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ABSTRACT OF THE DISSERTATION 

 

Cross-Resistance, Collateral Sensitivity Interactions, and Their Influence on Resistance 

Evolution in Bacteria 

by 

Natalie Ann Lozano-Huntelman 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2022 

Professor Pamela Yeh, Chair 

 

The prevalence and strength of multi-drug antibiotic resistance have resulted in an arms 

race between the development of new treatment options and the evolution of resistance in bacteria. 

The combination of drug therapies and antibiotic cycling presents possible solutions to this 

problem. However, these solutions introduce new factors to consider (see Chapter 1). This 

dissertation uses experimental evolution to broaden our understanding of resistance evolution to 

multiple antibiotics used in combination. It was found that the range of antibiotic concentrations 

that can select for resistant mutants widens once resistance has evolved (Chapter Two). In addition, 

this work investigated how the genetic background of resistant strains affects the viability of four 

effective 3-drug combinations and each of the individual drugs that make up the combination 

(Chapter Three). This work also evaluated the presence and persistence of an understudied type of 

drug interaction, hidden suppression, in 3-, 4-, and 5- drug combinations (Chapter Four). Hidden 
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suppression occurs when the combined effects of multiple antibiotics result in more bacterial 

growth than the effects of a smaller subset of those same antibiotics. Finally, this work asked if 

the drug interactions within a 3-drug combination can affect the rate at which resistance evolves 

in Staphylococcus epidermidis (Chapter Five). Using antibiotic resistance as a model system not 

only helps to fill the knowledge gap to solve a public health crisis but also allows me to address 

fundamental questions in evolutionary biology. For example, this work directly addresses how a 

combination of stressors affects the evolution of an entire population with varying genetic 

backgrounds. Overall, this research integrates this evolutionary perspective to determine how 

different antibiotic treatments affect the adaptation rates, adaptation frequencies, and resistance 

strengths of bacterial populations. 
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 Background and Significance 
 

Antibiotic resistance is a growing problem facing humanity on a global scale (Neu, 1992; 

Roca et al., 2015; Ventola, 2015; Blair, 2018; MacFadden et al., 2018; Povolo & Ackermann, 

2019). It has been attributed partly to the misuse and overuse of antibiotics. This allows for 

bacterial populations to evolve resistance (Ventola, 2015) creating an arms race between the 

development of new antibiotics and the evolution of resistance. More bacteria are gaining single 

and multi-drug resistance (Bush et al., 2011; Spellberg & Gilbert, 2014). Antibiotic resistance 

requires new disease management strategies and is an added burden of healthcare costs (Tenover, 

2006). Taking an evolutionary perspective to antibiotic resistance offers a unique understanding 

of how different treatments affect the adaptation rates, frequencies, and resistance strengths of 

bacterial populations. With this information the evolutionary rates and trajectories can potentially 

be manipulated to lead to less resistant or more sensitive bacterial population.  

Antibiotics are responsible for killing or inhibiting bacterial growth in low concentrations 

(Waksman, 1947). They can be categorized in several different ways based on the chemical 

structure, the organisms that produce them, and the main mechanism that they affect (Russell, 

1998; Wright, 2005; P. Yeh et al., 2006). This work will focus on categorizing antibiotics by the 

main mechanism. The main mechanism of an antibiotic can show the general target of the 

antibiotic indicating what aspects of the cell’s phenotype selection is acting on. There are five 

main mechanistic categories: cell wall inhibition, inhibition of protein synthesis, alteration of cell 

membranes, inhibition of nucleic acid synthesis, and antimetabolite synthesis. These five 

categories can then be further broken down into subcategories. For example, cell wall inhibition 

can be achieved multiple ways: beta-lactams inhibit peptidoglycan synthesis, vancomycin 

disrupts cross-linkages between peptidoglycans, bacitracin disrupts movement of peptidoglycan 
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precursors, and antimycobacterial agents disrupt mycolic acid or arabino glycan synthesis 

(Hancock, 2005).  

When a bacterial population is 

treated with a single antibiotic, one of three 

things can occur: 1) the concentration of the 

antibiotic can be so low that it does not 

affect the growth of the cells, 2) the 

concentration of antibiotic is so high all 

cells are killed, or 3) the concentration of 

antibiotic is high enough to kill some of the 

population but not all of it, allowing for 

resistant mutants to be selected for. Finding the cutoff concentrations that lead to each of these 

outcomes is achieved through the determination of the minimum inhibitory concentration (MIC) 

and the mutant prevention concentration (MPC). The MIC is the lowest concentration of an 

antimicrobial agent that limits visible growth. There are multiple ways to determine MIC. These 

include using liquid media in culture tubes or well-plates, or on agar plates using E-test strips or 

disk diffusion (Reller et al., 2009). Comparing the MIC of a mutated strain to its ancestral strain 

quantifies the amount of resistance or sensitivity gained by the mutation(s). A resistant strain will 

have a higher MIC than then the MIC of the wild-type or ancestral strain. A sensitive strain 

should have a lower MIC than the ancestral strain. The MPC is the concentration that requires at 

least two concurrent point mutations to achieve growth (Blondeau et al., 2004). The range 

between the MIC and MPC indicates the mutant selection window that allows for strains to 

evolve resistance (Drlica & Zhao, 2007). 

Figure 1-1. Drug Interactions Schematic (from 
Tekin, et al., 2017) 
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Bacteria can have antibiotic resistance primarily through one of these two ways: 1) 

acquired resistance through spontaneous mutation and 2) acquired resistance through horizontal 

gene transfer (Blair et al., 2015). For example, cells may acquire a mutation altering penicillin-

binding protein 2b in pneumococci, which results in penicillin (a beta-lactam) resistance 

(Tenover, 2006). However, when multiple antibiotics are used in combination or in a sequence, it 

leads to new aspects to consider. Now, the cell is no longer only facing one specific mechanism 

to develop resistance to but rather multiple mechanisms all at once. This can be challenging, for 

an individual to gain resistance, a single point mutation must affect at least two or more different 

structures or physiological pathways.   

Antibiotic combinations can be categorized by the types of interactions that result from 

the combined effect of each individual antibiotic component, Figure 1-1. A combination is 

considered additive if the combination yields the expected response of the combined effects 

based on the single drugs alone. A 

synergistic combination yields a stronger 

response than that additivity. These 

combinations have a stronger selection 

strength, making it more likely for a 

population to purify resistance mutations 

within the population. This increase in 

selection pressure causes beneficial 

mutations to sweep through a population 

quickly (Orr, 2000; Pepin & Wichman, 

2008). Finally, an antagonistic 
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Figure 1-2. The differences among antagonistic 
interactions. Line A and D (blue dashed line) show 
instances of suppression. Line A shows a suppression 
in one of the 3-drug combinations with higher growth 
than any of the single antibiotics. Line B (red dashed 
line) shows how compared to the single drugs a 4-
drug combination can be considered additive or even 
synergistic. But Line D shows that when compared to 
one of the 2-drug combinations it is in fact a hidden 
suppressive combination. Line C (green dashed line) 
shows an example of antagonistic buffering. 
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combination gives a weaker response when compared to the additive effects. There are two 

special cases of antagonism, buffering and suppression (Figure 1-2). Buffering is when the 

effects of a drug combination is equal to the highest lower-order or single drug effects (Tekin et 

al., 2017). The most extreme form of antagonism is suppression, it occur when the combined 

stressors together work less well than a single or lower order combination of stressors on their 

own (P. Yeh et al., 2006; Tekin et al., 2018). Antagonistic combinations are typically avoided in 

the clinic because they can require larger doses to have the same killing efficiency as synergistic 

combinations, but have the advantage of slowing the evolution of resistant strains (P. J. Yeh et 

al., 2009).  

Bliss independence (Bliss, 1939) is used to quantify additive, synergistic, and 

antagonistic interactions (Beppler et al., 2016; Tekin et al., 2016; Beppler et al., 2017; Tekin et 

al., 2017). Bliss independence assumes that the relative effect of each antibiotic at a set 

concentration are independent of each other and is therefore is used to define additivity. Positive 

or negative deviations from this additivity are then considered to be antagonistic or synergistic, 

respectfully. For example, if two antibiotics, antibiotic X and antibiotic Y, each inhibit growth by 

50% alone the combination of antibiotics XY would result in the expected inhibition of growth 

would be 75% (0.75 = 1 − 0.5 × 0.5) (P. J. Yeh et al., 2009). If the expected inhibition of 

growth was observed when antibiotics XY were used in combination the interaction would be 

considered additive. 

In a multi-drug combination there are many factors that contribute to the overall fitness 

effect of the combination. The first factors to consider are the additive effects from each drug 

alone. The next set of factors are the effects of each of the smaller sub-sets of interactions that 

interact additively with the other antibiotics (or combination of antibiotics) in the mix. The final 
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factor is the highest order emergent effect, the effect of the interaction among all drugs present in 

the combination. All of these factors are used to describe the interactions of a three-drug 

combination. These descriptors are the overall effect, the net deviation from additivity (DA), and 

the emergent effect. The net deviation from additivity, DA, is determined by only removing the 

fitness effects contributed by each drug alone from the overall fitness effect assuming Bliss 

independence. Once the net DA is determined the process can be done again, removing not only 

the additive contributions of each drug but also the effects of all lower order interactions leaving 

the emergent effect (Beppler et al., 2016). This framework is used to examine two-, three-, four-, 

and five-drug combinations but can also be expanded to N number of drugs (Tekin et al., 2018). 

To find the net deviation from additivity for N drugs (DAN) we remove the additive effects of 

each individual drug (Equation 1). To find the higher order emergent we now remove all the 

lower order interactions from the DA leaving the value of the highest order interaction possible. 

Equation 2, shows an example calculation for the emergent interaction E4 of a four-drug 

combination. 

Equation 1: [𝐷𝐴I]KL,KM,KN…KP = 𝑤KL,KM,KN…KP − 𝑤KL𝑤KM𝑤KN …𝑤KP  

Equation 2: E4 = 𝑤S,T,U,V − 𝑤S𝑤T,U,V − 𝑤T𝑤S,U,V − 𝑤U𝑤S,T,V − 𝑤V𝑤S,T,U − 𝑤S,T𝑤U,V − 𝑤S,U𝑤T,V −
𝑤S,T𝑤T,U + 2𝑤S𝑤T𝑤U,V + 2𝑤S𝑤U𝑤T,V + 2𝑤T𝑤U𝑤S,V + 2𝑤T𝑤V𝑤S,U + 2𝑤U𝑤V𝑤S,T − 6𝑤S𝑤T𝑤U𝑤V 

 

Antibiotic interactions can influence the evolution of antibiotic resistance within 

populations. When examining two-drug interactions, Michel et al. (2008) show that synergistic 

drug combinations promote the evolution of antibiotic resistance. Synergistic interactions have 

also been shown to cause an increase in the rate of adaptation (Hegreness et al., 2008). Currently, 

the vast majority of work done on this topic only addresses two drug combinations. This work’s 

focus is on how three or more drug combinations can affect the evolution of antibiotic resistance. 
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Taking an evolutionary perspective to antibiotic resistance offers a unique understanding of how 

different combinatorial treatments affect the adaptation rates, frequencies, and resistance 

strengths of bacterial populations. The drug-drug interactions, along with the relative selection 

strength the combinations create, have an important effect on the evolution of antibiotic 

resistance (Oz et al., 2014; Tekin et al., 2017). With this information, knowing the rate resistance 

evolves and the process of resistance evolution itself, we can change treatment strategies to have 

resistance evolution work to our benefit. These strategies would lead to resistance to one 

treatment option in a bacterial population yet still remain susceptible to other antibiotic treatment 

options. 

Antibiotic resistance is a good model for addressing fundamental questions in evolution. 

Microbial systems allow for detailed evolutionary experiments and the use of antibiotics allows 

for a variety of selection pressures to be used. With a system with so much versatility in factors 

and precision in data collection new insights into evolutionary biology can be made. This 

dissertation work offers an interdisciplinary approach to understanding of how higher-order 

interactions among antibiotics can affect the evolution of antibiotic resistance. While 

combinational drug therapy is still largely a phenomenological field, the use of quantitative 

approaches with an evolutionary perspective will continue to be instrumental in the growth of the 

field and progression towards resolving the increasing prevalence of multi-drug resistant 

bacteria. In addition to the biomedical relevance, this work is an attractive system to examine 

fundamental evolutionary questions dealing in adaptation dynamics. This is an especially 

enticing system with respect to the evolution of populations imposed by multiple simultaneous 

stressors (antibiotic combinations). The information gained from this dissertation can be used to 
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better inform predictions of evolutionary rates and trajectories which can be exploited in our 

effort to combat antibiotic-resistant pathogens. 
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Chapter 2: Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window 
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2016). This growing public health threat (Bush et al., 2011; Davies 
& Davies, 2010; Sanders, 2001; Woolhouse, Waugh, Waugh, 
Perry, & Nair, 2016) has made it necessary to better understand 
how evolution of resistance to one antibiotic affects bacterial 
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In bacteria, evolution of resistance to one antibiotic is frequently associated with 
increased resistance (cross-resistance) or increased susceptibility (collateral sensitiv-
ity) to other antibiotics. Cross-resistance and collateral sensitivity are typically evalu-
ated at the minimum inhibitory concentration (MIC). However, these susceptibility 
changes are not well characterized with respect to the mutant prevention concentra-
tion (MPC), the antibiotic concentration that prevents a single-step mutation from 
occurring. We measured the MIC and the MPC for Staphylococcus epidermidis�-m7�ƐƓ�
single-drug resistant strains against seven antibiotics. We found that the MIC and the 
MPC were positively correlated but that this correlation weakened if cross-resistance 
did not evolve. If any type of resistance did evolve, the range of concentrations be-
tween the MIC and the MPC tended to shift right and widen. Similar patterns of 
cross-resistance and collateral sensitivity were observed at the MIC and MPC levels, 
though more symmetry was observed at the MIC level. Whole-genome sequencing 
revealed mutations in both known-target and nontarget genes. Moving forward, ex-
amining both the MIC and the MPC may lead to better predictions of evolutionary 
trajectories in antibiotic-resistant bacteria.
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v�v1;r|b0bѴb|��|o�o|_;u�-m|b0bo|b1v�Ő���Ѵķ࢙-rrķ��-rrķ�ş࢙�࢙��uķ�ƑƏƐƔőĺ�
Increased resistance to one antibiotic frequently results in in-
1u;-v;7�u;vbv|-m1;�|o�-mo|_;u�-m|b0bo|b1� Ő�-b]_|�ş�
bmѴ-m7ķ�ƐƖƔƑĸ�
�0oѴvhbķ� "|;bmķ� "|;bmķ� ş� �-7-m�ķ� ƑƏƐƔĸ� "-m7;uvķ� ƑƏƏƐőķ� |;ul;7�
cross-resistance. Conversely, increased resistance to one an-
tibiotic can also often result in decreased resistance to another 
-m|b0bo|b1� Ő�0oѴvhb� ;|� -Ѵĺķ� ƑƏƐƔĸ� ��Ѵ࢙ ;|� -Ѵĺķ� ƑƏƐƔőķ� -� r_;mol;mom�
referred to as collateral sensitivity. By understanding the factors 
that influence both types of collateral responses, we can better 
predict evolutionary trajectories of resistant mutants based on the 
antibiotics they have been exposed to.

There have been hundreds of previous studies on collateral re-
sponses, but the vast majority of them have examined these responses 
only in the context of minimum inhibitory concentration (MIC), which 
is the antibiotic concentration required to inhibit growth by a set 
amount (typically 99% inhibition; Barbosa, Beardmore, Beardmore, 
"1_�Ѵ;m0�u]ķ�ş� �-mv;mķ� ƑƏƐѶĸ��-b]_|�ş� 
bmѴ-m7ķ� ƐƖƔƑĸ� �l-lo�b1�ş�
"oll;uķ�ƑƏƐƒĸ��0oѴvhb�;|�-Ѵĺķ�ƑƏƐƔĸ�"-m7;uvķ�ƑƏƏƐĸ�"-m7;uvķ�"-m7;uvķ�
"-m7;uvķ� �o;ubm]ķ� ş�);um;uķ� ƐƖѶƓĸ� $_olvom� ş� "-m7;uvķ� ƐƖƖƓőĺ� ��
small number of recent studies have started to also examine collat-
eral effects at the mutant prevention concentration (MPC; Imamovic 
ş�"oll;uķ�ƑƏƐƒĸ��o7m;1h��;|�-Ѵĺķ�ƑƏƐѶőķ��_b1_�bv�|_;�1om1;m|u-|bom�
at which no single-step resistant mutant can occur (Baquero & Negri, 
1997; Bush et al., 2011; Dong, Zhao, Zhao, Domagala, & Drlica, 1999; 
Drlica, 2003; Drlica & Zhao, 2007). This is often thought of as the con-
centration needed to prevent the evolution of antibiotic resistance in 
a typical population size infection of approximately 1010 cells (Dong, 
Zhao, Zhao, Kreiswirth, & Drlica, 2000).

For example, Imamovic and Sommer (2013) used gentamicin 
and cefuroxime to show that changes in MPC correlated with col-
lateral responses in resistant mutants in Escherichia coliĺ� �� =;��
�;-uv�Ѵ-|;uķ��o7m;1h��;|�-Ѵĺ�ŐƑƏƐѶő�1olr-u;7�|_;�����=ou�Ɛƕ�E. coli 
drug-strain combinations that showed conserved collateral re-
sponses. They found that in 12 of these cases, the change in MPC 
was consistent with the sign of the collateral responses. Moreover, 
the mutant selection window (MSW), which is the range of antibi-
otic concentrations that selects for single-step resistant mutants 
(Drlica, 2003; Drlica & Zhao, 2007) and that is bounded by the 
MIC at the lower end and the MPC at the upper end (Figure 1), was 
shown to shift up or down depending on the collateral response 
Ő�o7m;1h��;|�-Ѵĺķ�ƑƏƐѶőĺ��;u;ķ��;�;�-lbm;�m;|�ouhv�o=�1oѴѴ-|;u-Ѵ�
responses at both the MIC level and the MPC level, focusing on 
whether collateral responses are symmetric or asymmetric and 
how these responses shift the MSW. To investigate these ques-
|bomvķ��;��v;�ƓƖ�7u�]Ŋv|u-bm�1ol0bm-|bomv�o=�Staphylococcus epi-
dermidis�Ő)bmvѴo��ş�)bmvѴo�ķ�ƐƖƏѶőĺ

Due to a scarcity of previous work examining the MPC as op-
posed to the MIC, there is a knowledge gap not only in our un-
derstanding of how collateral responses at the MIC and MPC 
levels differ but also in our understanding of correlated evolu-
|bom� 0;|�;;m� |_;����� -m7����ĺ��� u;�b;��o=� v|�7b;v� ;�-lbmbm]�
the correlation between the MIC and the MPC shows that there 
tends to be a low positive correlation between these traits (Drlica, 

Zhao, Zhao, Blondeau, & Hesje, 2006). However, the results have 
been shown to be species-dependent based on differing correla-
tions in E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, 
Staphylococcus aureus, and Streptococcus pneumoniae (Drlica et 
al., 2006). If the MIC and the MPC are correlated in the data col-
lected here, then selection pressure affecting the MIC could have 
indirect effects on the MPC for S. epidermidis (Brokordt, González, 
González, Farías, Winkler, & Lohrmann, 2017; Krebs, Feder, Feder, 
ş� �;;ķ� ƐƖƖѶĸ� �ub1;� ş� �-m];mķ� ƐƖƖƑőĺ� $_;� 1ouu;Ѵ-|bomv� 0;|�;;m�
the MIC and the MPC vary not only with the type of bacteria but 
also with the type of antibiotics used (Imamovic & Sommer, 2013; 
�o7m;1h��;|�-Ѵĺķ�ƑƏƐѶőĺ

�m|b0bo|b1v�1-m�0;�1-|;]oub�;7�bm|o�1Ѵ-vv;v�0-v;7�om�|_;bu�l;1_-
-mbvlv� o=� -1|bom� Ő�_oru-�ş� !o0;u|vķ� ƑƏƏƐĸ�	-�bvķ� ƐƖѶƕĸ� �-�mou� ş�
�-mhbmķ�ƑƏƏƒĸ�)-�l-m�ş�"|uolbm];uķ�ƐƖѶƒőĺ��uovvŊu;vbv|-m1;�o11�uv�
�b|_bm�-m7�-1uovv�-m|b0bo|b1�1Ѵ-vv;v�Ő�-b]_|�ş�
bmѴ-m7ķ�ƐƖƔƑĸ��0oѴvhb�
;|�-Ѵĺķ�ƑƏƐƔĸ�"-m7;uvķ�ƑƏƏƐĸ�$_olvom�ş�"-m7;uvķ�ƐƖƖƓőĺ�
ou�;�-lrѴ;ķ�
cross-resistance within the quinolones occurs when the same cellu-
lar target has been altered (Martínez & Baquero, 2002; Ruiz, 2003; 
"-m7;uvķ�ƑƏƏƐĸ�"-m7;uv�;|�-Ѵĺķ�ƐƖѶƓőĺ��m�|_;�1-v;�o=�m-Ѵb7b�b1�-1b7Ŋu;-
sistant bacteria, enhanced resistance to ciprofloxacin and norfloxa-
1bm�bv�-Ѵvo�7bvrѴ-�;7�Ő"-m7;uv�;|�-Ѵĺķ�ƐƖѶƓőĺ�$_;�u;vbv|-m|�l�|-|bomv�|o�
nalidixic acid are described as target modifiers and change the cel-
lular target of the antibiotic to limit its effectiveness (Hemaiswarya, 
�u�|_b�;m|bķ��u�|_b�;m|bķ�ş�	o0Ѵ;ķ�ƑƏƏѶĸ��-u|झm;��ş��-t�;uoķ�ƑƏƏƑőĺ�
Because of this, these types of mutations are considered effective 
against antibiotics with similar mechanisms of action (Martínez & 
�-t�;uoķ�ƑƏƏƑĸ�!�b�ķ�ƑƏƏƒĸ�"-m7;uvķ�ƑƏƏƐĸ�"-m7;uv�;|�-Ѵĺķ�ƐƖѶƓőĺ

When antibiotics have different mechanisms of action, resistance 
to one antibiotic does not necessarily cause resistance to another an-
tibiotic. In quinolones, there are cases where resistance to one quino-
lone does not cause resistance to other quinolones. For example, 
ciprofloxacin's primary target in S. pneumoniae is topoisomerase IV 
-m7�vr-u=Ѵo�-1bmŝv�rubl-u��|-u];|�bv�	���]�u-v;ĺ�"bm]Ѵ;Ŋv|;r�l�|-m|v�
selected by one of these antibiotics are less susceptible to the select-
ing antibiotic but not the other because of different mechanisms of 
resistance in response to different drug targets (Sanders, 2001).

While different mechanisms of action can sometimes reduce 
the likelihood of cross-resistance, this is not always the case. Cross-
resistance across antibiotic classes can occur from mutations in genes 
that regulate efflux pumps, genes that change outer membrane pro-
teins, or nontargeted mutations in a stress response pathway (Lázár et 
-Ѵĺķ�ƑƏƐƓķ�ƑƏƐƒĸ��0oѴvhb�;|�-Ѵĺķ�ƑƏƐƔĸ�"-m7;uv�;|�-Ѵĺķ�ƐƖѶƓőĺ��m�om;�1-v;ķ�
with quinolone-resistant K. pneumoniae, changes in the outer mem-
brane proteins caused cross-resistance to beta-lactams (Sanders et 
-Ѵĺķ�ƐƖѶƓőĺ��mo|_;u�v|�7��v_o�;7�|_-|�=Ѵ�ouot�bmoѴom;Ŋu;vbv|-m|�E. coli 
containing mutations in a topoisomerase gene (gyr�ő�_-�;� 1_-m];7�
susceptibility of the bacteria to other antibiotics. These changes in-
clude increases in resistance to ampicillin, cefoxitin, ciprofloxacin, na-
lidixic acid, kanamycin, and tobramycin and increases in sensitivity to 
mb|uo=�u-m|obm�-m7�7o��1�1Ѵbm;�Ő࢙�࢙�u�;|�-Ѵĺķ�ƑƏƐƓőĺ

In addition to cross-resistance, bacteria can also exhibit collateral 
sensitivity to antibiotics (Lázár et al., 2013). Since collateral sensitivity 
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Table 2-1. A list of ant ibio tics used and the median and range of the MIC (µg /ml) and MPC (µg/ml) values of the parental s train (S. ep idermidis ATCC 14990)  

 
Figure 2-1. The mutant selection win dow (MSW) ranges from the MIC to the MPC. The MSW ranges from the MIC (b lue line), inhibi ting  wild- type growth, to the MPC (red line), at which two s imultaneous mutations are needed to survive. The MIC resul ts  in a 99 % decrease in the numbers of recovered colonies, wh ile MPC resu lts in no recovered colonies. Selection for resis tance mutations typically occurs within the MSW. Schematic adapted from Drlica and Zhao (2007)  
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occurs when resistance to one drug causes increased susceptibility 

to other drugs, it is considered an evolutionary trade-off (Bollenbach, 

ƑƏƐƔĸ��
�Ѵ�;|�-Ѵĺķ�ƑƏƐƔőĺ࢙ou�;�-lrѴ;ķ�1;ѴѴ�Ѵ-u��r|-h;�o=�-lbmo]Ѵ�1ovb7;v�
u;Ѵb;v�om�|_;�ruo|om�lo|b�;�=ou1;�Ő��
őĺ��v�-�u;v�Ѵ|ķ�-�u;7�1|bom�bm�|_;�
PMF is frequently the mechanism underlying resistance to aminogly-

cosides. However, efflux pumps responsible for removing other anti-

biotics also rely on the PMF. Therefore, resistance to aminoglycosides 

(due to a reduction in the PMF) can increase susceptibility to other 

-m|b0bo|b1vķ�|�rb1-ѴѴ��;�r;ѴѴ;7�|_uo�]_�;==Ѵ���r�lrv�Ő��Ѵ�;|�-Ѵĺķ�ƑƏƐƔőĺ࢙
In recent years, new resistome studies have demonstrated that the 

pool of resistance genes is extraordinarily large (Dantas & Sommer, 

ƑƏƐƓőĺ��_-u-1|;ub�bm]�|_;�];mol;v�o=�|_;�-m|b0bo|b1Ŋu;vbv|-m|�0-1|;ub-�
examined here is thus important to uncovering new mechanisms of 

cross-resistance and collateral sensitivity.

In this study, we ask four main questions. First, is there a cor-

relation between the MICs and MPCs? Second, when resistance to a 

single antibiotic evolves, how does the MSW change? Third, how do 

cross-resistance and collateral sensitivity networks at the MIC level 

compare to these networks at the MPC level? Is symmetry (i.e., when 

-�v|u-bm�bv�u;vbv|-m|�|o�7u�]���-m7�1uovvŊu;vbv|-m|�|o�7u�]��ķ�-�v|u-bm�
|_-|�bv�u;vbv|-m|�|o�7u�]���bv�-Ѵvo�1uovvŊu;vbv|-m|�|o�7u�]��ő�lou;�ru;�-
alent at one level than the other? Finally, what are the mutations 

that are associated with cross-resistance and collateral sensitivity? 

To answer these questions for S. epidermidis, we used seven antibi-

otics that covered five different mechanisms of action (Table 1). We 

spontaneously evolved two resistant mutants per antibiotic, result-

bm]�bm�ƐƓ�vrom|-m;o�v�l�|-m|Ŋu;vbv|-m|�v|u-bmv�o=�S. epidermidis. For 

;-1_�o=�|_;�ƐƓ�v|u-bmvķ��;�7;|;ulbm;7�|_;����ķ����ķ�-m7�|_�vķ�|_;�
MSW for all seven antibiotics. We then sequenced their genomes 

and identified mutations affecting resistance.

ƑՊ |Պ��$�!���"���	���$��	"

ƑĺƐՊ|Պ�-1|;ub-�-m7�-m|b0bo|b1v

We collected spontaneous mutants by evolving S. epidermidis 

Ő�$��� ƐƓƖƖƏő� |o� ;-1_� o=� |_;� v;�;m� -m|b0bo|b1v� Ѵbv|;7� bm� $-0Ѵ;� Ɛ�
separately. S. epidermidis��-v�rѴ-|;7�om�ƐƔƏŊll�-]-u�rѴ-|;v��b|_�
antibiotic concentration ranging from 2 × liquid MIC and ending at 

20 × liquid MIC in increments of 2 × liquid MIC estimate. Colonies 

were selected off the highest concentration where colonies were 

recovered, in experiments where there was a clear and definable 

MPC with no colonies recovered after an achieved concentra-

tion. We then streak-purified the colonies from the spontaneous 

mutant experiments onto separate plates containing antibiotic 


 ��&!� �ƐՊThe mutant selection 
window (MSW) ranges from the MIC 
to the MPC. The MSW ranges from 
the MIC (blue line), inhibiting wild-
type growth, to the MPC (red line), at 
which two simultaneous mutations are 
needed to survive. The MIC results 
in a 99% decrease in the numbers of 
recovered colonies, while MPC results 
in no recovered colonies. Selection for 
resistance mutations typically occurs 
within the MSW. Schematic adapted from 
Drlica and Zhao (2007)

�-u;m|-Ѵ�v|u-bm

�m|b0bo|b1v �00u;�b-|bom

��� ���

�;7b-m �bm �-� �;7b-m �bm �-�

Ciprofloxacin CPR ƏĺƐƑƔ ƏĺƐƑƔ 0.3 1 1 ƒĺƕƔ

Doxycycline DOX 2.6 2 3 16 12 16

Erythromycin ERY ƏĺƓƔ ƏĺƓ ƏĺƔ 13 10 16

Gentamicin GEN 0.293 ƏĺƑƒƓ ƏĺƒƔƐ 9.36 9.36 9.36

Neomycin NEO 1 1 1 ƐƕĺƔ ƐƔ 20

Oxacillin OX 0.12 ƏĺƐƏƔ 0.12 0.6 0.6 0.6

Tetracycline TET ѶĺƕƔ ѵĺƑƔ ƐƔ ƐƑƔ ƐƑƔ ƐƑƔ

$���� �ƐՊ��Ѵbv|�o=�-m|b0bo|b1v��v;7�-m7�
the median and range of the MIC (μg/ml) 
and MPC (μg/ml) values of the parental 
strain (S. epidermidis��$���ƐƓƖƖƏő
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concentrations above the known MIC to confirm resistance. We in-
o1�Ѵ-|;7�-�vbm]Ѵ;�1oѴom��bm|o����l;7b-�ŐƐƏ�]�|u�r|om;ķ�Ɣ�]��;-v|�;�-
|u-1|ķ�-m7�ƐƏ�]��-�Ѵőĺ�);�|_;m�v|ou;7�|_bv�1�Ѵ|�u;�bm�ƑƔѷ�]Ѵ�1;uoѴ�-|�
ƴѶƏŦ��Ő�-�=b;Ѵ7�;|�-Ѵĺķ�ƑƏƐƒĸ�$-�Ѵou�ş�);0v|;uķ�ƑƏƏƖőĺ�);�bmb|b-|;7�
all experiments from a freshly thawed aliquot of this single batch.

