream region flanking Pnpt-strAB was assembled using Gibson cloning. The cassette
was amplified and inserted into pAK914 digested with XbaI using a two-piece Gibson assembly.

upp and kup mutant generation and complementation. Replicative deletion plasmids were
transformed into E. coli WM3064 by heat shock and transferred to D. magneticus by conjugation, as
described previously (20). Single colonies of Kanr D. magneticus were isolated and inoculated in RGM
containing no antibiotic. Cultures were passaged and, after the third passage, approximately 2 � 108

cells were spread on 1% agar RGM plates containing either 50 �g/ml streptomycin and 1% sucrose or
2.5 �g/ml 5-FU and 1% sucrose. 5-FUr Sucr and Strr Sucr colonies harboring plasmids pAK1126 and
pAK941, respectively, were recovered at a frequency of approximately 10�6. Single colonies were
screened for Kans and by PCR using the primers listed in Table 3. Successful upp and kup mutants were
confirmed by Sanger sequencing. The expression plasmids for the complementation of Δkup::strAB and
Δupp, as well as empty vectors for controls, were transferred to D. magneticus strains as described above.
Transconjugants were inoculated in RGM containing kanamycin to maintain the plasmids.

Mutant phenotype and complementation analyses. The growth and coefficient of magnetism
(Cmag) of D. magneticus strains were measured in a Spec20 spectrophotometer at an optical density of
650 nm (OD650), as described previously (10, 51). For upp mutant and complementation analyses, RGM
was supplemented with 5-FU (1.25 �g/ml in 0.01% dimethyl sulfoxide [DMSO]) or DMSO (0.01%), and the
growth was measured for WT and Δupp strains with an empty vector (pAK914) and for the Δupp strain
with the complementation plasmid pAK1127. For kup mutant and complementation analyses, the Cmag

was measured by placing a large bar magnet parallel or perpendicular to the sample to measure the
maximum or minimum absorbance, respectively, as the D. magneticus strains rotate 90° with the
magnetic field. The ratio of maximum to minimum absorbances was calculated as the Cmag (10).
Whole-cell transmission electron microscopy (TEM) was performed as previously described (51). The Cmag

calculations and TEM were performed for WT D. magneticus with an empty vector (pBMK7) and the
Δkup::strAB strain with an empty vector (pBMK7) or complementation plasmid (pLR41). For all growth
measurements, Cmag measurements, and TEM, the cells harboring the plasmids were maintained with
125 �g/ml kanamycin.
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