We obtained and purified two independent spontaneously resis-
|-m|�l�|-m|v�=ou�;-1_�-m|b0bo|b1ķ�u;v�Ѵ|bm]�bm�ƐƓ�u;vbv|-m|�v|u-bmvĺ�$_;�
resistant strains were named based off of the antibiotic used to se-
lect for them. For example, the two strains resistant to ciprofloxacin 
were labeled as CPR R1 and CPR R2. We termed these “spontaneous 
mutant-resistant strains.”

We further independently evolved S. epidermidis� Ő�$��� ƐƓƖƖƏő�
to each of the seven antibiotics in Table 1. We evolved eight strains 
|o�;-1_�-m|b0bo|b1�=ou�-0o�|�ƐƏƏ�];m;u-|bomvķ�u;v�Ѵ|bm]�bm�Ɣѵ�-7-r|;7�
resistant strains. We evolved the strains in a step-wise manner where 
the antibiotic concentration was continually doubled from ½ × MIC to 
Ѷ�Ƶ�����;�;u��ƓѶ�_u�o�;u� |_;�1o�uv;�o=�ƐƏ�7-�vĺ�);�|;ul;7�|_;v;�
“adapted resistant strains.” This was done to capture the possibility 
of mutation acquisition being dependent on the dose of antibiotic the 
bacteria were exposed to (Jahn, Munck, Munck, Ellabaan, & Sommer, 
ƑƏƐƕĸ��bm7v;�ķ��-ѴѴb;ķ��-ѴѴb;ķ�$-�Ѵouķ�ş��;uuķ�ƑƏƐƒĸ����;|�-Ѵĺķ�ƑƏƐƓőĺ

ƑĺƑՊ|Պ�bt�b7����

We obtained MICs for the parental S. epidermidis��$���ƐƓƖƖƏ�v|u-bm�
and all 70 resistant strains (spontaneous and adapted) for every an-
tibiotic assessed in this study. We created a liquid culture using 2 ml 
o=����bm�-�1�Ѵ|�u;�|�0;�-m7�-77bm]�ƐƔƏ�੿Ѵ�o=�|_;�|_-�;7�1;ѴѴ�1�Ѵ|�u;�
aliquot. We then placed this tube in a shaker set at 220 revolutions 
r;u�lbm�|;� Ő!��ő� -m7�ƒƕŦ�� |o� bm1�0-|;��m|bѴ� |_;��	600 reached 
0.3 (Tecan Infinite M200 PRO Multimode Microplate Reader). We 
loaded fresh LB media and the selected antibiotic at varying con-
1;m|u-|bomv�bm|o�-�ƖѵŊ�;ѴѴ�rѴ-|;�|o�_-�;�-��oѴ�l;�o=�ƐƏƏ�੿Ѵ�r;u��;ѴѴĺ�
);� 7bѴ�|;7� 0-1|;ub-Ѵ� 1�Ѵ|�u;v� 0�� -� =-1|ou� o=� ƐĹƔƏƏ� |o� 1u;-|;� |_;�
bmo1�Ѵ�lĺ�);�-77;7�ƐƏƏ�੿Ѵ�o=�|_;�bmo1�Ѵ�l�|o�;-1_��;ѴѴ�u;v�Ѵ|bm]�
bm�-�=bm-Ѵ��oѴ�l;�o=�ƑƏƏ�੿Ѵ�r;u��;ѴѴĺ�);�l;-v�u;7�0-1|;ub-Ѵ�]uo�|_�
0��u;-7bm]�|_;��	�-=|;u�ƐѶ�_u�-m7�7;=bm;7�|_;�����-v�|_;�lbmbl�l�
-m|b0bo|b1�1om1;m|u-|bom�o0v;u�;7�|o�bm_b0b|�]uo�|_�0��-|�Ѵ;-v|�ƖƔѷ�
among all replicate wells. We included both positive (LB + bacteria) 
and negative (LB only) controls on each plate to ensure bacterial 
growth of the particular strain and no contamination of media. We 
used these measurements to obtain a rough estimate of the MIC to 
determine MIC in agar, as described below.

ƑĺƒՊ|Պ�]-u�����-m7�����-vv-�v

ƑĺƒĺƐՊ|Պ�-1|;ub-Ѵ�ru;r-u-|bom

);�ru;r-u;7�|_;�1�Ѵ|�u;v�=uol�-�vbm]Ѵ;�=u;;�;u�-Ѵbt�o|�ŐƑƔƏ�੿Ѵő�0��bm-
o1�Ѵ-|bm]�bm|o�ƐƏ�lѴ�o=���ĺ�);�]u;��|_;�1�Ѵ|�u;v�o�;umb]_|�=ou�ƐѶ�_u�
-|�ƒƕŦ��-m7�ƐѵƏ�!��vĺ��=|;u�-u7ķ��;�bmo1�Ѵ-|;7�|_;�;m|bu;�0-1|;ub-Ѵ�

1�Ѵ|�u;� bm|o�ƓƔƏ�lѴ�o=�=u;v_�����m|bѴ�-m��	ѵƏƏ�0;|�;;m�ƏĺƓƔ�-m7�
ƏĺƕƏ��-v�u;-1_;7ĺ�$_;m�-|�ƓŦ�ķ��;�1;m|ub=�];7�|_;�1�Ѵ|�u;v�-|�-0o�|�
3,000 g for 10 min to obtain a high concentration of cells when plat-
ing and set aside the supernatant. We re-suspended the pellet in 
ƕĺƔ�lѴ�o=�|_;�oub]bm-Ѵ�v�r;um-|-m|�Ő
b]�u;�"Ɛ�őĺ

ƑĺƒĺƑՊ|Պ	;|;ulbmbm]�-]-u����

Because there may be discrepancies between the liquid MIC esti-
mate and agar MIC, we measured MIC in agar simultaneously with 
MPC experiments. Since identical increments were taken in each 
biological replicate, little variation would arise due to the liquid MIC 
;v|bl-|;ĺ�$_;�Ѵbt�b7�����-m7�-]-u�����omѴ��7b==;u;7�vѴb]_|Ѵ��ŐƼƏĺƔ�μg/
ml) when increments of at least twofold were used. We prepared 
-]-u�rѴ-|;v��vbm]�ƐķƏƏƏ�lѴ�o=�-�|o1Ѵ-�;7��bѴѴbŊ ��-|;u��b|_�ƐƔ�]�-]-u�
ro�7;u�-m7�om;�ƑƔ�]����|-0Ѵ;|�ŐƐƏ�]�|u�r|om;ķ�Ɣ�]��;-v|�;�|u-1|ķ�ƐƏ�]�
�-�Ѵķ�-m7�ƐĺƔ�]ņ��$ubvņ$ubvŊ��Ѵőĺ

To determine MIC, we plated 100-mm petri plates with 20 ml of 
LB agar with antibiotics ranging from 0.2 × liquid MIC estimate to 
1.7 × liquid MIC estimate in increments of 0.1 × liquid MIC estimate 
(Figure S1B). We inoculated each of these plates with 10Ɣ CFU via 
sterile glass beads following the Copacabana method (Mills, Gareau, 
ş� �-u1b-ķ� ƑƏƏƔĸ�)ou|_bm]|omķ� ��oķ� ş� �;Ѵoķ� ƑƏƏƐő� -m7� bm1Ѵ�7;7� -�
positive control containing no antibiotic. We incubated the plates 
-|�ƒƕŦ��=ou�ƕƑ�_uķ�-m7�1oѴomb;v��;u;�1o�m|;7ĺ�);��v;7�|�o�u;rѴb-
cates, and following another study (Tan et al., 2009), we defined the 
MIC in agar as the first antibiotic concentration where the number 
o=�1oѴomb;v��-v�u;7�1;7�0��ƖƔѷ�ou�]u;-|;u�=uol�|_;�1om|uoѴ�bm�0o|_�
of the two plates. While many studies use the 99% cutoff (Haight 
ş�
bmѴ-m7ķ� ƐƖƔƑĸ��0oѴvhb� ;|� -Ѵĺķ� ƑƏƐƔĸ� "-m7;uvķ� ƑƏƏƐĸ� $_olvom�ş�
"-m7;uvķ�ƐƖƖƓőķ��;��v;7�-�vѴb]_|Ѵ�� Ѵo�;u�1�|o==�|o�-11o�m|�=ou�u-m-
dom noise in the data. For each drug-strain combination, we deter-
mined the MIC in three separate instances resulting in six plates. We 
recorded the median and range for each MIC.

ƑĺƒĺƒՊ|Պ����7;|;ulbm-|bom�-m7�-m-Ѵ�vbv

$o�7;|;ulbm;�|_;����ķ��;��v;7�|_u;;�ƐƔƏŊll�rѴ-|;v��b|_�ѵƏ�lѴ�o=�
LB agar for each antibiotic concentration ranging from 2 × liquid MIC 
estimate and ending at 20 × liquid MIC estimate in increments of 
2 × liquid MIC estimate (Figure S1C). We then inoculated the plates 
with 1010 CFUs via sterile glass beads following the Copacabana 
method (Worthington et al., 2001). We defined the MPC as the low-
est antibiotic concentration where there was no growth across all 
|_u;;� u;rѴb1-|;v� Ő�ѴѴ;mķ� �--|�ķ� �--|�ķ� ş� !�0-hķ� ƑƏƏƓĸ�	om]� ;|� -Ѵĺķ�
1999; Drlica, 2003; Drlica & Zhao, 2007; Firsov, Lubenko, Lubenko, 
"lbumo�-ķ� "|u�ho�-ķ� ş� ,bmm;uķ� ƑƏƏѶĸ� 
buvo�� ;|� -Ѵĺķ� ƑƏƏƒĸ� �-mv;mķ�
,_-oķ�,_-oķ�	uѴb1-ķ�ş��Ѵom7;-�ķ�ƑƏƏѵĸ��;|�Ѵ;u�;|�-Ѵĺķ�ƑƏƏƓőĺ�);�1om-
ducted the MPC assays in triplicates resulting in a total of nine agar 
plates per drug-strain combination. We calculated both the median 
and the range.
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ƑĺƓՊ|Պ��|-m|�v;Ѵ;1|bom��bm7o�

With the MIC and MPC values determined, we measured the MSW 
in terms of the parental MIC value. This allowed us to directly com-
pare how the MSW changes across multiple strains.

ƑĺƔՊ|Պ)_oѴ;Ŋ];mol;�v;t�;m1bm]

We performed whole-genome sequencing on the parental strain of 
S. epidermidis��$���ƐƓƖƖƏ�-m7�om�-ѴѴ�vrom|-m;o�v�l�|-m|Ŋu;vbv|-m|�
v|u-bmvĺ�$_;�v;t�;m1;v��;u;�r-bu;7Ŋ;m7��b|_�-�Ѵ;m]|_�o=�ƐƔƏ�0rĺ�);�
aligned the sequences to the S. epidermidis��$���ƐƑƑƑѶŊu;=;u;m1;�
genome to elucidate the genetic changes underlying their antibiotic-
susceptibility phenotypes. We used S. epidermidis��$���ƐƑƑƑѶ� -v�
the reference genome due to its more complete gene annotation. 
);�v|u;-hŊr�ub=b;7�-ѴѴ�v|u-bmv�om����-]-u�rѴ-|;v�rubou�|o�	���Ѵb0u-u��
preparation and HiSeq sequencing at the Genewiz Next Generation 
Sequencing facility in South Plainfield, New Jersey. We note that 
most of the plasmids in the reference genome, S. epidermidis��$���
ƐƑƑƑѶķ�-u;�mo|�u;ru;v;m|;7�bm�|_;�S. epidermidis��$���ƐƓƖƖƏ�v|u-bmvĺ�
�o�;�;uķ�|_;�vl-ѴѴ;v|�rѴ-vlb7ķ���ōƏƏƔƏƏѶ�ŐƓķƓƒƖ�0rőķ�bv�=�ѴѴ��u;r-
resented as a circular element in all strains and carries a tetracycline 
resistance gene and two replication protein genes (Putonti et al., 
2017). Sequencing coverage shows most strains have five copies of 
this plasmid. However, DOX R1, DOX R2, and TET R2 appear to have 
12–16 copies (Tables S2 and S3). One of the parental strains (paren-
tal strain 2) appears to have lost the plasmid and has one tenth of the 
main chromosome coverage. We suspect this may be due to the plas-
mid being lost during cultivation for sequencing for parental strain 2.

ƑĺѵՊ|Պ�bobm=oul-|b1v�-m-Ѵ�vbv

We removed the adapter sequences from sequence reads, and the 
quality was checked using Trim Galore! (http://www.bioin forma tics.
babra ham.ac.uk) with quality trimming turned off. Trim Galore! is a 
�u-rr;u�=ou�1�|�7-r|�Ő�-u|bmķ�ƑƏƐƐő�-m7�
-v| ��Ő_||rv�Ĺņņ���ĺ0bobm�
=oul-�|b1vĺ0-0u-�_-lĺ-1ĺ�hőĺ�);�l-rr;7�|ubll;7�u;-7v��vbm]��)�Ŋ
MEM v.0.7.12-r1039 (Li & Durbin, 2010) to the S. epidermidis��$���
ƐƑƑƑѶ� ];mol;� ŐƑķƓƖƖķƑƕƖ� 0r� 1_uolovol;� ş� ѵ� rѴ-vlb7vķ� ƓķƓƒƖŋ
ƑƓķƒѵƔ�0rķ�������11;vvbomv���ōƏƏƓƓѵƐĺƐ�-m7���ōƏƏƔƏƏƒŊѶőĺ��ѴѴ�
samples had at least 97% of the adapter trimmed reads mapped to 
|_;��$���ƐƑķƑƑѶ�];mol;ĺ�);�r;u=oul;7��-ub-m|�7bv1o�;u��-m7�=bѴ-
|;ubm]��b|_���$����ƒĺƕŊƏŊ]1=;70ѵƕ�Ő�1�;mm-�;|�-Ѵĺķ�ƑƏƐƏőķ� bm1Ѵ�7-
ing MarkDuplicates, HaplotypeCaller in GVCF mode with ploidy 1, 
GenotypeGVCFs, and finally VariantFiltration with the following 
_-u7�=bѴ|;uv�-rrѴb;7Ĺ� 	�ƺ�ƑƏĺƏķ�� �ƺ�ƓƏĺƏķ�
"�ƻ�ѵƏĺƏķ�"�!�ƻ�ƒĺƏķ�
� !-mh"�l�ƺ�ƴƐƑĺƏķ�!;-7�ov!-mh"�l�ƺ�ƴѶĺƏĺ�"mr�==� Ő�bm]oѴ-mb�
et al., 2012) was used to determine the context of the variants and 
predict the functional impact. We removed variants with an allele 
frequency of 1 across all of the strains including the two parent 
v|u-bmv��b|_���$�ŝv�";Ѵ;1|(-ub-m|vĺ�);��v;7�|_;�(�
|ooѴv�r-1h-];�

(Danecek et al., 2011) to inspect summaries of the filter's effects and 
the transition transversion ratios for each.

�=|;u�l-m�-Ѵ� bmvr;1|bom�o=�-Ѵb]ml;m|vķ��;�;�1Ѵ�7;7�-77b|bom-Ѵ�
variants from regions highly divergent from the reference genome, 
as the alignments in these regions are unreliable mainly due to struc-
tural rearrangements. These excluded regions are main chromosome 
rovb|bomv� ƒƕѶѶƔŊƒѶƔƔƐķ� ƔƕƔƓƐŊƔƕƕƏƑķ� ƖƐѶƏƑŊƖƒѵƏѵķ� ƑƏƏƑƑƔķ�
ѵѵѵƏƖƑķ� ƐƔƐƖѵѶƐŊƐƔƐƖѵѶƒķ� ƑƒƐƐƏƖƔŊƑƒƐƑѶƔƓķ� -m7� ƑƓƕƐƑƕѵŊ
ƑƓƕƐƔƏƕĺ�);� �v;7���$�ŝv� 	;r|_�=�o�;u-];� |o� 7;|;ulbm;�l;-m�
depth of coverage across each sample and across each genomic ele-
ment (Tables S2 and S3).

ƒՊ |Պ!�"&�$"

ƒĺƐՊ|Պ�ouu;Ѵ-|;7�;�oѴ�|bom�o=�|_;�����-m7����

We found an increase in the median MIC and the median MPC 
Ő1olr-u;7��b|_�|_;�r-u;m|-Ѵ�v|u-bmő�=ou�-ѴѴ�ƐƓ�vrom|-m;o�v�l�|-m|Ŋ
resistant strains of S. epidermidis (Table 1) except TET R2. For both 
the MIC and the MPC for this strain, we were unable to determine 
values due to an extremely high level of resistance. Kendall's rank 
correlations of the MIC and the MPC data were used to evaluate 
any possible relationship between the MIC and MPC due to the data 
heteroscedasticity. The overall correlation of the MICs and MPCs 
showed that as the MIC increased, the MPC increased (τ�Ʒ�ĺƔƔƐƏƒƒƑķ�
p�ƺ�ƑĺƑ�Ƶ�ƐƏ–16; Figure 2). This trend holds true when examining each 
individual spontaneous mutant-resistant strain across all antibiotics 
using Kendall's rank correlation (p� ƺ� ĺƏƔ� =ou� ;-1_� v|u-bmőķ��b|_� |_;�
exception of doxycycline and tetracycline (Figure S2).

We observed that the outcomes of evolution affected this cor-
relation. If resistance evolved, through direct selection or through 
cross-resistance, the correlation remained roughly the same as 
the overall correlation between all MICs and MPCs (τ�Ʒ� ĺƔƑƒѶƔƓƖķ�
p�ƺ�ƕĺƒ�Ƶ�ƐƏ–9; Figure 3a). However, if no cross-resistance evolved, 
observed through no change in the MIC or through instances of col-
lateral sensitivity, the correlation between MIC and MPC became 
weaker (τ�Ʒ�ĺƒƓƒѶƒѵƖķ�p�ƺ�ĺƏƑƔĸ�
b]�u;�ƒ0őĺ

The mixture of bactericidal and bacteriostatic antibiotics used 
could have confounded the relationship between MIC and MPC. 
Bactericidal drugs are ciprofloxacin, oxacillin, and gentamicin, and 
bacteriostatic drugs are doxycycline, erythromycin, and tetracycline. 
We found no difference in the size of the MSW and no difference 
in the fold change in MIC or MPC between bactericidal and bacte-
riostatic drugs. Neomycin has both bactericidal and bacteriostatic 
activities so we left it out of our analysis.

ƒĺƑՊ|Պ�_-m];v�bm�|_;�l�|-m|�v;Ѵ;1|bom��bm7o�

We compared the MSWs using the median MIC and the median MPC 
for the parental and spontaneous mutant-resistant strains across 
-ѴѴ� -m|b0bo|b1v� Ő
b]�u;� Ɠőĺ� )_;m� u;vbv|-m1;� ;�oѴ�;7ķ� u;]-u7Ѵ;vv� o=�
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Figure 2-2. A po sit ive correlation is found between MIC and MPC in Staphylococcus epidermidis. The MI C is p lot ted against the MPC in (a) parental MIC and parental MPC units (e.g., MICstrain/MICparent and MPCstrain/MPCparent) and (b) µg/ml. A posit ive correlation was found (Kendall rank correlation test, [a] τ = .576, p < .001, [b] τ = .566, p < .001).  
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whether it was through direct resistance to drug X or through cross-
resistance, the MSW shifted right and widened. Paired t tests were 
used to evaluate both the increase in the MIC (p�ƺ�ĺƏƏƏƔő�bm7b1-|bm]�
the right shift and the increase in range of the MSW (p�ƺ�ĺƏƔő�bm7b1-|-
ing the widening of the MSW. This was a general trend of the MSW 
and is seen when resistance is selected for or when cross-resistance 
evolves either within an antibiotic class (i.e., gentamicin/neomycin 
and tetracycline/doxycycline) or across classes (i.e., DOX R1 and 
TET R1 exposed to oxacillin). However, when there is no evolved 
cross-resistance or when there are cases of collateral sensitivity at 
the MIC, the MSW does not follow the trend of shifting right and 
widening. In these cases, the MSW either narrows or behaves in a 
highly variable way.

For example, when treated with erythromycin, only the ERY R1 
-m7��!+�!Ƒ�v|u-bmv�_-7�-�Ѵ-u];u�����-m7��b7;u��")ĺ��ѴѴ�o|_;u�vrom-
taneous mutant-resistant strains treated with erythromycin appeared 
to have MSWs that narrowed or were unchanged when compared to 
|_;�r-u;m|-Ѵ�v|u-bm�Ő
b]�u;�Ɠ]őĺ�);�v_o�;7�|_-|�1oѴѴ-|;u-Ѵ�v;mvb|b�b|��
to erythromycin at the MPC level frequently occurred, while the MIC 
�-v�;vv;m|b-ѴѴ��mo|�-==;1|;7�Ő
b]�u;�Ɠ]őĺ�$_bv�l;-mv�|_-|�|_;��")�=ou�
erythromycin narrowed for most of the spontaneous mutant-resistant 
strains other than erythromycin-resistant ones.

�mo|_;u�;�1;r|bom�|o�|_;�r-||;um�o=�|_;��")��b7;mbm]�-m7�v_b=|-
bm]�ub]_|�-rr;-u;7�=ou�v|u-bmv�|u;-|;7��b|_�o�-1bѴѴbm� Ő
b]�u;�Ɠ7őĺ��=�
these strains, only OX R1 and OX R2 consistently showed resistance 
and a widening of the MSW. The MSW of all other spontaneous 

mutant-resistant strains treated with oxacillin seems to vary in size 
dramatically and has no consistent trend.

ƒĺƒՊ|Պ����1uovvŊu;vbv|-m1;�-m7�1oѴѴ-|;u-Ѵ�v;mvb|b�b|�

To investigate instances of cross-resistance and collateral sensitivity, 
we used the MPC ranges to create a network map of the types of 
1uovvŊu;vbv|-m1;�Ő
b]�u;�Ɣķ�$-0Ѵ;�Ɛ�-m7�$-0Ѵ;�"Ɛőĺ�);�7;=bm;�1uovvŊu;-
sistance as a rightward shift in the range of the spontaneous mutant-
resistant strains, where these strains and the parental strain ranges 
do not overlap (maxparent�ƺ�lbmresistant strain). Collateral sensitivity is a 
downward shift in the range of the spontaneous mutant-resistant 
strains, where these strains and the parental strain ranges do not 
overlap (maxresistant strain�ƺ�lbmparent).

�uovvŊu;vbv|-m1;��-v�o0v;u�;7�-� |o|-Ѵ�o=�ƑƔ�|bl;v�-m7�-|� Ѵ;-v|�
om1;�bm�;-1_�vrom|-m;o�v�l�|-m|Ŋu;vbv|-m|�v|u-bm�Ő
b]�u;�Ɣ-őĺ��uovvŊ
resistance was found in both of the spontaneous mutant-resistant 
v|u-bmv� Ő!Ɛ� -m7� !Ƒő� ѵƓѷ� o=� |_;� |bl;� =ou� |_;� v-l;� -m|b0bo|b1ĺ�);�
found cross-resistance to antibiotics within and across different 
1Ѵ-vv;v�Ő
b]�u;�Ɣ-őĺ��-||;umv�o=�1uovvŊu;vbv|-m1;�-lom]�-m|b0bo|b1v�o=�
the same class have already been observed at the MIC level (Sanders 
;|�-Ѵĺķ�ƐƖѶƓőķ�-m7�lov|�o=�|_;v;�r-||;umv�-u;�ru;v;u�;7��_;m�1omvb7-
;ubm]�|_;������-Ѵ�;v�Ő
b]�u;�Ɣőĺ

Collateral sensitivity was found in both spontaneous mutant-re-
sistant strains (R1 and R2) 62% of the time. Regarding collateral 


 ��&!� �ƑՊ��rovb|b�;�1ouu;Ѵ-|bom�bv�=o�m7�0;|�;;m�����-m7�����bm�Staphylococcus epidermidis. The MIC is plotted against the MPC in 
(a) parental MIC and parental MPC units (e.g., MICstrain/MICparent and MPCstrain/MPCparent) and (b) μ]ņlѴĺ���rovb|b�;�1ouu;Ѵ-|bom��-v�=o�m7�
(Kendall rank correlation test, [a] τ�Ʒ�ĺƔƕѵķ�p�ƺ�ĺƏƏƐķ�Œ0œ�τ�Ʒ�ĺƔѵѵķ�p�ƺ�ĺƏƏƐő
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Figure 2-3. The po sit ive correlation found between MI C and MPC weakens if cross-resistance has not evo lved. The fold change after evolut ion of the MIC medians (MIC strain/MIC parent) is plo tted against  the fold change after evolution of the MPC med ians (MIC strain/MIC parent) for (a) spontaneous mutan t-resistant strain s that showed evolved resistance at the MIC ( MIC fold  change >1; Kendall rank correlation tes t, τ = .524, p < .001) and (b) spon taneous mutant-resis tant strain s that d id no t show evo lved cross-resistance at the MI C (MIC fo ld change ≤1). A posi tive correlation 
between the change in the MIC and  the change in the MPC was found  in bo th in stances, but the correlation was weaker when cross-resistance did not evolve (Kendall rank correlation tes t, τ = .344, p < .025)  
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sensitivity, our main findings were as follows: (a) collateral sensitiv-
b|�� |o� ;u�|_uol�1bm� -m7� ];m|-lb1bm��-v� 1ollom� Ő
b]�u;� Ɣ0őķ� -m7�
(b) resistance to doxycycline was generally associated with collateral 
sensitivity to nontetracycline antibiotics (neomycin, gentamicin, ox-
-1bѴѴbmķ�-m7�;u�|_uol�1bmĸ�
b]�u;�Ɣ0őĺ

The adapted resistant strains showed extremely high cross-re-
sistance to all antibiotics, and the MICs for these adapted resistant 
strains were so high that they exceeded the maximum solubility for 
some of the antibiotics used (Please see the supplemental informa-
|bom�=ou�lou;�7;|-bѴ;7�l;|_o7v�-m7�u;v�Ѵ|vĸ��rr;m7b��"Ɛ�-m7�
b]�u;�
S1).

Next, we asked whether there were any cases of symmetri-
cal cross-resistance and/or symmetrical collateral sensitivity 
and if the resulting networks were similar at the MIC and MPC 
Ѵ;�;Ѵvĺ��� v�ll;|ub1-Ѵ� u;Ѵ-|bomv_br� bv� 7;=bm;7� -v� _-�bm]� |_;� v-l;�
type of cross-resistance for each set of resistant strains to their 
complimentary antibiotic. For example, a symmetrical relationship 
�o�Ѵ7�o11�u�b=�-�v|u-bm�bv�u;vbv|-m|�|o�-m|b0bo|b1���-m7�1uovvŊu;vbv-
tant to antibiotic B, and a different strain is resistant to antibi-
o|b1� �� -m7� 1uovvŊu;vbv|-m|� |o� -m|b0bo|b1� �ĺ� �-v;v� o=� v�ll;|ub1-Ѵ�

cross-resistance and collateral sensitivity can be viewed as a pos-
itive feedback loop. Symmetrical cross-resistance positively re-
inforces resistance to either antibiotic, whereas symmetrical 
collateral sensitivity positively reinforces susceptibility to either 
antibiotic.

We found that symmetrical relationships were more prevalent 
at the MIC level (five cross-resistant and five collaterally sensitive 
symmetries) than at the MPC level (three of each symmetry type; 

b]�u;�Ɣőĺ�);�b7;m|b=b;7�|�o�rovvb0Ѵ;�v�ll;|ub1-Ѵ�u;Ѵ-|bomv_brv�o=�
cross-resistance within the same antibiotic classes of tetracyclines 
(tetracycline and doxycycline) and aminoglycosides (neomycin and 
gentamicin), both of which were observed at the MIC and MPC 
Ѵ;�;Ѵ�Ő
b]�u;�Ɣ-ķ1őĺ�);�-Ѵvo�b7;m|b=b;7�|�o�rovvb0Ѵ;�v�ll;|ub1-Ѵ�u;-
lationships between classes: an MPC cross-resistance symmetry 
between the tetracyclines (tetracycline and doxycycline) and the 
beta-lactam (oxacillin) and an MPC collateral sensitivity symmetry 
between the aminoglycosides (neomycin and gentamicin) and the 
beta-lactam (oxacillin). Both of these symmetrical relationships 
between classes were only constantly observed at the MPC level 
Ő
b]�u;�Ɣ-ķ0őĺ


 ��&!� �ƒՊThe positive correlation found between MIC and MPC weakens if cross-resistance has not evolved. The fold change after 
evolution of the MIC medians (MICstrain/MICparent) is plotted against the fold change after evolution of the MPC medians (MPCstrain/
MPCparentő�=ou�Ő-ő�vrom|-m;o�v�l�|-m|Ŋu;vbv|-m|�v|u-bmv�|_-|�v_o�;7�;�oѴ�;7�u;vbv|-m1;�-|�|_;�����Ő����=oѴ7�1_-m];�ƻƐĸ��;m7-ѴѴ�u-mh�
correlation test, τ�Ʒ�ĺƔƑƓķ�p�ƺ�ĺƏƏƐő�-m7�Ő0ő�vrom|-m;o�v�l�|-m|Ŋu;vbv|-m|�v|u-bmv�|_-|�7b7�mo|�v_o��;�oѴ�;7�1uovvŊu;vbv|-m1;�-|�|_;�����Ő����
=oѴ7�1_-m];�ƽƐőĺ���rovb|b�;�1ouu;Ѵ-|bom�0;|�;;m�|_;�1_-m];�bm�|_;�����-m7�|_;�1_-m];�bm�|_;������-v�=o�m7�bm�0o|_�bmv|-m1;vķ�0�|�|_;�
correlation was weaker when cross-resistance did not evolve (Kendall rank correlation test, τ�Ʒ�ĺƒƓƓķ�p�ƺ�ĺƏƑƔő
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Figure 2-4. The MSW tend s to shift to the righ t and widen as resistance evolves. The gray regions indicate the mutant selection windows of the parental strain. The MSW for each spontaneous  mu tant-resistant strain is  shown in panels (a–g), wh ich are divided by the antibiotic used to determine the MSW. As resistance evolves, the MSW tends to shift to the right and widen as compared to the parental s train (gray- shaded region). When cross-resistance does not  evolve, the MSW is highly variable. In Panel (d), ERY R1 and CPR R2 have MSWs that appear as single po ints because 
the median MI C and median MPC for these s trains are the same, so the MSW has a size of zero. Given the large antibiotic concentration increments used in th is s tudy, it is very likely that the true values l ie in between the increments. In Panel (e), the TET R2 MSW is missing because the MIC and MPC for  tetracycline of the TET R2 were undetermined due to h igh levels of resistance  
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ƒĺƓՊ|Պ��|-|bomv�bm�|_;�];mol;

We found thirteen unique antibiotic resistance mutations. Nine 

were missense mutations, and the remaining four consisted of 

disruptive in-frame insertions, mutations in the upstream re-

gion, changes in plasmid copy number, or stop codons (Table 2). 

Resistance typically occurs through mutations within a target 

gene. The spontaneous mutant-resistant strains CPR R1, CPR R2, 

ERY R1, ERY R2, GEN R1, GEN R2, NEO R1, and NEO R2 all gained 

mutations in genes that are associated with resistance to their re-

spective antibiotic (Besier, Ludwig, Ludwig, Brade, & Wichelhaus, 

2003; Bodley, Zieve, Zieve, Lin, & Zieve, 1969; Chittum & 

�_-lrm;�ķ� ƐƖƖƔĸ�	-��7o�-ķ� "|u;Ѵ|vo�ķ� "|u;Ѵ|vo�ķ�)bѴ1;ķ� �bѴf-vķ� ş�
Garber, 2002; Sreedharan, Peterson, Peterson, & Fisher, 1991). 

We found instances of resistance that may be due to novel or 

mom|-u];|�l�|-|bomv�Ő"�ōrƐƏƒķ�"�ƏƕƏѵķ�"�ѵƏѶķ�"�ƐѶѵƏķ�"�ƑƏƑƐő�
and are shared between both strains (Table 2).
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ƓĺƐՊ|Պ�==;1|v�o=�u;vbv|-m1;�om�����-m7����

Previous research has yielded much information about collateral re-

vromv;v�l;-v�u;7��vbm]����v�Ő�-b]_|�ş�
bmѴ-m7ķ�ƐƖƔƑĸ��l-lo�b1�ş�
"oll;uķ�ƑƏƐƒĸ��0oѴvhb�;|�-Ѵĺķ�ƑƏƐƔĸ�"-m7;uvķ�ƑƏƏƐĸ�"-m7;uv�;|�-Ѵĺķ�
ƐƖѶƓĸ�$_olvom�ş�"-m7;uvķ�ƐƖƖƓőĺ��;u;ķ��;�;�-lbm;7��_;|_;u�-m7�
how the MIC and the MPC are related, how the MSW changes as 

resistance evolves, and what the patterns of collateral responses at 

the MPC level are.


 ��&!� �ƓՊThe MSW tends to shift to the right and widen as resistance evolves. The gray regions indicate the mutant selection windows 
of the parental strain. The MSW for each spontaneous mutant-resistant strain is shown in panels (a–g), which are divided by the antibiotic 
�v;7�|o�7;|;ulbm;�|_;��")ĺ��v�u;vbv|-m1;�;�oѴ�;vķ�|_;��")�|;m7v�|o�v_b=|�|o�|_;�ub]_|�-m7��b7;m�-v�1olr-u;7�|o�|_;�r-u;m|-Ѵ�v|u-bm�Ő]u-�Ŋ
shaded region). When cross-resistance does not evolve, the MSW is highly variable. In Panel (d), ERY R1 and CPR R2 have MSWs that appear 
as single points because the median MIC and median MPC for these strains are the same, so the MSW has a size of zero. Given the large 
antibiotic concentration increments used in this study, it is very likely that the true values lie in between the increments. In Panel (e), the TET 
R2 MSW is missing because the MIC and MPC for tetracycline of the TET R2 were undetermined due to high levels of resistance
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Figure 2-5.   Symmetrical relationships are more prevalent at the MIC level than at the MPC level. This figure design is based on Pál et al. (2015) showing the network maps of the types of MPC and MIC cross-resistance and collateral sensitivity. Arrows represent the presence, amount, and direction of the outcomes. Arrows originate at the selective antibiotic of a resistant strain and end at the antibiotic susceptibility being tested. Black double arrows highlight symmetrical relationships. Arrows may originate and end at the larger circles encompassing one to two antibiotics; this indicates all respective strains or antibiotics exhibit the same relationships. The weight of each arrow indicates the number of outcomes exhibiting the same relationship. (a) MPC cross-resi stance 
patterns. (b) MPC collateral sensitivity patterns. (c) MIC cross-resistance patterns. (d) MIC collateral sensitivity patterns. Both cross-resistance and collateral sensitivity were identified both within and across antibiotic classes. The collateral response networks show similar patterns at the MIC and MPC levels, but the MIC level has notably more symmetry (five symmetrical cross-resistances and five symmetrical collateral sensitivities) than the MPC level (three symmetrical cross-resistances and three symmetrical collateral sensitivities) 
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The widespread correlation between the MIC and the MPC 
(Figure 2) in the spontaneous resistant strains suggested that as 
selection acts on the MIC, indirect selection occurs at the MPC 
level in S. epidermidis. This is consistent with previous work cor-
relating these concentrations in other bacterial species (Drlica et 
al., 2006). Intriguingly, our results suggest that evolution of resis-
tance affects that correlation. We find that the overall positive 
correlation of the MIC and MPC is strongly held when resistance 

is evolved (τ�Ʒ�ĺƔƑƒѶƔƓƖķ�p�ƺ�ƕĺƒ�Ƶ�ƐƏ–9) but becomes substantially 
weaker when cross-resistance has not evolved (τ� Ʒ� ĺƒƓƒѶƒѵƖķ�
p�ƺ�ĺƏƑƔĸ�
b]�u;�ƒőĺ

That is, if the collateral result of resistance evolution does not 
increase the MIC, the correlation weakens. Since the overall correla-
tion is relatively strong as MIC increases, we expect and observe 
that the MPC increases as well. But if the MIC decreases, there is a 
l�1_�Ѵo�;u�Ѵbh;Ѵb_oo7�|_-|�|_;������bѴѴ�7;1u;-v;�-v��;ѴѴĺ��Ѵ|_o�]_�


 ��&!� �ƔՊSymmetrical relationships are more prevalent at the MIC level than at the MPC level. This figure design is based on Pál 
;|�-Ѵĺ�ŐƑƏƐƔő�v_o�bm]�|_;�m;|�ouh�l-rv�o=�|_;�|�r;v�o=�����-m7�����1uovvŊu;vbv|-m1;�-m7�1oѴѴ-|;u-Ѵ�v;mvb|b�b|�ĺ��uuo�v�u;ru;v;m|�|_;�
ru;v;m1;ķ�-lo�m|ķ�-m7�7bu;1|bom�o=�|_;�o�|1ol;vĺ��uuo�v�oub]bm-|;�-|�|_;�v;Ѵ;1|b�;�-m|b0bo|b1�o=�-�u;vbv|-m|�v|u-bm�-m7�;m7�-|�|_;�-m|b0bo|b1�
v�v1;r|b0bѴb|��0;bm]�|;v|;7ĺ��Ѵ-1h�7o�0Ѵ;�-uuo�v�_b]_Ѵb]_|�v�ll;|ub1-Ѵ�u;Ѵ-|bomv_brvĺ��uuo�v�l-��oub]bm-|;�-m7�;m7�-|�|_;�Ѵ-u];u�1bu1Ѵ;v�
encompassing one to two antibiotics; this indicates all respective strains or antibiotics exhibit the same relationships. The weight of each 
arrow indicates the number of outcomes exhibiting the same relationship. (a) MPC cross-resistance patterns. (b) MPC collateral sensitivity 
patterns. (c) MIC cross-resistance patterns. (d) MIC collateral sensitivity patterns. Both cross-resistance and collateral sensitivity were 
identified both within and across antibiotic classes. The collateral response networks show similar patterns at the MIC and MPC levels, but 
the MIC level has notably more symmetry (five symmetrical cross-resistances and five symmetrical collateral sensitivities) than the MPC 
level (three symmetrical cross-resistances and three symmetrical collateral sensitivities)

(a) (b)
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Table 2-2. Res istance conferring mutat ions  
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there is still a significant correlation in the cases where the collateral 
result of resistance evolution does not increase the MIC, this posi-
tive correlation is seen only about 30% of the time (Figure 3b). It is 
important to note that the correlation between MIC and MPC (using 
all cases where resistance evolved and where it did not evolve) is not 
significant for tetracycline and doxycycline (Figure S3), underscoring 
the importance of testing this correlation between each antibiotic–
bacteria combination.

Our observed pattern of the MSW generally shifting has also 
been observed in E. coli�Ő�o7m;1h��;|�-Ѵĺķ�ƑƏƐѶőĺ��o�;�;uķ�b|�_-v�mo|�
previously been reported in the context of collateral responses that 
the MSW shifts and widens. This pattern may be important for un-
derstanding the effects of aggressive treatment strategies like using 
high drug dosages (Read, Day, Day, & Huijben, 2011). Reducing bac-
terial load through these strategies can make it easier for a patient's 
immune system to defeat an infection and decrease the probabil-
ity of de novo mutations that confer resistance from arising (Drlica, 
2003; Read et al., 2011). However, if highly resistant mutants already 
exist within the original infection or if de novo mutants arise that are 
highly resistant, aggressive antibiotic treatment applies the stron-
gest possible selection for these mutants. This gives highly resistant 
mutants the best possible chance of repopulating the infection and 
spreading to other people (Drlica, 2003; Read et al., 2011). Our find-
ing that the MSW shifts right and widens as resistance evolves pro-
vides important context for this work. It suggests that when high 
concentrations of an antibiotic are used, the range of concentrations 
that selects for resistant mutants generally increases and makes the 
resulting mutants even more resistant (Drlica, 2003).

Oz and colleagues further demonstrated the implications of high 
antibiotic concentrations on resistance using isogenic E. coli popu-
lations. In their study, they evolved two populations under strong 
selection and two populations under mild selection for each of 22 
antibiotics over 3 weeks. Upon constructing cross-resistance net-
works, they found that bacterial populations that had evolved anti-
biotic resistance under strong selection demonstrated higher levels 
of cross-resistance than those that had evolved antibiotic resistance 
�m7;u�lbѴ7;u�v;Ѵ;1|bom�Ő���;|�-Ѵĺķ�ƑƏƐƓőĺ���u�u;v�Ѵ|�bv�1omvbv|;m|��b|_�
their finding: Mutants selected at the MPC level generally displayed 
MSWs that widened and shifted to the right when exposed to other 
antibiotics. Taken together, these findings suggest that combination 
drugs are likely to be more effective than ever-increasing dosages of 
a single drug when considering the role that selective pressure can 
_-�;�om�1oѴѴ-|;u-Ѵ�;==;1|v�Ő���;|�-Ѵĺķ�ƑƏƐƓő�-m7�|_;�vb�;�o=�|_;�u;v�Ѵ|-
bm]��")v�Ő�b1_;Ѵķ�+;_ķ��_-b|ķ��o;ѴѴ;ubm]ķ�ş��bv_om�ķ�ƑƏƏѶőĺ

ƓĺƑՊ|Պ�uovvŊu;vbv|-m1;�-m7�1oѴѴ-|;u-Ѵ�v;mvb|b�b|��
-|�|_;�m;|�ouh�Ѵ;�;Ѵ

We found that there are more symmetrical relationships at the MIC 
level than at the MPC level. The MPC symmetries tended to be a 
subset of the MIC symmetries. This may be because spontaneous 
mutant-resistant strains were originally selected at the MIC level, 

and although MIC and MPC are positively correlated, the MPC did 
not always increase with the MIC. In cases where cross-resistance 
did not evolve, or where there was collateral sensitivity, the MPC did 
not increase along with the MIC and the symmetrical relationships 
�;u;�mo|�ru;v;u�;7�-|� |_;����� Ѵ;�;Ѵĺ��77b|bom-ѴѴ�ķ� |_;�1ouu;Ѵ-|bom�
between MIC and MPC was not perfect and varied depending on the 
antibiotic (Figure S2), so this also contributed to MIC symmetrical 
relationships not always carrying over to the MPC level.

Our finding of symmetrical MPC cross-resistance within tetracy-
1Ѵbm;v�-m7�|_;�-lbmo]Ѵ�1ovb7;v�Ő
b]�u;�Ɣ-ő�-m7�����1uovvŊu;vbv|-m1;�
between different antibiotic classes is congruent with previous work 
1om7�1|;7� �vbm]����v� Ő��Ѵ࢙ ;|� -Ѵĺķ� ƑƏƐƔőĺ� 
ou� ;�-lrѴ;ķ� b|� _-v� 0;;m�
shown that E. coli K12 strains resistant to tetracycline or chloram-
phenicol exhibited a decreased sensitivity to fluoroquinolones 
Ő�o_;mķ��1��uu�ķ��1��uu�ķ��oor;uķ�)oѴ=vomķ�ş��;��ķ�ƐƖѶƖőķ�-m7�
our findings at the MPC level support this.

��u�u;v�Ѵ|v�-|�|_;�����Ѵ;�;Ѵ�=ou�1oѴѴ-|;u-Ѵ�v;mvb|b�b|��Ő
b]�u;�Ɣ0ő�
also support results from a previous study that used the MIC val-
ues to find cases of collateral sensitivity across antibiotics with var-
ious mechanisms of action in E. coli�Ő࢙�࢙�u�;|�-Ѵĺķ�ƑƏƐƓőĺ���u�=bm7bm]v�
make sense when viewed in light of studies showing that collat-
eral responses are relatively stable as resistance develops (Munck, 
��lr;u|ķ���lr;u|ķ�)-ѴѴbmķ�)-m]ķ�ş�"oll;uķ�ƑƏƐƓőĺ�!;1;m|��ouh�
suggests that collateral sensitivity and cross-resistance may be even 
more important than drug interactions when it comes to using drug 
1ol0bm-|bomv�|o�1ol0-|�u;vbv|-m1;�Ő��m1h�;|�-Ѵĺķ�ƑƏƐƓĸ�!o7ub]�;��7;�
��]u-=o�ķ���lr;u|ķ���lr;u|ķ���m1hķ�$_olv;mķ�ş�"oll;uķ�ƑƏƐƔőĺ�
This is because drug interaction types change as resistance devel-
ops but the mechanisms behind collateral responses are more stable 
Ő��m1h�;|�-Ѵĺķ�ƑƏƐƓĸ�!o7ub]�;��7;���]u-=o��;|�-Ѵĺķ�ƑƏƐƔőĺ

For example, a study examining six antibiotics and five antibi-
otic pair combinations found no relationship between drug inter-
action type and resistance evolution beyond wild-type levels of 
resistance, but found that cross-resistance and collateral sensitiv-
ity were important in predicting resistance evolution (Rodriguez 
7;���]u-=o��;|�-Ѵĺķ�ƑƏƐƔőĺ�&rom�;�-lbmbm]�|_;�];mol;v�o=�E. coli 
that were evolved in the presence of five different antibiotics 
and the resulting 10 antibiotic pairs, it was found that collaterally 
sensitive drug combinations consistently created environments in 
which mutants resistant to either antibiotic were counterselected, 
and thus, there was decreased evolution of resistance overall 
Ő��m1h�;|�-Ѵĺķ�ƑƏƐƓőĺ

ƓĺƒՊ|Պ�;m;v�bm�oѴ�;7�bm�u;vbv|-m1;

We found that some spontaneous mutant-resistant strains had 
mutations within the same genes, yet show distinct phenotypic 
variation. For example, TET and OX spontaneous mutant-resistant 
strains conferred an identical mutation on SE2021, an amino acid 
transporter gene (Zhang et al., 2003), yet have phenotypic differ-
ences in the MSW in the presence of doxycycline (Table 2 and 

b]�u;�Ɠőĺ�$_;��")�o=�$�$�v_b=|v�|o�|_;�ub]_|�-m7��b7;mv�1olr-u;7�
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with the MSW of OX, which remains the same as the wild-type 
�")�Ő
b]�u;�Ɠ0őĺ

�77b|bom-ѴѴ�ķ�	�*�!Ɛ�-m7�	�*�!Ƒ��;u;�];m;|b1-ѴѴ�� b7;m|b1-Ѵķ�
but we observed a case where DOX R1 was exposed to oxacil-
lin and the strain showed MPC collateral sensitivity against one 
drug (oxacillin), while DOX R2 showed MPC collateral sensitivity 
against a different drug (erythromycin). Differing responses of 
cross-resistance and collateral sensitivity among replicates have 
been observed in other experiments (Barbosa et al., 2017), and 
whole-genome sequencing revealed distinct evolutionary paths of 
resistance in these cases (Barbosa et al., 2017). Since the liquid 
����=ou�o�-1bѴѴbm��-v�7;|;ulbm;7�|o�0;�ƏĺƏѶ�੿]ņlѴķ�|_;� Ѵo������
value may have affected the accuracy of measuring the MPC in 
this case. The MPC, unlike the MIC, is not a single value but could 
vary significantly due to Luria-Delbruck fluctuations (Gianvecchio 
;|� -Ѵĺķ� ƑƏƐƖĸ� �om;vķ� $_ol-vķ� $_ol-vķ� ş� !o];uvķ� ƐƖƖƓĸ� ��ub-� ş�
	;Ѵ0uু1hķ�ƐƖƓƒőĺ

Despite this variation in MPC values, we generally found that 
patterns of the types of cross-resistance are common within anti-
biotic classes at both the MIC and MPC levels, which may be at-
tributed to the types of mutations they share. For example, both 
aminoglycoside resistance strains, GEN and NEO (R1 and R2), had 
different mutations on the same gene fusA, a ribosomal gene orig-
inally identified as conferring resistance to fusidic acid (Table 2; 
�ŝ�;bѴѴķ��-uv;mķ��-uv;mķ��;mubhv;mķ�ş��_oru-ķ�ƑƏƏƓőĺ�����-m7�����
spontaneous mutant-resistant strains showed similar phenotypic 
responses across the seven drugs even though the individual muta-
tions resulted in an amino acid change in different locations within 
fusA. Studies have shown that there are many different mutations 
within fusA that result in resistance to fusidic acid and have sim-
ilar MICs (Laurberg et al., 2000), yet the specific amino acid sub-
stitutions that we have identified here have not previously been 
reported. However, fusA has also been reported as encoding for an 
elongation factor that is responsible for increased resistance in both 
E. coli�Ő,;m];Ѵķ��u1_;uķ��u1_;uķ�ş��bm7-_Ѵķ�ƐƖѶƓő�-m7�T. thermophilus 
(Laurberg et al., 2000). We suspect that this characteristic could 
also play a role in the resistance phenotypes of the GEN and NEO 
spontaneous mutant-resistant strains of S. epidermidisĺ��Ѵ|_o�]_��;�
did not look into other traits, such as fitness costs, associated with 
these genomic changes, we believe that future work can help ex-
plain the observed phenotypic variation. Further genomic charac-
terizations can help identify more genetic mechanisms underlying 
cross-resistance and collateral sensitivity (Hickman, Munck, Munck, 
& Sommer, 2017).

ƓĺƓՊ|Պ�o|;m|b-Ѵ�1Ѵbmb1-Ѵ�-rrѴb1-|bomv

Since the MSW typically broadens under antibiotic treatment, this 
suggests that typical treatment strategies, which use antibiotic 
concentrations well above the MIC based on the antibiotic's phar-
macokinetic and pharmacodynamics values (Bonhoeffer, Lipsitch, 
Lipsitch, & Levin, 1997; Levison & Levison, 2009), can potentially 

select for mutations that confer greater resistance. This indicates 
the limited utility of using ever-increasing dosages of a single drug 
to narrow the MSW.

Notably, we found that when there was no evolved cross-resis-
tance or when there were cases of collateral sensitivity at the MIC, 
the MSW did not follow the trend of shifting right and widening. 
In the case of oxacillin-treated strains, only OX R1 and OX R2 con-
vbv|;m|Ѵ��v_o�;7�u;vbv|-m1;�-m7�-��b7;mbm]�o=�|_;��")ĺ��ѴѴ�o|_;u�
v|u-bmv�_-7��")v�|_-|�7b7�mo|�=oѴѴo��-�1omvbv|;m|�|u;m7�Ő
b]�u;�Ɠ7őĺ�
When examining this figure, it is important to note that ERY R1 and 
CPR R2 have MSWs that appear as single points because their me-
dian MIC and median MPC were the same, resulting in MSWs of size 
�;uoĺ�(-ub-|bom��b|_bm�
b]�u;�Ɠ7�_b]_Ѵb]_|v�|_;�blrou|-m1;�o=�|;v|bm]�
each antibiotic to understand its effect on resistant strains rather 
than assuming that all antibiotics will cause the MSW to shift and 
widen.

�mo|_;u�bm|;u;v|bm]�1-v;�o=�|_;��")�mo|�=oѴѴo�bm]�|_bv�];m;u-Ѵ�
trend occurred with the erythromycin-treated strains. Here, the 
MSW narrowed or stayed nearly the same for all spontaneous mu-
|-m|Ŋu;vbv|-m|�v|u-bmv�;�1;r|�;u�|_uol�1bmŊu;vbv|-m|�om;v�Ő
b]�u;�Ɠ]őĺ�
Even though resistance to erythromycin can become extremely 
strong, it may be a good option for the treatment of infections that 
are already resistant to another antibiotic. For these infections, 
there would be a reduced chance of subsequently evolving cross-re-
sistance to erythromycin, as evidenced by the narrowed range of 
concentrations in which further single-step resistant mutants could 
evolve in our experiments. It is interesting to note that the MSW of 
CPR R2 widened slightly in response to erythromycin rather than 
m-uuo�bm]�Ѵbh;�|_;��")�o=�o|_;u�v|u-bmv�Ő
b]�u;�Ɠ]őĺ�$_;�7;�b-|bom�
from this general trend may be due to the difference in the point 
mutation in SE1037 within the CPR spontaneous mutant-resistant 
v|u-bmv� Ő$-0Ѵ;�Ƒőĺ��m|b0bo|b1v� |_-|� |;m7� |o�]-bm�1oѴѴ-|;u-Ѵ� v;mvb|b�b|��
in the MPC and to shrink the MSW, such as erythromycin, may be a 
good component for an antibiotic cycling therapy or combinational 
therapy.

Collateral sensitivity and cross-resistance are frequently ob-
served not only in the laboratory but also in clinical settings. For 
;�-lrѴ;ķ�-�v|�7��;�-lbmbm]�u;vbv|-m1;�bm�ƑķƓƕѶ�E. coli isolates from 
urinary tract infections found high levels of cross-resistance be-
tween many pairs of drugs, including gentamicin and ampicillin, 
ciprofloxacin and sulfamethoxazole, and trimethoprim and sulfame-
thoxazole (Kahlmeter & Menday, 2003). Separate work that also ex-
amined resistance in E. coli isolates from urinary tract infections used 
Ɛѵ�-m|b0bo|b1v�-m7�o0v;u�;7�ƐƓƐ�bmv|-m1;v�o=�1uovvŊu;vbv|-m1;�Ő;ĺ]ĺķ�
between ciprofloxacin and chloramphenicol and between nitro-
furantoin and amoxicillin) and 92 instances of collateral sensitivity 
(e.g., between ciprofloxacin and gentamicin and between ciprofloxa-
1bm�-m7�1oѴbv|bmĸ��o7m;1h��;|�-Ѵĺķ�ƑƏƐѶőĺ

Clinicians can potentially take advantage of collateral sensi-
tivity through antibiotic cycling or combination therapy. Cycling 
between antibiotics that demonstrate collateral sensitivity may 
prevent the fixation of mutations that result in stronger resistance 
to one antibiotic, and may also result in hypersensitivity to other 
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antibiotics (Imamovic & Sommer, 2013). Our findings of potential 
symmetrical collaterally sensitive relationships suggest two-drug 
sets of antibiotics to use in further investigations of the antibiotic 
cycling strategy, including oxacillin and gentamicin. For example, 
oxacillin may initially be effective at killing a bacterial population, 
but with repeated exposure, resistance to this drug will likely 
evolve. If the bacterial population is then treated with gentamicin 
and evolves resistance to this new drug, it may become susceptible 
to oxacillin again. This type of antibiotic cycling strategy, that is, 
taking advantage of collateral sensitivity, may help extend the use-
fulness of currently available antibiotics (Bush et al., 2011; Davies 
ş�	-�b;vķ�ƑƏƐƏĸ��om�-Ѵ;v�;|�-Ѵĺķ�ƑƏƐƔĸ��l-lo�b1�ş�"oll;uķ�ƑƏƐƒĸ�
Sanders, 2001).

However, when considering a cyclic approach to treating bac-
terial infections, it is also important to take into consideration our 
finding that the MPC does not correlate as strongly to the MIC, and 
thus, the MSW does not behave in a predictable way when cross-re-
sistance does not evolve for spontaneous mutant-resistant strains. 
Since cyclic treatment strategies depend on resistance to new drugs 
not evolving due to collateral sensitivity (Imamovic & Sommer, 
2013), the MPC should be evaluated for each step of the cycle. This 
could help ensure that dosage concentrations are not within the new 
MSW to account for cases in which the MSW widens even if the MIC 
decreases.

Our results can expand on the cycling strategy by identifying 
potential cases of symmetrical collateral sensitivity using the MSW 
across seven antibiotics that span five classes. Symmetrical cases 
of collateral sensitivity can be much more useful than asymmetrical 
ones, because the order in which a population of bacteria evolves 
resistance matters less, since there is collateral sensitivity in both 
directions (Imamovic & Sommer, 2013). Due to the small number of 
replicates we use here and evidence that collateral sensitivity pat-
terns in laboratory strains do not always apply to clinical isolates 
(Imamovic & Sommer, 2013), it is important to conduct further stud-
ies using clinical isolates. Furthermore, bacteria are not typically se-
lected at MPC concentrations in clinical settings because the toxicity 
resulting from such high concentrations is too much for the human 
body to handle (Blondeau, Zhao, Zhao, Hansen, & Drlica, 2001; 
�b-m�;11_bo�;|�-Ѵĺķ�ƑƏƐƖĸ��;|�Ѵ;u�;|�-Ѵĺķ�ƑƏƏƓőĺ

In conclusion, we have shown how the mutant prevention con-
centration (MPC) and the mutant selection window (MSW) change 
for a range of drugs after the evolution of resistance to one anti-
biotic in S. epidermidis. When examining our data for each sponta-
neous mutant-resistant strain, we found that the MSWs tend to shift 
right and widen as antibiotic resistance evolves, showing a strong 
correlation between the MIC and MPC. However, the MSW varies 
dramatically and the correlation between the MIC and MPC weak-
ens when cross-resistance has not evolved at the MIC. When exam-
ining our data at the network level, we found that cross-resistance 
and collateral sensitivity patterns within MIC and MPC networks are 
similar, and there are more cases of symmetrical relationships at the 
MIC level than at the MPC level. Our genetic analysis of the strains 
used here further supports the importance of traditional target-gene 

mutations and reveals possible novel or nontarget mutations in anti-
biotic resistance evolution. Overall, using both the MIC and the MPC 
to evaluate antibiotic resistance may lead to better predictions of 
the evolutionary outcomes of resistant mutants when exposed to 
different antibiotics.
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Figure 2-6. Supplemental Figure 1. Overview of the MPC assay procedure. A) The cell culture 

is grown, centrifuged down, re-suspended, and diluted to the desired concentration. B) MIC is 

determined through inoculation of a 10-6 dilution on 100 mm plates. The lowest concentration 

inhibiting at least 95% of growth relative to the control (no antibiotic) plate is considered to be 

the MIC. C) MPC is determined through inoculation of approximately 1010 CFUs on larger 

150mm plates. The MPC value is considered to be the lowest concentration resulting in no 

growth. 
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Figure 2-7. Supplemental Figure 2. Correlation of the MIC and MPC Tends to Be High Across 

Selected Resistance Groups.The fold change after the evolution of the MIC medians 

(MICstrain/MICparent) is plotted against the fold change after evolution in the MPC medians 

(MPCstrain/MPCparent). The shapes represent which strain the median was determined for; circles 

are R1 and triangles are R2. A Kendall’s rank correlation test was performed for each set of 

spontaneous mutant resistant strains: CPR	(𝜏 = 0.729,𝑝 < 2	𝑥	10XY), DOX (𝜏 = 0.322,𝑝 >

0.05), ERY (𝜏 = 0.552, 𝑝 < 0.01), GEN (𝜏 = 0.789, 𝑝 < 9.678	𝑥	10XZ), NEO 

(𝜏 = 0.7, 𝑝 < 0.001), OX (𝜏 = 0.575,𝑝 < 0.005), TET (𝜏 = 0.39, 𝑝 > 0.05). Even though the 

correlations between MIC and MPC are significant overall, they vary by antibiotic. For the 

tetracyclines (DOX and TET), the correlations are not significant. 
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Figure 2-8. Supplemental Figure 3. Adapted Resistant Strains Show High Levels of Cross-

Resistance to All Antibiotics. Relative MIC95 values of adapted resistant strains are shown to be 

very high. Resistant strains are presented in the x-axis, grouped according to antibiotic of 

selected resistance. Data for the eight biological replicates were grouped by the antibiotic of 

selected resistance. The relative MIC µg/mL (observed MIC/ancestral MIC) is presented on the 

y-axis in a Log2 scale. Any MIC value that exceeded the threshold of 10,000µg/mL was 
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assigned the value of 10,000µg/mL. MIC values for the adapted resistant strains were close to or 

above solubility thresholds, making MPC experiments with these strains not feasible. 
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Table 2-3. Supplemental Table 1. Median and ranges of MIC (µg/mL) and MPC (µg/mL) of all 
spontaneous mutant resistant strains. Bolded text indicates instances of resistance. Red bold 
indicates cross-resistance, determined by non-overlapping ranges. Blue italicized indicates 
collateral sensitivity, as determined by non-overlapping ranges when compared to parental 
strains. 

 

 

median min max median min max median min max median min max

CRP 1.3 1.04 1.3 7.8 7.28 7.8 CRP 0.855 0.76 1.045 4.75 3.42 4.75

DOX 1.536 1.152 1.92 11.52 7.68 11.52 DOX 1.04 0.78 1.04 10.4 10.4 10.4
ERY 0.25 0.15 0.4 9 9 9 ERY 0.493 0.384 0.548 19.18 19.18 21.92

GEN 0.225 0.225 0.225 7.5 7.5 7.5 GEN 0.25 0.2 0.3 10 10 10

NEO 0.713 0.713 0.95 14.25 9.5 23.75 NEO 1 1 1 30 25 30

OX 0.105 0.105 0.12 0.6 0.6 0.6 OX 0.6 0.6 0.9 0.6 0.6 0.9
TET 9.75 7.8 11.7 195 117 195 TET 21 18 27 180 120 240
CRP 0.19 0.175 0.225 2 2 2.5 CRP 0.195 0.195 0.195 0.6 0.6 0.6
DOX 1.19 0.98 1.4 11.2 11.2 14 DOX 2.85 2.85 2.85 13.5 12 15
ERY 22.8 18.24 25.84 152 121.6 152 ERY 28.6 28.6 28.6 352 172 352

GEN 0.3 0.3 0.3 6 6 7.5 GEN 0.4 0.4 0.4 10 10 10

NEO 1 0.75 1 20 20 20 NEO 1 1 1 16 16 16
OX 0.9 0.075 0.9 0.9 0.6 1.5 OX 0.075 0.075 0.075 0.3 0.3 0.6
TET 19.2 16 22.4 128 128 192 TET 17 17 17 180 180 180

CRP 0.225 0.225 0.225 1.5 1.5 1.5 CRP 0.23 0.21 0.23 1.4 1.4 1.75
DOX 2.25 2.25 2.25 18 18 18 DOX 5.2 5.2 5.2 26 26 26

ERY 0.245 0.245 0.245 7.7 7.7 7.7 ERY 0.43 0.34 0.51 6.8 6.8 8.5
GEN 3.2 3.2 3.2 56 56 56 GEN 3.2 3.2 3.2 15 15 15

NEO 7 7 7 35 35 35 NEO 5.85 3.25 5.85 65 52 91

OX 0.135 0.135 0.135 0.9 0.9 0.9 OX 0.09 0.07 1 0.54 0.54 0.54
TET 18 18 18 264 264 264 TET 28.6 23.4 28.6 216 216 216

CRP 0.01 0.01 0.01 0.2 0.15 0.25 CRP 0.0975 0.075 0.12 1.2 1.2 1.2
DOX 6 4.8 7.2 24 34 36 DOX 5.44 5.44 7.48 27.2 27.2 27.2

ERY 0.45 0.45 0.6 10.5 10.5 13.5 ERY 0.56 0.525 0.6 10.5 9 12
GEN 0.225 0.2 0.225 8 7 8 GEN 0.263 0.225 0.3 6.75 4.5 9
NEO 1.6 1.6 1.8 16 12 24 NEO 0.7 0.525 0.875 17.5 10.5 17.5
OX 0.08 0.08 0.08 0.75 0.75 1 OX 0.11 0.075 0.1375 0.75 0.5 1.25
TET 86.4 86.4 86.4 324 324 324 TET liq liq liq >200 200 200

CRP 0.125 0.125 0.163 1.25 1.25 1.25 CRP 0.138 0.125 0.15 1.13 1 1.25
DOX 5.99 5.13 6.84 34.2 34.2 34.2 DOX 6.48 5.94 7.02 32.4 32.4 32.4

ERY 0.6 0.6 0.6 6.5 6 7 ERY 0.65 0.50 0.8 10 10.00 14
GEN 0.2 0.2 0.2 8 8 8 GEN 0.85 0.70 1 5 4.00 6
NEO 0.7 0.6 0.9 6 6 12 NEO 0.613 0.525 0.7 8.75 7 10.5
OX 0.08 0.07 0.09 0.8 0.8 0.8 OX 0.1 0.1 0.1 0.4 0.4 0.4
TET 69 69 69 230 230 230 TET 69 69 69 276 276 276

CRP 0.24 0.24 0.24 1.6 1.2 2 CRP 0.22 0.22 0.22 1.4 1.2 1.6
DOX 1.35 1.35 1.35 16.2 16.2 18.9 DOX 3 3 3 12 12 12
ERY 0.24 0.24 0.24 1.6 1.6 1.6 ERY 0.52 0.52 0.52 6.4 4.8 6.4
GEN 0.2 1-0 0.2 4.67 4-5 5 GEN 0.28 0.28 0.28 6.3 6.3 6.3
NEO 1.293 1.175 1.41 14.1 9.4 14.1 NEO 1.2 1.2 1.2 18 18 24
OX 0.147 0.12 0.16 1.067 0.8 1.6 OX 0.21 0.21 0.21 0.7 0.7 0.7

TET 30.6 30.6 30.6 140 140 180 TET 30.6 30.6 30.6 216 216 252

CRP 0.17 0.16 0.18 1.2 1.2 1.2 CRP 0.21 0.2 0.22 1.6 1.6 1.6
DOX 1.8 1.8 1.8 14.4 14.4 14.4 DOX 2.43 2.16 2.7 14.4 14.4 14.4
ERY 0.255 0.24 0.27 3.6 3.6 3.6 ERY 0.285 0.27 0.3 3.3 2.4 4.2
GEN 3.3 3.3 3.3 27.5 22 33 GEN 4.23 3.9 4.55 65 65 65

NEO 7.813 6.25 9.375 68.75 50 87.5 NEO 8.775 7.8 9.75 65 65 78

OX 0.09 0.08 0.1 0.4 0.4 0.4 OX 0.09 0.08 0.1 0.6 0.6 0.6

TET 24.05 20.35 27.75 148 111 185 TET 23.2 21.75 24.65 203 203 203

strain Antibiotic

OX R1 OX R2

GEN R1 GEN R2

strain

DOX R2

TET R2

NEO R2NEO R1 

TET R1

DOX R1

CPR R1 CPR R2

ERY R1 ERY R2 

Spontaneous Mutant Resistant Strains

MIC MPC MIC MPC
Antibiotic
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Table 2-4. Supplemental Table 2. Mean coverage across the main chromosome and plasmids. 

 

 

Table 2-5. Supplemental Table 3. Plasmid coverage is divided by the main chromosome 
coverage. 

 

  

Target Total Coverage Average Coverage CPR R1 CPR R2 DOX R1 DOX R2 TET R1 TET R2 NEO R1 NEO R2 GEN R1 GEN R2 ERY R1 ERY R2 OX R1 OX R2 parental 1 parental 2
NC_004461.1:1-2499279 60403517981 24168.38 1427.71 1440.08 1578.9 1467.91 1441.01 1580.67 308.87 1493.61 1723.12 1338.39 1801.43 387.47 1729.66 340.33 1711.43 1536.14
NC_005008.1:1-4439 674233319 151888.56 7511.31 6159.05 20524.63 18334.83 6490.4 25178.53 1251.98 6380.82 8391.02 7027 8893.61 2221.88 9847.82 1811.94 7127.48 77.05
NC_005007.1:1-4679 287200 61.38 3.66 4.71 3.86 3.37 4.37 4.72 0.52 3.89 2.96 3.78 4.24 1.06 4.13 0.75 4.84 3.17
NC_005003.1:1-6585 115736 17.58 1.16 0.97 0.94 0.9 1.03 1.64 0.02 1.75 0.93 1.25 1.13 0 1.23 0.01 1.31 0.92
NC_005006.1:1-8007 116 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NC_005005.1:1-17261 193088089 11186.38 651.68 901.27 617.12 638.02 856.7 831.13 145.82 553.68 525.59 650.1 722.73 214.9 905.28 163.74 745.01 613.13
NC_005004.1:1-24365 53498254 2195.7 133.92 158.2 122.24 128.23 166.23 147.32 25.04 123.86 146.15 134.11 154.88 33.39 151.82 28.65 144.13 119.19

Target CPR R1 CPR R2 DOX R1 DOX R2 TET R1 TET R2 NEO R1 NEO R2 GEN R1 GEN R2 ERY R1 ERY R2 OX R1 OX R2 parental 1 parental 2
NC_005008.1:1-4439 5.3 4.3 13.0 12.5 4.5 15.9 4.1 4.3 4.9 5.3 4.9 5.7 5.7 5.3 4.2 0.1
NC_005007.1:1-4679 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NC_005003.1:1-6585 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NC_005006.1:1-8007 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NC_005005.1:1-17261 0.5 0.6 0.4 0.4 0.6 0.5 0.5 0.4 0.3 0.5 0.4 0.6 0.5 0.5 0.4 0.4
NC_005004.1:1-24365 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Supplemental Appendix 1. Liquid MIC Estimates for Independently Evolved Strains. 

We obtained estimates of the MICs for the 56 independently evolved resistant strains for every 

antibiotic assessed in this study. We created a liquid culture using 2mL of LB in a culture tube 

and added 150µL of the thawed cell culture aliquot.  We then placed this tube in a shaker set at 

220 revolutions per minute (RPM) and 37°C to incubate until the OD600 reached 0.3 (Tecan 

Infinite M200 PRO Multimode Microplate Reader). We loaded fresh LB media and the selected 

antibiotic at varying concentrations into a deep-well 96-well plate to have a volume of 200µL per 

well. We diluted bacterial cultures by a factor of 1:500 to create the inoculum. We added 200µL 

of the inoculum to each well resulting in a final volume of 400µL per well. After 18hrs we 

aspirated, transferred 200ml of each well into a 96-well plate, and measured bacterial growth by 

reading the OD. We defined the MIC as the minimum antibiotic concentration observed to 

inhibit growth by at least 95% amongst all replicate wells. We included both positive (LB + 

bacteria) and negative (LB only) controls on each plate to ensure bacterial growth of the parental 

strain and no contamination of media. We used these measurements to obtain a rough estimate of 

the MIC to determine MIC in agar, as described in the methods. 
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Chapter 3:  Hidden suppress ive interactions  are common in  higher-order drug combinations  
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SUMMARY

The rapid increase of multi-drug resistant bacteria has led to a greater emphasis
on multi-drug combination treatments. However, some combinations can be sup-
pressive—that is, bacteria grow faster in some drug combinations than when
treated with a single drug. Typically, when studying interactions, the overall ef-
fect of the combination is only compared with the single-drug effects. However,
doing so could miss ‘‘hidden’’ cases of suppression, which occur when the highest
order is suppressive comparedwith a lower-order combination but not to a single
drug.We examined an extensive dataset of 5-drug combinations and all lower-or-
der—single, 2-, 3-, and 4-drug—combinations. We found that a majority of all
combinations—54%—contain hidden suppression. Examining hidden interactions
is critical to understanding the architecture of higher-order interactions and can
substantially affect our understanding and predictions of the evolution of anti-
biotic resistance under multi-drug treatments.

INTRODUCTION

As the numbers of multi-drug resistant bacteria continue to increase globally (Bloom et al., 2018; Chokshi

et al., 2019; Povolo and Ackermann, 2019), there has been a greater emphasis on multi-drug treatments

(Fischbach, 2011; Rieg et al., 2018; Liu et al., 2020). Two or more drugs interact in three main ways: addi-

tively, synergistically, or antagonistically. Additive combinations are when no interaction between drugs

occurs; the combined effect is as expected, assuming each drug is acting independently (Bliss, 1939). A syn-

ergistic interaction occurs when two drugs work better than expected based on each single drug’s effects,

resulting in decreased bacterial fitness. An antagonistic interaction occurs when two drugs are less effec-

tive at killing bacteria in combination than expected based on each single drug’s effects (Box 1).

The most extreme form of antagonism, termed suppression, occurs when bacterial growth increases with a

combination of stressors rather than one single stressor alone (Yeh et al., 2006; Chait et al., 2007). This phe-

nomenon was first described over a century ago when Fraser (1870) showed that two different toxins if

administered by themselves would normally kill a rabbit but combined would keep the rabbit alive. Fraser

termed this ‘‘physiological antidote’’ to indicate that this was not the result of a chemical interaction of the

two toxins but rather an interaction of the two chemicals’ effects on the physiology of the organism (Fraser,

1870, 1872a, 1872b).

However, for over a century, the idea of one drug being an antidote for another was mostly ignored. More

recently, in the last decade and a half, there has been a renewed interest in this phenomenon of suppres-

sion (Yeh et al., 2006; Chait et al., 2007; Cokol et al., 2014; de Vos and Bollenbach, 2014; Bollenbach, 2015;

Singh and Yeh, 2017; Luka!ci!sin and Bollenbach, 2019; Tyers and Wright, 2019; Dean et al., 2020). Suppres-

sion was first defined in terms of antibiotic interactions when a systematic study of 2-drug interactions in 21

antibiotics was conducted, and approximately 10% of all interactions fell into the category of suppression

(Yeh et al., 2006). Since then, there has been significant newwork published on suppressive interactions and

their effects on the evolution of resistance, their mechanisms, and their prevalence.

Multiple advances have been made in the conceptual and experimental tools used to identify drug inter-

actions that have yielded intriguing results about suppressive interactions (Yeh et al., 2006; Toprak et al.,

2013; Cokol et al., 2014; Tekin et al., 2016; Katzir et al., 2019; Luka!ci!sin and Bollenbach, 2019). For example,

suppressive interactions have been shown to favor wild type (i.e., drug-sensitive strains) over drug-resistant
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strains in direct competition in vitro. This suggests that suppressive drug combinations could be used to

make levels of drug resistance lower in a bacteria population by decreasing the evolutionary fitness of

high-resistant strains (Chait et al., 2007). Other studies have shown that suppressive drug combinations

could both decrease the rate at which bacteria adapt and evolve resistance to drugs in combination

(Hegreness et al., 2008), as well as decrease the likelihood that resistance evolves from spontaneous mu-

tations (Michel et al., 2008). In addition, mechanisms of suppression are being elucidated. The first mech-

anism for suppression identified was the nonoptimal regulation of the ribosome, which drives the suppres-

sive nature of protein and DNA synthesis inhibitors (Bollenbach et al., 2009). Chaperone deletions can also

consistently promote suppressive interactions between chloramphenicol-nitrofurantoin and trimethoprim-

mecillinam (Chevereau and Bollenbach, 2015).

Even with this renewed focus on suppression, there has been a bias against publishing antagonistic and

suppressive interactions (Singh and Yeh, 2017). The few papers that have looked for suppressive

Box 1. Definitions of important terms used

COMBINATION TYPES
Higher-order combination: a drug combination of three or more drugs

Lower-order combination: a drug combination consisting of a smaller number of drugs that are included within a

higher-order combination; in a 5-drug combination all combinations with four of those drugs, all combinations with

three of those drugs, and all combinations of two of those drugs within the 5-drug combination are considered to be a

lower-order combination to that specific 5-drug combination

DRUG INTERACTIONS
Additive interaction: no interaction between drugs; under Bliss independence, the combined effect is as expected

assuming each drug is acting independently (Bliss, 1939)

Synergistic interaction: interaction between drugs is stronger than expected; drugs in combination are more effective

at inhibiting growth than expected under the additive model

Antagonistic interaction: interaction between drugs is weaker than expected; drugs in combination are less effective

at inhibiting growth than expected under the additive model

Suppressive interaction: interaction between drugs results in increased bacterial growth compared with the effects of

fewer numbers of drugs; drugs in combination are not only less effective at inhibiting growth than expected under the

additive model but also increases growth compared with lower-order combinations or single drugs

Net suppression: a suppressive interaction that occurs between the combination of drugs and the single-drug effects;

there is greater bacterial growth when exposed to a drug combination than when exposed to a single drug

Emergent suppression: a suppressive interaction that occurs solely because all drugs are present in the combination

Hidden suppression: a suppressive interaction that occurs between the combination of drugs and a lower-order

combination

OTHER USEFUL TERMS
Full-factorial: a dataset that examines higher-order combinations with all their possible lower-order combinations,

single-drug effects, along with positive and negative controls. For example, the full-factorial dataset for a single

5-drug combination includes the effects of the 5-drug combination as well as all possible 4-, 3-, and 2-drug combi-

nations of those five drugs, all single drugs, positive controls, and negative controls.

Structure: the way to describe where interactions (net and hidden) occur within a combination

Path: a unique heterarchical grouping containing one representative of each of all the lower-order combinations within

the highest-order combination

Nesting: a special type of structure where suppressive interactions occur when an N-drug combination is suppressive

to an (N-1)-drug combination and (N-1)-drug combination is suppressive to an (N-2)-drug combination, which is

suppressive to an (N-3)-drug combination; this nesting can continue until you compare a 2-drug combination with a

single drug.
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Figure 3-1. Antibio tic in teractions in 2-drug and 3-drug combinations. Hatched bars represent growth in a no-drug environment;  black bars represent the fitness of bacteria treated with a single ant ibio tic. Light gray bars represent the fitness  of addit ive drug in teractions, synergistic interactions are in red, an tagonist ic interactions are in green, and su ppressive in teractions are in teal. Note that the 2-drug combinat ions do not need to have the same net interaction type for a 3-drug combinat ion to have a particular net interaction. Suppressive in teractions are an extreme form of 
antagonism: notice that the bacteria treated with the suppressive drug combination has a higher fitness than the sing le drugs. Importantly,  suppress ive interactions can be h idden: this occurs when the highes t-order combination has higher fitness than a lower-order combination but i t does not have higher fitness than any of the s ingle drugs. Thus , hidden suppression can only occur in a combinat ion of 3 or more drugs. Also, no te that bacteria treated with the 3-drug combination w ith hidden suppression  has a higher fitness compared with  any of the 2-drug combinat ions but no t one of 
the single drugs.  

interactions have found that the amount of suppression varied to some degree but is consistently present in

a proportion of drug combinations screened. In drug pairs, the amount of suppression ranges from 5% to

17%. Yeh et al. (2006) reported 8% of the combinations were suppressive. Cokol et al. (2014) reported that

17% were found to be suppressive. This has been considered to be a conservative estimation because the

dataset was initially created to identify synergistic combinations (Cokol et al., 2011). Beppler et al. (2017)

reported 5% of the 2-drug combinations examined were suppressive. In studies examining higher-order

(more than two) drug combinations, suppression rates varied, 3% was observed in Beppler et al. (2017)

and 8% was observed in Tekin et al. (2018).

Suppressive interactions in 2-drug combinations are straightforward to identify: bacteria grow better in the

presence of two drugs together compared with at least one of the single drugs (Figure 1). Suppressive in-

teractions can also occur in higher-order drug combinations (Figure 1). For example, in a 5-drug combina-

tion, five drugs together could have less of an effect than four drugs, or they could have less of an effect

than three drugs, two drugs, or a single drug. Also, a 4-drug subset from that five-drug combination could

be suppressive to a 3-drug or 2-drug combination, or suppressive to a single drug.

Most studies examine interactions based on deviations from single-drug effects—termed ‘‘net suppres-

sion’’ (Box 1). This means the interaction of all the drugs in the combination is determined based only

on the comparison with all the single-drug effects (Cokol et al., 2011; Stergiopoulou et al., 2011; Otto-Han-

son et al., 2013; Tekin et al., 2017; Katzir et al., 2019). Some studies have also examined emergent interac-

tions and have identified ‘‘emergent suppression’’ (Box 1) or that the effects only from all drugs being in

combination are actually suppressive effects (Beppler et al., 2016, 2017; Tekin et al., 2016, 2017, 2018). In

Figure 1. Antibiotic interactions in 2-drug and 3-drug combinations

Hatched bars represent growth in a no-drug environment; black bars represent the fitness of bacteria treated with a single antibiotic. Light gray bars

represent the fitness of additive drug interactions, synergistic interactions are in red, antagonistic interactions are in green, and suppressive interactions are

in teal. Note that the 2-drug combinations do not need to have the same net interaction type for a 3-drug combination to have a particular net interaction.

Suppressive interactions are an extreme form of antagonism: notice that the bacteria treated with the suppressive drug combination has a higher fitness than

the single drugs. Importantly, suppressive interactions can be hidden: this occurs when the highest-order combination has higher fitness than a lower-order

combination but it does not have higher fitness than any of the single drugs. Thus, hidden suppression can only occur in a combination of 3 or more drugs.

Also, note that bacteria treated with the 3-drug combination with hidden suppression has a higher fitness compared with any of the 2-drug combinations but

not one of the single drugs.
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Figure 3-2. An illu stration of the fitness  landscapes and the importance of ruggedness in evolu tionary trajectories. (A) A smooth  landscape only has one peak. As a popu lation evo lves to  an environmen t there is always a path that leads to the op timum set  of traits resu lting  in the highest  poss ible fitness.  
(B) In a rugged landscape, multiple peaks and val leys make evolving to the h ighest fi tness no t as straightforward as in a smooth landscape. Popu lations may have to  cross a valley, wh ich means (1) a loss  of fitness mus t first occur before a net increase in fitness, (2) the population can become stuck at a local  peak rather than evolve and ascend to the glo bal peak, or (3) the popu lation mus t make a jump from one peak to the next. W ithou t the lower-order interactions, we may miss key detai ls of intermediate peaks and valley s in the fitness landscape.  

  

some instances, a suppressive interaction occurs due to suppression relative to a lower-order non-single-

drug rather than a single drug; these interactions are termed ‘‘hidden’’ (Beppler et al., 2017; Tekin et al.,

2018) (Figure 1). The term ‘‘hidden’’ is used because without examining the lower-order, non-single-drug

effects we would never realize there was a suppressive effect (Beppler et al., 2017). For example, when

examining a 3-drug combination’s effect on bacteria, the interaction of the 3-drug combination is typically

compared only with the single-drug effects. Often and not surprisingly, there is increased killing in the

3-drug combination compared with treatment with just one drug. However, the ‘‘hidden’’ part of the inter-

action comes from the fact that the 3-drug combination could do a worse job at killing bacteria than a sub-

set using two of the three drugs (Figure 1, Box 1). Thus, the phenomenon of hidden interactions means that

lower-order combinations are an important part of determining the interaction type of drug combinations.

Why do hidden interactions matter, and why does understanding the structure of these interactions mat-

ter? There are important consequences of interactions fromboth the basic science and the clinical perspec-

tives. From an evolutionary perspective, interactions play an important role in the ecological and evolu-

tionary trajectories of populations. Hidden suppressive interactions are typically not seen in a traditional

examination of drug combinations. Considering these hidden interactions would substantially alter the

topography of a fitness landscape.

Fitness landscapes are the visualization of the relationships between factors such as stressors or genetic

mutations and their effects on fitness (Wright, 1932, 1988). The highest peak in the fitness landscape is

the most optimal combination for the bacteria to grow. Although multiple peaks may indicate that there

are multiple good combinations of environments for the bacteria to grow, they also create valleys that

can be difficult for populations to cross because an individual with intermediate traits or environments be-

tween peaks will face an overall decrease in fitness (Figure 2).

From a clinical perspective, using combinations that have hidden suppressive interactions could change

the efficacy of a treatment: finding optimal combinations could be thrown off-course by hidden interac-

tions. Understanding the structure and patterns of hidden interactions could therefore be important

from both evolutionary and clinical perspectives.

However, studying hidden interactions has been difficult for two primary reasons: first, logistically, there has

been substantial difficulty in obtaining full-factorial, higher-order drug interaction measurements. To

obtain the full-factorial, growth measurements for all single and all lower-order subsets of drug combina-

tions need to be determined. For example, the full-factorial for a single 5-drug combination includes one

5-drug combination, five 4-drug combinations, ten 3-drug combinations, ten 2-drug combinations, five sin-

gle drugs alone, and a no-drug control. To obtain data from many full-factorial higher-order combinations

has historically been challenging. Second, understanding conceptually and theoretically how to quantify

interactions of higher-order drug combinations has been difficult. The logistic difficulty has been alleviated

by automated robotics that can handle thousands of measurements in parallel, allowing focused questions

that rely on large quantities of measurements. From the conceptual side, we can now accurately categorize

the properties of the combination and the interactions, including emergent properties (such as emergent

interactions and hidden suppression) (Beppler et al., 2016; Tekin et al., 2016, 2017, 2018). Emergent

Figure 2. An illustration of the fitness landscapes and the importance of ruggedness in evolutionary trajectories

(A) A smooth landscape only has one peak. As a population evolves to an environment there is always a path that leads to

the optimum set of traits resulting in the highest possible fitness.

(B) In a rugged landscape, multiple peaks and valleys make evolving to the highest fitness not as straightforward as in a

smooth landscape. Populations may have to cross a valley, which means (1) a loss of fitness must first occur before a net

increase in fitness, (2) the population can become stuck at a local peak rather than evolve and ascend to the global peak,

or (3) the population must make a jump from one peak to the next. Without the lower-order interactions, we may miss key

details of intermediate peaks and valleys in the fitness landscape.
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Figure 3-3. The path s for a 4-drug and a 5-drug combination consis ting of drugs A, B, C, D, and E. (A) All  24 possib le paths are shown for a 4-drug combination. (B) All 120 possible paths are shown for a 5-drug combinat ion. For both the 4-drug (A) and 5-drug ( B) combina tions,  a sing le path is shown in a bold line w ith the highest-order comb ination and each lower-order combination h ighlighted in gray. This single path represents a unique set of drugs,  one at each level of combinat ions (4-drug,  3-drug, 2-drug, and a s ingle drug), al lowin g for an assessment  of any nesting. For 
this examp le, nested hidden suppress ion occurs when the 5-drug combination is suppressive to the 4-drug, the 4-drug combination is suppressive to a 3-drug combination, and the 3-drug combination is  then suppressive to a 2-drug  combination. A nd, if appropriate, the 2-drug combination is suppressive to the single-drug effects (this is only considered if the combinat ion is net suppressive). If this  is true for all paths the combinat ion is considered to be fully nes ted. If this is on ly observed in some paths the combinat ion is considered to be partially nes ted.  

properties are only found in higher-order combinations and are solely because the combination is higher

order, that is, the interaction occurs only due to all drugs combining and not due to lower-ordered

combinations.

Here we propose a systematic examination of the structure of suppressive interactions (net, emergent, and

hidden) in higher-order drug combinations. Specifically, we ask (1) how prevalent are hidden suppressive

interactions? (2) What is the structure of a suppressive interaction: are they likely to be suppressive to the

next lower-order combination? For example, do we primarily see a 5-drug combination that is suppressive

relative to a 4-drug combination, or are there larger jumps in suppression, for example, a 5-drug combina-

tion that is suppressive relative to a 2-drug combination? Or is suppression likely to be nested—that is, if a

5-drug combination is suppressive, is it likely to be suppressive to 4-drug and 3-drug subsets within the 5-

drug combination? (3) Lastly, are some antibiotics or main mechanism of actions more likely to be involved

in general suppressive interactions?

RESULTS

We re-examined the dataset collected and published in Tekin et al. (2018) to examine the presence and

patterns of suppressive interactions (both hidden and net) within these combinations. A summary of

methods used in Tekin et al. (2018) is provided in the Transparent methods section of the supplemental

information. We compared the fitness of the highest-order interaction with all lower-order interactions,

to determine if hidden suppression was present within the combination. This information was then exam-

ined through the use of paths. A path is a unique heterarchical grouping containing one representative of

each of all the lower-order combinations within the highest-order combination (Figure 3). We use these

paths to identify what suppressive interactions occur within a combination and to detect nesting of hidden

suppression. That is, for example, ‘‘full’’ nesting occurs in a 5-drug combination when the 5-drug

A B

Figure 3. The paths for a 4-drug and a 5-drug combination consisting of drugs A, B, C, D, and E

(A) All 24 possible paths are shown for a 4-drug combination.

(B) All 120 possible paths are shown for a 5-drug combination. For both the 4-drug (A) and 5-drug (B) combinations, a single path is shown in a bold line with

the highest-order combination and each lower-order combination highlighted in gray. This single path represents a unique set of drugs, one at each level of

combinations (4-drug, 3-drug, 2-drug, and a single drug), allowing for an assessment of any nesting. For this example, nested hidden suppression occurs

when the 5-drug combination is suppressive to the 4-drug, the 4-drug combination is suppressive to a 3-drug combination, and the 3-drug combination is

then suppressive to a 2-drug combination. And, if appropriate, the 2-drug combination is suppressive to the single-drug effects (this is only considered if the

combination is net suppressive). If this is true for all paths the combination is considered to be fully nested. If this is only observed in some paths the

combination is considered to be partially nested.
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Table 3-1. A list of the names, concentrations , main mechanism of action, mean relative grow th compared with a no- drug contro l, and the abbreviation of the ant ibio tics used in th is study.  

combination (A + B + C + D + E) is suppressive to a 4-drug combination (A + B + D + E) and that 4-drug

combination is suppressive to a 3-drug combination (A + D + E), which is then suppressive to a 2-drug com-

bination (A + D). Analyzing paths will enable us to understand the structure of the interactions—deter-

mining which comparisons between a specific lower-order combination and the highest-order combina-

tion are suppressive (Box 1). For a fuller description of the rationale behind the use of paths, please see

the transparent methods section of the supplemental information. Please note that when referring to a sin-

gle drug the full name of the antibiotic is written out, and when referring to a combination as a single entity

the abbreviations of the drugs (Table 1) within the combination are used. For example, a combination con-

taining the drugs ampicillin, fusidic acid, and streptomycin is listed as AMP + FUS + STR.

The prevalence of hidden suppression

Nearly all higher-order combinations of unique drugs had at least one dose that produced a hidden sup-

pressive interaction. Out of all the possible 182 higher-order drug combinations (fifty-six 3-drug

combinations + seventy 4-drug combinations + fifty-six 5-drug combinations) only five (four 3-drug combi-

nations and one 5-drug combination) had no unique dose that had hidden suppression: AMP + FUS + ERY,

AMP + FOX + FUS, FOX +CRP + FUS, STR + FOX + FUS, and TMP + STR + FUS +DOX. Among all 20,790 of

unique drug-dose combinations studied, suppressive interactions are observed in 54% (11,302) of combi-

nations.With only 17% (3,534) of the total combinations identified as net suppressive (Tekin et al., 2018), the

remaining 7,768 combinations with suppressive interactions only contain hidden suppressive interactions.

By solely considering the highest-order combination and the single-drug effects, 69% of the combinations

with suppressive interactions would not be identified (i.e., 7,768 out of 11,302). As the number of drugs in a

unique drug dosage combination increases so does the percentage of combinations with hidden suppres-

sion: 33% of the 3-drug combinations, 48% of the 4-drug combinations, and 59% of the 5-drugs combina-

tions had hidden suppression (Figure 4).

Table 1. A list of the names, concentrations, main mechanism of action, mean relative growth compared with a no-

drug control, and the abbreviation of the antibiotics used in this study

Name (Abbreviation)
Main Mechanism
of Action

Concentration
(mM)

Relative
Growth (%)

Standard
Error (%)

Ampicillin (AMP) Cell wall 1–2.89

2–2.52

3–1.87

1–77.43

2–86.01

3–87.06

1–3.05

2–1.74

3–2.42

Cefoxitin sodium salt (FOX) Cell wall 1–1.78

2–1.37

3–0.78

1–83.46

2–92.13

3–93.33

1–4.73

2–2.58

3–1.81

Trimethoprim (TMP) Folic acid biosynthesis 1–0.22

2–0.15

3–0.07

1–79.59

2–74.63

3–68.20

1–3.89

2–4.26

3–3.93

Ciprofloxacin hydrochloride (CPR) DNA gyrase 1–0.03

2–0.02

3–0.01

1–92.14

2–92.14

3–91.06

1–1.69

2–2.40

3–2.17

Streptomycin (STR) Aminoglycoside

Ribosome, 30S

1–19.04

2–16.6

3–12.25

1–81.10

2–90.77

3–83.53

1–6.50

2–1.37

3–4.30

Doxycycline hyclate (DOX) Ribosome, 50S 1–0.35

2–0.27

3–0.15

1–75.15

2–76.53

3–70.01

1–5.51

2–5.13

3–4.73

Erythromycin (ERY) Ribosome, 50S 1–16.62

2–8.29

3–1.78

1–84.25

2–84.29

3–79.63

1–5.77

2–5.60

3–5.91

Fusidic acid sodium salt (FUS) Ribosome, 30S 1–94.42

2–71.01

3–37.85

1–82.31

2–78.82

3–82.62

1–2.51

2–2.83

3–2.47
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Figure 3-4. Hid den suppress ion is present in a majority of higher-order combinat ions. H idden suppression was found in al l levels examined—3-drug, 4-drug, and 5-drug combinat ions. T he amount of hidden suppression increases as the number of drug increases.  

In cases where the net interaction is synergistic or additive, hidden suppression can still occur when the

highest-order combination is compared with a lower-order combination (Figures 1, S1, and S2). Impor-

tantly, for a combination to contain hidden suppression, it is not dependent on the interaction type based

on comparing the fitness values to the single drugs alone. For instance, a synergistic 4-drug combination

that results in 20% relative fitness compared with no-drug environments can have a lower-order synergistic

2-drug combination that results in 10% relative fitness. This example then also has hidden suppression

because the 4-drug combination results in more bacterial growth than the lower-order 2-drug combination

but is still below the additive effects of the single drugs (Figure 1). Net additive combinations had hidden

suppression in 27% of 3-drug combinations, 40% in 4-drug combinations, and 67% in 5-drug combinations

(Figure 5). In net synergistic combinations, hidden suppression was found in 0% of 3-drug combinations, 7%

of 4-drug combinations, and 23% in 5-drug combinations (Figure 5). Hidden suppression in net antagonistic

combinations also increased as the number of drugs increased: 52% of 3-drug combinations, 71% of 4-drug

combinations, and 72% in 5-drug combinations. In contrast, combinations that are net suppressive showed

a decrease in the amount of hidden suppression as the number of drugs increased: 96% of 3-drug combi-

nations, 92% of 4-drug combinations, and 88% in 5-drug combinations. These trends—the increase in the

amounts of hidden suppression in synergistic, additive, and antagonistic with the increase in the number of

drugs and the decrease in hidden suppression with the increase in the number of drugs among the sup-

pressive interactions—are also observed when examining emergent interactions (Figure 5).

The structure of hidden suppression

When addressing the structure of hidden suppression, it is important to recognize that in each drug com-

bination multiple lower-order interactions are occurring. For example, in a 3-drug combination, there are

three unique 2-drug combinations within it. Using the same framework, in a 5-drug combination there are

ten unique 2-drug combinations, ten unique 3-drug combinations, and five unique 4-drug combinations.

This results in a total of 25 possible hidden interactions. Combinations that contain hidden suppressive in-

teractions can have suppressive interactions with one of the 25 possibilities, all of them, or any amount in

between.

The highest-order combination has N drugs and is compared with all of the lower-order combinations to

see where hidden suppression took place (Table 2). When comparing net suppressive combinations and

those that only have hidden suppression, there are more instances of hidden suppression in combinations

that are net suppressive no matter the number of drugs in the lower-order combination (Table 2, Figure 6).

For example, in a 4-drug combination, there is suppression to the 3-drug combinations in 71% in net sup-

pressive combinations, whereas in combinations with only hidden suppression it was only observed 60% of

the time. Combinations that are net suppressive also have the highest amounts of hidden suppression

occurring between all possible lower-order combinations (Figure 6). For example, in a 5-drug combination,

there are a total of ten possible 2-drug combinations. In net suppressive 5-drug combinations, hidden sup-

pression occurs between the highest-order combination and all possible 2-drug combinations roughly 60%

of the time. This occurs in less than 20% of 5-drug combinations that only have hidden suppression. This

Figure 4. Hidden suppression is present in a majority of higher-order combinations

Hidden suppression was found in all levels examined—3-drug, 4-drug, and 5-drug combinations. The amount of hidden

suppression increases as the number of drug increases.
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Table 3-2. Net suppressive combinations have more hidden suppress ion than combinat ions that are not net suppressive.  

Figure 3-5.  The d istribution s and relative propor tion of h idden su ppression for each interaction type for net (A) and emergent (B) in teractions for 3-, 4-, and 5- drug combinat ions. T he proportion of comb inations with  hidden suppressio n (HS) of suppressive in teractions (teal) decreases as the number of drugs in a combination increases. The percentage written inside the darker shades of the bars represents the proportion of comb inatio ns with hidden suppress ion present in that specific interaction type. The y axis is the percentage of each interaction type within the designated level 
of the drug combination, showing the overall d istribution of net or emergent interactions. For example, in (A) the net suppressive 4-drug combinat ions, 92% of the combinations have hidden suppression within them. As the number of drugs increases, the amount of hidden suppress ion within ad ditive, syner gistic, and an tagonis tic comb ination s also increase.  

trend, of hidden suppression being more common in net suppressive combinations than only hidden sup-

pression combinations, can be observed no matter how many drugs are in the highest-order combination

or the number of drugs in the lower-order combination it is being compared to. It also strengthens as the

number of drugs in the highest-order combination increases. Figure 6 compares the amounts of hidden

A

B

Figure 5. The distributions and relative proportion of hidden suppression for each interaction type for net

(A) and emergent (B) interactions for 3-, 4-, and 5- drug combinations. The proportion of combinations with hidden

suppression (HS) of suppressive interactions (teal) decreases as the number of drugs in a combination increases. The

percentage written inside the darker shades of the bars represents the proportion of combinations with hidden

suppression present in that specific interaction type. The y axis is the percentage of each interaction type within the

designated level of the drug combination, showing the overall distribution of net or emergent interactions. For example,

in (A) the net suppressive 4-drug combinations, 92% of the combinations have hidden suppression within them. As the

number of drugs increases, the amount of hidden suppression within additive, synergistic, and antagonistic combinations

also increase.

Table 2. Net suppressive combinations have more hidden suppression than combinations that are not net

suppressive

Hidden Suppression Found Between Hidden Suppression Only (%) Net Suppression (%)

5-Drugs versus 4-drugs 53 80

5-Drugs versus 3-drugs 41 79

5-Drugs versus 2-drugs 40 80

4-Drugs versus 3-drugs 60 71

4-Drugs versus 2-drugs 61 75

3-Drugs versus 2-drugs 76% 77%
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Figure 3-6. Hid den suppress ive interactions occur more frequently with in net suppressive combinat ions rather than within non-net suppressive combinations. The amounts of hidden suppression are shown out of the to tal number of lower-ordered combinations w ith in a sing le higher-order combinat ion tha t is either net suppressive (teal) or has some instances of h idden sup pression (gray).  

suppression in net suppressive combinations and only hidden suppression combinations. Overall, the dif-

ference between net suppressive combinations and only hidden suppression combinations is smaller in

3-drug combinations than in 5-drug combinations. This is especially true when observing if there is hidden

suppression for all possible options of N-drugs in a lower-order combination.

For net suppressive combinations, full nesting—when fitness at any order is greater than the fitness of the

next lower-order combination in all paths including single-drug effects—was only observed in the 3-drug

and 4-drug combinations. A majority of net suppressive combinations were considered to have net sup-

pression, wherein at least one path, the fitness at any order must be greater than the fitness of all lower-

orders (defined in the transparent methods, Table S1) (Figure S3). When examining the potential nesting

of non-net suppressive combination, single-drug effects do not need to be considered because by defini-

tion there would be no suppression to the single drugs. All net synergistic combinations only contain hid-

den suppression that does not fall into any special case.

Likelihood of specific drugs or mechanisms of action involved in suppressive interactions

We used logistic regressions to determine if any drug or the main mechanism of action may have a positive

association with general suppressive interactions (hidden and net). The presence of trimethoprim alone

was found to be significantly positively associated with suppressive interactions for 3-drug, 4-drug, and

5-drug combinations (Tables 3, S2, and S6). Ciprofloxacin, doxycycline, and erythromycin only had a signif-

icant positive association with suppressive interactions in 4-drug and 5-drug combinations (Tables S2 and

S6). The presence of trimethoprim increased the odds of a 3-drug, 4-drug, and 5-drug combination being

suppressive by roughly 2-fold (p < 0.001). The combined presence of ciprofloxacin and trimethoprim

(CPR + TMP) and cefoxitin and trimethoprim (FOX + TMP) were also found to significantly increase the

Figure 6. Hidden suppressive interactions occur more frequently within net suppressive combinations rather

than within non-net suppressive combinations

The amounts of hidden suppression are shown out of the total number of lower-ordered combinations within a single

higher-order combination that is either net suppressive (teal) or has some instances of hidden suppression (gray).
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Table 3-3. Logistic regression of a single drug with 3-drug combinations with some levels of suppressive in teractions (hidden and net). 

probability of finding suppressive interactions in 3-drug, 4-drug, and 5-drug combinations (p < 0.001) (Ta-

bles 4, S3, and S7). The combined presence of ampicillin and ciprofloxacin, ciprofloxacin and erythromycin,

doxycycline and cefoxitin, and erythromycin and trimethoprim had a positive association with suppressive

interactions for 4-drug and 5-drug combinations (p < 0.001) (Tables S3 and S7).

When considering themainmechanism of action rather than individual antibiotics, the presence of the anti-

biotic acting on folic acid biosynthesis (trimethoprim) was found to be significantly positively associated

with suppressive interactions (p < 0.01) in 3-drug, 4-drug, and 5-drug combinations (Tables 5, S4, and

S8). There were only two positive associations that occur across all levels of higher-order drug combina-

tions (i.e., 3-drugs, 4-drug, and 5-drug combinations): they are with the antibiotic acting on folic acid

biosynthesis, trimethoprim, alone (p < 0.0001) and the combination of two main mechanism of actions—

folic acid biosynthesis and the DNA gyrase (p < 0.001) (Tables 6, S5, and S9). The probability of a combi-

nation having suppressive interactions decreases with the presence of an antibiotic acting on the 30S ribo-

somal subunit alone in the 3-drug, 4-drug, and 5-drug combinations (p < 0.0001) (Tables 5, S4, and S8).

DISCUSSION

Although it was previously reported that higher-order drug combinations had a substantial amount of sup-

pressive interactions (14% in Beppler et al. (2017) and 8% in Tekin et al. (2018)), there has been no further

work on understanding the patterns and prevalence of higher-order suppressive interactions, particularly

hidden interactions. The idea of hidden suppressive interactions was first introduced by Beppler and col-

leagues several years ago (Beppler et al., 2017). New technologies are now allowing rapid detection of sup-

pressive interactions using both very small volumes of bacterial culture and antibiotic combinations (<1uL)

and very short time frames of several hours (Cokol et al., 2011, 2014; Churski et al., 2012). New conceptual

advances allow us to examine higher-order interactions and emergent properties of drug combinations

(Beppler et al., 2016; Tekin et al., 2016; Katzir et al., 2019; Luka!ci!sin and Bollenbach, 2019). Because of

this, suppressive interactions have received more focus recently (see review Singh and Yeh (2017)). We

have shown that even with recent advancements and interest in suppression, one can severely underesti-

mate the number of suppressive interactions by not considering hidden suppression.

When examining hidden suppression, increasing the number of drugs in a combination also increases the

number of possible lower-order combinations, thus possibly increasing the total number of combinations

with hidden suppression interaction. When we look at the overall percentage of combinations with hidden

suppression, this value steadily increases from 33% to 48%–59% as the number of drugs increases (Figure 4).

This would explain the trends we see in Figure 5 for synergistic, additive, and antagonistic combinations.

However, this does not offer a viable explanation for the negative correlation between the amount of hid-

den suppression and the number of drugs in a combination of net and emergent suppressive

combinations.

Table 3. Logistic regression of a single drug with 3-drug combinations with some levels of suppressive interactions

(hidden and net)

Term Coefficient

Confidence
Interval

p Value Odds Ratio Probability (%)0.30% 99.70%

AMP !0.416 !0.720 !0.117 1.58E-04 0.660 40

CPR 0.019 !0.277 0.311 0.863 1.019 50

DOX 0.096 !0.198 0.388 0.371 1.100 52

ERY !0.112 !0.409 0.183 0.302 0.894 47

FOX !0.085 !0.382 0.208 0.429 0.918 48

FUS !0.868 !1.185 !0.560 2.96E-14 0.420 30

STR !1.684 !2.053 !1.337 5.02E-38 0.186 16

TMP 0.729 0.443 1.018 3.75E-12 2.074 67

AIC: 1678.2 Bonferroni- corrected a: 0.00625 Degrees of Freedom: 1512

Terms in bold have a significant positive association with suppressive interactions.

ll
OPEN ACCESS

10 iScience 24, 102355, April 23, 2021

iScience
Article

 



 45 

 
Table 3-4. Logistic regression of pairwise drugs w ith 3-drug  combinations  with some levels of suppress ive interactions  (hidden and net).  

In 2-drug combinations, it has been shown that a combination of DNA synthesis inhibitors and protein syn-

thesis inhibitors has higher amounts of suppression (Yeh et al., 2006; Chait et al., 2007; Bollenbach et al.,

2009). Thus, we expected that we might find some drugs or main mechanisms of actions more consistently

involved in suppressive interactions, and this was indeed the case. We have shown that there is a significant

positive association with suppressive interactions and interference with the 50S ribosomal subunit in com-

bination with a DNA gyrase in 4-drug combinations and a significant positive association with suppressive

interactions and interference with the 30S ribosomal subunit in combination with a DNA gyrase in 5-drug

combinations. These findings are supported by the one suppressive mechanism that is very well under-

stood (Bollenbach et al. (2009).

The main mechanism of action is one way that antibiotics are commonly grouped. We expected to see

similar patterns of association between the logistic regressions based on specific drugs and the main

mechanism of actions. We observe this similarity with the main mechanism of actions affecting folic acid

biosynthesis trimethoprim, affecting the 50S ribosomal subunit—doxycycline and erythromycin and

Table 4. Logistic regression of pairwise drugs with 3-drug combinations with some levels of suppressive

interactions (hidden and net)

Term Coefficient

Confidence
Interval

p Value Odds Ratio Probability (%)0.10% 99.90%

AMP + CPR 0.126 !0.576 0.817 0.571 1.134 53

AMP + DOX 0.252 !0.379 0.877 0.208 1.287 56

AMP + ERY !0.778 !1.498 !0.097 4.95E-04 0.460 31

AMP + FOX !0.524 !1.291 0.212 0.029 0.592 37

AMP + FUS !1.671 !2.593 !0.861 1.27E-09 0.188 16

AMP + STR !1.432 !2.477 !0.559 2.23E-06 0.239 19

AMP + TMP 0.953 0.305 1.627 6.08E-06 2.594 72

CPR + DOX 0.159 !0.439 0.753 0.403 1.172 54

CPR + ERY !0.208 !0.836 0.406 0.294 0.812 45

CPR + FOX !0.857 !1.565 !0.182 1.01E-04 0.425 30

CPR + FUS !0.307 !1.008 0.359 0.159 0.736 42

CPR + STR !0.755 !1.561 !0.027 1.94E-03 0.470 32

CPR + TMP 0.739 0.122 1.379 2.25E-04 2.094 68

DOX + ERY !0.189 !0.798 0.407 0.326 0.828 45

DOX + FOX 0.570 !0.039 1.185 3.51E-03 1.768 64

DOX + FUS 0.388 !0.238 1.002 0.050 1.474 60

DOX + STR !0.939 !1.783 !0.186 2.10E-04 0.391 28

DOX + TMP !1.044 !1.685 !0.420 2.31E-07 0.352 26

ERY + FOX 0.182 !0.485 0.846 0.392 1.199 55

ERY + FUS !0.775 !1.498 !0.101 4.93E-04 0.461 32

ERY + STR 0.030 !0.682 0.699 0.890 1.031 51

ERY + TMP 0.464 !0.155 1.094 0.020 1.590 61

FOX + FUS !0.848 !1.632 !0.122 4.23E-04 0.428 30

FOX + STR !1.607 !2.635 !0.740 8.27E-08 0.201 17

FOX + TMP 1.026 0.387 1.698 9.05E-07 2.790 74

FUS + STR !0.942 !1.924 !0.104 1.06E-03 0.390 28

FUS + TMP !0.058 !0.688 0.559 0.769 0.943 49

STR + TMP !0.978 !1.756 !0.259 4.08E-05 0.376 27

AIC: 1579.7 Bonferroni-corrected a: 0.00179 Degrees of Freedom: 1512

Terms in bold have a significant positive association with suppressive interactions.
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Table 3-5. Logistic regression of the main mechanism of actions w ith 3-drug combinat ions w ith some levels of suppressive interactions (h idden and net).  

affecting DNA gyrase—ciprofloxacin. As previously described, the identification of DNA gyrases and pro-

tein synthesis can be expected to be positively associated with suppressive interactions. However, folic

acid biosynthesis interference is positively associated with suppressive interactions in all levels of drug

combinations (3-drug, 4-drug, and 5-drug combinations). We suggest that this cellular mechanism may

also be a mechanism for suppression and could be a fruitful avenue for future studies.

Hidden suppressive interactions can affect fitness landscapes, which means they ultimately could affect the

evolutionary trajectory of populations. For example, if we use a drug combination with a corresponding

fitness landscape based only on information from the single drugs and the 5-drug combination, we could

end up with a landscape topography that looks very different from a fitness landscape where we had infor-

mation from all lower-order drugs (Figure 7). This is not surprising because we have more information in the

latter than the former. Qualitatively, the fitness landscapes are similar, but there are quantitative differ-

ences (Sanchez-Gorostiaga et al., 2019). In contrast, in cases where hidden suppression is present, a land-

scape without the lower-order interaction information would look very different from a landscape with all

the lower-order interactions (Figures 7 and S4). Qualitatively, there are important differences between the

fitness landscape because there are local valleys and peaks that are present in the latter and not present in

the former. These valleys and peaks can affect how a population evolves and where it ends up (Østman

et al., 2011; Palmer et al., 2015; Bendixsen et al., 2017).

Within a specific drug pair, recent work has shown that the concentrations at which two drugs veer into sup-

pressive territory (from, for example, additivity) could be understood via a cost-benefit analysis. There is a

trade-off between a drug inducing resistance (good for the bacterial cell) and increasing toxicity (bad for

the bacterial cell), and this trade-off could explain why certain concentrations in one drug pair are suppres-

sive, whereas other concentrations exhibit different interaction types (Wood and Cluzel, 2012). Further-

more, with some exceptions, suppressive interactions, as with most interactions, are typically robust to ge-

netic mutations (Chevereau and Bollenbach, 2015).

Clinicians traditionally favor treatments with synergistic combinations, because it limits the number of an-

tibiotics prescribed to the patient limiting any potential adverse effects (Lepper and Dowling, 1951; French

et al., 1985; Sun et al., 2013; Arya et al., 2019), rather than treatment with suppressive combinations. This is

because by definition, using suppressive interactions means using higher drug concentrations to achieve

the same bacterial killing effect as drugs that are additive or synergistic. Thus, hidden suppressive interac-

tions are ones that could be confounding in the clinic. As more treatments move to higher-order combina-

tions of drugs (Mbuagbaw et al., 2016; Sun et al., 2016; Morimoto et al., 2018; Tsigelny, 2019), it becomes

critical to understand where suppressive interactions may be hidden, to avoid surprising and unwelcome

clinical outcomes. For example, as shown in Figure 7, if one were to use a combination of CPR + ERY +

STR + FUS + TMP and if we only compared the results of the five drugs together with all the single drugs

alone, we would think this was a potentially useful combination, in that killing efficiency seems to

increase relative to the five single drugs by themselves. But once we examine these in light of emergent

properties, what we see is that CPR + ERY + STR + FUS + TMP has a lower killing efficiency than CPR +

STR + FUS + TMP.

Table 5. Logistic regression of the main mechanism of actions with 3-drug combinations with some levels of

suppressive interactions (hidden and net)

Term Coefficient

Confidence
Interval

p Value Odds Ratio Probability (%)0.50% 99.50%

Cell wall !0.267 !0.517 !0.018 5.76E-03 0.765 43

Folic acid biosynthesis 0.742 0.470 1.017 2.74E-12 2.100 68

DNA gyrase 0.035 !0.246 0.314 0.747 1.036 51

Ribosome, 30S !1.462 !1.719 !1.212 5.36E-50 0.232 19

Ribosome, 50S 0.062 !0.188 0.312 0.524 1.064 52

AIC: 1716 Bonferroni-corrected a: 0.01 Degrees of Freedom: 1512

Terms in bold have a significant positive association with suppressive interactions.
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Table 3-6. Logistic regression of the pairwise main mechanism of actions  with 3-drug combinations with  some levels of suppressive in teractions (hidden and net). 

In conclusion, we show here that higher-order drug combinations exhibit a large number of suppressive

interactions, and these interactions are primarily hidden. That is, we would never know there was a suppres-

sive interaction if we only looked at the effects of the highest-order combinations and compared that with

all the single-drug effects. Uncovering hidden suppressive interactions could decrease surprises regarding

how populations evolve to drug combinations. At the same time, identifying hidden suppression can yield

valuable information about underlying reasons regarding which drug combinations could be useful and

which ones should be avoided.

Limitations of the study

Here we exemplify the need to consider hidden interactions and the possible implications of hidden sup-

pression. To do this we examined an extensive dataset and found intriguing results. However, ideally, addi-

tional data could be analyzed with an even larger group of drugs examined, allowing for multiple represen-

tatives from each antibiotic class and the main mechanism of actions. The dataset from Tekin et al. (2018)

used low levels of inhibition for each individual drug in an attempt to have detectable growth when anti-

biotics are used in 5-drug combinations. The low inhibition of each individual drug can affect the fraction

of net-suppressive interactions by narrowing the range of a suppressive interaction. But ultimately these

concentrations were chosen to avoid killing off the entire bacterial populations before a 5-drug combina-

tion could be examined. Finally, future studies of drug interactions can incorporate bootstrapping and

other methods to determine robustness of results.

Resource availability

Lead contact

Dr. Pamela Yeh, PhD holds the role of lead contact and can be reached at pamelayeh@ucla.edu

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and code has been made freely available via Mendeley Data (https://data.mendeley.com/

datasets/ts2hnd72yf/1).

Table 6. Logistic regression of the pairwise main mechanism of actions with 3-drug combinations with some levels of suppressive interactions

(hidden and net)

Term Coefficient

Confidence Interval

p Value Odds Ratio Probability (%)0.20% 99.80%

Cell wall + folic acid biosynthesis 1.016 0.548 1.495 5.52E-10 2.762 73

Cell wall + DNA gyrase !0.417 !0.949 0.096 0.021 0.659 40

Cell wall + ribosome, 30S !1.565 !2.050 !1.109 6.46E-22 0.209 17

Cell wall + ribosome, 50S 0.265 !0.114 0.645 0.044 1.303 57

Folic acid biosynthesis + DNA gyrase 0.742 0.175 1.326 1.90E-04 2.100 68

Folic acid biosynthesis + ribosome, 30S !0.304 !0.790 0.172 0.068 0.738 42

Folic acid biosynthesis + ribosome, 50S !0.522 !1.022 !0.038 2.10E-03 0.593 37

DNA gyrase + ribosome, ribosome, 30S !0.529 !1.082 !0.009 4.25E-03 0.589 37

DNA gyrase + ribosome, ribosome, 50S !0.039 !0.507 0.428 0.808 0.961 49

Ribosome, 30S + ribosome, 50S !0.160 !0.572 0.252 0.262 0.852 46

Cell wall + cell wall !0.584 !1.148 !0.044 2.18E-03 0.558 36

Ribosome, 30S + ribosome, 30S !1.565 !2.411 !0.857 3.93E-09 0.209 17

Ribosome, 50S + ribosome, 50S !0.402 !0.905 0.085 0.019 0.669 40

AIC: 1670.9 Bonferroni-corrected a: 0.0039 Degrees of Freedom: 1512

Terms in bold have a significant positive association with suppressive interactions.
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graphs show the importance of considering hidden interactions.  Fitness graphs  show s imilar information as a fitness  landscape; they both help  to v isualize the relationship s between stressors or genetic mutat ions and  their effects on fitness.  However, fitness graphs can be more appropriate for discrete data. Here we show fitness graphs of two synergis tic 5-drug combinations (for abbreviations see Table 1). Drug combination 1  has no h idden suppression (top), and drug co mbination 2 has hidden suppression  (bottom). The left-hand s ide shows the fitness  graphs no t considering  the 

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102355.
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Figure 7. Fitness graphs show the importance of considering hidden interactions

Fitness graphs show similar information as a fitness landscape; they both help to visualize the relationships between

stressors or genetic mutations and their effects on fitness. However, fitness graphs can be more appropriate for discrete

data. Here we show fitness graphs of two synergistic 5-drug combinations (for abbreviations see Table 1). Drug

combination 1 has no hidden suppression (top), and drug combination 2 has hidden suppression (bottom). The left-hand

side shows the fitness graphs not considering the hidden suppression; notice how similar these two appear to be.

Although the figures on the right-hand side show the fitness graphs including the lower-order combinations, notice the

increase in ruggedness is due to the hidden suppressive interactions (the decrease in fitness at one of the 4-drug

combinations) in the bottom right. The edges in red highlight the paths involved in hidden suppression. For more

detailed information about these paths please see Figure S4.

ll
OPEN ACCESS

14 iScience 24, 102355, April 23, 2021

iScience
Article



 49 
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Figure 3-7. SI Figure 1. Exa mples from the data of antib iotic interactions in 2-drug and 3-drug combinat ions, Related to Figure 1. Combinat ions are listed above bar graphs for each example (for abbreviations see Table 1). Hatched bars represent growth in a no-drug environment, black bars represent the fi tness of bacteria treated with a single antib iotic. L ight gray bars represent the fitness of additive drug interactions, synergist ic interactions are in red, antagon ist ic interactions are in green and suppressive in teractions are in teal. Note that the 2-drug combinat ions do not need to 
have the same net interaction type for a 3-drug combination to have a particular net in teraction. Suppressive in teractions are an extreme form of antagonism: no tice that the bacteria treated with the suppress ive drug combination has a higher fitness than the sing le drugs. I mportantly, suppress ive in teractions can also be hidden when the h ighest-order comb ination has higher fitness than a lower-order combination and not the sing le drugs. Thus, hidden suppress ion can only  occur in a combina tion of 3  or more drugs. A lso note, that bacteria treated with the 3-drug combination with 
hidden sup pression has a h igher fitness compared to any of the 2-drug  combinations  but not one of the sing le drugs.  
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Related to Figure 1. Combinations are listed above bar graphs for each example (for abbreviations see 
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bacteria treated with a single antibiotic. Light gray bars represent the fitness of additive drug interactions, 
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combination to have a particular net interaction. Suppressive interactions are an extreme form of 
antagonism: notice that the bacteria treated with the suppressive drug combination has a higher fitness 
than the single drugs. Importantly, suppressive interactions can also be hidden when the highest-order 
combination has higher fitness than a lower-order combination and not the single drugs. Thus, hidden 
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3-drug combination with hidden suppression has a higher fitness compared to any of the 2-drug 
combinations but not one of the single drugs.   
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Figure 3-8. SI Figure 2. Hidden suppress ion can be within a net additive combination, Related to Figure 1. The bars in black show the effects of the sing le drugs. The grey bars on the left show the addit ive expectations g iven the s ingle drug  effects while the bar on the righ t show s the actual relative grow th when exposed to the combinat ion. The 2-drug combinat ions have varying in teractions, comb inatio n AB is an antagon istic interaction (green bar), combination  AC is an addit ive in teraction so the expected grey bar is the same as the relative growth that is observed, and BC is a 
synergistic co mbinat ion (red bar). Due to the nature of a hidden suppressive interaction, a net additive combination can have hidden suppressive in teractions (3-drug combination in dark gray) as long as at least one of the lower-order interactions is  synergis tic (2-drug combination  BC in red). Note that although the three-drug combination (dark gray) has the sa me value as the strict ly additive case (light gray) it is considered to have hidden sup pression because one of the lower-order 2-drug combinations is synergist ic (red). This makes the 3-drug combination have higher fitness 
than the 2-drug lower-order combinat ion.  

 
 

 
SI Figure 2. Hidden suppression can be within a net additive combination, Related to Figure 1. The 
bars in black show the effects of the single drugs. The grey bars on the left show the additive 
expectations given the single drug effects while the bar on the right shows the actual relative growth when 
exposed to the combination. The 2-drug combinations have varying interactions, combination AB is an 
antagonistic interaction (green bar), combination AC is an additive interaction so the expected grey bar is 
the same as the relative growth that is observed, and BC is a synergistic combination (red bar). Due to 
the nature of a hidden suppressive interaction, a net additive combination can have hidden suppressive 
interactions (3-drug combination in dark gray) as long as at least one of the lower-order interactions is 
synergistic (2-drug combination BC in red). Note that although the three-drug combination (dark gray) has 
the same value as the strictly additive case (light gray) it is considered to have hidden suppression 
because one of the lower-order 2-drug combinations is synergistic (red). This makes the 3-drug 
combination have higher fitness than the 2-drug lower-order combination. 
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Figure 3-9. SI Figure 3. Distribu tion of special cases of hidden suppression  structure, Related to Figure 5. All net synergist ic combinat ions only have hidden suppress ion that does no t adhere to any special case. 3- drug combinations were only tes ted for fully h idden suppression, hidden suppression, nested suppression,  and partially suppressed, because all o ther special cases are trivial in a 3-drug combination.  

 
 

 
SI Figure 3. Distribution of special cases of hidden suppression structure, Related to Figure 5. All 
net synergistic combinations only have hidden suppression that does not adhere to any special case. 3-
drug combinations were only tested for fully hidden suppression, hidden suppression, nested 
suppression, and partially suppressed, because all other special cases are trivial in a 3-drug combination. 
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Figure 3-10. SI F igure 4. Paths of example synergis tic drug combinat ion with hidden suppress ion, Related to Figure 7. All 120 paths for the combinat ion CPR+ERY+ STR+ FUS+TMP (for abbreviations see Table 1). Path s highlighted in red with bo ld edges contain  hidden suppression between the 5-drug c ombinat ion and the 4-drug combination CPR+ STR+ FUS+TMP (shaded in grey). These highlighted paths are the same paths shown in Figure 7.  

 
 

SI Figure 4. Paths of example synergistic drug combination with hidden suppression, Related to 
Figure 7. All 120 paths for the combination CPR+ERY+STR+FUS+TMP (for abbreviations see Table 1). 
Paths highlighted in red with bold edges contain hidden suppression between the 5-drug combination and 
the 4-drug combination CPR+STR+FUS+TMP (shaded in grey). These highlighted paths are the same 
paths shown in Figure 7.  
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Table 3-7. SI Table 1. Special Case Defini tions, Related to Figure 3. A descript ion of each special case definition for both ne t suppress ive interactions  and not net suppress ive interactions .  

 
 

Supplemental Tables 
 
SI Table 1. Special Case Definitions, Related to Figure 3. A description of each special case definition 
for both net suppressive interactions and not net suppressive interactions. 

Net Suppression Classification 
("#$ > &. () 

Hidden Suppression Classification 
*+$ +,-.	01	20345	0564578 > &. (9 

Special Case  Definition  Special	Case	 Definition 

Fully Nested 
Suppression 

In all paths, fitness at any 
order must be greater 
than the fitness of all 
lower-orders. 

Fully Nested Hidden 
Suppression 

In all paths, fitness at any 
order must be greater 
than the fitness of all 
lower-orders, excluding 
the single drugs. 

Partially Nested 
Suppression 

In at least one path, 
fitness at any order must 
be greater than the 
fitness of all lower-orders. 

Partially Nested 
Hidden Suppression 

In at least one path, 
fitness at any order must 
be greater than the 
fitness of all lower-
orders, excluding the 
single drugs. 

Fully Suppressed 

In all paths, fitness at the 
highest-order(CD) is 
greater than the fitness of 
all lower-orders. 

Fully Hidden 
Suppression 

In all paths, fitness at the 
highest-order(CD) is 
greater than the fitness of 
all lower-orders, 
excluding the single 
drugs. 

Partially Suppressed 

Only some paths have 
the highest-order(CD) 
fitness greater than all 
lower-order fitness. 

Partially Hidden 
Suppression 

Only some paths have 
the highest-order(CD) 
fitness greater than all 
lower-order fitness, 
excluding the single 
drugs. 

Suppressive 
Interaction with 
Hidden Suppression 

The highest-order 
combination does not 
fulfill any other conditions 
but still has at least one 
hidden suppressive 
interaction.  

Hidden Suppressive 
Interaction 

The highest-order 
combination does not 
fulfill any above 
conditions, but still has 
an element of hidden 
suppression. 

No Hidden 
Suppression 

No paths have the 
highest-order(CD) fitness 
greater than lower-order 
fitness, excluding first-
order(CE). 
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Table 3-8. SI Table 2. Lo gist ic regression of single drug w ith 4-drug combinat ions w ith some levels of suppress ive interactions (h idden and net), Related to Tab le 3. Terms in bo ld have a significant posit ive association with suppress ive interactions .  
Table 3-9. SI Table 3. Lo gist ic regression of pairwise drug s with 4-drug combinations with some levels of suppressive interactions (hidden and net), Related to Table 4. Terms in bold have a sign ificant pos itive association w ith suppressive interactions.  

 
 

SI Table 2. Logistic regression of single drug with 4-drug combinations with some levels of 
suppressive interactions (hidden and net), Related to Table 3. Terms in bold have a significant 
positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds Ratio Probability 
0.30% 99.70% 

AMP -0.270 -0.414 -0.127 2.50E-07 0.763 43% 
CPR 0.430 0.287 0.574 2.37E-16 1.537 61% 
DOX 0.214 0.071 0.357 4.22E-05 1.239 55% 
ERY 0.517 0.374 0.661 7.30E-23 1.677 63% 
FOX 0.385 0.242 0.528 2.09E-13 1.469 60% 
FUS -0.829 -0.976 -0.683 3.75E-54 0.437 30% 
STR -1.333 -1.481 -1.187 2.61E-135 0.264 21% 
TMP 0.799 0.655 0.944 1.11E-51 2.223 69% 

AIC: 6693.7 Bonferroni-corrected F: 0.00625 Degrees of Freedom: 5670 
 
SI Table 3. Logistic regression of pairwise drugs with 4-drug combinations with some levels of 
suppressive interactions (hidden and net), Related to Table 4. Terms in bold have a significant 
positive association with suppressive interactions. 

Term Coefficient Confidence Interval p-value Odds Ratio Probability 0.10% 99.90% 
AMP+CPR 0.329 0.036 0.622 4.65E-04 1.389 58% 
AMP+DOX 0.039 -0.251 0.328 0.677 1.039 51% 
AMP+ERY -0.548 -0.839 -0.258 3.69E-09 0.578 37% 
AMP+FOX -0.185 -0.477 0.106 0.047 0.831 45% 
AMP+FUS -0.356 -0.653 -0.061 1.71E-04 0.700 41% 
AMP+STR -0.416 -0.716 -0.119 1.36E-05 0.660 40% 
AMP+TMP 0.694 0.395 0.995 5.26E-13 2.001 67% 
CPR+DOX 0.622 0.327 0.920 5.87E-11 1.863 65% 
CPR+ERY 0.860 0.559 1.165 7.30E-19 2.363 70% 
CPR+FOX -0.519 -0.815 -0.224 4.02E-08 0.595 37% 
CPR+FUS -0.520 -0.816 -0.226 3.69E-08 0.595 37% 
CPR+STR -0.652 -0.949 -0.358 5.72E-12 0.521 34% 
CPR+TMP 0.958 0.641 1.281 8.83E-21 2.606 72% 
DOX+ERY 0.191 -0.101 0.485 0.042 1.211 55% 
DOX+FOX 0.517 0.228 0.807 2.48E-08 1.677 63% 
DOX+FUS -0.132 -0.421 0.156 0.153 0.877 47% 
DOX+STR -0.574 -0.868 -0.283 8.63E-10 0.563 36% 
DOX+TMP -0.159 -0.463 0.147 0.104 0.853 46% 
ERY+FOX 0.122 -0.172 0.418 0.198 1.129 53% 
ERY+FUS -0.026 -0.314 0.260 0.774 0.974 49% 
ERY+STR -0.098 -0.387 0.189 0.286 0.906 48% 
ERY+TMP 0.724 0.413 1.041 5.59E-13 2.063 67% 
FOX+FUS -0.250 -0.540 0.038 6.77E-03 0.779 44% 
FOX+STR -0.012 -0.302 0.276 0.893 0.988 50% 
FOX+TMP 1.204 0.897 1.518 7.50E-34 3.334 77% 
FUS+STR -0.054 -0.361 0.252 0.584 0.948 49% 
FUS+TMP -0.497 -0.798 -0.200 2.11E-07 0.608 38% 
STR+TMP -1.087 -1.392 -0.787 2.92E-29 0.337 25% 

AIC: 6308.8 Bonferroni-corrected F: 0.00179 Degrees of Freedom: 5670 
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Table 3-10. SI Table 4. L ogis tic regression of the main mechanism of actions with 4-drug combinations with some levels of suppressive interactions (hidden and net), Related to Table 5. Terms in bold have a sign ificant pos itive association w ith suppressive interactions.  
Table 3-11. SI Table 5 Logis tic regression of the pairw ise main mechanism of actions with 4-drug combinat ions w ith some levels of suppressive interactions (hidden and net), Related to Table 6. Terms in bold have a significant po sit ive association with  suppress ive interactions.  

 
 

SI Table 4. Logistic regression of the main mechanism of actions with 4-drug combinations with 
some levels of suppressive interactions (hidden and net), Related to Table 5. Terms in bold have a 
significant positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds 
Ratio Probability 

0.50% 99.50% 
Cell Wall 0.280 0.136 0.425 5.69E-07 1.324 57% 

Folic Acid Biosynthesis 0.848 0.709 0.988 1.64E-55 2.335 70% 
DNA gyrase 0.493 0.355 0.632 3.68E-20 1.637 62% 

Ribosome, 30S -1.706 -1.877 -1.540 1.47E-149 0.182 15% 
Ribosome, 50S 0.613 0.468 0.760 3.23E-27 1.847 65% 

AIC: 6871.4 Bonferroni-corrected F: 0.01 Degrees of Freedom: 5670 
 
SI Table 5. Logistic regression of the pairwise main mechanism of actions with 4-drug 
combinations with some levels of suppressive interactions (hidden and net), Related to Table 6. 
Terms in bold have a significant positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds 
Ratio Probability 

0.20% 99.80% 
Cell Wall+Folic Acid 

Biosynthesis 1.112 0.796 1.433 6.62E-24 3.040 75% 
Cell Wall+DNA gyrase -0.219 -0.540 0.102 0.049 0.803 45% 

Cell Wall+Ribosome, 30S -0.488 -0.841 -0.131 7.11E-05 0.614 38% 
Cell Wall+Ribosome, 50S 0.263 -0.071 0.592 0.022 1.301 57% 

Folic Acid 
Biosynthesis+DNA 

gyrase 
0.870 

0.564 1.184 
5.15E-16 2.388 70% 

Folic Acid 
Biosynthesis+Ribosome, 

30S 
-0.737 

-1.084 -0.399 
5.13E-10 0.479 32% 

Folic Acid 
Biosynthesis+Ribosome, 

50S 
0.183 

-0.160 0.528 
0.124 1.201 55% 

DNA gyrase+Ribosome, 
Ribosome, 30S -0.418 -0.769 -0.072 5.34E-04 0.658 40% 

DNA gyrase+Ribosome, 
Ribosome, 50S 0.782 0.459 1.109 3.76E-12 2.185 69% 

Ribosome, 30S+Ribosome, 
50S -0.300 -0.641 0.046 0.012 0.741 43% 

Cell Wall+Cell Wall -0.081 -0.288 0.127 0.263 0.923 48% 
Ribosome, 30S+Ribosome, 

30S -0.749 -0.971 -0.533 4.70E-23 0.473 32% 

Ribosome, 
50S+Ribosome, 50S 0.346 0.138 0.556 1.82E-06 1.413 59% 

AIC: 6695.6 Bonferroni-corrected F: 0.0039 Degrees of Freedom: 5670 
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Table 3-12. SI Table 6. L ogis tic regression of s ingle drug w ith 5-drug combinations  with some levels of suppress ive interactions  (hidden and net), Related to Table 3. Terms in bold have a significant posi tive associat ion with suppressive in teractions.  
Table 3-13. SI Table 7. L ogis tic regression of pairwise drugs with 5-drug combinations with some levels of suppressive interactions (hidden and net), Related to Table 4. Terms in bold have a significant posit ive association  with suppressive interactions.  

 
 

SI Table 6. Logistic regression of single drug with 5-drug combinations with some levels of 
suppressive interactions (hidden and net), Related to Table 3. Terms in bold have a significant 
positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds Ratio Probability 
0.30% 99.70% 

AMP 0.033 -0.057 0.123 0.317 1.033 51% 
CPR 0.351 0.261 0.441 9.27E-27 1.420 59% 
DOX 0.148 0.058 0.237 7.02E-06 1.159 54% 
ERY 0.261 0.172 0.351 1.65E-15 1.299 56% 
FOX 0.205 0.115 0.294 4.60E-10 1.227 55% 
FUS -0.465 -0.556 -0.374 5.03E-44 0.628 39% 
STR -0.292 -0.383 -0.201 1.36E-18 0.747 43% 
TMP 0.572 0.482 0.661 2.25E-68 1.771 64% 

AIC: 17458 Bonferroni-corrected F: 0.00625 Degrees of Freedom: 13602 
 
SI Table 7. Logistic regression of pairwise drugs with 5-drug combinations with some levels of 
suppressive interactions (hidden and net), Related to Table 4. Terms in bold have a significant 
positive association with suppressive interactions. 

Term Coefficient Confidence Interval p-value Odds Ratio Probability 0.10% 99.90% 
AMP+CPR 0.738 0.547 0.929 1.41E-33 2.091 68% 
AMP+DOX -0.008 -0.197 0.181 0.891 0.992 50% 
AMP+ERY -0.480 -0.669 -0.292 1.78E-15 0.619 38% 
AMP+FOX -0.065 -0.254 0.124 0.286 0.937 48% 
AMP+FUS 0.298 0.097 0.500 3.75E-06 1.347 57% 
AMP+STR -0.131 -0.327 0.066 0.037 0.877 47% 
AMP+TMP -0.041 -0.232 0.149 0.499 0.960 49% 
CPR+DOX 0.128 -0.062 0.318 0.035 1.136 53% 
CPR+ERY 0.513 0.323 0.703 3.81E-17 1.670 63% 
CPR+FOX -0.337 -0.526 -0.149 2.29E-08 0.714 42% 
CPR+FUS -0.238 -0.434 -0.041 1.60E-04 0.788 44% 
CPR+STR -0.570 -0.766 -0.375 7.58E-20 0.565 36% 
CPR+TMP 0.704 0.512 0.898 4.02E-30 2.023 67% 
DOX+ERY 0.266 0.076 0.457 1.31E-05 1.305 57% 
DOX+FOX 0.496 0.306 0.687 3.98E-16 1.642 62% 
DOX+FUS -0.502 -0.697 -0.307 9.13E-16 0.606 38% 
DOX+STR -0.461 -0.657 -0.266 1.73E-13 0.631 39% 
DOX+TMP 0.740 0.548 0.933 3.89E-33 2.095 68% 
ERY+FOX 0.369 0.180 0.560 1.28E-09 1.447 59% 
ERY+FUS -0.483 -0.678 -0.289 7.90E-15 0.617 38% 
ERY+STR -0.183 -0.378 0.012 3.45E-03 0.833 45% 
ERY+TMP 0.821 0.629 1.015 2.54E-40 2.274 69% 
FOX+FUS -0.609 -0.803 -0.415 1.19E-22 0.544 35% 
FOX+STR 0.466 0.267 0.666 2.80E-13 1.594 61% 
FOX+TMP 0.315 0.124 0.507 2.59E-07 1.371 58% 
FUS+STR 1.174 0.933 1.426 3.24E-50 3.236 76% 
FUS+TMP -0.388 -0.585 -0.193 6.09E-10 0.678 40% 
STR+TMP -0.802 -0.999 -0.607 2.60E-37 0.448 31% 
AIC: 17458 Bonferroni-corrected F: 0.00179 Degrees of Freedom: 13602 
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Table 3-14. SI Table 8. L ogis tic regression of the main mechanism of actions with 5-drug combinations with some levels of suppressive interactions (hidden and net), Related to Table 5. Terms in bold have a sign ificant pos itive association w ith suppressive interactions.  
Table 3-15. SI Table 9. L ogis tic regression of the pairwise main mechanism of actions with 5-drug combinat ions w ith some levels of suppressive interactions (h idden and net), Related to Table 6.  Terms in bo ld have a significant posit ive associatio n with suppress ive interactions .  

 
 

SI Table 8. Logistic regression of the main mechanism of actions with 5-drug combinations with 
some levels of suppressive interactions (hidden and net), Related to Table 5. Terms in bold have a 
significant positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds 
Ratio Probability 

0.50% 99.50% 
Cell Wall 0.498 0.374 0.621 3.289E-25 1.645 62% 

Folic Acid Biosynthesis 0.677 0.586 0.767 1.343E-82 1.967 66% 
DNA gyrase 0.457 0.366 0.548 1.416E-38 1.579 61% 

Ribosome, 30S -1.296 -1.454 -1.142 8.45E-102 0.274 21% 
Ribosome, 50S 0.585 0.462 0.709 2.201E-34 1.795 64% 

AIC: 17234 Bonferroni-corrected F: 0.01 Degrees of Freedom: 13602 
 
SI Table 9. Logistic regression of the pairwise main mechanism of actions with 5-drug 
combinations with some levels of suppressive interactions (hidden and net), Related to Table 6. 
Terms in bold have a significant positive association with suppressive interactions. 

Term Coefficient 
Confidence 

Interval p-value Odds 
Ratio Probability 

0.20% 99.80% 
Cell Wall+Folic Acid 

Biosynthesis -1.609 -2.078 -1.165 2.14E-24 0.200 17% 

Cell Wall+DNA gyrase -0.984 -1.397 -0.580 3.45E-12 0.374 27% 
Cell Wall+Ribosome, 30S -0.983 -1.617 -0.369 5.34E-06 0.374 27% 

Cell Wall+Ribosome, 50S 3.715 2.907 4.585 1.67E-37 41.06 98% 
Folic Acid 

Biosynthesis+DNA 
gyrase 

0.431 
0.207 0.654 

2.47E-08 1.540 61% 

Folic Acid 
Biosynthesis+Ribosome, 

30S 
1.932 

1.329 2.576 
3.81E-19 6.900 87% 

Folic Acid 
Biosynthesis+Ribosome, 

50S 
0.193 

-0.220 0.603 
0.174 1.213 55% 

DNA gyrase+Ribosome, 
Ribosome, 30S 1.300 0.748 1.889 4.53E-11 3.669 79% 

DNA gyrase+Ribosome, 
Ribosome, 50S 0.030 -0.373 0.429 0.827 1.031 51% 

Ribosome, 30S+Ribosome, 
50S -3.349 -4.018 -2.712 1.04E-49 0.035 3% 

Cell Wall+Cell Wall 0.322 0.197 0.448 1.44E-13 1.379 58% 
Ribosome, 

30S+Ribosome, 30S 0.395 0.272 0.521 4.36E-20 1.485 60% 
Ribosome, 

50S+Ribosome, 50S 0.521 0.395 0.650 4.36E-32 1.683 63% 

AIC: 16981 Bonferroni-corrected F: 0.0039 Degrees of Freedom: 13602 
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Transparent Methods 
 
Experimental set-up of Tekin et al. (2018) 
 
The data set examined was originally collected and published in Tekin et al. (2018). A pathogenic E. coli 
strain CFT073 was isolated from human clinical specimens and obtained from ATCC (700928). A culture 
of CFT073 was streak-purified on Luria Broth (LB) (10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl) 
agar and a single colony was selected to make individual aliquots of bacteria stored in 25% glycerol and 
frozen at -80°C. For each day of experiments, a new aliquot was used, which was thawed and diluted by 
a factor of 102 in LB and a culture was grown for approximately 4 hours at 37°C.  
 
Eight different antibiotics that span a range of mechanisms of action was used (Table 1): Ampicillin 
(A9518), Cefoxitin Sodium Salt (C4786), Ciprofloxacin Hydrochloride (MP Biomedicals 199020), 
Doxycycline Hyclate (D9891), Erythromycin (E6376), Fusidic Acid Sodium Salt (F0881), Streptomycin 
(S6501), and Trimethoprim (T7883) (Table 1). All drugs were obtained from Sigma Aldrich unless 
otherwise noted. Each antibiotic was prepared in solution in 100% DMSO, except for streptomycin which 
was dissolved in 50% DMSO. 
 
Dose-response curves were generated using GraphPad Prism 7 
(http://www.graphpad.com/quickcalcs/Ecanything1/) to estimate IC10, IC5, and IC1 for each antibiotic, 
using 20-step 2-fold dilutions beginning at 0.1mM. For fusidic acid, the concentration used to begin the 2-
fold dilutions was 1mM, since using 0.1mM to begin the dilutions resulted in the inability to determine an 
IC50 using Graphpad Prism 7. Three concentrations at the sub-inhibitory level were used so that growth 
still occurred but was slowed in comparison to no-growth bacteria (Table 1). Once usable concentrations 
were determined, source plates (one plate with one antibiotic and two plates with two antibiotics 
combined in DMSO) were made using 100% DMSO except in the case of streptomycin where 50% 
DMSO was used. 
 
All possible 2-, 3-, 4-, and 5-drug combinations of the antibiotics listed in Table 1 at each of the three 
possible drug concentrations were tested. This resulted in 13,608 5-drug-dose combinations, 5,670 4-
drug-dose combinations, 1,512 3-drug-dose combinations, 251 2-drug-dose combinations, and 24 single 
drug treatments. Each well was filled on each experimental plate to a total volume of 50μL. 25μL of LB 
was pinned with 250nL of antibiotics from the appropriate source plates and 25μL of the inoculum (a 10-4 
dilution of the over day culture). Plates were incubated at 37°C and read at OD590 every 4hr for 16hr. 
Each combination had a minimum of three replicates.  
 
Calculation of growth measurements 
 
Growth measurements for each well were approximated from the maximum linear slope of the log 
transformed optical density (OD) readings that occurred over each time step (0hr to 4hr, 4hr to 8hr, 8hr to 
12hr, and 12hr to 16hr) as a relative proxy to an exponential growth rate. These growth measurements 
were then normalized to the positive no-drug control wells to determine relative fitness values. Fitness 
values below 5% were considered to be lethal and fitness values that were +100% were set back to be 
100%. These fitness values were then used to evaluate drug interactions based on the methods used in 
Tekin et al. (2018). 
 
Measurement of interactions by Tekin et al. (2018) 
 
To measure the deviation from additivity, known as “net interactions,” Bliss Independence methods (Bliss, 
1939) were followed. The Bliss independence method is widely used to categorize interactions  (Sühnel, 
1998, Meletiadis et al., 2005, Yeh et al., 2006, Petraitis et al., 2009, Zhao et al., 2014, Baeder et al., 
2016, Koch et al., 2016, Liu et al., 2018). Bliss independence assumes that at a set concentration of an 
antibiotic the relative effect is completely independent of each other. A deviation from this expectation 
results in either a synergistic interaction (positive deviation, Figure 1) or antagonistic interaction (negative 
deviation, Figure 1). 
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To measure net interactions, methods outlined in Beppler et al. (2016), Tekin et al. (2016), and Tekin et 
al. (2018) were used. This framework is used to examine 2-, 3-, 4-, and 5-drug combinations but can also 
be expanded to N number of drugs (Tekin et al., 2018). To find the net interaction, or the deviation from 
additivity for N drugs (DAN) the fitness effects (C) contributed by each drug alone are removed from the 
overall fitness effect (CGH,GJ,GK…GM) assuming Bliss independence (Equation 1). Note that “Deviation from 
Additivity” could more accurately be termed “Deviation from Independence” but because of prior usage of 
the term DA in the field of systems biology and microbiology, we continue to use this terminology here.  
 

NOPQR-0.	&: ["#U]"&,"W,"(…"U = +"&,"W,"(…"U −+"&+"W+"( …+"U 

After the initial interaction value is determined, a rescaling process is used to better distinguish between 
interaction types (Tekin et al., 2016).  For rescaling, when the DA is synergistic one rescales to the lethal 
case. This is because when measuring growth, it is not possible to be deader than dead. If the interaction 
was not synergistic then it was normalized to the minimum fitness of an individual drug within the 
deviation from additivity formulas. Equation 2 shows the example for a 3-drug combination.  

NOPQR-0.	W:	"#Z[\]^_[` =
["#U]"&,"W,"(…"U

abcd(+"&, 	+"W, +"(,…+"U)−+"&+"W+"( …+"Ua
 

Emergent interactions were also examined. An emergent interaction is the interaction that is unique to 
either the three, four, or five drugs being present within a combination. For example, when considering all 
possible drug effects that can be occurring within a single 3-drug combination there are a total of seven 
effects. First, all three individual drugs have their own effect. These effects are accounted for when we 
are determining the deviation from additivity. Next, there are three pairwise interactions that can also 
interact with the individual drug effects of the third drug. And finally, there is the emergent effect, which is 
the interaction that is strictly because of the three drugs being in combination. Similar to the DA 
calculations the emergent calculations (E3) removes the effects of the single drugs but then also removes 
the effects of the pairwise interaction only leaving the effects uniquely due to the 3-drug combination 
(Equation 3). This can then be rewritten only in fitness effects. (Equation 4). 

NOPQR-0.	(:	e( = "#f,g,h − +f"#g,h − +g"#f,h − +h"#f,g 
NOPQR-0.	i:e( = +fgh −+f+gh −+g+hf −+h+gh + W+f+g+h 

 

The same principals can be expanded out to accommodate N number of drugs within a combination 
Tekin et al. (2018). These emergent interactions were then rescaled in a similar way as the DA values as 
described in Tekin et al. (2018). 

Analysis of Prevalence and Patterns of Suppression and Hidden Suppression 
 
The median DAN of drug-dose replicate experiments was used to determine patterns of suppression in 
three, four, and five drug-dose combinations. A cutoff value of DAN > 1.3 to classify combinations as net 
suppressive was used. This cutoff value is based on the framework used by Beppler et al. (2017), which 
only examined 2-drug and 3-drug combinations. All combinations, regardless of net interaction, were 
screened for hidden suppression. 
 
Following this identification of net interactions, “paths” were generated for each of the drug-dose 
combinations. A “path” is a unique heterarchical grouping containing one representative of each of all the 
lower-order combinations within the highest-order combination. These paths facilitate comparisons of 
nested fitness values within N-order combinations, which are used to determine cases of suppression and 
hidden suppression. For instance, when evaluating possible hidden suppression in a 4 drug-dose 
combination, pairwise drug-dose combination values can only be compared to those of 3 drug-dose 
combinations that they are a part of, rather than those of all possible 3 drug-dose combinations (Figure 
3A). Fitness values of all combinations and single drugs were included in these paths, resulting in six 
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paths for each 3-drug-dose combination, 24 paths for each 4-drug-dose combination (Figure 3A), and 120 
paths for each 5-drug-dose combination (Figure 3B).  
 
To identify the presence of hidden suppression, the fitness of the highest-order combination 
*C"&,"W,"(…"U9 was divided by the fitness of the lower-order combination with the smallest fitness 
*min*C"&,"W,"(…"Um& …	C"&,"W99 (Equation 5). 
 

Equation 5. nc``[d	\oppZ[\cqd	 ⇔	 +"&,"W,"(…"U
,-.s+"&,"W,"(…"Um&,….+"&,"W	t

≥ &.3 

  
A value greater than or equal to 1.3 indicates the presence of hidden suppression. Once the presence of 
hidden suppression was determined within a combination, each path was examined in-depth for all 
possible hidden suppression relationships. The net interaction, representative fitness values of inclusive 
combinations, and single drugs were compared and used to assess if the combination could be 
considered a special case, listed in SI Table 1.   
 
Data for combinations with any suppressive interactions, net or hidden, was analyzed through the use of 
logistic regression in R using the ‘glm’ function. The variables were first changed to binary, with 1 
indicating presence and 0 indicating the absence of drug or the main mechanism of action creating the 
initial sets of predictors. Because hidden suppressive interactions require at least three drugs to be 
present to be defined, this makes it necessary for the logistic regression model to not have an intercept 
term. This is because the case where all dummy variables are zero corresponds to no drug being present, 
in which case any suppressive interaction is not possible by definition. Single drugs and 2-drug 
combinations were evaluated separately for a clearer interpretation of the data and to ensure model 
identifiability without removing variables. Coefficients, confidence intervals, p-values, odds ratios, and the 
probability from the logistic regressions are available in Tables 3-6 and SI Tables 2-9. 

 
Program Languages Used 
 
The data analysis is performed in MATLAB version 2015a, Python version 3.7.0, and R 4.0.2. PRISM was 
used by Tekin et al. (2018) for their study but was not needed in the reanalysis performed by this study. 
Measurement of interactions and interaction type determination was performed in MATLAB. Generation 
of paths and the identification of hidden suppression and special cases were performed in Python. The 
determination of the growth measurements and logistic regressions were performed in R. 
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 The evolution of resistance to synergistic multi-drug combinations is 

more complex than evolving resistance to each individual drug component.   

 

Abstract 

 Multidrug antibiotic resistance is an urgent public health concern. Multiple strategies 

have been suggested to alleviate this problem, including the use of antibiotic combinations and 

cyclic therapies. Here we examine how resistance to the combinations affects the susceptibility 

to each individual component, and conversely, how resistance to the individual components of 

highly synergistic three-drug combinations can affect the efficacy and interaction of those 

combinations. To evaluate this, we evolved multiple strains of resistant Staphylococcus 

epidermidis in the lab. We show that evolving resistance to four highly synergistic combinations 

does not result in cross-resistance to all of its components, nor does prior resistance to one 

component of the combination guarantee survival when exposed to the combination.  Our results 

have also identified a potential sequence among the combinations and individual drugs that result 

in continual susceptibility to the treatment option next in the sequence. This study highlights the 

importance of considering higher-order drug combinations in cyclic therapies and how antibiotic 

interactions can influence the evolutionary trajectory of bacterial populations. 

 

Introduction 

Antibiotic resistance is a problem facing humanity on a global scale (Ventola, 2015; 

Ahmad & Khan, 2019; Hernando-Amado et al., 2019; Coates et al., 2020; Maillard et al., 2020). 

Not only is drug resistance to a single drug a threat to public health, but even more concerning, 

multi-drug resistance in bacteria is reducing the number of viable treatment options. Some 
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estimates show that by 2050 there will no longer be any effective antibiotic options unless new 

drugs are developed or discovered (Jin et al., 2020). Multiple strategies have been suggested to 

mitigate this ever-growing problem including cycling through antibiotic treatments (Nichol et al., 

2015) and the use of combinational drug therapy (e.g., to combine antibiotics or combine 

antibiotics with alternative therapies, such as phage therapy) (Vivas et al., 2019). However, the 

use of combinational drug therapy introduces new factors to consider. Here we examine how 

evolved resistant bacterial populations respond to drug combinations and how drug interactions 

shape evolutionary responses to additional antibiotic exposure. 

Bacteria evolve antibiotic resistance primarily through one of two ways: acquired resistance 

through spontaneous mutation and acquired resistance through horizontal gene transfer (Blair et 

al., 2015). Typically, for a single antibiotic, the resistance level is evaluated at the minimum 

inhibitory concentration (MIC). This is the concentration of an antibiotic that allows for 0% to 

10% growth, depending on the specific method used when evaluating growth (Garrod, 1935; Eagle 

& Musselman, 1948; Haight & Finland, 1952; Thomson & Sanders, 1994). However, when 

multiple antibiotics with multiple mechanisms are used in combination, there are added 

complexities and nonlinearities (Loewe, 1953; Beppler et al., 2016; Tekin et al., 2016; Beppler et 

al., 2017). Now, the cell is no longer facing one specific mechanism to evolve resistance to but 

rather multiple mechanisms.  

No matter how resistance evolves initially, the resulting mutations can affect the outcomes 

of future antibiotic exposures (Munck et al., 2014; Nichol et al., 2015; Barbosa et al., 2017; Gomez 

et al., 2017; Nichol et al., 2019; Santos-Lopez et al., 2019). If the specific mutations from the initial 

adaptation confer a higher tolerance to a different antibiotic, then it has gained cross-resistance. 

Cross-resistance is when resistance initially evolved to antibiotic treatment A indirectly gains 
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resistance to antibiotic treatment B (Haight & Finland, 1952; Sanders, 2001; Obolski et al., 2015). 

Alternatively, if the specific mutations confer a lower tolerance to a different antibiotic treatment 

(treatment B), then it is termed collateral sensitivity (Obolski et al., 2015; Pál et al., 2015). 

Exploiting these relationships to find combinations of antibiotics to be used cyclically can be one 

strategy of addressing the antibiotic resistance problem (Kollef, 2001; Brown & Nathwani, 2005; 

Masterton, 2005; Nichol et al., 2015; Nichol et al., 2019; Kavanaugh et al., 2021). This is because 

one goal of the cycle is always to have at least one viable antibiotic treatment available thus locking 

the bacterial population in a constant state of susceptibility to current treatment options.   

Another proposed method for addressing multidrug antibiotic resistance is through the use 

of antibiotic combinations simultaneously (Vivas et al., 2019). These antibiotic combinations can 

be categorized by three main types of interactions resulting from the combined effect: (1) A 

combination is considered additive if the combination yields the expected response of the 

combined effects based on the single drugs alone. (2) A synergistic combination yields a stronger 

response when compared to additivity (Yeh et al., 2009). Synergistic combinations have a 

stronger selection strength, making it more likely for resistance mutations to quickly sweep 

through a population (Orr, 2000; Pepin & Wichman, 2008) and can cause faster adaptation rates 

(Hegreness et al., 2008). (3) Finally, an antagonistic combination yields a weaker response when 

compared to additivity. Antagonistic combinations are avoided in the clinic as they require larger 

doses to have the same killing efficiency as synergistic combinations do.  

Intriguingly, antagonistic combinations have been shown to have several advantages for 

slowing the evolution of resistant strains (Hegreness et al., 2008; Michel et al., 2008; Ventola, 

2015; Maillard et al., 2020). Synergistic two-drug combinations have been shown to increase the 

likelihood of drug resistance to evolve via spontaneous mutants. Conversely, antagonistic 
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combinations show a decrease in the likelihood of resistance evolving (Michel et al., 2008). 

Additionally, Hegreness et al. (2008) showed that antagonistic two-drug combinations slowed 

the rate of resistance evolution when compared to the rate of resistance evolution to two-drug 

antagonistic combinations. These findings highlight how antibiotic interactions can be leveraged 

to slow the evolution of multidrug antibiotic combination resistance. 

In multidrug combinations, many factors contribute to the overall fitness effect of the 

combination. The first factors to consider are the effects of each drug acting alone. Next, we 

must consider the effects of the additive interactions between the smaller sub-sets of antibiotics 

and the other single antibiotics (or combination of antibiotics) in the mix. Finally, we need to 

examine the highest order emergent effect—that is, the effect of the interaction between all drugs 

present in the combination. All these factors influence how a combination will ultimately affect a 

bacterial population. 

Numerous studies have examined the evolutionary effects of cross-resistance and collateral 

sensitivity among single antibiotics in multiple species (Munck et al., 2014; Nichol et al., 2015; 

Barbosa et al., 2017; Gomez et al., 2017).  The trajectory of resistance evolution can be 

influenced by using knowledge of collateral effects to create a specific sequence of antibiotics to 

steer it away from resistance evolution (Nichol et al., 2015). In addition, some mutations, such as 

those affecting the ribosome, have been identified that increase the evolution of multidrug 

resistance (Gomez et al., 2017). Yet other studies have questioned just how predictable collateral 

effects of resistance evolution are. These studies have found high amounts of stochasticity and 

variability of these collateral effects in replicate populations (Barbosa et al., 2017; Nichol et al., 

2019). Studies have also expanded into evaluating how pairwise combinations align with cross-

resistance and collateral sensitivity (Munck et al., 2014; Raymond, 2019). These studies found 
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that bacterial populations exposed to collaterally-sensitive antibiotic combinations are less likely 

to evolve resistance to the combination. Conversely, antibiotic pairs with similar or the same 

cellular/physiological targets that result in cross-resistance tend to increase the likelihood of 

evolution of resistance to the combination (Munck et al., 2014). 

When antibiotics are used in combinations, they are typically used at concentrations near or 

above the MIC (Martin-Loeches et al., 2010; Paul et al., 2014; Kleine et al., 2017). It was 

previously thought that weakening the selection pressure by using lower antibiotic 

concentrations might curb the rapid evolution of resistance. However, for some antibiotic 

combinations, the opposite is true. Short-term higher doses are more effective at preventing 

resistance evolution compared to weaker doses (Bollenbach, 2015). When exposed to one 

antibiotic, at sub-inhibitory concentrations, an SOS response system is induced in bacteria. This 

SOS response allows for damaged DNA to be bypassed by the cell which in turn allows for 

mutation rates to increase (Chow et al., 2021). Thus, the effect of combinations could also be 

dependent on the dosages.  

Our study focuses on Staphylococcus epidermidis, a gram-positive bacterium that colonizes 

skin and mucosa. S. epidermidis was previously considered an innocuous commensal 

microorganism on the human skin. However, it has recently become known as an opportunistic 

pathogen that results in nosocomial infections, particularly in indwelling medical devices such as 

catheters (Otto, 2009). We investigate the effects of antibiotic resistance to both the individual 

antibiotics by themselves and the combinations of antibiotics. We examine four highly 

synergistic three-drug combinations where all antibiotics are at sub-inhibitory concentrations (< 

30% inhibition). These combinations are made up of piperacillin and tetracycline, with a third 

antibiotic of either: chloramphenicol, doxycycline, erythromycin, or neomycin. Specifically, we 
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address the following questions: (1) How does resistance to a three-drug combination affect the 

sensitivity to individual components of the combination? (2) Conversely, how does resistance to 

components of a three-drug combination affect sensitivity to the combination? (3) How does the 

interaction of a combination change after bacteria evolve resistance to one part of the antibiotic 

combination?  

 

Materials and Methods 

Creation and Isolation of Resistant Mutants  

Eight strains of resistant Staphylococcus epidermidis (ATCC 14990) were independently 

evolved in a stepwise manner to each of the six antibiotics (Table 4-1) and each of the four drug 

combinations (Table 4-2). From here onward, individual antibiotics will be spelled out while 

combinations of antibiotics will be listed using their abbreviations (Table 4-1). For example, a 

combination consisting of piperacillin, tetracycline, and erythromycin will be listed as 

PIP+TET+ERY. 

To start the initial populations, we prepared a highly dense cell culture of S. epidermidis 

by pinning the parental strain of S. epidermidis into 200µL per well of a 96-well plate of 

Lysogeny Broth (LB) media (10g tryptone, 5g yeast extract, and 10g NaCl) and incubated the 

culture for ~16 hours at 37°C shaking at 130rpm. To evolve resistance to a single antibiotic 

(those listed in Table 4-1), the highly-dense cell culture was then pinned over to a 96-well plate 

containing 200µL per well of LB and the antibiotic concentration for day 1, beginning with 50% 

of the parental minimum inhibitory concentration (MIC). The antibiotic concentration was 

continually doubled every 48hrs over 10 days, roughly 100 generations, resulting in a final drug 

concentration of 800% of the parental MIC. To evolve combination-resistant strains, we also 



 71 

began with the parental strain of S. epidermidis. Similar to the creation of our single-drug-

resistant mutants, we utilized a high-density cell culture of the parental strain. These high-density 

cell cultures were then pin-transferred into wells of a new 96-well plate filled with 200µL of LB 

media with one of the four, drug combinations, as listed in Table 4-2. These 96 well-plates were 

then incubated at 37°C for approximately 24 hours. Pinning the cell cultures into fresh media and 

antibiotics occurred every 24 hours and continued for 10 days or approximately 100 generations. 

Drug concentrations for all different drug combinations remained at constant levels for the entire 

time of the experimental evolution. This was done to keep the interactions within a combination 

constant (Berenbaum et al., 1983).  

Once the 10-day experimental evolution component concluded, we isolated a single 

colony from each independently evolved population (each well). For the antibiotic 

chloramphenicol, resistant mutants were collected at 400% of the parental MIC, since growth 

would not occur at any higher concentrations. We isolated and confirmed resistance by streak 

purifying onto LB agar with 800% parental MIC of the respective antibiotic (400% parental MIC 

for chloramphenicol) or the respective antibiotic combination. We took the selected colonies 

from the streak purification and grew them in 2mL Luria Broth and incubated the culture for ~16 

hours at 37°C shaking at 160rpm. This cell culture was then re-purified again on LB agar with 

the respective 800% (or 400% for CHL) parental MIC of the respective drug or the respective 

antibiotic combination. Master tubes with aliquots were made from a single colony selected from 

each of the second purifications that were cultured and stored at -80°C (in 25% glycerol). 

Determination of the Minimum Inhibitory Concentration (MIC) 

The minimum inhibitory concentrations (MICs) were determined using a 20-step, two-

fold serial dilution of the antibiotics starting at 2000µg/mL. The layout for determining the MIC 
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of all bacterial strains is seen below in Figure 4-1A. Each well had a total working volume of 

200µL, was inoculated with 50µL 1×105 CFU/mL, and incubated at 37°C for 22hr (Reller et al., 

2009). A total of four technical replicates for each MIC determination was done. The data from 

all four replicates were pooled together into the ‘drc’ package in R to model the dose-response 

curve (Ritz et al., 2015; Ritz et al., 2016). This model was then used to estimate the 

concentration of antibiotics needed to inhibit growth by 95%. We also included negative controls 

on each of the 96 well-plates to confirm that there was no contamination of our media.  

Combination Interaction Determination 

The single-drug resistant mutants showed a phenotype that aggregates at the bottom of 

the standard flat-well plates. This is not uncommon when resistance evolves (Cushnie et al., 

2007; Haaber et al., 2012; Dastgheyb et al., 2015; Ritz et al., 2015; Secor et al., 2018; Lozano-

Huntelman et al., 2019). This aggregation does not allow for an accurate OD reading that 

correlates to the number of cells in the culture. To obtain accurate OD readings we used deep 96-

well plates for the drug combinations to resuspend the cells in the media without creating 

bubbles. The plate set-up includes all high and lower-order combinations along with positive and 

negative controls as a means to compare the relative growth of bacteria (Figure 4-1B). The total 

working volume of these deep well plates was 400µL and each well was comprised of 100µL of 

LB and 100µL of the drug combination at their specified concentration, which is described in 

Table 4-2. Additionally, these deep-well plates were inoculated with 200µL 1×105 CFU/mL 

incubated for 24 hours at 37°C. After the 24-hour incubation period was complete, 200µL of the 

culture was transferred to a flat bottom 96-well plate to gather OD readings.  

To calculate net and emergent interactions, we followed the Rescaled Bliss Independence 

(RBI) framework outlined in Beppler et al. (2016) and Tekin et al. (2016). There are other 
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approaches such as those that use Loewe Additiviity (Loewe, 1953), which unlike Bliss 

Independence, assumes that a drug cannot interact with it’s self. However, the RBI framework 

was choses for it’s unique ablity to determine the emergent E3 value (descibed below) that 

quanitifies if a three-way interaction deviates from the combined effects of the three airwisse 

interactions within a three-drug combination (Beppler et al., 2016; Tekin et al., 2016). Briefly, in 

the RBI framework the net deviation from additivity, DA, is determined by only removing the 

fitness effects contributed by each drug alone (𝑤[,𝑤\,𝑤]) from the overall fitness (𝒘𝑿𝒀𝒁) effect 

assuming Bliss independence (Equation 3) (Bliss, 1939). Once the net DA is determined the 

process can be done again, removing not only the additive contributions of each drug but also the 

effects of all lower-order interactions leaving only the emergent effect (Equation 4) (Beppler et 

al., 2016). 

Equation 3: 𝐃𝐀 = 𝒘𝑿𝒀𝒁 − 𝒘𝑿𝒘𝒀𝒘𝒁 

Equation 4: 𝑬𝟑 = 𝒘𝑿𝒀𝒁 − 𝒘𝑿𝒘𝒀𝒁 − 𝒘𝒀𝒘𝒁𝑿 −𝒘𝒁𝒘𝒀𝒁 + 𝟐𝒘𝑿𝒘𝒀𝒘𝒁 

After the initial interaction value is determined a rescaling process is used to better distinguish 

between interaction types (Tekin et al., 2016). The interaction values were rescaled following the 

same framework and methodology as used in Tekin et al. (2018). 

Data Availability Statement 

The raw data will be available through Mendeley Data once the manuscript has been accepted 

for publication. 

 

Results 

We cultivated eight independently evolved resistant strains of S. epidermidis for each 

individual antibiotic (tetracycline, piperacillin, chloramphenicol, doxycycline, erythromycin, or 

neomycin). We also created eight independently evolved resistant strains for each of the four 
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three-drug combinations: PIP+TET+CHL, PIP+TET+DOX, PIP+TET+ERY, and 

PIP+TET+NEO. These combinations are all highly synergistic and show at least 95% inhibition 

of the ancestral strain (ATCC 14990). We then assessed how the evolution of resistance can 

change both combination susceptibility and individual antibiotic sensitivity. We evaluated the 

minimum inhibitory concentration (MIC) at 95% inhibition. For the combination treatments, if 

relative growth (Equation 5) was at or below 5% the strain was considered to be susceptible to 

the combination. This definition of relative growth and susceptibility to a combination is 

consistent from this point forward. We also evaluated the change in interaction values when 

resistance evolved to a single antibiotic for each of the combinations.   

Equation 5: 𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞	𝐠𝐫𝐨𝐰𝐭𝐡 = 	 𝐎𝐃𝟔𝟎𝟎	𝐨𝐟	𝐭𝐫𝐞𝐚𝐭𝐞𝐝	𝐩𝐨𝐮𝐥𝐚𝐭𝐢𝐨𝐧
𝐎𝐃𝟔𝟎𝟎	𝐨𝐟	𝐚	𝐩𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧	𝐢𝐧	𝐚	𝐧𝐨X𝐝𝐫𝐮𝐠	𝐞𝐧𝐯𝐢𝐨𝐫𝐦𝐞𝐧𝐭

 

Resistance to combinations leads to changes in single antibiotic susceptibility 

We first examined the collateral effects of how the evolution of resistance to the 

combinations can influence the MICs to all single antibiotics tested in this study. We performed 

a two-tailed, one sample T-test to evaluate the fold change in MIC } ~��	��	���������	������
~��	��	����������	������

� by 

using 𝜇 = 1. We then performed a Holm-Bonferroni correction to adjust for multiple 

comparisons. We found that resistance to any combination regimens, which contain a low 

concentration of piperacillin (inhibition of < 4%), led to potential cross-resistance to piperacillin 

alone. The average fold change of the MIC of piperacillin for each combination resistance set 

increased (Figure 4-2, Table 4-3). We also found that resistance to the combinations consistently 

led to collateral sensitivity to the tetracyclines (tetracycline and doxycycline). However, an 

exception to this trend was noted. The PIP+TET+NEO resistant strains did not display 

significantly different MIC between the ancestral strain to tetracycline (Figure 4-2, Table 4-3). 

For each of the remaining antibiotics, only two of the four combinations led to significant 
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changes in MIC. For instance, there was cross-resistance to chloramphenicol observed in the 

PIP+TET+CHL and PIP+TET+DOX resistant strains, but no significant changes in the 

chloramphenicol MIC when resistance evolved to PIP+TET+ERY and PIP+TET+NEO.  Then, 

collateral sensitivity was observed in the PIP+TET+ERY and PIP+TET+NEO resistance strains 

to the erythromycin and the PIP+TET+DOX and PIP+TET+NEO resistant strains to neomycin. 

There was no significant change in the erythromycin MIC when resistance evolved to 

PIP+TET+CHL and PIP+TET+DOX, nor was there a significant change in the neomycin MIC 

when resistance evolved to PIP+TET+CHL and PIP+TET+ERY (Figure 4-2, Table 4-3). 

Resistance to single drugs leads to changes in susceptibility to combinations 

Evolving resistance to any single antibiotic typically resulted in an increase of resistance 

to the combinations to some degree (Figure 4-3, Table 4-4).  We performed two-tailed, one 

sample T-tests to evaluate if resistance to a single drug resulted in more than 5% relative growth 

(using 𝜇 = 0.05). We then used a Holm-Bonferroni correction to adjust for multiple comparisons. 

Piperacillin-resistant strains remained susceptible (not significantly greater than 5% relative 

growth) to all combinations having the lowers estimated growth means. The chloramphenicol-

resistant strains were still susceptible to PIP+TET+DOX and were highly variable to 

PIP+TET+CHL, PIP+TET+ERY, and PIP+TET+NEO treatments. Tetracycline-resistant strains 

showed mixed susceptibility and high variability across all treatments. They remained 

susceptible to PIP+TET+CHL and PIP+TET+DOX but also showed decreased susceptibility to 

PIP+TET+ERY and PIP+TET+NEO. While doxycycline showed less variation and higher 

amounts of growth yet was not significantly higher than 5% relative growth. All other resistant 

strains (erythromycin, and neomycin resistant strains) led to the combinations no longer being 

effective. The erythromycin-resistant and the neomycin-resistant strains showed the overall 
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strongest resistance to the combinations with some individual strains growing better in the 

presence of the combination compared to the no drugs environment. The two tetracycline-

resistant strains (tetracycline and doxycycline) showed high variability in growth across all 

treatments. Although the mean values for the tetracycline-resistant strains showed an increase in 

growth (over 5% relative growth) there was a large variation between each strain (Figure 4-3, 

Table 4-4).  

Patterns of Cross Resistance and Collateral Sensitivity 

We examined the patterns of the cross-resistant and collateral sensitivity networks for all 

the evolved strains (Figure 4-4A). These networks can change among specific replicate 

populations and even show contrasting outcomes when evolving resistance to the same antibiotic 

or combination. Thus, we focus our attention on the trends we see among most or all of our 

independently evolved biological replicates (Figure 4-4B). For instance, despite the synergistic 

interaction between the antibiotic combinations, the collateral effects varied depending on the 

specific antibiotic. The relationship between piperacillin, tetracycline, and all the combinations 

tested in this study, are consistent with a large majority of the independently evolved biological 

replicates (Figure 4-4B). Within this combination, there is a sequential order of treatments that 

consistently result in either cross resistance or collateral sensitivity depending on the order. If a 

bacterial population evolves resistance to a tetracycline, it will likely have cross resistance to any 

one of the highly synergistic combinations. The evolution of resistance to a combination leads to 

cross resistance of piperacillin. This sequential order could promote encompassing cross-

resistance as a population evolves resistance to each step of the sequence. But if the order is 

reversed (evolving resistance to piperacillin first, then any one of the highly synergistic 
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combinations, and ending with evolving resistance to a tetracycline) the sequence shows 

collateral sensitivity instead.  

Change in net and emergent interactions values 

Drug interactions were calculated both on the ancestral strain and on the evolved resistant 

strains to examine the possible change in drug interactions in populations before and after 

evolving resistance. The interaction values of the combinations for the ancestral strain are listed 

in Table 4-2 and the degree of the change of the interaction values are shown in Figure 4-5.  

We will first examine the net effects (DA), which are the overall effects that are due to all 

possible interactions within a combination. The net effects moved away from synergy and 

towards antagonism (the values became more positive) in cases that resulted in the three-drug 

combinations no longer being effective at largely inhibiting growth. Figure 4-5 shows just how 

frequently the net effects significantly changed. Piperacillin-resistant mutants were the only 

mutants to consistently have unchanged net effects (DA values). This means that the drug 

combinations remained highly synergistic (p < 0.05, two-tailed, one-sample T-test,	𝜇 = 0).  

In contrast to the ever-changing net effects (DA), the emergent effects (E3) were much 

more robust. The emergent effects are the effects of the interaction that is solely due to all three 

antibiotics being present in the combination. The emergent effects have fewer significant 

changes to the interaction value (E3) (8 changes in the emergent effect versus 14 changes in net 

effect out of a total possible 24 opportunities to change) (Figure 4-5). The changes in the 

emergent effect varied between becoming more antagonistic (positive) or synergistic (negative) 

with no clear trend. The combination of PIP+TET+ERY was the most susceptible to changes in 

interaction values, both net and emergent, effects when antibiotic resistance evolves. 
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Discussion 

We show that evolving resistance to a combination of antibiotics results in varying types 

of collateral effects to the individual antibiotics within the combination (Figure 4-2). This 

suggests resistance to a combination is not only the result of a stepwise accumulation of 

mutations. Initially, predictive models for the evolution of resistance to a multidrug combination 

assumed that the mechanisms of resistance are independent of each other (Komarova, 2006; 

Johnston et al., 2007; Saputra et al., 2018). That is, a fully-sensitive cell cannot become resistant 

to all drugs in the combination without undergoing multiple mutation events (Komarova, 2006). 

However, empirically it has been shown that these assumptions are not always supported with 

two-drug combinations (Gifford et al., 2019). Work has been done to try to incorporate these 

findings into predictive evolutionary models (Berríos-Caro et al., 2021). Furthermore, other 

factors such as tolerance—the ability for bacterial cells to survive but not actively grow in the 

presence of antibiotics—have also been shown to influence the predictions of these models (Liu 

et al., 2020). Even with the progress made and knowledge gained for two-drug combinations 

higher-order combinations (3+ antibiotics) are not as well studied which is why they are the 

focus of our study. This study provides further empirical evidence to support the idea that the 

evolution of resistance to a combination, including higher-order combinations, is not exclusively 

the result of a stepwise accumulation of resistance mutations to each individual antibiotic 

component within the combination. 

Additionally, our results show that the evolution of resistance to a single component of a 

combination does not always make the combination ineffective (Figure 4-3).  These findings 

suggest that it could be crucial to consider combinations of drugs in addition to individual drugs 

when searching for more viable antibiotic cycle discoveries. The interplay between the collateral 
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effects of sequential treatment and the interaction when used in combination of two antibiotics is 

currently a topic of interest.  Combinations that are made up of pairs that have the potential for 

collateral sensitivities tended to slow the rate of antibiotic resistance adaptations (Barbosa et al., 

2018). Antagonistic combinations have been shown to slow rates of adaptation and result in 

resistance profiles that are different from those only resistant to one component of the 

combination (Dean et al., 2020). While synergistic combinations can have higher efficacy they 

can also increase the selective advantage of resistance mutations over wild-type strains (Torella 

et al., 2010).  

In this study, we incorporated all the components of the four three-drug combinations 

(piperacillin, tetracycline, chloramphenicol, doxycycline, erythromycin, neomycin) and the 

combinations themselves (PIP+TET+CHL, PIP+TET+DOX, PIP+TET+ERY, PIP+TET+NEO) 

to create a collateral effects network (Figure 4-4A).  Using collateral effect networks (and even 

cellular hysteresis which is in a much more rapid timescale (Roemhild et al., 2018)) to develop 

sequential antibiotic treatments have been suggested as one approach to mitigate the problem of 

antibiotic resistance. In chronic infections (such as cystic fibrosis) these approaches are 

suggested to leverage phenotypes that after initial treatment and the following evolved resistance 

are still susceptible to other antibiotic options (Imamovic et al., 2018).  However, the success of 

collateral effects is greatly determined on the pair of antibiotics involved. Sequential use of 

antibiotics that make up a synergistic pair have been correlated with increased cross resistance 

between the two drugs (Fuentes-Hernandez et al., 2015; Rodriguez de Evgrafov et al., 2015). 

However, using collateral sensitivities in principal may be leveraged in a clinical environment 

(Imamovic & Sommer, 2013). For example the use of  sequentially treating Escherichia coli with 

collaterally sensitive drug pairs can have higher efficacy at lower does than using both antibiotics 



 80 

simultaneously (Fuentes-Hernandez et al., 2015). In sequential treatments, collateral sensitives 

have even been shown to regenerate sensitivities to treatments that populations were previously 

resistant to (Dhawan et al., 2017; Barbosa et al., 2019). Antagonistic combinations have been 

shown to selects against resistance adaptations when the bacteria has already adapted to one of 

the antibiotics within the combinations (Chait et al., 2007). Our findings suggest a potential 

sequence of treatments where each step independently results in collateral sensitivities. This 

finding assumes that there is little effect from epistatic interactions among the accumulate 

adaptive mutations as population progresses through a sequence and that resistance adaptations 

give similar collateral effects. Epistasis has been a mechanism to aid in compensatory mutations 

to the fitness cost of multidrug resistance (Moura de Sousa et al., 2017; Das et al., 2020) and 

resistance mutations for the same antibiotic can lead to varying collateral effects (Maltas & 

Wood, 2019; Ardell & Kryazhimskiy, 2021). We encourage others to explore this in the potential 

sequence that may limit multidrug antibiotic resistance. 

All of the combinations examined in this study use tetracycline and piperacillin and a 

third antibiotic allowing for a characterization of the interplay between piperacillin and 

tetracycline resistance evolution and resistance evolution to these four synergistic combinations. 

Depending on (1) the type of treatment (a combination or an individual antibiotic) a bacterial 

population evolved resistance to first and (2) the order of subsequent exposures, the collateral 

effects show opposing trends where one direction promotes collateral sensitivity and the other 

promotes cross-resistance (Figure 4-4B). For example, if a bacterial population evolves 

resistance to piperacillin, the collateral effect would be collateral sensitivity to any one of the 

combinations. The collateral effect of the evolution of resistance to a combination would also be 

collateral sensitivity, in this case to a tetracycline. This sequential order could promote continual 
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sensitivity as a population evolves resistance to each step of the sequence. However, if the order 

is reversed—that is, evolving resistance to tetracycline first, then any one of the highly 

synergistic combinations, and ending with evolving resistance to piperacillin—the collateral 

effects of the sequence would be cross resistance across each step.  

Let us first examine the mechanism of resistance evolution to tetracycline and piperacillin 

individually. Tetracycline is part of the tetracycline class, a family of antibiotics that inhibit 

protein synthesis. This is done by preventing the attachment of aminoacyl-tRNA to the ribosomal 

acceptor (A) site (Chopra & Roberts, 2001). Evolving resistance to a tetracycline is a textbook 

example of the removal of the antibiotic through efflux pumps to keep intracellular 

concentrations low rendering the antibiotic ineffective (Speer et al., 1992). This strategy has been 

associated with multi-drug resistance across multiple classes due to the non-specific nature of the 

efflux pump (Webber & Piddock, 2003; Blanco et al., 2016).  Our results suggest that evolving 

more general resistance mechanisms such as efflux pumps is enough to gain cross resistance to 

the highly synergistic combinations of this study: PIP+TET+CHL, PIP+TET+DOX, 

PIP+TET+ERY, PIP+TET+NEO (Figure 4-3). 

On the other hand, the other antibiotic that is included in all combinations is piperacillin, 

a β-lactam, and is part of the penicillin class. The main mechanism of resistance for this class is 

through the increased production of penicillin-binding proteins (PBPs), proteins that are specific 

to β-lactam resistance (Dever & Dermody, 1991). Piperacillin specifically evokes a paradox 

where it primarily selects for one variant of PBPs (PBP2b) even though its most reactive target is 

a different PBP (PBP2x). Both of these PBPs are essential and involved in peptidoglycan 

assembly resulting in resistance and leading to a change in morphology (Philippe et al., 2015). 

This change in morphology may account for some of the variability observed in the combination 
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resistant strains, which are suspected of evolving piperacillin resistance (Figure 4-3), due to 

noise in optical density readings (Stevenson et al., 2016). Our results show that strains with 

evolved resistance to piperacillin remained susceptible to the drug combinations. This would 

suggest that the evolution of a more drug-specific resistance adaptation, such as the PBPs 

selected for piperacillin resistance is not enough to gain cross resistance to the synergistic 

combinations (Figure 4-4).   

We show here that resistance to any of the antibiotic combinations in this study can result 

in cross-resistance to piperacillin and collateral sensitivity to tetracycline. Resistance to 

piperacillin requires a very specific type of resistance mechanism: the increased production of 

PBPs (Dever & Dermody, 1991). Because the strains resistant to the combinations also show 

cross-resistance to piperacillin, it may suggest that the evolution of PBPs are a result of evolving 

resistance to the combinations. We also show that the evolution of resistance to the combinations 

leads to collateral sensitivity to tetracycline. The main mechanism of tetracycline resistance is 

through the increase of efflux pumps (Speer et al., 1992). The collateral sensitivity to tetracycline 

of the combination resistant strains may indicate a decrease in the number of efflux pumps or 

decreased efficiency of the efflux pumps within the cell. It would be ideal for future studies to 

identify the exact mechanism of resistance to the combinations studied here. This can help 

determine if resistance to tetracycline is not required as part of the evolutionary path for evolving 

resistance to these synergistic combinations or if there is a currently unknown target of the 

combinations due to emergent interactions. 

 Historically, net interactions (DA) have been the focus of evolutionary biologists (Chen 

et al., 2008; Zimmer et al., 2016; Cokol et al., 2017; Katzir et al., 2019) and ecologists (Sokol-

Hessner & Schmitz, 2002; McCoy et al., 2012; Sitvarin & Rypstra, 2014) because of the 
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difficulties in determining and describing higher-order emergent interactions accurately. Within 

the past 15 years, there has been substantial progress at determining and analyzing higher-order 

interactions (Yeh et al., 2009; Palmer et al., 2015; Beppler et al., 2016; Tekin et al., 2016; 

Zimmer et al., 2016; Beppler et al., 2017; Cokol et al., 2017; Tekin et al., 2018; Lozano-

Huntelman et al., 2021). In both net and emergent interactions, the effects of an interaction are 

not primarily due to the chemical interactions between the compounds but rather due to how 

each individual component affects the physiology of the cell and how those effects interact 

(Bollenbach et al., 2009; Bollenbach, 2015; Mason et al., 2017). To add to the potential 

complexities of antibiotic interactions, interaction types may change when the concentration of 

antibiotic change even if they are kept in the same ratios (Berenbaum et al., 1983), a shift in 

specific dose combination can lead to different evolutionary outcomes (Gjini & Wood, 2021). 

Once the physiology of the cell is altered through evolved resistance adaptations, these 

interactions have the potential to change.  

This study is the first to examine how both net and emergent interactions of drug 

combinations change in response to antibiotic resistance evolution. By testing the synergistic 

combinations to both the ancestral strain and the single drug resistant strains, our results show 

that net interactions are more prone to change when a population evolves and changes (i.e. 

adapted antibiotic resistance) (Figure 4-5). This makes the net interactions a more dynamic factor 

in response to the accumulation, loss, or change of physiological functions throughout the 

evolutionary history of a population. This, genetic background, creates variability that can make 

unraveling evolutionary trajectories difficult. In contrast, emergent interactions appear to be 

more robust to these physiological changes and adaptations. Understanding how these emergent 

interactions can affect the evolutionary trajectory of populations will be key to creating long-
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term plans to assess antibiotic resistance in natural and clinical populations. This is because 

although populations will continue to evolve and adapt to new and changing environments 

(Fitzgerald, 2019; Santos-Lopez et al., 2019) the possible effects of emergent interactions may be 

more likely to stay in effect due to their observed higher robustness, as shown in Figure 4-5.   

 In conclusion, we show that: (1) Evolving resistance to a combination of antibiotics being 

used simultaneously does not always lead to cross-resistance to all of the components of that 

combination. (2) The evolution of resistance to one component of a combination does not always 

lead to cross-resistance to the combination. (3) The evolution of resistance to a single antibiotic 

affects the net interaction more often than the emergent interaction of a combination. Our 

findings suggest that it is important to consider antibiotic combinations in addition to individual 

antibiotics when measuring and examining cross-resistance and collateral sensitivity networks. 

Using those methods, we have identified a sequence-specific cycle that can promote both types 

of collateral effects. This cycle includes piperacillin, one of the three-drug combinations 

(PIP+TET+CHL, PIP+TET+DOX, PIP+TET+ERY, or PIP+TET+NEO), and tetracycline. 

Depending on the order of the evolved resistance, this sequence can either promote cross-

resistance or collateral sensitivity. This framework—examining both collateral sensitivity and 

cross-resistance across whole networks of interactions at both the additive and emergent 

interaction levels—could allow researchers to uncover more viable sequential/cyclical treatment 

options that would extend the useful life span of antibiotics currently available.  
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Tables 

Table 4-1. Antibiotic list and properties on the ancestral strain of Staphylococcus epidermidis 

(ATCC 14990). 

Antibiotic 
(Abbreviation) Class Mechanism of 

Action 
Concentration 

Used (µM) 

Relative 
Fitness 
to No 
Drug 

Control 

MIC 
(µM) 

Chloramphenicol 
(CHL) Chloramphenicol Protein 

Synthesis, 50S 90 0.989 1352.621 

Doxycycline 
(DOX) Tetracycline Protein 

Synthesis, 30S 0.6 0.780 257.522 

Erythromycin 
(ERY) Macrolide Protein 

Synthesis, 50S 0.05 1.000 0.511 

Neomycin 
(NEO) Aminoglycoside Protein 

Synthesis, 30S 0.35 0.803 13.280 

Piperacillin 
(PIP) Beta-lactam β-Lactam, 

Cell wall 0.6 0.966 1.627 

Tetracycline 
(TET) Tetracycline Protein 

Synthesis, 30S 20 0.713 205.137 

  



 86 

Table 4-2. Drug concentrations of synergistic three-drug combinations with net interaction (DA) 

and emergent interaction (E3) values based on the ancestral strain of Staphylococcus epidermidis 

(ATCC 14990). 

Three-Drug 
Combination 

Drugs in 
Combination 

(Abbreviation) 

Single Drug 
Concentration 

(µM) 

Fitness 
Effect of the 
Combination 

Net 
interaction 

(DA) 

Emergent 
interaction 

(E3) 

1 

A) Piperacillin (PIP) 0.6 

0.004 -0.97 -0.09 B) Tetracycline (TET) 20 
C) Chloramphenicol 
(CHL) 90 

 
2 

A) Piperacillin (PIP) 0.6 

0 -1 1 B) Tetracycline (TET) 20 
C) Doxycycline 
(DOX) 0.6 

 
3  

A) Piperacillin (PIP) 0.6 

0 -1 0.98 B) Tetracycline (TET) 20 
C) Erythromycin 
(ERY) 0.05 

 
4  

A) Piperacillin (PIP) 0.6 
0 -1 -0.08 B) Tetracycline (TET) 20 

C) Neomycin (NEO) 0.35 
 

Table 4-3. Comparison of minimum inhibitory concentrations (MIC) between ancestral strain 

and strains with evolved resistance to one of the highly synergistic combinations. Significant 

differences after correcting for multiple test (via Holm-Bonferroni) are shown in bold.   

Strain Drug 
Treatment Estimate 

95% CI 
t-statistic p-

value n 2.50% 97.50% 
PIP+TET+CHL CHL 1.614 1.184 2.044 3.374 0.012 7 
PIP+TET+DOX CHL 2.353 1.190 3.517 2.750 0.029 7 
PIP+TET+ERY CHL 1.486 0.914 2.057 2.010 0.084 7 
PIP+TET+NEO CHL 1.487 0.660 2.313 1.392 0.207 7 
PIP+TET+CHL DOX 0.023 0.018 0.027 -548.846 0.000 7 
PIP+TET+DOX DOX 0.031 0.021 0.041 -226.640 0.000 7 
PIP+TET+ERY DOX 0.019 0.015 0.023 -556.348 0.000 7 
PIP+TET+NEO DOX 0.031 0.021 0.041 -233.468 0.000 7 
PIP+TET+CHL ERY 1.376 0.261 2.492 0.798 0.451 7 
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PIP+TET+DOX ERY 0.771 0.536 1.006 -2.308 0.054 7 
PIP+TET+ERY ERY 0.801 0.665 0.936 -3.482 0.010 7 

PIP+TET+NEO ERY 0.645 0.541 0.749 -8.052 0.000 7 
PIP+TET+CHL NEO 1.090 0.265 1.916 0.258 0.804 7 
PIP+TET+DOX NEO 0.549 0.285 0.813 -4.041 0.005 7 
PIP+TET+ERY NEO 1.143 0.653 1.633 0.689 0.513 7 
PIP+TET+NEO NEO 0.677 0.388 0.967 -2.637 0.034 7 
PIP+TET+CHL PIP 8.000 5.248 10.752 6.014 0.001 7 
PIP+TET+DOX PIP 26.964 1.377 52.550 2.399 0.048 7 
PIP+TET+ERY PIP 2.714 1.327 4.101 2.922 0.022 7 
PIP+TET+NEO PIP 5.419 2.875 7.962 4.108 0.005 7 
PIP+TET+CHL TET 0.779 0.666 0.892 -4.614 0.002 7 
PIP+TET+DOX TET 0.781 0.590 0.972 -2.708 0.030 7 
PIP+TET+ERY TET 0.791 0.607 0.974 -2.697 0.031 7 
PIP+TET+NEO TET 1.241 0.585 1.897 0.869 0.414 7 

 

Table 4-4. Comparison of relative growth between ancestral strain and strains with evolved 

resistance to one of the single drug components. Significant differences after correcting for 

multiple test (via Holm-Bonferroni) are shown in bold.   

Strain Combination 
Treatment Estimate 

95% CI 
t-statistic p-

value n 
2.50% 97.50% 

CHL PIP+TET+CHL 0.219 -0.246 0.685 0.860 0.418 7 
DOX PIP+TET+CHL 0.533 0.109 0.957 2.694 0.031 7 
ERY PIP+TET+CHL 1.295 0.877 1.713 7.044 0.000 7 
NEO PIP+TET+CHL 1.157 0.686 1.627 5.565 0.001 7 
PIP PIP+TET+CHL 0.045 -0.018 0.107 -0.195 0.851 7 
TET PIP+TET+CHL 0.433 -0.021 0.886 1.996 0.086 7 
CHL PIP+TET+DOX 0.048 0.006 0.090 -0.108 0.917 7 
DOX PIP+TET+DOX 0.459 0.104 0.814 2.726 0.030 7 
ERY PIP+TET+DOX 1.226 1.002 1.451 12.844 0.000 6 
NEO PIP+TET+DOX 1.054 0.594 1.515 5.161 0.001 7 
PIP PIP+TET+DOX 0.035 -0.007 0.078 -0.826 0.436 7 
TET PIP+TET+DOX 0.340 -0.027 0.708 1.931 0.102 6 
CHL PIP+TET+ERY 0.225 0.028 0.421 2.104 0.073 7 
DOX PIP+TET+ERY 0.458 0.201 0.715 3.759 0.007 7 
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ERY PIP+TET+ERY 1.054 0.781 1.328 8.694 0.000 7 
NEO PIP+TET+ERY 0.717 0.456 0.978 6.043 0.001 7 
PIP PIP+TET+ERY 0.024 -0.009 0.057 -1.876 0.103 7 
TET PIP+TET+ERY 0.434 0.115 0.754 2.844 0.025 7 
CHL PIP+TET+NEO 0.152 0.003 0.301 1.623 0.149 7 
DOX PIP+TET+NEO 0.533 0.236 0.831 3.838 0.006 7 
ERY PIP+TET+NEO 1.125 0.750 1.500 7.011 0.000 6 
NEO PIP+TET+NEO 0.607 0.246 0.968 3.773 0.009 6 
PIP PIP+TET+NEO 0.036 -0.005 0.076 -0.824 0.437 7 
TET PIP+TET+NEO 0.351 0.130 0.573 3.213 0.015 7 
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Figures 

A)                B) 

     
Figure 4-1. Plate Layouts for the MIC estimates and Deep Well-Plates. A) This figure shows 

each drug in concentration value in the 96 well-plates during the trials for evaluating the MIC of 

each bacterial strain. B) The diagram above illustrates an example of the layout used—a single 

deep well-plate—during the trials. This figure includes the locations for the high and lower-order 

drug combinations and their controls. These deep well-plates were incubated for 22hrs at 37℃ 

and later transferred onto a flat bottom 96 well-plate for OD reading. 
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Figure 4-2. Resistance to synergistic drug combinations results in cross-resistance to piperacillin 

and collateral sensitivity to tetracyclines. The log2 of the average fold change in MIC after 

evolving resistance to a synergistic three-drug combination } �����������	������
�������������	������

� for each single 

drug component. The dashed line indicates the value of 1 where there is no change in the MIC of 

the resistant strains. A significant value below 0 indicates collateral sensitivity and a significant 

value above 0 indicates cross-resistance (two-tailed, one-sample T-test, 𝜇 = 1). Error bars show 

95% confidence intervals of the mean (n = 7).    * p < 0.05, ** p < 0.01, *** p < 0.001  
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Figure 4-3.The evolution of resistance to some individual drug components results in a loss in 

susceptibility to the originally highly synergistic combination. The dashed line indicates a 

relative growth of 5%. Growth significantly higher than 5% gained some level of resistance to 

the combination, otherwise, there was no significant impact on the strain’s susceptibility to the 

highly synergistic combination. Error bars show 95% confidence intervals of the mean (n = 7).   

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 4-4. Patterns in the relationships between the four highly synergistic combinations and 

their individual components. Green arrows show a positive relationship for the bacteria: 

resistance to the combination/individual drug showed cross-resistance or loss of sensitivity to the 

individual drug/combination. Red arrows show a negative relationship for the bacteria: resistance 

to the combination/individual drug showed collateral sensitivity or remained completely 

susceptible to the individual drug/combination. A) Arrow weight shows how consistent the 

relationship is; the heavier the weight the more likely it is to observe the relationship. B) Possible 

viable antibiotic sequence, resulting in less resistance evolving. 
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Figure 4-5. Net interactions are more likely than emergent interactions to be affected by the 

evolution of antibiotic resistance to a single antibiotic within the combination. Positive values 

indicate that the interaction is now more antagonistic with the evolved resistance than the 

ancestral strain. Negative values indicate that the interaction is now more synergistic with the 

evolved resistance than the ancestral strain (two-tailed, one-sample T-test,	𝜇 = 0). Of the 

combinations tested, PIP+TET+ERY typically shows the most change in interaction values.                                                            

* p < 0.05, ** p < 0.01, *** p < 0.001 
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 Interactions within higher-order antibiotic combinations influence the 

rate of antibiotic resistance adaptation.  

 

Abstract  

The prevalence and strength of antibiotic-resistant bacteria have resulted in an arms race 

between the development of new treatment options and the evolution of resistance. Using multiple 

drugs in combination simultaneously has been suggested as a possible therapeutic solution to the 

antibiotic resistance problem. However, drug combinations introduce new factors to consider, 

including how the interactions among drugs influence the evolutionary process of adaptation to 

antibiotics. Antibiotic combinations are considered additive if the combined effect of the drugs is 

equivalent to the drugs acting independently. If a combination is more effective or less effective 

than the additive effect, then the combination is considered to be a synergistic or antagonistic 

interaction, respectively. We investigate how higher-order interactions—interactions involving 

three or more drugs—can affect the rate of evolution in Staphylococcus epidermidis.  It has been 

previously established synergistic interactions between two drugs increase the rate of adaptation. 

However, it is unknown how higher-order interactions affect rates of adaptation. We examine the 

evolution of bacteria S. epidermidis in single drug, two-drug, and three-drug environments to 

determine how the interaction types of a combination may influence the rate and frequency of 

adaptation. We examine both the overall, or net, interaction of a combination as well as the 

emergent interaction—the interaction that is uniquely due to all drugs being present in a three-drug 

combination that is not due to pairwise interaction effects. We find that synergistic net interactions 

correlate with higher rates of adaptation, but that emergent interactions have no significant effect 

on the rates of adaptation.     
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Introduction 

Antibiotic-resistant bacteria are present in the majority of environments worldwide, 

occurring in both clinical and non-clinical settings (Esiobu et al., 2002; Martinez, 2009; Wright, 

2010). Through the overuse and misuse of antibiotics, bacterial populations evolve resistance 

(Ventola, 2015). This creates an arms race between the development of new antibiotics and the 

evolution of resistance resulting in a global health crisis (Levy & Marshall, 2004; Andersson, 

2006; Naik et al., 2022). While more bacteria evolve single and multi-drug resistance (Bush et al., 

2011; Spellberg & Gilbert, 2014), the discovery of new antibiotics has decreased dramatically 

(Nathan, 2004; Ventola, 2015). Antibiotic resistance has been projected to be responsible for 10 

million deaths per year by 2050 if no new treatments or strategies are implemented (Tagliabue & 

Rappuoli, 2018). One solution to address this problem is to use antibiotics in combination 

(Fitzgerald et al., 2006; C. J. Brown et al., 2013; Foucquier & Guedj, 2015; E. D. Brown & Wright, 

2016). However, combinations with multiple drugs introduce new factors to consider, including 

how the interactions between drugs influence the evolutionary process of antibiotic resistance. 

When antibiotics are used in combination, the effects of the drugs themselves can interact 

with each other. These interactions can be categorized into three types: additive, synergistic, or 

antagonistic. An interaction is considered additive if the combination of drugs yields the same 

effect as if the single drugs were acting independently from each other (Bliss, 1939). A synergistic 

interaction gives a stronger response than expected; in the case of antibiotic interactions synergy 

would result in higher levels of growth inhibition (Bliss, 1939). In vitro studies have shown that 

these types of interactions can attain higher efficacy with lower concentrations however, they have 

been shown to promote the evolution of resistance (Hegreness et al., 2008; Michel et al., 2008). In 

contrast to synergistic interactions, antagonistic interactions yield a weaker response (less 
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inhibition of bacterial growth) than additive interactions (Bliss, 1939). Although higher 

concentrations of drugs within antagonistic combinations may be needed to obtain the desired 

degree of inhibition, they can also be more effective in preventing the evolution of resistance (Chait 

et al., 2007; Hegreness et al., 2008; Michel et al., 2008; Yeh et al., 2009).  

 The interactions of higher-order drug combinations (combinations that consist of three or 

more drugs) are more complex than the interaction of combinations consisting of only two drugs. 

This is because multiple interactions are occurring within a single higher-order combination. For 

example, in a three-drug combination, seven different factors attribute to the fitness effect of the 

combination. The first three factors are the effects of the three single antibiotics by themselves. 

The next three factors are the effects of the three pairwise interactions. The last factor is the effect 

of all three antibiotics interacting with each other. Thus, within a three-drug combination, there is 

a total of four interactions occurring simultaneously, the three pairwise interactions, and the 

interaction solely due to all three drugs being present (Beppler et al., 2016).  

The interactions of a higher-order combination can be characterized in two ways: (1) the 

net interaction and (2) the emergent interaction. The net interaction of a higher-order combination 

is the overall effect of all possible interactions within the combination. The emergent interaction 

of a higher-order combination is the interaction that is due to all drugs being present and not a 

result of any lower-order interactions or single drug effects (Beppler et al., 2016). Most studies 

examine the overall fitness effects or net interactions of higher-ordered combinations (Zimmer et 

al., 2016; Katzir et al., 2019; Yilancioglu & Cokol, 2019); however, it is unknown if or how 

emergent interactions may influence the evolution of populations experiencing higher-order 

combinations of drugs. Emergent interactions have been found in multidrug higher-order (three or 
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more drugs) combinations (Beppler et al., 2016; Tekin et al., 2018). Understanding the properties 

of emergent interactions is crucial in having a complete picture of a complex system of stressors. 

Here we examine how net and emergent interactions of three-drug combinations affect the 

rate of antibiotic resistance adaptation. The interactions of two-drug combinations have been 

examined extensively (Yeh et al., 2006; Yeh et al., 2009; K. Wood et al., 2012; K. B. Wood, 2016; 

Zimmer et al., 2016). It has been shown that they can influence the rates of resistance adaptations 

(Hegreness et al., 2008) and the likelihood of spontaneous resistance mutations (Michel et al., 

2008). However, it is unclear how higher-order interactions affect the adaptation of resistance.  We 

ask the following questions: 1) Does the net interaction of three-drug combinations affect the rate 

of adaptation? 2) Does the emergent interaction of three-drug combinations affect the rates of 

adaptation?  

 

Materials and Methods 

Bacterial strain and experimental evolution  

We examined the evolution of Staphylococcus epidermis (ATCC 14990) populations to 

nine three-drug combinations (Table 5-1) all of the respective pairwise combinations (Table 5-1) 

and the single-drug treatments (Table 5-2). These drug combinations are comprised of a variety of 

antibiotics from different classes and have different main mechanisms of action (Table 5-2). For 

each drug treatment (three-drug combination, two-drug combination, and single drug) six 

populations were independently evolved. Each of these populations were evolved in one well on a 

96-well plate with a working volume of 200	µL. For the first day of the experiment, plates were 

inoculated with cells via pin transferring (0.05	µL) of overnight cultures onto fresh plates. Plates 

were incubated at 37° C and had O.D.600nm measurements taken every ten minutes for 23 hours 
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with a five-second orbital shake before each read. Populations were evolved over a fourteen-day 

period (roughly 150 generations). Every 24 hours, each population was pin-transferred (0.5	µL) 

over to a new plate containing fresh lysogeny broth media with the corresponding antibiotic 

treatment. Then, the new plate was incubated at 37° C and the O.D.600nm measurements were taken 

every ten minutes for 23 hours with a five-second orbital shake before each read. The O.D.600nm 

measurements taken on the first day of the experiment were used to determine the interaction 

values and fitness effects of the combinations. The O.D.600nm measurements from all fourteen days 

were used to determine the rates of adaptation (see Determination of Adaptation Rates below). 

Antibiotic Combinations and Interaction Values 

The rescaled Bliss independence framework (RBI) (Tekin et al., 2016) was used to 

determine the interaction types and values of the combinations used here. For reference here is a 

brief overview of the framework. RBI uses Bliss independence (Bliss, 1939) as the additive model 

to evaluate interactions based on the relative fitness (w) to a no-drug control (Beppler et al., 2016; 

Tekin et al., 2016; Beppler et al., 2017; Tekin et al., 2017). Net interactions are determined using 

Equation 6. For example, in a two-drug combination, 𝑤�� is the relative fitness of the bacterial 

population when treated with both drugs A and B in combination and	𝑤�𝑤� is the product of the 

relative fitnesses of being treated with drug A alone and drug B alone. If the deviation from 

additivity (DA) is a positive value it would indicate more growth than expected thus implying the 

interactions are antagonistic. A negative value would indicate a synergistic interaction. 

Equation 6: � two-drug combinations;	𝑫𝑨𝑨𝑩 = 	𝒘𝑨𝑩 − 𝒘𝑨𝒘𝑩
𝐭hree-drug combinations;	𝑫𝑨𝑨𝑩𝑪 = 	𝒘𝑨𝑩𝑪 − 𝒘𝑨𝒘𝑩𝒘𝑪

 

Effectively the net interaction / deviation from additivity removes the additive effects of each 

individual drug. To find the emergent interactions we now must remove all the lower-order 
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interactions from the DA leaving the value of the highest order interaction possible. To do this we 

used Equation 7 which can all be expressed in terms of relative fitness resulting in Equation 8. 

Equation 7: 𝑬𝟑 = 𝑫𝑨𝑨𝑩𝑪 − 𝑫𝑨𝑨𝑩𝒘𝑪 − 𝑫𝑨𝑨𝑪𝒘𝑩 − 𝑫𝑨𝑩𝑪𝒘𝑨 

Equation 8: 𝑬𝟑 = 𝒘𝑨𝑩𝑪 − 𝒘𝑨𝑩𝒘𝑪 − 𝒘𝑨𝑪𝒘𝑩 − 𝒘𝑩𝑪𝒘𝑨 + 𝟐	𝒘𝑨𝒘𝑩𝒘𝑪 

Then the net (DA) and emergent (E3) interactions were rescaled to enhance the ability to identify 

interactions occurring by normalizing to either the lethal cases (when evaluating synergistic 

interactions) or to the most effective single or a subset of drugs (when evaluating additive and 

antagonistic interactions). When rescaling non-synergistic emergent interactions, we normalized 

to relative effects from pairwise interactions. For more details on the rational and exact equations 

used please refer to Tekin et al. (2016). 

Determination of Adaptation Rates  

Rates of adaptation were determined by the change in the growth term (GT) (defined in 

Equation 9) over time following similar methods to Hegreness et al. (2008). The growth term used 

is a function of the growth rate (r) and the time it takes to grow to half of the carrying capacity 

(K). We will refer to this as 𝑡 �¡. This growth term was used to incorporate not only adaptations 

that increased growth rates but to also account for adaptations that reduced lag time promoting 

active growth in environments where antibiotics are subjugated to potential degradation (Li et al., 

2016). 

Equation 9: 𝑮𝑻 = 𝒓
𝒕𝒎𝒊𝒅

 

The growth rate (r), carrying capacity (K), and	𝑡 �¡ were all determined by fitting Equation 

10 to the OD data over time with the use of the Growthcurver (0.3.1) package in R (Sprouffske & 

Wagner, 2016). 
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Equation 10: 𝑶𝑫(𝒕) = 𝑲

𝟏¬­
𝑲®𝑵𝟎
𝑵𝟎

°𝒆®𝒓𝒕
 

The adaptation rate (𝛼) is equal to the change between the initial and final growth term of 

a population (∆𝐺𝑇) divided by the time to traverse a different fitness increase (tadapt), Equation 11 

(Hegreness et al., 2008). 

Equation 11: 𝜶 = ∆𝑮𝑻/𝟐
𝒕𝐚𝐝𝐚𝐩𝐭

 

 

Results 

Accounting for selection pressures 

 Before any comparisons between interactions and rates of adaptation were made, the 

effects a combination has on the fitness of a population and the rates of adaptation were 

determined. A Pearson correlation test was performed to measure the relationship between fitness 

and rates of adaption, showing a significant correlation (R = 0.23, p = 0.0017) (Figure 5-1). We 

then took the residuals of this correlation to determine if any type of interaction may influence the 

rate of adaptation. These residual values were used when comparing any subset of the data when 

looking for correlations (following similar approaches outlined in (Baltagi, 1998)) between rates 

of adaptation and interactions. All rates of adaptation have been corrected for this relationship. 

Interactions and Adaptation Rates 

To determine how the net interactions, correlate with rates of adaption, we performed a 
Pearson correlation on the populations that evolved and did not go extinct. We first observed the 
pooled data set comprising populations evolved to two-drug combinations and populations evolved 
to three-drug combinations. We observed a significant negative correlation (R= -0.23, p = 0.002) 
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(

 
Figure 5-2A). As the net interaction values decrease and become more negative 

(synergistic) the rate of adaptation increases. We then examined if this relationship remained with 
the two-drug and the three-drug combinations separately. We found that the significant negative 
correlation remained, but the degree of the correlation differed based on if there were two (R= -
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0.17, p = 0.037) or three (R= -0.38, p = 0.047) drugs in the combination (
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Figure 5-2B and 

 
Figure 5-2C respectively). We also asked if the emergent interactions of a three-drug 

combination correlate with rates of adaptation (Figure 5-3). We performed another Pearson 

correlation test and found no significant correlation (R= 0.1, p = 0.6). 

 

Discussion 

We asked how the interactions of a higher-order drug combination may correlate with the 
rates of adaption. We evolved multiple populations to a variety of three-drug combinations and all 
the corresponding two-drug and single-drug treatments over fourteen days. We found that the net 
interactions of both two-drug and three-drug combinations significantly correlate with the rates of 
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adaptation, where more synergistic interactions correlated with faster rates of adaptation (

 
Figure 5-2). We also determined that the emergent interaction of a three-drug combination 

did not correlate with rates of adaptation (Figure 5-3). 

Hegreness et al. (2008) were the first to directly test if interactions between the antibiotics 

in a two-drug combination could correlate with adaptation rates. They evolved multiple 

populations of Escherichia coli to four different two-drug combinations for fifteen days (>150 

generations). For each drug combination, a variety of doses and ratios were used and the interaction 

values were calculated for each drug-dose combination separately. This meant that two 

combinations with the same antibiotics but different doses could have different interaction values. 

Every 24 hours populations were transferred to fresh media that contained the same antibiotic 

combination at the same dosage. Growth was measured and growth rates were determined to 
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calculate adaptation rates. They found a significant positive correlation between the degree of 

synergy and rates of adaptation. That is, combinations with synergistic interactions correlated with 

higher rates of adaptation. 

Multiple studies in two-drug combinations have suggested synergistic interactions promote 

antibiotic resistance evolution and antagonistic interactions limit antibiotic resistance evolution. 

Synergistic interactions have a higher likelihood of spontaneous resistance mutations (Michel et 

al., 2008). In addition, synergistic interactions have been shown to select for resistance while 

antagonistic interactions do not select for resistance (Chait et al., 2007). This is especially true 

when bacterial populations are faced with competition. It has been suggested that initial treatment 

with synergistic drug combinations could result in a  higher bacterial load after treatment when 

compared to initial treatment with additive or antagonistic combinations (Pena-Miller et al., 2013). 

Antagonistic drug pairs maintain competitive interactions between the wild-type and single-drug 

resistant populations thus limiting the growth and further mutation of the single-drug resistant 

bacteria. Antagonistic combinations can maintain this competition because they are effective at 

killing off the entire wild-type bacteria (Torella et al., 2010).   

Some previous studies did not find significant correlations between drug interaction and 

rates of adaptions or evolvability and rather suggest that collateral effects between a pair of drugs 

affect the evolution of resistance. Collateral effects are the unintentional changes in phenotypic 

response to other stressors because of previous adaptations. When evaluating collateral effects of 

antibiotic resistance, evolving resistance to one antibiotic may result in either increased resistance 

(cross-resistance) or increased sensitivity (collateral sensitivity) to another antibiotic (Haight & 

Finland, 1952; Sanders, 2001; Obolski et al., 2015). In two-drug combinations, mutations that 

confer drug resistance are typically not selected for if they also confer collateral sensitivity to the 



 115 

other drug in the combination, limiting antibiotic resistance adaptation within a population (Munck 

et al., 2014). Pairwise drug combinations that are either cross-resistant or do not have collateral 

effects on each other have higher evolvability than those with collaterally sensitive drug pairs 

(Rodriguez de Evgrafov et al., 2015).   

More recent studies have suggested alternative factors in addition to collateral effects that 

can influence rates of adaptation. Multiple populations of Pseudomonas aeruginosa were evolved 

to 38 different pairwise combinations (based on a range of drug interactions and collateral effects) 

to assess the antibiotic combination efficiency (ACE) (Barbosa et al., 2018). The ACE 

characterizes the ability of antibiotic combinations to limit bacteria survival and limit antibiotic 

resistance adaptation over time. Many of the drug combinations examined had synergistic 

interactions (24 interactions) but some had additive and antagonistic combinations (14 interactions 

each). By categorizing the ACE into two networks based on population extinction or adaption 

rates, they discovered that reduction in adaptation rates is driven by two factors: the adaptation to 

the component of a drug combination that has a stronger selection pressure alone and the specific 

collateral effect. There was no significant relationship between drug interactions and evolvability 

although they did observe instances that supported synergistic interactions selecting for resistance. 

In addition, synergistic combinations were the only combinations to experience extinctions despite 

having the same inhibitory levels as the other interaction types. Our current study supports these 

conclusions from Barbosa et al. (2018) regarding the importance antibiotic interactions can have 

on resistance evolution. 

Another suggested factor that can influence rates of adaptation to a combination of 

antibiotics is the type of genetic response required for adapting resistance.  The adapted genetic 

responses to single and two-drug combinations in E. coli were categorized to evaluate how 
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different genetic responses affect evolvability among different two-drug combinations (Jahn et al., 

2021).  The resistant mutation(s) selected by the drug combination was then compared to the 

mutation(s) selected for by each of the individual components alone. This resulted in four 

categories to describe the genetic response of adapting resistance to the combination. The four 

categories are as follows: 1) mutations conferring resistance to both drugs are the same and are 

selected by the combination; 2) mutations conferring resistance to both drugs individually are 

different and are selected by the combination; 3) mutations conferring resistance to both drugs 

individually are different but the combination only selects for one; or 4) mutations selected by 

combination are different than those selected by the individual drugs. Drug combinations that 

require novel mutations to gain resistance to the combination (category 4) limit the evolution of 

resistance compared to combinations where the mutations required for resistance are also selected 

by at least one of the components (categories 1, 2, and 3) (Jahn et al., 2021). When examining 

three-drug combinations the additional drug brings more complexities to evaluate by having to 

simultaneously consider three two-drug combinations. These additional complexities encountered 

when evaluating the genetic responses to a higher-order combination is similar to the additional 

complexities of determining the interactions of a higher-order combination. We hope that future 

studies will begin to examine the interplay between the genetic responses and the interactions of 

higher-order antibiotic combinations. 

Most of the studies that did not conclude that interactions can influence rates of adaptation 

or evolvability evolved populations to a dynamic environment—that is the antibiotic 

concentrations of the combinations were increased as the populations evolved (Munck et al., 2014; 

Rodriguez de Evgrafov et al., 2015; Jahn et al., 2021). Even if the two antibiotics were kept with 

the same ratio the change of dosage can change the strength or even type of the interaction 
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(Berenbaum et al., 1983). This could mean that the populations being evolved may not have been 

adapting in response to the same interaction over the entire course of the experiments.  

In contrast, Hegreness et al. (2008) used constant ratio and dosage of the drug combinations 

for the entirety of each evolution experiment. Hegreness et al. (2008) also tested a wide range of 

interactions from a single drug combination by choosing a variety of ratios and dosages. They 

found a correlation between interaction and rate of adaptation hold within the same combination 

of two drugs for all four drug combinations tested. Additionally, within the strongly synergistic 

combination tested (the combination of erythromycin and doxycycline) the highest rates of 

adaptation were found for dosages that have higher amounts of synergy. These rates are even 

higher than those of the populations evolving to the single drug components alone. In contrast, 

within the strongly antagonistic combination (ciprofloxacin and doxycycline) there was a 

decreased rate of adaptation compared to the single drug components alone. Our current findings 

further support the conclusion that net synergies increase the rate of adaptation to antibiotics.  

But beyond that, this study is the first to directly test the relevance of emergent interactions 

regarding the evolution of a population. Studying emergent interactions has been historically 

difficult to do because it requires a large-scale data set with a full factorial design, where all 

possible subsets and individual factors are tested independently. But more recently, emergent 

interactions have been systematically measured and shown to be very frequent among antibiotic 

combinations (Tekin et al., 2018; Lozano-Huntelman et al., 2020) and ecological stressors 

(Diamant et al., 2022).  Future studies can help elucidate the role emergent properties play in the 

evolution of a suite of population traits.    
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Tables and Figures: 

Table 5-1.The combinations and concentrations of antibiotics used in three-drug combinations. 

Fitness is expressed by relative fitness to a no-drug control. 

Three-Drug 
Antibiotic 

Combination 

Net 
Interactions 

(DA) 

Emergent 
Interactions 

(E3) 
Fitness 

Two-Drug 
Antibiotic 

Combination 

Net 
Interactions 

(DA) 
Fitness 

CLI+FUS+TMP 10+ -0.545 2.069 
CLI- FUS -0.062 0.981 
CLI- TMP 5.503 2.987 
TMP- FUS 1.233 0.565 

NEO+PIP+TMP -0.967 0.394 0.049 
NEO-PIP 1.069 1.277 

NEO-TMP -0.140 1.017 
TMP-PIP -0.890 0.162 

GEN+PIP+TMP -0.956 1.076 0.085 
GEN-PIP 6.026 1.542 

GEN-TMP -1 0 
TMP-PIP -1 0 

CHL+GEN+TET 8.516 0.185 2.139 
CHL-GEN -0.116 0.667 
CHL-TET 6.706 1.569 
TET-GEN 4.008 1.788 

FUS+NAL+TMP 0.904 -1 1.110 
FUS-NAL -0.082 1.457 
FUS-TMP 2.656 1.310 
TMP-NAL 3.063 1.187 

CHL+DOX+NAL 0.284 -0.614 1.814 
CHL-DOX 2.823 1.431 
CHL-NAL 1.754 1.589 
NAL-DOX 1.222 1.869 

CHL+ERY+NAL 10+ 10+ 0.239 
CHL-ERY -0.045 1.499 
CHL-NAL 1 0 
NAL-ERY 1 0 

FUS+OX+TET -1 1 0.010 
FUS-OX -0.223 1.196 
FUS-TET -1 0 
TET-OX -1 0 

FOX+GEN+TET 4.297 -0.133 1.987 
FOX-GEN -0.024 0.920 
FOX-TET 2.771 1.417 
TET-GEN 5.271 2.089 
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Table 5-2. The class and the main mechanism of action for the 12 antibiotics used in this study. 

Fitness is expressed by relative fitness to a no-drug control. 

Antibiotic Abbr. Mechanism of 
Action Class Concentration 

(𝝁Mol) Fitness 

Cefoxitin 
sodium salt FOX Protein synthesis, 

50S 
Beta-lactam; 

Cephalosporins 

 
0.7 

 
0.948 

 
Chloramphenic

ol CHL Protein synthesis, 
50S Broad-spectrum 90 1.054 

Clindamycin 
hydrochloride CLI Protein synthesis, 

50S Macrolides 0.01 1.023 

Doxycycline 
hyclate DOX Protein synthesis, 

30S Tetracyclines 0.6 1.215 

Fusidic acid FUS Protein synthesis, 
50S Fusidane 0.005 1.043 

Gentamicin 
sulfate GEN Protein synthesis, 

50S Aminoglycosides 0.15 0.965 

Nalidixic acid 
sodium salt NAL DNA Gyrase Quinolone 20 1.492 

Neomycin NEO Protein synthesis, 
50S Aminoglycosides 0.35 0.893 

Oxacillin 
sodium salt OX Cell Wall Beta-lactam; 

Penicillin 0.005 1.193 

Piperacillin 
sodium salt PIP Cell Wall Beta-lactam: 

Penicillin 0.6 1.061 

Tetracycline TET Protein synthesis, 
30S Tetracyclines 20 0.810 

Erythromycin ERY Protein synthesis, 
50S Macrolides 0.05 1.070 

Trimethoprim TMP Folic Acid Antifolate 1.5 0.065 
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Figure 5-1.The correlation between relative fitness of the ancestral strain exposed to a 

combination and rate of adaptation. A Pearson correlation test was performed to measure the 

relationship between fitness and rates of adaption, showing a significant correlation (R = 0.23, p 

= 0.0017). The data from both two- and three- drug combinations were pooled together. 
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Figure 5-2. Synergistic combinations of two- and three- drugs correlate with faster rates of 

resistance adaptation. A) A Pearson correlation was performed on the corrected rates of adaptation 

and the net interaction of the pooled combination data for both two-drug and three-drug 

combinations. There was a significant negative correlation (R= -0.23, p = 0.002) which indicated 

that as net interactions become synergistic there are faster rates of adaptation. This trend is also 

observed when only examining B), two- drug combinations (R= -0.17, p = 0.037) or C), three-drug 

combinations separately (R= -0.38, p = 0.047).  
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Figure 5-3. Emergent interactions do not correlate to rates of adaptation. A Pearson correlation 

was performed on the corrected rates of adaptation and the emergent interactions of the three-drug 

combinations. No significant correlation was found (R= 0.1, p= 0.6).  
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